1
|
Khan A, Ullah F, Alkreathy HM, Ahmed M, Khan RA. Phytochemical screening, antioxidant and anti-Parkinson activities of Berula erecta: A novel medicinal plant. PLoS One 2024; 19:e0305751. [PMID: 39546440 PMCID: PMC11567558 DOI: 10.1371/journal.pone.0305751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/04/2024] [Indexed: 11/17/2024] Open
Abstract
Berula erecta L. is traditionally used for the treatment of various human ailments. The present project was arranged to study the antioxidant and anti-Parkinson efficacy of B. erecta extracts against rotenone-induced Parkinson diseases in rats. Fine powder of the plant was extracted with methanol and then fractionated through various solvents with increasing order of polarity. Phytochemical screenings were done using standard protocols and High-performance liquid chromatography (HPLC) while in-vitro antioxidant activities of plant fractions were evaluated using different free radicals. In-vivo anti-Parkinson and oxidative dysfunction experiments were conducted in rats. Results revealed that various fractions possessed flavonoids, alkaloids, terpenoids saponins, tannin, anthraquinon, and phlobatanine, while terpeniods and alkaloids were absent in aqueous fraction. Chromatographic analysis of methanol fraction showed the presence of various bioactive compounds viz., vitexin, orientin, rutin, catechin and myricetin. In-vitro antioxidant activities of various fractions of Berula erecta (B.erecta) showed that methanol fraction has remarkable scavenging efficacy of 2,2-Diphenyl-1-picrylhydrazyl (DPPH), beta carotene, and superoxide free radicals followed by chloroform fraction. Free radicals produced by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Hydrogen peroxide (H2O2), and hydroxyl free radicals were considerably scavenged by methanol fraction followed by ethyl acetate fractions. In-vivo study of animal model showed that methanol fraction has significant recovery effects at behavioural, physiological and biochemical level against rotenone induced Parkinson disease. B.erecta has significantly improved rotenone-induced motor and nonmotor deficits (depression and cognitive impairments), increased antioxidant enzyme activity, and reduced neurotransmitter changes. It has been concluded from the present data that B.erecta enhances neurotransmitter levels by alleviating oxidative stress and antioxidant enzyme activity, hence improving motor activity, cognitive functioning, and decreasing depressed behavior. These data suggest that B. erecta may be a promising medicinal agent for reducing the risk and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Asif Khan
- Department of Botany, University of Science & Technology Bannu, Bannu, KPK, Pakistan
| | - Fizan Ullah
- Department of Botany, University of Science & Technology Bannu, Bannu, KPK, Pakistan
| | - Huda Mohammed Alkreathy
- Faculty of Medicine, Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science & Technology Bannu, Bannu, KPK, Pakistan
| | - Rahmat Ali Khan
- Department of Biotechnology, University of Science & Technology Bannu, Bannu, KPK, Pakistan
| |
Collapse
|
2
|
Omer S, Pathak S, Mansour M, Nadar R, Bowen D, Dhanasekaran M, Pondugula SR, Boothe D. Effects of Cannabidiol, ∆9-Tetrahydrocannabinol, and WIN 55-212-22 on the Viability of Canine and Human Non-Hodgkin Lymphoma Cell Lines. Biomolecules 2024; 14:495. [PMID: 38672512 PMCID: PMC11047936 DOI: 10.3390/biom14040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In our previous study, we demonstrated the impact of overexpression of CB1 and CB2 cannabinoid receptors and the inhibitory effect of endocannabinoids (2-arachidonoylglycerol (2-AG) and Anandamide (AEA)) on canine (Canis lupus familiaris) and human (Homo sapiens) non-Hodgkin lymphoma (NHL) cell lines' viability compared to cells treated with a vehicle. The purpose of this study was to demonstrate the anti-cancer effects of the phytocannabinoids, cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), and the synthetic cannabinoid WIN 55-212-22 (WIN) in canine and human lymphoma cell lines and to compare their inhibitory effect to that of endocannabinoids. We used malignant canine B-cell lymphoma (BCL) (1771 and CLB-L1) and T-cell lymphoma (TCL) (CL-1) cell lines, and human BCL cell line (RAMOS). Our cell viability assay results demonstrated, compared to the controls, a biphasic effect (concentration range from 0.5 μM to 50 μM) with a significant reduction in cancer viability for both phytocannabinoids and the synthetic cannabinoid. However, the decrease in cell viability in the TCL CL-1 line was limited to CBD. The results of the biochemical analysis using the 1771 BCL cell line revealed a significant increase in markers of oxidative stress, inflammation, and apoptosis, and a decrease in markers of mitochondrial function in cells treated with the exogenous cannabinoids compared to the control. Based on the IC50 values, CBD was the most potent phytocannabinoid in reducing lymphoma cell viability in 1771, Ramos, and CL-1. Previously, we demonstrated the endocannabinoid AEA to be more potent than 2-AG. Our study suggests that future studies should use CBD and AEA for further cannabinoid testing as they might reduce tumor burden in malignant NHL of canines and humans.
Collapse
Affiliation(s)
- Saba Omer
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Mahmoud Mansour
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Dylan Bowen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Satyanarayana R. Pondugula
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Dawn Boothe
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| |
Collapse
|
3
|
Desai D, Majrashi M, Pathak S, Almaghrabi M, Liu K, Pondugula SR, Tiwari AK, Babu RJ, Deruiter J, Dhanasekaran M. Evaluate the in vitro effect of anthracycline and alkylating cytophosphane chemotherapeutics on dopaminergic neurons. Cancer Rep (Hoboken) 2024; 7:e2074. [PMID: 38627904 PMCID: PMC11021631 DOI: 10.1002/cnr2.2074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.
Collapse
Affiliation(s)
- Darshini Desai
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Mohammed Majrashi
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
- Department of PharmacologyFaculty of Medicine, University of JeddahJeddahSaudi Arabia
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Mohammed Almaghrabi
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
- Department of Medicinal ChemistryFaculty of Pharmacy, Taibah UniversityAl‐MedinaSaudi Arabia
| | - Keyi Liu
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Satyanarayana R. Pondugula
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn UniversityAuburnAlabamaUSA
| | - Amit K. Tiwari
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - R. Jayachandra Babu
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Jack Deruiter
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | | |
Collapse
|
4
|
Seetharamaiah S, Muddappa VS, Krishnaswamy MB, Vasappa RK. Antineoplastic Effects of Mucuna pruriens Against Human Colorectal Adenocarcinoma. Appl Biochem Biotechnol 2024; 196:1350-1364. [PMID: 37395947 DOI: 10.1007/s12010-023-04598-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Mucuna pruriens (MP) which is commonly known as "Velvet Bean" is an underutilized legume traditionally used to treat Parkinson's disease and male fertility issues. Extracts of MP have also been identified for their antidiabetic, antioxidant, and antineoplastic effects. Commonly, the antioxidant and anticancer properties of a drug are linked together as antioxidants scavenge free radicals and prevent the cellular DNA damage which could result in cancer development. In this investigation, comparative assessment of the anticancer and antioxidant potentials of methanolic seed extracts from two common varieties of MP, Mucuna pruriens var. pruriens (MPP) and Mucuna pruriens var. utilis (MPU) against human colorectal cancer adenocarcinoma cells COLO-205, was carried out. The highest antioxidant potential was recorded with MPP with an IC50 of 45.71 μg/ml. The in vitro antiproliferative effects of MPP and MPU on COLO-205 showed an IC50 of 131.1 μg/ml and 246.9 μg/ml respectively. Our results revealed intervention of the MPP and MPU extracts in growth kinetics of the COLO-205 cells in concomitance with apoptosis induction up to 8.73- and 5.58-folds respectively. The AO/EtBr dual staining and the flow cytometry results also confirmed the better apoptotic efficacy of MPP over MPU. MPP at a concentration of 160 μg/ml exhibited highest apoptosis and cell cycle arrest. Furthermore, effect of the seed extracts on p53 expression was investigated by quantitative RT-PCR and a maximum upregulation of 1.12-fold was recorded with MPP.
