1
|
Farrokhzadeh H, Jaronski ST, Rashed A. Reduced survivorship, host preference, and feeding damage by Helicoverpa zea (Lepidoptera: Noctuidae) on cotton plants colonized by the endophyte Beauveria bassiana (Ascomycota: Hypocreales). JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:523-530. [PMID: 39985754 DOI: 10.1093/jee/toae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 02/24/2025]
Abstract
The GHA strain of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) is known to establish symbiotic relationships with some plant species. The present study was developed to determine whether the foliar application of B. bassiana-GHA and B. bassiana ANT-03, another commercial B. bassiana, results in the successful colonization of cotton, Gossypium hirsutum L., and examine whether the endophyte can influence the survivorship and feeding damage by the corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae). Using polymerase chain reaction, colonization success by B. bassiana-GHA, 3, 7, 14, and 21 days after inoculation was estimated at 83.3%, 100%, 91.7%, and 83.3%, respectively. The colonization success based on the mycelial outgrowth method was 41.7%, 66.7%, 58.3%, and 50%, 3, 7, 14, and 21 days after inoculation, respectively. Beauveria bassiana ANT-03 did not colonize cotton. Corn earworms preferred untreated plants over the neonicotinoid and B. bassiana-GHA treatments. The B. bassiana ANT-03-treated plants and controls were not distinguished from one another by the corn earworms. The corn earworm survivorship was higher on the control plants, compared to plants treated with B. bassiana ANT-03, B. bassiana-GHA, and the neonicotinoid insecticide. The neonicotinoid insecticide, B. bassiana-GHA, and B. bassiana ANT-03 reduced corn earworm damage compared to the untreated controls. Our results demonstrated the potential for B. bassiana-GHA to be used as a biological control agent against H. zea in cotton.
Collapse
Affiliation(s)
- Hadi Farrokhzadeh
- Department of Entomology, Southern Piedmont Agricultural R&E Center, Virginia Polytechnic and State University, Blackstone, VA, USA
- Department of Plant Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Stefan T Jaronski
- Jaronski Mycological Consulting LLC, Blacksburg, VA, USA
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Arash Rashed
- Department of Entomology, Southern Piedmont Agricultural R&E Center, Virginia Polytechnic and State University, Blackstone, VA, USA
| |
Collapse
|
2
|
Xie Z, Lu Y, Tian Y, Li Q, Zou X, Sui L, Zhang Z. Fusarium citri as an entomopathogenic fungus mediating plant resistance against insect pests and phytopathogens. Sci Rep 2025; 15:12957. [PMID: 40234726 PMCID: PMC12000352 DOI: 10.1038/s41598-025-98103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
Fusarium citri has been historically recognized as a phytopathogen but never as an entomophagous fungus (EPF) with plant endogeneity. In the present study, an F. citri strain, FcS1GZL-1, was isolated and identified from diseased Spodoptera litura larvae in a soybean field. The pathogenicity and antagonistic activity of FcS1GZL-1 against five insect pests were assessed, as well as its ability to colonize plants via root irrigation, and its induced resistance to insect pests and phytopathogens was also measured. The expression of plant resistance related genes was analyzed using real-time RT-PCR. According to the results, the FcS1GZL-1 strain could not only kill insect pests with high pathogenicity but also inhibited phytopathogen growth in vitro. Furthermore, the FcS1GZL-1 strain could repel insect pest feeding and enhance plant resistance to phytopathogens through endophytic customization following root irrigation, which upregulated 12 genes related to the jasmonic acid, salicylic acid, ethylene, and pathogen-related defense pathways in soybean roots. Herein, we present the first documented case of F. citri naturally infecting insects, and its dual role in controlling insect pests and phytopathogens, with promising biocontrol applications.
Collapse
Affiliation(s)
- Zhao Xie
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yifan Tian
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Li Sui
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China.
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China.
| |
Collapse
|
3
|
Liu Y, Zhao X, Fan Y, Huo P, Huang S, Wang H, Lu Z, Luo Z, Zhang Y. Transcriptome analysis of Beauveria bassiana interaction with Nicotiana benthamiana reveals signatures of N. Benthamiana growth promotion and enhanced defense responses. J Invertebr Pathol 2025; 211:108334. [PMID: 40204265 DOI: 10.1016/j.jip.2025.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Many entomopathogenic fungi form intimate (epi- and endo-phytic) associations with that plant that can stimulate plant growth and /or improve resistance to pathogens and insect pests. However, little is known concerning global gene networks that mediate such responses. Nicotiana benthamiana seedlings were artificially colonized by the entomogenous fungus, Beauveria bassiana, and the root tissues were examined via comparative transcriptome analyses performed versus fungal cells grown in vitro on dried root biomass. Plant hormone pathways, and genes involved in photosynthesis, immune defense response, and nutrient metabolism were triggered in roots after fungal colonization. Fungal differentially expressed genes during plant colonization included plant cell wall-degrading enzymes, and those involved in lipid metabolism, detoxification, and fungal cell wall remodeling, the latter suggesting reduction in the exposure of pathogen related molecular patterns to avoid perception by the plant immune system. Fungal metabolic genes involved in amino acid, nitrogen, sulfur and carbohydrate assimilation were activated, nutrient exchange with the plant host. Exchange was confirmed by detection of sulfur in the seedling that was increased by the fungal colonization. A set of fungal secondary metabolism-associated genes were also upregulated during the plant interaction, which might contribute to plant resistance against pathogens or/and insect pest. In addition, B. bassiana expressed a suite of effector/elicitor genes consistent with triggering plant growth and/or immune defense response pathways. These results revealed global gene networks active in both the plants and the fungus as a consequence of their symbiotic interaction, and provides insights into the molecular determinants and physiological responses affected.