Collapse
Affiliation(s)
- Sagar Seetharamaiah
- Department of Biotechnology, Sir M Visvesvaraya Institute of Technology, International Airport Road, Hunasamaranahalli, Bengaluru, 562157, Karnataka, India
| | - Vidya Shimoga Muddappa
- Department of Biotechnology Engineering, NMAM Institute of Technology - Affiliated to NITTE (Deemed to Be University), Nitte, 574110, India
| | | | - Rashmi Kanugodu Vasappa
- Department of Biotechnology, Sir M Visvesvaraya Institute of Technology, International Airport Road, Hunasamaranahalli, Bengaluru, 562157, Karnataka, India.
| |
Collapse
|
5
|
Omer S, Pathak S, Nadar R, Bowen D, Sandey M, Dhanasekaran M, Pondugula S, Mansour M, Boothe D. Validating the anti-lymphoma pharmacodynamic actions of the endocannabinoids on canine non-Hodgkin lymphoma. Life Sci 2023; 327:121862. [PMID: 37330042 DOI: 10.1016/j.lfs.2023.121862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
AIMS This study established the in vitro anti-lymphoma pharmacodynamic actions of the endocannabinoids (anandamide-AEA and 2-arachidonoylglycerol-2AG) on canine non-Hodgkin lymphoma (NHL) and human NHL cells. MAIN METHODS The expression of cannabinoid (CB1 and CB2) receptors in various canine NHL cells {1771, CLBL-1, CLL-1, peripheral blood mononuclear cells (PBMCs)} was studied using Quantitative real-time PCR (RT-qPCR). Anti-lymphoma cell viability assay was performed to assess the effect of endocannabinoids on various canine and human NHL cells (1771, CLBL-1, CLL-1, Ramos cells). The spectrophotometric and fluorometric procedures evaluated oxidative stress, inflammation, apoptosis, and mitochondrial function markers. SAS® and Prism-V La Jolla, CA, USA, were used for statistical analysis. KEY FINDINGS The current study validated the presence of CB1 and CB2 receptors in the canine NHL cells. There was a significantly higher expression of CB1 and CB2 receptors in B-cell lymphoma (BCL) cells (1771, CLBL-1, Ramos) compared to canine T-cell lymphoma (TCL) cells (CL-1). AEA and 2AG dose and time-dependently exhibited significant but differential anti-lymphoma effects on canine and human NHL cells. Anti-lymphoma pharmacodynamic actions of the endocannabinoids in the canine 1771 NHL cells revealed a significant alteration in the markers of oxidative stress, inflammation, and a decrease in mitochondrial function without altering the apoptotic markers. SIGNIFICANCE Establishing the anti-lymphoma pharmacodynamic actions of endocannabinoids may provide new therapeutic interventions and expedite cannabinoid research.
Collapse
Affiliation(s)
- Saba Omer
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Shifa College of Dentistry, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Dylan Bowen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Satyanarayana Pondugula
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Mohammed Mansour
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dawn Boothe
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
6
|
Zahra W, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, Keshri PK, Gautam P, Singh SP. Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases. Neurochem Res 2022; 47:1816-1829. [PMID: 35380400 DOI: 10.1007/s11064-022-03591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
The medicinal plant Mucuna pruriens (Fabaceae) is widely known for its anti-oxidative and anti-inflammatory properties. It is a well-established drug in Ayurveda and has been widely used for the treatment of neurological disorders and male infertility for ages. The seeds of the plant have potent medicinal value and its extract has been tested in different models of neurodegenerative diseases, especially Parkinson's disease (PD). Apart from PD, Mucuna pruriens is now being studied in models of other nervous systems disorders such as Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and stroke because of its neuroprotective importance. This review briefly discusses the pathogenesis of PD, AD, ALS and stroke. It aims to summarize the medicinal importance of Mucuna pruriens in treatment of these diseases, and put forward the potential targets where Mucuna pruriens can act for therapeutic interventions. In this review, the effect of Mucuna pruriens on ameliorating the neurodegeneration evident in PD, AD, ALS and stroke is briefly discussed. The potential targets for neuroprotection by the plant are delineated, which can be studied further to validate the hypothesis regarding the use of Mucuna pruriens for the treatment of these diseases.
Collapse
Affiliation(s)
- Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Gautam
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Chittasupho C, Tadtong S, Vorarat S, Imaram W, Athikomkulchai S, Samee W, Sareedenchai V, Thongnopkoon T, Okonogi S, Kamkaen N. Development of Jelly Loaded with Nanogel Containing Natural L-Dopa from Mucuna pruriens Seed Extract for Neuroprotection in Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14051079. [PMID: 35631666 PMCID: PMC9147856 DOI: 10.3390/pharmaceutics14051079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
The first line therapy of patients with Parkinson’s disease, a neurodegenerative disorder caused by the degeneration of dopaminergic neurons, is levodopa (L-dopa) given orally. Recently, the presence of natural L-dopa in the seed of Mucuna pruriens, a tropical legume in the Fabaceae family, was reported and it showed superior efficiency compared with synthetic L-dopa. Therefore, this study aimed to examine the phytochemical compounds, particularly for natural L-dopa, in M. pruriens seed extract and subsequently prepare a nanogel containing the extract prior to incorporation into a jelly formulation for use as a functional food in elderly patients with Parkinson’s disease. The results show that M. pruriens seed extract contains phenolic compounds, flavonoids, tannins, alkaloids, terpenoids, and saponins. The quantitative analysis performed by the HPLC method revealed that spray-dried M. pruriens seed extract contained 5.59 ± 0.21% L-dopa. M. pruriens seed extract possesses a ferric-reducing antioxidant power and shows free-radical scavenging activity, determined by DPPH and ABTS methods, suggesting a distinctive antioxidant ability of the extract. M. pruriens seed extract at 10 ng/mL did not show cytotoxicity against a neuronal cell line (SH-SY5Y cells), kidney cells (HEK293 cells), or Caco-2 cells. Nanogel of M. pruriens seed extract prepared by ionic gelation had the hydrodynamic diameter, polydispersity index and zeta potential value of 384.53 ± 11.24 nm, 0.38 ± 0.05, and −11.23 ± 1.15 mV, respectively. The transepithelial transport of L-dopa in M. pruriens seed-extract nanogel through Caco-2 cells was measured. Nanogel containing M. pruriens seed extract at the concentration of 10 ng/mL exhibited neuroprotective activity. A jelly formulation containing M. pruriens seed-extract nanogel was successfully developed. The prepared jelly exhibited the acceptable physical and microbiological stabilities upon 6 months of the stability test. The half-life of natural L-dopa in jelly were 3.2, 0.9, and 0.6 years for storage conditions at 4, 30, and 40 °C, respectively, indicating the thermal degradation of natural L-dopa. The prepared jelly containing natural L-dopa from M. pruriens seed extract with the prominent antioxidant activity is a promising option for elderly patients suffering from Parkinson’s disease.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahonnayok 26120, Thailand; (S.T.); (S.A.); (V.S.)
| | - Suwanna Vorarat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahonnayok 26120, Thailand; (S.V.); (W.S.)
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Sirivan Athikomkulchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahonnayok 26120, Thailand; (S.T.); (S.A.); (V.S.)
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahonnayok 26120, Thailand; (S.V.); (W.S.)
| | - Vipaporn Sareedenchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahonnayok 26120, Thailand; (S.T.); (S.A.); (V.S.)
| | - Thanu Thongnopkoon
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhonnayok 26120, Thailand;
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Narisa Kamkaen
- Department of Industrial Pharmacy, School of Pharmacy, Eastern Asia University, Thanyaburi, Pathum Thani 12110, Thailand
- Correspondence: ; Tel.: +66-2577-1028 (ext. 373)
| |
Collapse
|
8
|
Role of Iron in Aging Related Diseases. Antioxidants (Basel) 2022; 11:antiox11050865. [PMID: 35624729 PMCID: PMC9137504 DOI: 10.3390/antiox11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Iron progressively accumulates with age and can be further exacerbated by dietary iron intake, genetic factors, and repeated blood transfusions. While iron plays a vital role in various physiological processes within the human body, its accumulation contributes to cellular aging in several species. In its free form, iron can initiate the formation of free radicals at a cellular level and contribute to systemic disorders. This is most evident in high iron conditions such as hereditary hemochromatosis, when accumulation of iron contributes to the development of arthritis, cirrhosis, or cardiomyopathy. A growing body of research has further identified iron’s contributory effects in neurodegenerative diseases, ocular disorders, cancer, diabetes, endocrine dysfunction, and cardiovascular diseases. Reducing iron levels by repeated phlebotomy, iron chelation, and dietary restriction are the common therapeutic considerations to prevent iron toxicity. Chelators such as deferoxamine, deferiprone, and deferasirox have become the standard of care in managing iron overload conditions with other potential applications in cancer and cardiotoxicity. In certain animal models, drugs with iron chelating ability have been found to promote health and even extend lifespan. As we further explore the role of iron in the aging process, iron chelators will likely play an increasingly important role in our health.
Collapse
|
9
|
Phytochemical Analysis and Antioxidant, Antimicrobial, and Antiaging Activities of Ethanolic Seed Extracts of Four Mucuna Species. COSMETICS 2022. [DOI: 10.3390/cosmetics9010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The investigation into promising botanical materials for natural cosmetics is expanding due to environmental and health awareness. Here, we aimed to evaluate the phytochemical substances and the potential skin-related pharmacological activities of four Mucuna seeds, namely M. gigantea (Willd.) DC. (MGG), M. interrupta Gagnep. (MIT), M. monosperma Wight (MMM), and M. pruriens (L.) DC. (MPR), belonging to the Fabaceae family. In methodology, the Mucuna seeds were authenticated using morphological and molecular approaches. L-DOPA, phenolics, and flavonoid content, incorporated with HPLC and GC–MS fingerprinting analyses, were determined. Then, skin-related antimicrobial, antioxidant, and antiaging activities were determined. The results revealed that MPR showed the highest L-DOPA content (75.94 mg/100 mg extract), whereas MGG exhibited the highest phenolic and flavonoid content (56.73 ± 0.62 mg gallic/g extract and 1030.11 ± 3.97 mg quercetin/g extract, respectively). Only MMM and MPR could inhibit all of S. aureus, S. epidermidis, and C. albicans, but no sample could inhibit C. acnes. Furthermore, all samples demonstrated antioxidant activity. Interestingly, all Mucuna samples exhibited strong collagenase, elastase, and hyaluronidase inhibitory activities. We conclude that the ethanolic extracts of four Mucuna seeds are probably advantageous in the development of skincare cosmeceutical products.
Collapse
|
10
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
11
|
Rachsee A, Chiranthanut N, Kunnaja P, Sireeratawong S, Khonsung P, Chansakaow S, Panthong A. Mucuna pruriens (L.) DC. seed extract inhibits lipopolysaccharide-induced inflammatory responses in BV2 microglial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113518. [PMID: 33122120 DOI: 10.1016/j.jep.2020.113518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation caused by activated microglia is known to be associated with neurodegenerative diseases, e.g., Parkinson's disease (PD) and Alzheimer's disease (AD). Inhibiting the inflammatory process can be considered a potential strategy for the treatment of inflammation-associated diseases. Mucuna pruriens (L.) DC. (Leguminosae) has long been used in Thailand, India, China and other tropical countries to treat several diseases including PD. M. pruriens seeds have been found to possess a variety of pharmacological properties including antioxidant and anti-Parkinsonism effects. However, the anti-inflammatory effects of M. pruriens seeds during microglial activation have yet to be reported. AIM OF THE STUDY The present study was performed to evaluate the anti-inflammatory effects of M. pruriens seed extract and elucidate its underlying mechanism using lipopolysaccharide (LPS)-stimulated BV2 microglial cells. MATERIALS AND METHODS BV2 microglial cells were pretreated with various concentrations of M. pruriens seed extract before being stimulated with LPS. The levels of inflammatory mediators were analyzed by Griess assay and enzyme-linked immunoassay (ELISA). The protein expression levels of inflammatory cytokines were determined by Western blot analysis. The translocation of nuclear factor-kappa B (NF-κB) was assessed by immunofluorescence microscopy. RESULTS M. pruriens seed extract significantly inhibited the release of inflammatory mediators including nitric oxide (NO), IL-1β, IL-6, and TNF-α in LPS-stimulated BV2 microglial cells. The extract also decreased the protein expression of IL-1β, IL-6, and TNF-α. Moreover, M. pruriens seed extract inhibited the translocation of NF-κB. CONCLUSIONS M. pruriens seed extract could suppress inflammatory responses in LPS-activated BV2 microglial cells by inhibiting the NF-κB signaling pathway. These findings support the use of M. pruriens seeds in traditional and alternative medicine for the treatment of PD and other inflammation-associated diseases.