Collapse
Affiliation(s)
- Yunxia Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhao
- School of Basic Medicine Science, Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Yongxiong Fan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Pengxia Huo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Shuaishuai Huang
- School of Ecology and Environment, Tibet University, Tibet 850000, China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Liu L, Liu S, Meng Q, Chen B, Zhang J, Zhang X, Lin Z, Zou Z. Evaluating Beauveria bassiana Strains for Insect Pest Control and Endophytic Colonization in Wheat. INSECTS 2025; 16:287. [PMID: 40266821 PMCID: PMC11943200 DOI: 10.3390/insects16030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Certain entomopathogenic fungi, such as Beauveria bassiana, are highly pathogenic to arthropod pests and are able to colonize plant tissues, thereby enhancing both plant growth and disease resistance. This study assessed three B. bassiana strains (CBM1, CBM2, and CBM3) for their pathogenicity toward insect larvae and colonization potential in wheat. The insecticidal activity of the fungi against the larvae of the major lepidopteran pests Helicoverpa armigera, Spodoptera frugiperda, Mythimna separata, and Plutella xylostella was determined. The fungi were then applied to wheat plants using seed immersion and soil drench methods; their colonization rates were compared, and the impacts of fungal colonization on wheat growth and survival were evaluated. The results demonstrated that all three strains were effective in reducing insect damage, with B. bassiana CBM1 exhibiting the highest pathogenicity followed by CBM3 and CBM2. B. bassiana CBM1 was particularly effective, with a significantly higher colonization rate achieved through soil drenching compared to seed immersion. The soil inoculation of B. bassiana resulted in increased plant height at 30 days after sowing (DAS) and root length at 15 DAS compared to the control group. B. bassiana CBM1-colonized wheat increased the mortality of fall armyworm. This research has enriched the biological control microbial resource pool and highlights the potential of B. bassiana in integrated pest management strategies.
Collapse
Affiliation(s)
- Lulu Liu
- Institutes of Life Science and Green Development, School of Life Science, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiming Liu
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Forestry College, Beihua University, Jilin 132013, China
- Institute of Forestry Engineering, Guangxi Eco-Engineering Vocational and Technical College, Liuzhou 545004, China
| | - Qingfan Meng
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Forestry College, Beihua University, Jilin 132013, China
| | - Bing Chen
- Institutes of Life Science and Green Development, School of Life Science, Hebei University, Baoding 071002, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Xue Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Ghaffari S, Karimi J, Cheniany M, Seifi A, Loverodge J, Butt TM. Endophytic entomopathogenic fungi enhance plant immune responses against tomato leafminer. J Invertebr Pathol 2025; 209:108270. [PMID: 39800113 DOI: 10.1016/j.jip.2025.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Plants employ various defense mechanisms to protect themselves from invaders such as microorganisms and herbivores. By recognizing these threats, plants can trigger a cascade of responses throughout their tissues, effectively priming their defenses and enhancing their resistance to future attacks. In this study, we examined the indirect effects of the entomopathogenic fungi Beauveria bassiana strain GHA and Metarhizium anisopliae strain F01 on tomato growth, expression of selected plant genes, production of secondary metabolites, and preference and performance of the tomato leafminer (Tuta absoluta). Both B. bassiana and M. anisopliae colonized tomato endophytically. Plants treated with B. bassiana had greater biomass than the untreated control and M. anisopliae treated plants. Oviposition was lower on plants treated with B. bassiana and M. anisopliae than on untreated controls in both choice and no-choice studies, and both endophytic EPF also affected the development of leafminer larvae. Gene expression analysis of tomato leaves inoculated with endophytic EPF provided evidence of triggering plant immune response genes, and of priming genes for herbivore attack, making plants more resistant to herbivory. These findings provide important insights into the mechanisms by which B. bassiana and M. anisopliae promote tomato plant growth and rapidly respond to T. absoluta infestation by priming the immune system. This knowledge could improve the development of entomopathogenic fungi for use in plant-protection strategies.
Collapse
Affiliation(s)
- Sepideh Ghaffari
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Alireza Seifi
- Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Joel Loverodge
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
6
|
Sui L, Lu Y, Xu M, Liu J, Zhao Y, Li Q, Zhang Z. Insect hypovirulence-associated mycovirus confers entomopathogenic fungi with enhanced resistance against phytopathogens. Virulence 2024; 15:2401978. [PMID: 39263889 PMCID: PMC11404608 DOI: 10.1080/21505594.2024.2401978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Mycoviruses can alter the biological characteristics of host fungi, including change virulence or pathogenicity of phytopathogens and entomopathogenic fungi (EPF). However, most studies on the mycoviruses found in EPF have focused on the effects of the viruses on the virulence of host fungi towards insect pests, with relatively few reports on the effects to the host fungi with regard to plant disease resistance in hosts. The present study investigated the effects of the mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) virus infection on host biological characteristics, evaluated antagonistic activity of BbCV2 against two phytopathogenic fungi (Sclerotinia sclerotiorum and Botrytis cinerea), and transcriptome analysis was used to reveal the interactions between viruses and hosts. Our results showed that BbCV2 virus infection increased B. bassiana's growth rate, spore production, and biomass, it also enhanced the capacity of host fungi and their metabolic products to inhibit phytopathogenic fungi. BbCV2 virus infection reduced the contents of the two pathogens in tomato plants significantly, and transcriptome analysis revealed that the genes related to competition for ecological niches and nutrition, mycoparasitism and secondary metabolites in B. bassiana were significantly up-regulated after viral infection. These findings indicated that the mycovirus infection is an important factor to enhance the ability of B. bassiana against plant disease after endophytic colonization. We suggest that mycovirus infection causes a positive effect on B. bassiana against phytopathogens, which should be considered as a potential strategy to promote the plant disease resistance of EPF.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Mengnan Xu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Jianfeng Liu
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| |
Collapse
|
7
|
Kong D, Cui L, Wang X, Wo J, Xiong F. Fungus-derived opine enhances plant photosynthesis. J Adv Res 2024:S2090-1232(24)00547-2. [PMID: 39592078 DOI: 10.1016/j.jare.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Plant-fungal interactions stimulate endophytic fungi to produce a plethora of metabolites that enhance plant growth and improve stress resistance. Opines, naturally occurring compounds formed through the condensation of amino acids with α-keto acids or sugars, have diverse biological functions and are mainly present in bacteria. Interestingly, investigations have revealed the presence of opine synthases (OSases) in fungal species as well, and their functions are yet to be studied. OBJECTIVES The objective of this study is to investigate the occurrence of OSases in fungal species, identify their products, and characterize the potential biological activity of the metabolites. METHODS We identified a putative class of OSases in fungi through sequence similarity network (SSN) analysis. The function of these enzymes was elucidated using methods including protein heterologous expression, in vitro biochemical characterization, in vivo gene knock-out, as well as product isolation and identification. Additionally, we conducted plant activity testing on the secondary metabolites through foliar spraying and performed transcriptomic analysis to uncover their functions. RESULTS A quarter of the PF18631 family members, which contain the C-terminal helical bundle domain of cucumopine synthase, are derived from endophytic fungi. Some of these enzymes catalyze the synthesis of tryptopine A (1-acetyl-3-carboxy-β-carboline) by condensing L-tryptophan and methylglyoxal. The tryptopine A can act as a growth regulator, promoting plant growth and transcriptionally reprogramming photosynthesis-related pathways, while enhancing the rate of plant photosynthesis by 25 %. CONCLUSION The findings of this study suggest that tryptopine A plays a crucial role as a signaling molecule in the establishment and maintenance of mutualistic associations between endophytic fungi and host plants, thereby enhancing our comprehension of fungal-plant symbiosis.
Collapse
Affiliation(s)
- Dekun Kong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Fangjie Xiong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Guo W, Lu Y, Du S, Li Q, Zou X, Zhang Z, Sui L. Endophytic Colonization of Beauveria bassiana Enhances Drought Stress Tolerance in Tomato via "Water Spender" Pathway. Int J Mol Sci 2024; 25:11949. [PMID: 39596021 PMCID: PMC11594164 DOI: 10.3390/ijms252211949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Drought stress is one of the most important climate-related factors affecting crop production. Tomatoes (Solanum lycopersicum L.) are economically important crops which are highly sensitive to drought. The entomopathogenic fungus Beauveria bassiana, a widely used biological insecticide, can form symbiotic relationships with plants via endophytic colonization, increasing plant biomass and the ability to resist biotic stress. Under simulated drought stress conditions, the biomass of tomato seedlings such as plant height, root length, stem diameter, fresh weight, and relative water content, as well as the density and size of stomata in tomato leaves were significantly increased after B. bassiana colonization via root irrigation (p < 0.05). Meanwhile, the physicochemical properties associated with drought resistance such as peroxidase activity and proline content increased significantly (p < 0.05), while malondialdehyde reduced significantly (p < 0.05), and the expression levels of key genes related to stomatal development and drought tolerance pathways increased significantly (p < 0.05). These results indicate that the colonization of B. bassiana enhances the water absorption capacity of tomato seedlings and the rate of transpiration significantly and increases drought tolerance in tomato via the "water spender" pathway, which provides a new strategy for improving crop resistance to drought stress.
Collapse
Affiliation(s)
- Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Song Du
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
- College of Agriculture, Jilin University of Agricultural Science and Technology, Jilin 132109, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| |
Collapse
|
9
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
10
|
Sui L, Zhu H, Wang D, Zhang Z, Bidochka MJ, Barelli L, Lu Y, Li Q. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. PEST MANAGEMENT SCIENCE 2024; 80:4575-4584. [PMID: 38738508 DOI: 10.1002/ps.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Hui Zhu
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Deli Wang
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Larissa Barelli
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Qiyun Li
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
11
|
Zhang Z, Sui L, Tian Y, Lu Y, Xia X, Liu W, Cheng K, Li Q, Shi W. Metarhizium rileyi with broad-spectrum insecticidal ability confers resistance against phytopathogens and insect pests as a phytoendophyte. PEST MANAGEMENT SCIENCE 2024; 80:3246-3257. [PMID: 38358040 DOI: 10.1002/ps.8027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Entomophagous fungi (EPF) not only directly kill insect pests, but also colonize plants and improve their resistance against pests. However, most previous research has focused on Beauveria bassiana and Metarhizium anisopliae, and there are few reports on whether other EPF can enhance resistance against pests via endogenous colonization. Herein, an EPF strain was isolated from diseased larvae of Spodoptera litura in a soybean field, and subjected to genome-wide sequencing at the chromosomal level. The pathogenicity of the isolate toward various pest insects was evaluated, and the ability to colonize plants and induce resistance against phytopathogens and insect pests was tested. RESULTS The purified isolate was identified as M. rileyi and designated MrS1Gz1-1. Biological assays revealed its strong pathogenicity toward five insect pests belonging to Lepidoptera and Hemiptera. Furthermore, the strain inhibited the growth of soil-borne plant disease caused by Sclerotinia sclerotiorum in vitro. It colonized plants as an endophyte via soil application, thereby inducing plant resistance-related genes against phytopathogen infection, and it disrupted the feeding selectivity of S. litura larvae. CONCLUSION M. rileyi MrS1Gz1-1 has potential as a broad-spectrum microbial control agent that can induce resistance against phytopathogens and insect pests feeding as an endotype. The complete genome provides a valuable resource for exploring host interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yifan Tian
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Xinyao Xia
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wende Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Cheng
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Jilin Agricultural Science and Technology University, Jilin, P. R. China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Papantzikos V, Mantzoukas S, Eliopoulos PA, Servis D, Bitivanos S, Patakioutas G. Evaluation of Various Inoculation Methods on the Effect of Beauveria bassiana on the Plant Growth of Kiwi and on Halyomorpha halys Infestation: A Two-Year Field Study. BIOLOGY 2024; 13:470. [PMID: 39056665 PMCID: PMC11273441 DOI: 10.3390/biology13070470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In this study, the bioinsecticidal action of a commercial formulation with Beauveria bassiana was evaluated on the new sucking pest in Greece: Halyomorpha halys, of the kiwifruit. Additionally, the biostimulant potential of the same formulation was studied on kiwi growth. The application was performed in three different ways in a commercial field of kiwi crop A. deliciosa "Hayward" field in Arta, Greece: (i) trunk spray, (ii) root injection, and (iii) trunk inoculation. During the 2 years seasons of the experiment, weekly measurements of the H. halys population were determined. The insect is sucking plants nutrients; therefore, the total chlorophyll content in the leaves of the treatments was recorded weekly. In addition, the percentage of infested kiwifruits was estimated at the end of the experiment. Moreover, to study the biostimulant potential of the formulation, growth measurements on stems and leaves were performed during the experiment. Finally, at the kiwi harvest point, the fruit biomass, dimensions, and weight were obtained, and the leaves' proline content was evaluated. The results encourage us to further study this EPF formulation as the bioinsecticidal effect was noted by the reduction in H. halys population, and biostimulant action was perceived by the higher plant biomass.