Collapse
Affiliation(s)
- Aungkana Rachsee
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Pharmacology and Center of Excellence for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Phraepakaporn Kunnaja
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Seewaboon Sireeratawong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Parirat Khonsung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences and Medicinal Plant Innovation Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ampai Panthong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
12
|
Luthra R, Roy A. Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol 2021; 23:123-139. [PMID: 33573549 DOI: 10.2174/1389201022666210211123539] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Diseases with a significant loss of neurons, structurally and functionally are termed as neurodegenerative diseases. Due to the present therapeutic interventions and progressive nature of diseases, a variety of side effects have risen up, thus leading the patients to go for an alternative medication. The role of medicinal plants in such cases has been beneficial because of their exhibition via different cellular and molecular mechanisms. Alleviation in inflammatory responses, suppression of the functionary aspect of pro-inflammatory cytokines like a tumor, improvement in antioxidative properties is among few neuroprotective mechanisms of traditional plants. Variation in transcription and transduction pathways play a vital role in the preventive measures of plants in such diseases. Neurodegenerative diseases are generally caused by depletion of proteins, oxidative and inflammatory stress, environmental changes and so on, with aging being the most important cause. Natural compounds can be used in order to treat neurodegenerative diseases Medicinal plants such as Ginseng, Withania somnifera, Bacopa monnieri, Ginkgo biloba, etc. are some of the medicinal plants for prevention of neurological symptoms. This review deals with the use of different medicinal plants for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
13
|
Rai SN, Chaturvedi VK, Singh P, Singh BK, Singh MP. Mucuna pruriens in Parkinson's and in some other diseases: recent advancement and future prospective. 3 Biotech 2020; 10:522. [PMID: 33194526 DOI: 10.1007/s13205-020-02532-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mucuna pruriens (Mp) is an annual and perennial legume which belongs to the family Fabaceae having different types of therapeutic activity. Anti-oxidative, anti-inflammatory, anti-epileptic, anti-microbial, etc. are the example of some most common activities of Mp. It is widely utilized as a potent aphrodisiac. The anti-Parkinsonian activity of Mp was explored since the nineteenth century. The neuroprotective activity of Mp was shown by several researchers. Levodopa (L-DOPA) is the important constituents responsible for the anti-Parkinsonian activity of Mp. Apart from L-DOPA, several other important bioactive components like Ursolic acid (UA) and Betulinic acid (BA) also exhibit a similar neuroprotective activity. Parkinson's disease (PD) is mainly sporadic. A very small proportion shows the genetic nature of PD. The anti-Parkinsonian activity of Mp was explored in different toxin-induced PD models as like MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), Rotenone, Paraquat, 6-hydroxydopamine (6-OHDA) as suggested by several pieces of literature. Various parts of Mp's like seed, leaf, and stem exhibit potent neuroprotective attributes. Among different parts, seeds are widely utilized as anti-PD agents because of the higher percentage of L-DOPA. Besides anti-PD activity, Mp's neuroprotective potential was also explored in the ischemic model of stroke that also shows positive results. Recently, several clinical trials have been performed on the anti-PD activity of Mp on PD patients that show convincing results. Although, a small population-based study needs to be further validated in the broader population. Apart from anti-PD activity, Mp also shows its therapeutic activity in some other diseases like cancer, diabetes, skin infection, anemia, antihypertensive, etc. that are summarized in Table 1. In this review, we have discussed the anti-PD potential of Mp in the sporadic and genetic model along with some clinical trials that have performed on PD patients. Some other activity of Mp is also summarized in this review. There is a strong need to test the efficacy of Mp in some other neurodegenerative diseases along with PD. Following this, this review emphasizes the role of Mp in PD systematically through literature analysis available to date. [Table: see text].
Collapse
|
14
|
Jimoh MA, Idris OA, Jimoh MO. Cytotoxicity, Phytochemical, Antiparasitic Screening, and Antioxidant Activities of Mucuna pruriens (Fabaceae). PLANTS (BASEL, SWITZERLAND) 2020; 9:E1249. [PMID: 32971828 PMCID: PMC7569803 DOI: 10.3390/plants9091249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
This study aimed at assessing the biological activities of Mucuna pruriens seeds using cytotoxicity, phytochemical, antiparasitic screening, and antioxidant assays. Mature fruits of M. pruriens were harvested from Fort Hare University's Research Farm located in Alice, South Africa. The collected seeds were pulverized in a standard process and taken to the laboratory for crude extraction and further treatments. Cytotoxic, antimalarial, and trypanocidal effects of crude extracts obtained from ethanol and water were tested, while the total phenolic, proanthocyanidin, and flavonoid contents of the aqueous extracts as well as their pharmacological activities were determined in vitro using 2,2-diphenyl-1-picrylhydrazyl ethanol (DPPH), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Although the extracts showed mild antiparasitic (antiplasmodial and trypanocidal) effects, results from the cytotoxic experiment revealed that M. pruriens is not toxic to human cervix adenocarcinoma (HeLa) cells when tested using 50 µg/mL of extracts. It was observed that the seeds were remarkably rich in phenol (3730.1 ± 15.52 mg gallic acid equivalent (GAE)/g) compared to flavonoids (63.03 ± 1.95 mg quercetin equivalent (QE)/g) and proanthocyanidin (18.92 ± 1.09 mg catechin equivalent (CE)/g). Also, the antioxidant activities of the extracts were comparable to those of the standard antioxidant drugs (rutin and gallic acid) used, in a concentration-dependent manner. There was a direct relationship between phenolic acid content and antioxidant effects. It is therefore suggested that M. pruriens seeds be incorporated into human diets as a supplement to promote healthy living. Pharmaceutical industries with a particular interest in natural phenolic acids should consider using seeds of M. pruriens as pharmaceutical precursors.
Collapse
Affiliation(s)
| | - Oladayo Amed Idris
- Department of Botany, University of Fort Hare, Alice 5700, South Africa;
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Muhali Olaide Jimoh
- Department of Botany, University of Fort Hare, Alice 5700, South Africa;
- Department of Horticultural Sciences, Cape Peninsula University of Technology, Bellville 7537, South Africa
| |
Collapse
|
15
|
Majrashi M, Fujihashi A, Almaghrabi M, Fadan M, Fahoury E, Ramesh S, Govindarajulu M, Beamon H, Bradford CN, Bolden-Tiller O, Dhanasekaran M. Augmented oxidative stress and reduced mitochondrial function in ageing goat testis. Vet Med Sci 2020; 6:766-774. [PMID: 32628344 PMCID: PMC7738717 DOI: 10.1002/vms3.296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, there is a significant increase in the commercial use of goat products. Nevertheless, there are very few reports on the characterization of redox biomarkers and mitochondrial function in the goat testis. Therefore, in this study we studied the markers of oxidative stress and mitochondrial functions in the goat testis during the process of ageing. Alterations in the markers of oxidative stress/redox biomarkers (contents of reactive oxygen species, nitrite, lipid peroxide, protein carbonyl, glutathione and activities of glutathione peroxidase, monoamine oxidase) and mitochondrial function (Complex‐I and Complex‐IV activities) were elucidated during the process of ageing. Augmented oxidative stress and decreased mitochondrial function were prominent during ageing in the goat testis. Ageing can lead to induction of oxidative stress and decreased production of ATP; however, the prooxidants generated must be effectively removed from the body by the innate antioxidant defence system to minimize the damage to the host tissue. Conversely, the antioxidants cannot completely scavenge the excessive amount of reactive oxygen species produced during ageing or pathological conditions leading to significant cell death and tissue damage. Thus, the use of effective and potent antioxidants in the feed could significantly reduce oxidative stress and improve mitochondrial function, resulting in enriched goat health.
Collapse
Affiliation(s)
- Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, KSA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Maali Fadan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Eddie Fahoury
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Haley Beamon
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, USA
| | | | - Olga Bolden-Tiller
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
16
|
Iamsaard S, Arun S, Burawat J, Yannasithinon S, Tongpan S, Bunsueb S, Lapyuneyong N, Choowong-in P, Tangsrisakda N, Chaimontri C, Sukhorum W. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:265-273. [DOI: 10.1016/j.joim.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 01/23/2023]
|
17
|
Management of Iron Overload in Resource Poor Nations: A Systematic Review of Phlebotomy and Natural Chelators. J Toxicol 2020; 2020:4084538. [PMID: 32399029 PMCID: PMC7204175 DOI: 10.1155/2020/4084538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022] Open
Abstract
Iron is an essential element and the most abundant trace metal in the body involved in oxygen transport and oxygen sensing, electron transfer, energy metabolism, and DNA synthesis. Excess labile and unchelated iron can catalyze the formation of tissue-damaging radicals and induce oxidative stress. English abstracts were identified in PubMed and Google Scholar using multiple and various search terms based on defined inclusion and exclusion criteria. Full-length articles were selected for systematic review, and secondary and tertiary references were developed. Although bloodletting or phlebotomy remains the gold standard in the management of iron overload, this systematic review is an updated account of the pitfalls of phlebotomy and classical synthetic chelators with scientific justification for the use of natural iron chelators of dietary origin in resource-poor nations.