Collapse
Affiliation(s)
- Vasileios Papantzikos
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| | - Spiridon Mantzoukas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| | - Panagiotis A. Eliopoulos
- Laboratory of Plant Health Management, Department of Agrotechnology, University of Thessaly, Geopolis, 41500 Larissa, Greece;
| | | | | | - George Patakioutas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| |
Collapse
|
13
|
Zhu C, Sun J, Tian F, Tian X, Liu Q, Pan Y, Zhang Y, Luo Z. The Bbotf1 Zn(Ⅱ) 2Cys 6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 204:108083. [PMID: 38458350 DOI: 10.1016/j.jip.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.
Collapse
Affiliation(s)
- Chenhua Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jingxin Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fangfang Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinting Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qi Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Wilberts L, Vuts J, Caulfield JC, Thomas G, Withall DM, Wäckers F, Birkett MA, Jacquemyn H, Lievens B. Effects of root inoculation of entomopathogenic fungi on olfactory-mediated behavior and life-history traits of the parasitoid Aphidius ervi (Haliday) (Hymenoptera: Braconidae). PEST MANAGEMENT SCIENCE 2024; 80:307-316. [PMID: 37682693 DOI: 10.1002/ps.7762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Although most biological control programs use multiple biological agents to manage pest species, to date only a few programs have combined the use of agents from different guilds. Using sweet pepper (Capsicum annuum L.), the entomopathogenic fungus Akanthomyces muscarius ARSEF 5128, the tobacco peach aphid Myzus persicae var. nicotianae and the aphid parasitoid Aphidius ervi as the experimental model, we explored whether root inoculation with an entomopathogenic fungus is compatible with parasitoid wasps for enhanced biocontrol of aphids. RESULTS In dual-choice behavior experiments, A. ervi was significantly attracted to the odor of M. persicae-infested C. annuum plants that had been inoculated with A. muscarius, compared to noninoculated infested plants. There was no significant difference in attraction to the odor of uninfested plants. Myzus persicae-infested plants inoculated with A. muscarius emitted significantly higher amounts of indole, (E)-nerolidol, (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene and one unidentified terpene compared to noninoculated infested plants. Coupled gas chromatography-electroantennography, using the antennae of A. ervi, confirmed the physiological activity of these elevated compounds. Inoculation of plants with A. muscarius did not affect parasitism rate nor parasitoid longevity, but significantly increased the speed of mummy formation in parasitized aphids on fungus-inoculated plants. CONCLUSION Our data suggest that root inoculation of C. annuum with A. muscarius ARSEF 5128 alters the olfactory-mediated behavior of parasitoids, but has little effect on parasitism efficiency or life-history parameters. However, increased attraction of parasitoids towards M. persicae-infested plants when inoculated by entomopathogenic fungi can accelerate host localization and hence improve biocontrol efficacy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liesbet Wilberts
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - John C Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - David M Withall
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Felix Wäckers
- Biobest, Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Hans Jacquemyn
- Leuven Plant Institute, KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Leuven Plant Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Aydinoglu F, Kuloglu A. Nicotiana benthamiana as a model plant host for Fusarium verticillioides to investigate RNA interference, cross-kingdom RNA exchange, and competitive endogenous RNA (ceRNA) network. Mol Biol Rep 2023; 50:8061-8072. [PMID: 37540455 DOI: 10.1007/s11033-023-08698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Fusarium verticillioides is among the most devastating fungal pathogen of cereals. Therefore, it is crucial to employ effective and long-term strategies for managing F. verticillioides for sustainable agriculture. RNA interference (RNAi) being a natural defense mechanism of plants via regulation of gene expression, has emerged as a promising tool for eradicating pathogens. RNAi also operates between the host and pathogen through RNA exchange. RNAi interacts with competitive endogenous RNAs (ceRNAs) including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA. Due to the lack of an elaborate model to investigate all these mechanisms, this study aimed to establish a Nicotiana benthamiana (Nb)-F. verticillioides (Fv) phyto-pathosystem as an experimental model. METHODS AND RESULTS Nb seedlings were inoculated with Fv, and the pathogenicity was monitored morphologically, microscopically, biochemically, and transcriptionally. To observe the role of RNAi and RNA-exchange in pathogenicity, Nb-miR172 and Nb-miR399 targeting Nb-lncRNA-IPS (Induced by Phosphate Starvation1) and Nb-AP2 (Apetala2) and Nb-PHO2 (phosphate over-accumulator) ceRNA network and Fv-V-ATPase (Vesicle-fusing ATPase) targeted by Nb-miR172 were investigated. As a result, epidermal cell density, leaf area, petiole length, and chlorophyll content were reduced while the density of stomata and trichome and phenolic content and the activity of ascorbate peroxidase (APX) and glutathione reductase (GR) were increased in response to Fv infection in Nb. The expression of AP2 and PHO2 were downregulated against Fv but no significant changes were detected in IPS, miR172, and miR399 expression. CONCLUSION These findings suggested the Fv-Nb phyto-pathosystem as a useful experimental model to reveal genetic regulations.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| | - Aslihan Kuloglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
16
|
Sui L, Lu Y, Zhou L, Li N, Li Q, Zhang Z. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Front Microbiol 2023; 14:1227269. [PMID: 37664126 PMCID: PMC10468600 DOI: 10.3389/fmicb.2023.1227269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Entomopathogenic fungi (EPF) can colonize and establish symbiotic relationships with plants as endophytes. Recently, EPF have been reported to suppress plant pathogens and induce plant resistance to diseases. However, the potential mechanisms via which EPF as endophytes control major plant diseases in situ remain largely unknown. Methods Pot and field experiments were conducted to investigate the mechanisms via which an EPF, Beauveria bassiana, colonizes tomato, under Botrytis cinerea infection stress. B. bassiana blastospores were inoculated into tomato plants by root irrigation. Tomato resistance to tomato gray mold caused by B. cinerea was evaluated by artificial inoculation, and B. bassiana colonization in plants and rhizosphere soil under B. cinerea infection stress was evaluated by colony counting and quantitative PCR. Furthermore, the expression levels of three disease resistance-related genes (OXO, CHI, and atpA) in tomato leaves were determined to explore the effect of B. bassiana colonization on plant disease resistance performance in pot experiments. Results B. bassiana colonization could improve resistance of tomato plants to gray mold caused by B. cinerea. The incidence rate, lesion diameter, and disease index of gray mold decreased in both the pot and field experiments following B. bassiana colonization. B. bassiana was more likely to accumulate in the pathogen infected leaves, while decreasing in the rhizosphere soil, and induced the expression of plant resistance genes, which were up-regulated in leaves. Discussion The results indicated that plants could "recruit" B. bassiana from rhizosphere soil to diseased plants as directional effects, which then enhanced plant growth and resistance against pathogens, consequently inhibiting pathogen infection and multiplication in plants. Our findings provide novel insights that enhance our understanding of the roles of EPF during pathogen challenge.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Linyan Zhou
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Nannan Li
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
17
|
Posada-Vergara C, Vidal S, Rostás M. Local Competition and Enhanced Defense: How Metarhizium brunneum Inhibits Verticillium longisporum in Oilseed Rape Plants. J Fungi (Basel) 2023; 9:796. [PMID: 37623567 PMCID: PMC10455689 DOI: 10.3390/jof9080796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Metarhizium brunneum is a soil-borne fungal entomopathogen that can be associated with plant roots. Previous studies have demonstrated that root colonization by beneficial fungi can directly affect soil-borne pathogens through competition and antibiosis and can activate a systemic response in plants, resulting in a primed state for a faster and/or stronger response to stressors. However, the mechanisms by which Metarhizium inoculation ameliorates symptoms caused by plant pathogens are not well known. This study evaluated the ability of M. brunneum to protect oilseed rape (Brassica napus L.) plants against the soil-borne pathogen Verticillium longisporum and investigated whether the observed effects are a result of direct interaction and/or plant-mediated effects. In vitro and greenhouse experiments were conducted to measure fungal colonization of the rhizosphere and plant tissues, and targeted gene expression analysis was used to evaluate the plant response. The results show that M. brunneum delayed pathogen colonization of plant root tissues, resulting in decreased disease symptoms. Direct competition and antibiosis were found to be part of the mechanisms, as M. brunneum growth was stimulated by the pathogen and inhibited the in vitro growth of V. longisporum. Additionally, M. brunneum changed the plant response to the pathogen by locally activating key defense hormones in the salicylic acid (SA) and abscisic acid (ABA) pathways. Using a split-root setup, it was demonstrated that there is a plant-mediated effect, as improved plant growth and decreased disease symptoms were observed when M. brunneum was in the systemic compartment. Moreover, a stronger systemic induction of the gene PR1 suggested a priming effect, involving the SA pathway. Overall, this study sheds light on the mechanisms underlying the protective effects of M. brunneum against soil-borne pathogens in oilseed rape plants, highlighting the potential of this fungal entomopathogen as a biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Catalina Posada-Vergara
- Agricultural Entomology, Department of Crop Sciences, University of Goettingen, Grisebachstr 6, 37077 Goettingen, Germany;
| | | | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Goettingen, Grisebachstr 6, 37077 Goettingen, Germany;
| |
Collapse
|
18
|
Zhang MD, Wu SY, Yan JJ, Reitz S, Gao YL. Establishment of Beauveria bassiana as a fungal endophyte in potato plants and its virulence against potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). INSECT SCIENCE 2023; 30:197-207. [PMID: 35499984 DOI: 10.1111/1744-7917.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The potato tuber moth, Phthorimaea operculella, is the most damaging potato pest in the world and is difficult to control as the larvae are internal feeders in the foliage and tubers. Entomopathogenic fungi that colonize plants as endophytes have lethal and sublethal pathological effects on insect pests. We show that Beauveria bassiana colonizes the aerial parts of potato plants endophytically after inoculation through soil drenching. Endophytic B. bassiana persisted in potato foliage for more than 50 days postinoculation. Bioassays indicated that foliage of B. bassiana-inoculated potato plants were pathogenic against larvae of P. operculella. Sublethal experiments indicated that B. bassiana negatively affected the growth, development, and reproduction of P. operculella. Development experiments showed that the weight of P. operculella pupae reared on B. bassiana-colonized potato plants (4.25 mg) was significantly less than that of those reared on uninoculated control plants (8.89 mg). Compared with newly eclosed larvae fed on control plants, those fed on B. bassiana-inoculated plants had significantly lower survivorship, with only 17.8% developing to the adult stage. Oviposition of P. operculella females reared on B. bassiana endophytically colonized plants was significantly lower (35 eggs/female) than of those reared on uninoculated plants (115 eggs/female). This study demonstrates that endophytic B. bassiana can be a potential biological control agent for the control and management of P. operculella. Comparing pupal weights of P. operculella reared on potato plants inoculated with the B. bassiana strain GZGY-1-3 and on untreated control plants, pupae from the control plants were significantly heavier than those from treated plants.