Collapse
|
18
|
Shalgum A, Govindarajulu M, Majrashi M, Ramesh S, Collier WE, Griffin G, Amin R, Bradford C, Moore T, Dhanasekaran M. Neuroprotective effects of Hibiscus Sabdariffa against hydrogen peroxide-induced toxicity. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Majrashi M, Almaghrabi M, Fadan M, Fujihashi A, Lee W, Deruiter J, Randall Clark C, Dhanasekaran M. Dopaminergic neurotoxic effects of 3-TFMPP derivatives. Life Sci 2018; 209:357-369. [PMID: 30067941 DOI: 10.1016/j.lfs.2018.07.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Designer drugs are synthetically formulated to mimic the psychostimulatory effects of an original controlled/illegal drug of abuse. Designer drugs have similar chemical structure or functional analog as compared to existing controlled psychostimulatory drugs. There is a substantial rise in the production and use of designer drugs globally. Piperazine designer drugs were synthesized as an alternative to MDMA and have shown to induce numerous toxic effects leading to huge health, safety, law enforcement & monetary problems, and lethality. Currently, there are very few studies on the dopaminergic neurotoxicity of 1-(3-trifluoromethylphenyl) piperazine (3-TFMPP) and its derivatives (structural congeners). N27 rat dopaminergic neurons are valid cells to investigate the neurotoxic effects and establish the neurotoxic mechanisms of various substances. In the current study, we studied the time and dose-dependent neurotoxicity mechanisms of dopaminergic neurotoxicity of 3-TFMPP (parent compound) and its derivatives (2-TFMPP, 4-TFMPP). TFMPP derivatives-induced significant neurotoxicity (induced dopaminergic neuronal death. TFMPP derivatives-induced oxidative stress, mitochondrial dysfunction, apoptosis and decreased tyrosine hydroxylase expression. If the use of designer drugs are not strictly regulated and restricted around the world, this can lead to numerous central and peripheral disorders leading to a liability to the current and future society.
Collapse
Affiliation(s)
- Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA; Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, 23881, Saudi Arabia
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Taibah University, AL Medina, KSA
| | - Maali Fadan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Wooseok Lee
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jack Deruiter
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - C Randall Clark
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.
| |
Collapse
|
20
|
Rai SN, Birla H, Singh SS, Zahra W, Patil RR, Jadhav JP, Gedda MR, Singh SP. Mucuna pruriens Protects against MPTP Intoxicated Neuroinflammation in Parkinson's Disease through NF-κB/pAKT Signaling Pathways. Front Aging Neurosci 2017; 9:421. [PMID: 29311905 PMCID: PMC5742110 DOI: 10.3389/fnagi.2017.00421] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022] Open
Abstract
Till date, drugs that have been used to manage Parkinson’s disease (PD) have only shown symptomatic relief with several adverse effects besides their inability to prevent neurodegeneration. Neuroinflammation plays an important role in the advancement of PD and can be targeted for its effective treatment. Researchers have suggested that herbal plants exhibiting the anti-inflammatory and anti-oxidant properties are therefore beneficial to human health. Conventionally, Mucuna pruriens (Mp) seeds are used for maintaining male virility in India. Reportedly, Mp is used as a rejuvenator drug having neuroprotective property. Our study aimed to investigate effects of aqueous extract of Mp (100 mg/kgbwt) on neuroinflammation, orally administered to mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as the molecular mechanism involved in the progression of PD. In this study, we have observed significant behavioral abnormalities beside decreased antioxidant defense in MPTP intoxicated mice. We have also observed significant increase in inflammatory parameters like Glial Fibrillary Acidic Protein, Inducible Nitric Oxide Synthase, Intercellular Cell Adhesion Molecule, and Tumor Necrosis Factor alpha in substantia nigra pars compacta (SNpc) of parkinsonian mice, while Mp treatment has notably reduced these inflammatory parameters. Mp also inhibited the MPTP induced activation of NF-κB and promoted pAkt1 activity which further prevented the apoptosis of the dopaminergic neurons. Moreover, Mp exhibited significant antioxidant defense by inhibiting the lipid peroxidation and nitrite level, and by improving catalase activity and enhancing GSH level in nigrostriatal region of mouse brain. Mp also recovered the behavioral abnormalities in MPTP treated mice. Additionally, Mp treatment considerably increased the immunoreactivity of Tyrosine Hydroxylase and Dopamine Transporter in SNpc of parkinsonian mice. Our high performance liquid chromatography analysis of the Mp seed extract have shown L-DOPA, gallic acid, phytic acid, quercetin, and catechin equivalents as the major components which might cause neuroprotection in PD mice. Our result suggested that Mp extract treatment containing L-DOPA and a mixture of rich novel phytochemicals significantly alleviates the MPTP induced neurotoxicity by NF-κB and pAkt pathway. The findings observed thereby indicate that Mp extract have suggestively ameliorated MPTP induced neuroinflammation, restored the biochemical and behavioral abnormalities in PD mouse and thus provided a scientific basis for its traditional claim.
Collapse
Affiliation(s)
- Sachchida N Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saumitra S Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Jyoti P Jadhav
- Department of Biotechnology, Shivaji University, Kolhapur, India
| | - Mallikarjuna R Gedda
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Katz DP, Majrashi M, Ramesh S, Govindarajulu M, Bhattacharya D, Bhattacharya S, Shlghom A, Bradford C, Suppiramaniam V, Deruiter J, Clark CR, Dhanasekaran M. Comparing the dopaminergic neurotoxic effects of benzylpiperazine and benzoylpiperazine. Toxicol Mech Methods 2017; 28:177-186. [PMID: 28874085 DOI: 10.1080/15376516.2017.1376024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Benzylpiperazine has been designated as Schedule I substance under the Controlled Substances Act by Drug Enforcement Administration. Benzylpiperazine is a piperazine derivative, elevates both dopamine and serotonin extracellular levels producing stimulatory and hallucinogenic effects, respectively, similar to methylenedioxymethamphetamine (MDMA). However, the comparative neurotoxic effects of Piperazine derivatives (benzylpiperazine and benzoylpiperazine) have not been elucidated. Here, piperazine derivatives (benzylpiperazine and benzoylpiperazine) were synthesized in our lab and the mechanisms of cellular-based neurotoxicity were elucidated in a dopaminergic human neuroblastoma cell line (SH-SY5Y). We evaluated the in vitro effects of benzylpiperazine and benzoylpiperazine on the generation of reactive oxygen species, lipid peroxidation, mitochondrial complex-I activity, catalase activity, superoxide dismutase activity, glutathione content, Bax, caspase-3, Bcl-2 and tyrosine hydroxylase expression. Benzylpiperazine and benzoylpiperazine induced oxidative stress, inhibited mitochondrial functions and stimulated apoptosis. This study provides a germinal assessment of the neurotoxic mechanisms induced by piperazine derivatives that lead to neuronal cell death.