Collapse
Affiliation(s)
- Meng-Di Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheng-Yong Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Stuart Reitz
- Department of Crop and Soil Sciences, Malheur Experiment Station, Oregon State University, Ontario, OR, USA
| | - Yu-Lin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Center of Excellence for Tuber and Root Crop Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Luo Z, Chen Q, Su Y, Hu S, Keyhani NO, Wang J, Zhu C, Zhou T, Pan Y, Bidochka MJ, Zhang Y. The AreA Nitrogen Catabolite Repression Activator Balances Fungal Nutrient Utilization and Virulence in the Insect Fungal Pathogen Beauveria bassiana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:646-659. [PMID: 36584226 DOI: 10.1021/acs.jafc.2c07047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In many fungi, the AreA GATA-type transcription factor mediates nitrogen catabolite repression affecting fungal development and, where applicable, virulence. Here, we investigated the functions of AreA in the fungal entomopathogen and plant endophyte Beauveria bassiana using knockdown of gene expression. The antiAreA mutants were impaired in nitrogen utilization and showed increased sensitivities to osmotic stressors but increased tolerances to oxidative/hypoxia stresses. Repression of BbAreA caused overall minimal effects on fungal virulence. The minor effects on virulence appeared to be due in part to competing secondary effects where host defense phenoloxidase activity was significantly decreased, but production of the fungal metabolite oosporein was increased and hyphal body development was impaired. Knockdown of BbAreA expression also resulted in impairment in ability of the fungus to associate with host plants. These data implicate that BbAreA likely acts as a regulator to balance fungal nutrient utilization, pathogenicity, and mutualism, facilitating the fungal occupation of host niches.
Collapse
Affiliation(s)
- Zhibing Luo
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Qiyan Chen
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yufeng Su
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shasha Hu
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
| | - Junyao Wang
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chenhua Zhu
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Teng Zhou
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, P. R. China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Yongjun Zhang
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
20
|
Mantzoukas S, Daskalaki E, Kitsiou F, Papantzikos V, Servis D, Bitivanos S, Patakioutas G, Eliopoulos PA. Dual Action of Beauveria bassiana (Hypocreales; Cordycipitaceae) Endophytic Stains as Biocontrol Agents against Sucking Pests and Plant Growth Biostimulants on Melon and Strawberry Field Plants. Microorganisms 2022; 10:2306. [PMID: 36422376 PMCID: PMC9692842 DOI: 10.3390/microorganisms10112306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 08/27/2023] Open
Abstract
Entomopathogenic fungi (EPF) can colonize plant tissues and serve crops not only as biopesticides but also as biostimulants that promote plant growth and trigger defense mechanisms. In this context, field trials were conducted evaluating two commercial strains of the entomopathogen Beauveria bassiana (Hypocreales: Cordycipitaceae), GHA (Botanigard) and PPRI 5339 (Velifer® ES) and a wild strain (AP0101) isolated from Achaia, Greece. The three strains were investigated in the field for their endophytic effects on melon Cucumis melo (Cucurbitales: Cucurbitaceae) and strawberry Fragaria sp. (Rosales: Rosaceae) plants and in particular for their ability to colonize plant tissues, control infestations of sucking insects Aphis gossypii (Hemiptera: Aphididae), Chaetosiphon fragaefolii (Hemiptera: Aphididae) and Frankliniella occidentalis (Thysanoptera: Thripidae), and improve plant growth parameters (plant height, number of flowers and fruits). All experimental fungal strains successfully colonized both plants. A significant decrease in the aphid and thrip populations was observed in the treated plants compared to the untreated control. As for plant growth, the number of flowers and fruits was significantly increased in plants treated with B. bassiana strains AP0101 and PPRI 5339. Our results clearly indicate that fungal endophytes can efficiently act as dual action agents demonstrating both insecticidal and growth-promoting effects.
Collapse
Affiliation(s)
- Spiridon Mantzoukas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece
| | - Eufrosini Daskalaki
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece
| | - Foteini Kitsiou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Vasileios Papantzikos
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece
| | | | | | - George Patakioutas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece
| | - Panagiotis A. Eliopoulos
- Laboratory of Plant Health Management, Department of Agrotechnology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| |
Collapse
|
21
|
Root Colonization by Fungal Entomopathogen Systemically Primes Belowground Plant Defense against Cabbage Root Fly. J Fungi (Basel) 2022; 8:jof8090969. [PMID: 36135694 PMCID: PMC9505207 DOI: 10.3390/jof8090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Entomopathogenic fungi infect insects via spores but also live inside plant tissues as endophytes. Frequently, colonization by entomopathogens provides plants with increased resistance against insects, but the mechanisms are little understood. This study investigated direct, local, and systemic root-mediated interactions between isolates of the fungus Metarhizium brunneum and larvae of the cabbage root fly (CRF) Delia radicum attacking Brassica napus plants. All fungal isolates infected CRF when conidia were present in the soil, leading to 43–93% mortality. Locally, root-associated M. brunneum isolates reduced herbivore damage by 10–20% and in three out of five isolates caused significant insect mortality due to plant-mediated and/or direct effects. A split-root experiment with isolate Gd12 also demonstrated systemic plant resistance with significantly reduced root collar damage by CRF. LC-MS analyses showed that fungal root colonization did not induce changes in phytohormones, while herbivory increased jasmonic acid (JA) and glucosinolate concentrations. Proteinase inhibitor gene expression was also increased. Fungal colonization, however, primed herbivore-induced JA and the expression of the JA-responsive plant defensin 1.2 (PDF1.2) gene. We conclude that root-associated M. brunneum benefits plant health through multiple mechanisms, such as the direct infection of insects, as well as the local and systemic priming of the JA pathway.
Collapse
|
22
|
Isolation and identification of two Beauveria bassiana strains from silkworm, Bombyx mori. Folia Microbiol (Praha) 2022; 67:891-898. [PMID: 35750981 DOI: 10.1007/s12223-022-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/16/2022] [Indexed: 11/04/2022]
Abstract
Silkworm diseases caused by fungi infection occur frequently in sericulture and brought huge economic loss to sericulture. However, on the other hand, some fungi such as Beauveria bassiana, as an important entomological fungus, play an important role in biological control of insect pests. Here, two fungal pathogens causing yellow muscardine were isolated from the silkworm and named as SZY1 and SZY2. These two strains showed almost the same conidial morphology which were smooth, near-spherical, spherical, or ovoid and 2.7 ± 0.6 µm × 2.5 ± 0.9 µm in size, and the hyphal growth rate was also similar. However, the conidia production of SZY2 was almost twice as many as that of SZY1. The complete ribosomal RNA gene was sequenced and analyzed. As a result, the gene sequences of internal transcript space 1 (ITS1)-5.8S rRNA-internal transcript space 2 (ITS2) of SZY1 and SZY2 were identical in sequence and size, and for 18S rRNA, 28S rRNA, and intergenic spacer (IGS), the gene identity of SZY1 to SZY2 was 99%, 99%, and 98%, respectively. Results of phylogenetic analysis based on either ITS1-5.8S rRNA-ITS2 or 18S rRNA showed that both SZY1 and SZY2 were closely related to Beauveria bassiana. These results revealed that the pathogens of yellow muscardine SZY1 and SZY2 were identified as two different strains of Beauveria bassiana, which could provide diagnostic evidence for silkworm muscardine and was helpful for the research and development of novel Bombyx batryticatus and fungal biological insecticide.
Collapse
|
23
|
Endophytic blastospores of Beauveria bassiana provide high resistance against plant disease caused by Botrytis cinerea. Fungal Biol 2022; 126:528-533. [DOI: 10.1016/j.funbio.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
|
24
|
Gupta R, Keppanan R, Leibman-Markus M, Rav-David D, Elad Y, Ment D, Bar M. The Entomopathogenic Fungi Metarhizium brunneum and Beauveria bassiana Promote Systemic Immunity and Confer Resistance to a Broad Range of Pests and Pathogens in Tomato. PHYTOPATHOLOGY 2022; 112:784-793. [PMID: 34636647 DOI: 10.1094/phyto-08-21-0343-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biocontrol agents can control pathogens by reenforcing systemic plant resistance through systemic acquired resistance (SAR) or induced systemic resistance (ISR). Trichoderma spp. can activate the plant immune system through ISR, priming molecular mechanisms of defense against pathogens. Entomopathogenic fungi (EPF) can infect a wide range of arthropod pests and play an important role in reducing pests' population. Here, we investigated the mechanisms by which EPF control plant diseases. We tested two well studied EPF, Metarhizium brunneum isolate Mb7 and Beauveria bassiana as the commercial product Velifer, for their ability to induce systemic immunity and disease resistance against several fungal and bacterial phytopathogens, and their ability to promote plant growth. We compared the activity of these EPF to an established biocontrol agent, Trichoderma harzianum T39, a known inducer of systemic plant immunity and broad disease resistance. The three fungal agents were effective against several fungal and bacterial plant pathogens and arthropod pests. Our results indicate that EPF induce systemic plant immunity and disease resistance by activating the plant host defense machinery, as evidenced by increases in reactive oxygen species production and defense gene expression, and that EPF promote plant growth. EPF should be considered as control means for Tuta absoluta. We demonstrate that, with some exceptions, biocontrol in tomato can be equally potent by the tested EPF and T. harzianum T39, against both insect pests and plant pathogens. Taken together, our findings suggest that EPF may find use in broad-spectrum pest and disease management and as plant growth promoting agents.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Ravindran Keppanan
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
25
|
Grabka R, d’Entremont TW, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S. Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030384. [PMID: 35161365 PMCID: PMC8840373 DOI: 10.3390/plants11030384] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 05/06/2023]
Abstract
Virtually all examined plant species harbour fungal endophytes which asymptomatically infect or colonize living plant tissues, including leaves, branches, stems and roots. Endophyte-host interactions are complex and span the mutualist-pathogen continuum. Notably, mutualist endophytes can confer increased fitness to their host plants compared with uncolonized plants, which has attracted interest in their potential application in integrated plant health management strategies. In this review, we report on the many benefits that fungal endophytes provide to agricultural plants against common non-insect pests such as fungi, bacteria, nematodes, viruses, and mites. We report endophytic modes of action against the aforementioned pests and describe why this broad group of fungi is vitally important to current and future agricultural practices. We also list an extensive number of plant-friendly endophytes and detail where they are most commonly found or applied in different studies. This review acts as a general resource for understanding endophytes as they relate to potential large-scale agricultural applications.
Collapse
Affiliation(s)
- Rachel Grabka
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada; (R.G.); (P.A.A.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (T.W.d.); (S.J.A.); (A.K.W.)
| | - Tyler W. d’Entremont
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (T.W.d.); (S.J.A.); (A.K.W.)
| | - Sarah J. Adams
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (T.W.d.); (S.J.A.); (A.K.W.)
| | - Allison K. Walker
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (T.W.d.); (S.J.A.); (A.K.W.)
| | - Joey B. Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada;
| | - Pervaiz A. Abbasi
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada; (R.G.); (P.A.A.)
| | - Shawkat Ali
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada; (R.G.); (P.A.A.)