Collapse
Affiliation(s)
- Daniel P Katz
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| | - Mohammed Majrashi
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA.,b Department of Pharmacology, Faculty of Medicine , Jeddah University , Jeddah , KSA
| | - Sindhu Ramesh
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| | - Manoj Govindarajulu
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| | - Dwipayan Bhattacharya
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| | - Subhrajit Bhattacharya
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| | - Aimen Shlghom
- c Department of Biology, College of Arts and Sciences , Tuskegee University , Tuskegee , AL , USA
| | - Chastity Bradford
- c Department of Biology, College of Arts and Sciences , Tuskegee University , Tuskegee , AL , USA
| | - Vishnu Suppiramaniam
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| | - Jack Deruiter
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| | - C Randall Clark
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| | - Muralikrishnan Dhanasekaran
- a Department of Drug Discovery and Development , Harrison School of Pharmacy, Auburn University , Auburn , AL , USA
| |
Collapse
|
22
|
Srivastav S, Fatima M, Mondal AC. Important medicinal herbs in Parkinson's disease pharmacotherapy. Biomed Pharmacother 2017; 92:856-863. [PMID: 28599249 DOI: 10.1016/j.biopha.2017.05.137] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/10/2017] [Accepted: 05/28/2017] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder affecting more than 10 million people worldwide. The characteristic hallmark of PD involves progressive loss of dopaminergic (DA-ergic) neuron in Substantia Nigra pars compacta (SNpc) region of the brain, however, aetiology of the disease still remains unclear. Mitochondrial dysfunction and oxidative insult are considered to be the key culprit. The current therapy available for PD primarily relies on Levodopa that offers the potential of slowing down disease progression to some extent but includes lot of side effects. Any potential drug capable of treating or halting the disease still remains to be identified. It is evident that redox stabilization and replenishment of mitochondrial function seem to be an important therapeutic approach against PD as both are required for optimal neuronal functioning. Enormous research done in this field has shown that some natural and synthetic products exhibit neuroprotective and anti-apoptotic potential by improving mitochondrial function and alleviating oxidative stress. Therefore, the present review aims to discuss some of the important medicinal natural herbs (Bacopa monnieri, Mucuna pruriens, Withania somnifera, Curcuma longa, Gingko Biloba, and Camellia sinensis) in context to their neuroprotective potential and also in the development of novel therapeutic strategies against PD.
Collapse
Affiliation(s)
- Saurabh Srivastav
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mahino Fatima
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
23
|
Epigenetic Mechanisms of Integrative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4365429. [PMID: 28316635 PMCID: PMC5339524 DOI: 10.1155/2017/4365429] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/13/2016] [Accepted: 01/15/2017] [Indexed: 12/20/2022]
Abstract
Since time immemorial humans have utilized natural products and therapies for their healing properties. Even now, in the age of genomics and on the cusp of regenerative medicine, the use of complementary and alternative medicine (CAM) approaches represents a popular branch of health care. Furthermore, there is a trend towards a unified medical philosophy referred to as Integrative Medicine (IM) that represents the convergence of CAM and conventional medicine. The IM model not only considers the holistic perspective of the physiological components of the individual, but also includes psychological and mind-body aspects. Justification for and validation of such a whole-systems approach is in part dependent upon identification of the functional pathways governing healing, and new data is revealing relationships between therapies and biochemical effects that have long defied explanation. We review this data and propose a unifying theme: IM's ability to affect healing is due at least in part to epigenetic mechanisms. This hypothesis is based on a mounting body of evidence that demonstrates a correlation between the physical and mental effects of IM and modulation of gene expression and epigenetic state. Emphasis on mapping, deciphering, and optimizing these effects will facilitate therapeutic delivery and create further benefits.
Collapse
|
24
|
Pathak-Gandhi N, Vaidya ADB. Management of Parkinson's disease in Ayurveda: Medicinal plants and adjuvant measures. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:46-51. [PMID: 27544001 DOI: 10.1016/j.jep.2016.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants like Mucuna pruriens L.(DC) and Withania somnifera L.(Dunal) have been used in traditional Ayurvedic medicine to manage neurodegenerative diseases like Parkinson's disease. AIM The aim of this review is to share the role of Ayurveda's insights, traditional usage and contemporary investigations for translational, integrative applications to manage Idiopathic Parkinson's Disease. MATERIALS AND METHODS High impact journals for Parkinson's diseases, traditional textbooks from Ayurveda as well as relevant clinical and para clinical studies with botanicals are selectively incorporated to evolve the aforesaid translational application. RESULTS . A. CONTEMPORARY UNDERSTANDING AND EXISTING THERAPEUTIC GAPS Parkinson's disease (PD) is a complex multi-system, neurodegenerative disease. Though predominantly perceived as a motor disease, it also has debilitating non- motor features, which are frequently missed and not treated. Major treatment goals are to increase striatal dopamine levels with precursor-substitution and/or reduce its breakdown. As the disease progresses, a steady increase in the dose of levodopa is inevitable. However, higher doses cause motor complications of dyskinesia and dystonia and compromise medical treatment. B. ROLE OF MUCUNA PRURIENS L.DC), THE MOST PROMISING BOTANICAL FROM AYURVEDA: Ayurveda offers a natural source of levodopa - the seeds of Mucuna pruriens L.(DC)- which have a long standing safe use in the condition. Its clinical studies have shown pharmacokinetic profile distinct from synthetic levodopa, which is likely to reduce the untoward motor complications. Additionally, its seed extracts have shown neuroprotective benefits which are unrelated to levodopa. C. AYURVEDIC REGIMENS AND MEDICINAL PLANTS FOR NEUROPROTECTIVE AND SYMPTOMATIC BENEFITS: Other regimens (Panchakarma) and medicinal plants used in Ayurveda have been subjected to exploratory studies with promising early results in the condition. The debilitating non motor symptoms in patients have shown response with one of the regimens - medicated oil enema (basti). Effects of two medicinal plants Withania somnifera(L.)Dunal and Curcuma longa Linn in Parkinson's Disease related models have been discussed in detail. We have also shared a shortlist of medicinal plants most likely to be useful in management of specific features of the disease such as cognitive decline, mood disorders, risk of osteoporosis amongst others. CONCLUSION Ayurveda with its medicinal plants and treatment approaches, can strengthen the therapeutic armamentarium of PD to improve clinical outcomes, if these leads are systematically further investigated by well-designed longer term studies.
Collapse
Affiliation(s)
| | - Ashok D B Vaidya
- Medical Research Centre - Kasturba Health Society, 17 K Desai Road, Mumbai, India.
| |
Collapse
|
25
|
Evaluating the neurotoxic effects of Deepwater Horizon oil spill residues trapped along Alabama's beaches. Life Sci 2016; 155:161-6. [DOI: 10.1016/j.lfs.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/18/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
|
26
|
Thrash-Williams B, Karuppagounder SS, Bhattacharya D, Ahuja M, Suppiramaniam V, Dhanasekaran M. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid. Life Sci 2016; 154:24-9. [PMID: 26926078 DOI: 10.1016/j.lfs.2016.02.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
AIMS Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. MAIN METHODS The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. KEY FINDINGS Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. SIGNIFICANCE One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the stimulants or drugs of abuse.
Collapse
Affiliation(s)
- Bessy Thrash-Williams
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | | | - Dwipayan Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Manuj Ahuja
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.
| |
Collapse
|
27
|
Sengupta T, Vinayagam J, Singh R, Jaisankar P, Mohanakumar KP. Plant-Derived Natural Products for Parkinson's Disease Therapy. ADVANCES IN NEUROBIOLOGY 2016; 12:415-96. [PMID: 27651267 DOI: 10.1007/978-3-319-28383-8_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD.
Collapse
Affiliation(s)
- T Sengupta
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - J Vinayagam
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - R Singh
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - P Jaisankar
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - K P Mohanakumar
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India. .,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686009, Kerala, India.
| |
Collapse
|
28
|
Antioxidant properties of Elaeagnus umbellata berry solvent extracts against lipid peroxidation in mice brain and liver tissues. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0088-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Poddighe S, De Rose F, Marotta R, Ruffilli R, Fanti M, Secci PP, Mostallino MC, Setzu MD, Zuncheddu MA, Collu I, Solla P, Marrosu F, Kasture S, Acquas E, Liscia A. Mucuna pruriens (Velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1B9 Drosophila melanogaster genetic model of Parkinson's disease. PLoS One 2014; 9:e110802. [PMID: 25340511 PMCID: PMC4207759 DOI: 10.1371/journal.pone.0110802] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/17/2014] [Indexed: 01/02/2023] Open
Abstract
The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3-6 (I), 10-15 (II) and 20-25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment.
Collapse
Affiliation(s)
- Simone Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Roberto Marotta
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roberta Ruffilli
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | | | | | - Ignazio Collu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Sanjay Kasture
- Sanjivani College of Pharmaceutical Education and Research, Kopargaon, Ahmednagar, Maharashtra, India
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
- National Institute of Neuroscience - INN, University of Cagliari, Cagliari, Italy
| | - Anna Liscia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
30
|
Khan A, Nazar H, Sabir SM, Irshad M, Awan SI, Abbas R, Akram M, Khaliq A, Rocha JBT, Ahmad SD, Malik F. Antioxidant activity and inhibitory effect of some commonly used medicinal plants against lipid per-oxidation in mice brain. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:83-90. [PMID: 25395710 DOI: 10.4314/ajtcam.v11i5.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The present study compares the protective properties of aqueous extracts of six medicinal plants, Phyllanthus emblica, Terminalia chebula (black and yellow), Terminalia arjuna, Balsamodendron Mukul and Alium sativum against lipid per-oxidation in mice brain. METHODS The antioxidant activities were analyzed by lipid per-oxidation assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, total antioxidant activity and metal chelation. RESULTS The extracts (fruits and bark) showed inhibition against thiobarbituric acid reactive species (TBARS) induced by pro-oxidant (10 µM FeSO4) in mice brain. Moreover, the free radical scavenging activities of the extracts was evaluated by the scavenging of DPPH radical (IC₅₀, 23.23 ± 1.2 µg/ml (Phyllanthus emblica), 20.24 ± 0.9 µg/ml (Terminalia chebula yellow) and 17.33 ± 1.1 µg/ml (Terminalia chebula black), 19.44 ± 0.45 µg/ml (Terminalia arjuna), 56.59 ± 2.1 µg/ml (Balsamodendron Mukul) and < 200 µg/ml (Alium sativum). CONCLUSION The higher antioxidant and inhibitory effect of Terminalia chebula black in this study could be attributed to its significantly higher phenolic content, Fe(II) chelating ability, reducing ability and free radical scavenging activity. Therefore oxidative stress in brain could be potentially prevented by the intake of these plants.
Collapse
Affiliation(s)
- Asmatullah Khan
- Faculty of Eastern Medicine, Hamdard University Karachi, Pakistan
| | - Halima Nazar
- Faculty of Eastern Medicine, Hamdard University Karachi, Pakistan
| | | | - Muhammad Irshad
- Department of Chemistry, University of Poonch Rawalakot A.K Pakistan
| | - Shahid Iqbal Awan
- Department of Plant Breeding and Molecular Genetics, University of Poonch Rawalakot A.K Pakistan
| | - Rizwan Abbas
- University of Azad Jammu and Kashmir, Muzaffarabad A.K Pakistan
| | - Muhammad Akram
- Faculty of Medical and Health Sciences, University of Poonch Rawalakot A.K Pakistan
| | - Abdul Khaliq
- Department of Plant Breeding and Molecular Genetics, University of Poonch Rawalakot A.K Pakistan
| | - João Batista Texeira Rocha
- Departmento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Brazil
| | | | - Farnaz Malik
- National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
31
|
Zheng M, Ahuja M, Bhattacharya D, Clement TP, Hayworth JS, Dhanasekaran M. Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sci 2013; 95:108-17. [PMID: 24361361 DOI: 10.1016/j.lfs.2013.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 01/03/2023]
Abstract
AIMS The British Petroleum (BP) oil spill has raised several ecological and health concerns. As the first response, BP used a chemical dispersant, Corexit-9500, to disperse the crude oil in the Gulf of Mexico to limit shoreline contamination problems. Nevertheless, portions of this oil/Corexit mixture reached the shoreline and still remain in various Gulf shore environments. The use of Corexit itself has become a significant concern since its impacts on human health and environment is unclear. MAIN METHODS In this study, in vitro cytotoxic effects of Corexit were evaluated using different mammalian cells. KEY FINDINGS Under serum free conditions, the LC50 value for Corexit in BL16/BL6 cell was 16 ppm, in 1321N1 cell was 33 ppm, in H19-7 cell was 70 ppm, in HEK293 was 93 ppm, and in HK-2 cell was 95 ppm. With regard to the mechanisms of cytotoxicity, we hypothesize that Corexit can possibly induce cytotoxicity in mammalian cells by altering the intracellular oxidative balance and inhibiting mitochondrial functions. Corexit induced increased reactive oxygen species and lipid peroxide levels; also, it depleted glutathione content and altered catalase activity in H19-7 cells. In addition, there was mitochondrial complex-I inhibition and increase in the pro-apoptotic factors including caspase-3 and BAX expression. SIGNIFICANCE The experimental results show changes in intracellular oxidative radicals leading to mitochondrial dysfunctions and apoptosis in Corexit treatments, possibly contributing to cell death. Our findings raise concerns about using large volumes of Corexit, a potential environmental toxin, in sensitive ocean environments.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Manuj Ahuja
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Dwipayan Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - T Prabhakar Clement
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Joel S Hayworth
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
32
|
Assessment of Therapeutic Potential of Amantadine in Methamphetamine Induced Neurotoxicity. Neurochem Res 2013; 38:2084-94. [DOI: 10.1007/s11064-013-1117-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 01/28/2023]
|
33
|
Kasture S, Mohan M, Kasture V. Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13596-013-0126-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Acute toxicity and gastroprotective role of M. pruriens in ethanol-induced gastric mucosal injuries in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:974185. [PMID: 23781513 PMCID: PMC3678452 DOI: 10.1155/2013/974185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/27/2013] [Accepted: 05/01/2013] [Indexed: 12/29/2022]
Abstract
The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions.
Collapse
|
35
|
Prakash J, Yadav SK, Chouhan S, Prakash S, Singh SP. Synergistic effect of Mucuna pruriens and Withania somnifera in a paraquat induced Parkinsonian mouse model. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.411a2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
|
37
|
Natural products from ethnodirected studies: revisiting the ethnobiology of the zombie poison. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:202508. [PMID: 21977054 PMCID: PMC3184504 DOI: 10.1155/2012/202508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/04/2011] [Indexed: 11/24/2022]
Abstract
Wade Davis's study of Haitian “zombification” in the 1980s was a landmark in ethnobiological research. His research was an attempt to trace the origins of reports of “undead” Haitians, focusing on the preparation of the zombification poison. Starting with this influential ethnopharmacological research, this study examines advances in the pharmacology of natural products, focusing especially on those of animal-derived products. Ethnopharmacological, pharmacological, and chemical aspects are considered. We also update information on the animal species that reportedly constitute the zombie poison. Several components of the zombie powder are not unique to Haiti and are used as remedies in traditional medicine worldwide. This paper emphasizes the medicinal potential of products from zootherapy. These biological products are promising sources for the development of new drugs.