- Correspondence:
| |
Collapse
|
26
|
Nicoletti R, Becchimanzi A. Ecological and Molecular Interactions between Insects and Fungi. Microorganisms 2022; 10:microorganisms10010096. [PMID: 35056545 PMCID: PMC8779020 DOI: 10.3390/microorganisms10010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
Insects and fungi represent two of the most widespread groupings of organisms in nature, occurring in every kind of ecological context and impacting agriculture and other human activities in various ways. Moreover, they can be observed to reciprocally interact, establishing a wide range of symbiotic relationships, from mutualism to antagonism. The outcome of these relationships can in turn affect the extent at which species of both organisms can exert their noxious effects, as well as the management practices which are to be adopted to counter them. In conjunction with the launch of a Special Issue of Microorganisms with the same title, this article offers a general overview of the manifold aspects related to such interactions from the perspective of implementing our capacity to regulate them in a direction more favorable for the environment, crop production and human health.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Correspondence:
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
27
|
Niu H, Sun Y, Zhang Z, Zhao D, Wang N, Wang L, Guo H. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res 2021; 256:126956. [PMID: 34995970 DOI: 10.1016/j.micres.2021.126956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Entomopathogenic bacteria are commonly used as biological agents to control different insect pests. However, little is known about the role of bacterial entomopathogens as endophytes in regulating both plant growth and resistance against insect pests. Here, we applied the entomopathogenic bacterium Serratia marcescens S-JS1 via rice seed inoculation and evaluated its effects on host plant growth and resistance against the rice pest Nilaparvata lugens. Furthermore, the induction of defense-related secondary metabolites by the bacterium was assessed by GC-MS/MS. We showed that S-JS1 was able to endophytically colonize the roots and shoots of rice seedlings following seed inoculation. Colonized plants showed increased seed germination (9.4-13.3 %), root (8.2-36.4 %) and shoot lengths (4.1-22.3 %), and root (26.7-69.3 %) and shoot fresh weights (19.0-49.0 %) compared to plants without inoculation. We also identified the production of indole-3-acetic acid by S-JS1, which is likely involved in enhancing rice plant growth. In a two-choice test, N. lugens adults preferred to feed on untreated control plants than on plants treated with S-JS1. In the no-choice feeding tests, the survival of N. lugens nymphs that fed on S-JS1-treated plants was significantly lower than that of nymphs that fed on untreated plants. Additionally, seeds treated with 109 cfu/mL S-JS1 resulted in elevated levels of secondary metabolites, which may be associated with N. lugens resistance in rice plants. Therefore, we suggest that the entomopathogenic bacterium S. marcescens be considered a potentially promising endophyte for use in an innovative strategy for the integrated management of insect pests.
Collapse
Affiliation(s)
- Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yang Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
28
|
Praprotnik E, Lončar J, Razinger J. Testing Virulence of Different Species of Insect Associated Fungi against Yellow Mealworm (Coleoptera: Tenebrionidae) and Their Potential Growth Stimulation to Maize. PLANTS (BASEL, SWITZERLAND) 2021; 10:2498. [PMID: 34834860 PMCID: PMC8623216 DOI: 10.3390/plants10112498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
This paper investigates 71 isolates of two genera of entomopathogens, Metarhizium and Beauveria, and a biostimulative genus Trichoderma, for their ability to infect yellow mealworms (Tenebrio molitor) and to stimulate maize (Zea mays) growth. Fungal origin, host, and isolation methods were taken into account in virulence analysis as well. Isolates Metarhizium brunneum (1154) and Beauveria bassiana (2121) showed the highest mortality (100%) against T. molitor. High virulence seems to be associated with fungi isolated from wild adult mycosed insects, meadow habitats, and Lepidopteran hosts, but due to uneven sample distribution, we cannot draw firm conclusions. Trichoderma atroviride (2882) and Trichoderma gamsii (2883) increased shoot length, three Metarhizium robertsii isolates (2691, 2693, and 2688) increased root length and two M. robertsii isolates (2146 and 2794) increased plant dry weight. Considering both criteria, the isolate M. robertsii (2693) was the best as it caused the death of 73% T. molitor larvae and also significantly increased maize root length by 24.4%. The results warrant further studies with this isolate in a tri-trophic system.
Collapse
Affiliation(s)
- Eva Praprotnik
- Plant Protection Department, Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.L.); (J.R.)
| | | | | |
Collapse
|
29
|
Chang Y, Xia X, Sui L, Kang Q, Lu Y, Li L, Liu W, Li Q, Zhang Z. Endophytic colonization of entomopathogenic fungi increases plant disease resistance by changing the endophytic bacterial community. J Basic Microbiol 2021; 61:1098-1112. [PMID: 34738230 DOI: 10.1002/jobm.202100494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Various mechanisms are involved in plant disease resistance mediated by entomopathogenic fungi; however, the role of plant endophytic microbes in disease resistance is unknown. In the present study, we showed that the disease incidence of northern corn leaf blight caused by Exserohilum turcicum (Et) on maize was reduced significantly by soil inoculation with Beauveria bassiana (Bb). Meanwhile, B. bassiana colonization and E. turcicum infection increased the diversity and abundance and diversity of endophytic bacteria and fungi, respectively, while the abundance of endophytic bacterial of the Bb + Et treatment decreased significantly compared with that of Et treatment alone. However, Bb + Et treatment increased the relative abundance of plant beneficial bacteria significantly, for example, Burkholderia and Pseudomonas. Network analyses showed that the microbiome complexity increased after soil inoculation with B. bassiana. Taken together, these results revealed the potential mechanism by which entomopathogenic fungi exert biological control of maize leaf spot disease.
Collapse
Affiliation(s)
- Yuming Chang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China.,College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Li Sui
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Qin Kang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China.,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Lu
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiyun Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|