Collapse
|
38
|
Longhi JG, Perez E, Lima JJD, Cândido LMB. In vitro evaluation of Mucuna pruriens (L.) DC. antioxidant activity. BRAZ J PHARM SCI 2011. [DOI: 10.1590/s1984-82502011000300011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucuna pruriens (L). Dc is a plant of the Fabaceae family, commonly known as velvet bean, itchy bean, chiporro bean, mucuna, among others. This plant has several medicinal properties, including its potential to treat Parkinson's disease (PD). International studies have shown that this plant surpasses the benefits of the substance levodopa in the treatment of PD. Taking into account that nerve cells are highly sensitive to oxidative substances, this study evaluated the antioxidant activity of mucuna and compared it to that of levodopa. The plant seeds' phenolic concentration was quantified by using the Folin-Denis reagent and the antioxidant activity assays were performed by using three different methods: the reduction of the phosphomolybdenium complex, the reduction of radical 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and the formation of radical monocation ABTS•+, from the acid [2-2'-azinobis (3-ethylbenzothiazoline-6-sulfonate)]. Results showed that M. pruriens presents high antioxidant capacity, although not superior to isolated levodopa antioxidant capacity. Therefore, further studies should be performed to elucidate the activity of this plant in humans.
Collapse
|
39
|
Lakshmi DU, Adilaxmamma K, Reddy AG, Rao VV. Evaluation of Herbal Methionine and Mangifera Indica Against Lead-induced Organ Toxicity in Broilers. Toxicol Int 2011; 18:58-61. [PMID: 21430924 PMCID: PMC3052588 DOI: 10.4103/0971-6580.75864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lead toxicity was studied in male broiler chicks (Cobb strain) of a day-old age. The chicks were randomly divided into six groups consisting of 15 in each group. Group 1 was maintained as basal diet control and group 2 was kept on lead at 300 ppm in feed throughout 5 wk as toxic control without any treatment. Groups 3 and 4 were maintained on herbal methionine at 1.4 g/kg feed + Mangifera Indica at 0.1% in feed, respectively. Groups 5 and 6 were treated with lead + herbal methionine and lead + M. indica, respectively, for the 5 wk. The concentration of thiobarbituric acid reactive substances (TBARS) and protein carbonyls, and the activities of superoxide dismutase (SOD) and catalase in liver and kidney revealed a significant (P<0.05) increase, while there was a significant (P<0.05) decrease in the concentration of reduced glutathione (GSH) in liver and kidney, and hepatocytic membrane ATPases and cytochrome P450 (CYP450) in liver in the lead toxic control group. Treatment with herbal remedies in groups 5 and 6 resulted in a marked improvement in all the above parameters as compared to those of lead toxic control. Thus, it is concluded that lead induces biological damage by means of oxidative stress and the herbs in test offered better amelioration. The beneficial effects of herbal methionine and Ma. indica may be attributed to their antioxidant, anti-stress and hepatoprotective principles.
Collapse
Affiliation(s)
- D Udaya Lakshmi
- Department of Pharmacology and Toxicology, College of Veterinary Science, Rajendranagar, Hyderabad - 30, Andhra Pradesh, India
| | | | | | | |
Collapse
|
40
|
Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem 2011; 1:1643-70. [PMID: 21425984 DOI: 10.4155/fmc.09.121] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade(®)) and deferiprone (Ferriprox(®)), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry.
Collapse
|
41
|
Pathan AA, Mohan M, Kasture AS, Kasture SB. Mucuna pruriensattenuates haloperidol-induced orofacial dyskinesia in rats. Nat Prod Res 2011; 25:764-71. [DOI: 10.1080/14786410902819087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
WIDOWATI WAHYU, RATNAWATI HANA, RUSDI UDJUDJUNAEDI, WINARNO WAHYU, IMMANUEL VICTOR. Phytochemicalassay and Antiplatelet Activity of Fractions of Velvet Bean Seeds (Mucuna pruriens L.). HAYATI JOURNAL OF BIOSCIENCES 2010. [DOI: 10.4308/hjb.17.2.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
43
|
Zesiewicz TA, Evatt ML. Potential influences of complementary therapy on motor and non-motor complications in Parkinson's disease. CNS Drugs 2009; 23:817-35. [PMID: 19739693 DOI: 10.2165/11310860-000000000-00000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nearly two-thirds of patients with Parkinson's disease (PD) use vitamins or nutritional supplements, and many more may use other complementary therapies, yet <50% of patients have discussed the use of these complementary therapies with a healthcare professional. Physicians should be aware of the complementary therapies their patients with PD are using, and the possible effects of these therapies on motor and non-motor symptoms. Complementary therapies, such as altered diet, dietary supplements, vitamin therapy, herbal supplements, caffeine, nicotine, exercise, physical therapy, massage therapy, melatonin, bright-light therapy and acupuncture, may all influence the symptoms of PD and/or the effectiveness of dopaminergic therapy. Preliminary evidence suggests complementary therapy also may influence non-motor symptoms of PD, such as respiratory disorders, gastrointestinal disorders, mood disorders, sleep and orthostatic hypotension. Whenever possible, clinicians should ensure that complementary therapy is used appropriately in PD patients without reducing the benefits of dopaminergic therapy.
Collapse
|
44
|
Thrash B, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Dhanasekaran M. Neurotoxic Effects of Methamphetamine. Neurochem Res 2009; 35:171-9. [DOI: 10.1007/s11064-009-0042-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
|
45
|
Patere SN, Saraf MN, Majumdar AS. Hepatoprotective activity of polyherbal formulation (Normeta) in oxidative stress induced by alcohol, polyunsaturated fatty acids and iron in rats. Basic Clin Pharmacol Toxicol 2009; 105:173-80. [PMID: 19486336 DOI: 10.1111/j.1742-7843.2009.00418.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, oxidative stress has been implicated in the pathophysiology of a large number of diseases or disorders which are initiated and/or exacerbated by pro-oxidants such as various drugs including alcohol and food additives. The present study was carried out to evaluate the effects of oral treatment with polyherbal formulation Normeta (2 ml and 4 ml/kg) on hepatic damage induced by alcohol 10-30% (blood alcohol was maintained at levels between 150 and 350 mg/dl), thermally oxidized oil (polyunsaturated fatty acids) (15% of diet) and carbonyl iron (1.5-2% of diet) for 30 days in rats. In vitro studies with 1, 1-Diphenyl, 2-Picrylhydrazyl (DPPH), Nitric oxide and Ferric chloride (Fe(+3) ions) showed that Normeta possesses antioxidant and metal chelating activity. Alcohol, polyunsaturated fatty acids and iron feeding produced an increase in serum levels of iron, serum glutamate pyruvate transaminase and decrease in serum proteins. It was also associated with elevated lipid peroxidation (thiobarbituric acid reactive substances) and disruption of antioxidant defence mechanism in liver, decreased body weight and increased liver to body weight ratio. Oral administration of Normeta along with alcohol, polyunsaturated fatty acids and iron decreased the serum iron, serum glutamate pyruvate transaminase levels and increased serum protein levels. The levels of liver thiobarbituric acid reactive substances were decreased and the activities of antioxidant enzymes superoxide dismutase and catalase were increased. Improvement in body weight and liver to body weight ratio was also observed. The effects of Normeta on physico-metabolic parameters were comparable with silymarin. This indicates that Normeta has favourable effect in bringing down the severity of hepatotoxicity.
Collapse
Affiliation(s)
- Shilpa N Patere
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Mumbai, India.
| | | | | |
Collapse
|