1
|
Gafforov Y, Bekić S, Yarasheva M, Mišković J, Živanović N, Chen JJ, Petri E, Abdullaev B, Rapior S, Lim YW, Abdullaev I, Abbasi AM, Ghosh S, Wan-Mohtar WAAQI, Rašeta M. Bioactivity profiling of Sanghuangporus lonicerinus: antioxidant, hypoglycaemic, and anticancer potential via in-vitro and in-silico approaches. J Enzyme Inhib Med Chem 2025; 40:2461185. [PMID: 39992291 PMCID: PMC11852365 DOI: 10.1080/14756366.2025.2461185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
This study investigates the mycochemical profile and biological activities of hydroethanolic (EtOH), chloroform (CHCl3), and hot water (H2O) extracts of Sanghuangporus lonicerinus from Uzbekistan. Antioxidant capacity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), NO, and FRAP assays, and in vitro hypoglycaemic effects were evaluated through α-amylase and α-glucosidase inhibition. Antiproliferative potential was explored by analysing the binding affinities of EtOH and H2O extracts to estrogen receptor α (ERα), ERβ, androgen receptor (AR), and glucocorticoid receptor (GR), with molecular docking providing structural insights. LC-MS/MS analysis revealed solvent-dependent phenolic profiles, with the EtOH extract containing the highest total phenolic content (143.15 ± 6.70 mg GAE/g d.w.) and the best antioxidant capacity. The EtOH extract showed significant hypoglycaemic effects, with 85.29 ± 5.58% inhibition of α-glucosidase and 41.21 ± 0.79% inhibition of α-amylase. Moderate ERβ binding suggests potential for estrogen-mediated cancer therapy, while strong AKR1C3 inhibition by the EtOH extract supports its therapeutic potential.
Collapse
Affiliation(s)
- Yusufjon Gafforov
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Sofija Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Manzura Yarasheva
- Microbiology Laboratory, Navruz International Corp. LLC, Kibray, Uzbekistan
| | - Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, ProFungi Laboratory, University of Novi Sad, Novi Sad, Serbia
| | - Nemanja Živanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jia Jia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
| | - Sylvie Rapior
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, Montpellier, France
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, Montpellier, France
| | - Young Won Lim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Republic of Korea
| | | | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Soumya Ghosh
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
- Department of Biology and Ecology, Faculty of Sciences, ProFungi Laboratory, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Han X, Shi Z, Wu Z, Zeng X, Sun Y, Yao K, Shen Q, Fan X, Luo J, Pan D. AGEs in cooked meat: Production, detection, and mechanisms of its inhibition by plant extracts. Food Res Int 2025; 207:116067. [PMID: 40086958 DOI: 10.1016/j.foodres.2025.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
With the growing demand for food safety and nutrition, the challenge of ensuring the quality of cooked meat products while reducing the accumulation of AGEs during processing needs urgent attention. In this study, the patterns of AGEs production, detection methods, quality contribution, and molecular mechanisms of its inhibition by natural plant-based extracts (NPBE) in cooked meat products were comprehensively reviewed. NPBE can effectively reduce the accumulation of AGEs in meat by binding to AGEs precursors and reducing glycosylation sites. It has also been shown to significantly remove off-flavour, and inhibit protein carbonylation. The potential for synergistic inhibition of AGE formation using NPBE and exogenous physical field treatments such as pulsed electric fields, microwave irradiation, thermal cycling of air, and ultrasound was emphasized, as well as the urgent need for the development of portable AGE detectors integrated with artificial intelligence and big data analytical models. This study indicates the future research direction for inhibiting the generation of AGEs in cooked meat products, which can promote and guide the practical application of NPBE in cooked meat products.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zihang Shi
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhen Wu
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yangying Sun
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kaiyong Yao
- Lanhai Ecological Agriculture (Hangzhou) Co., Ltd, Hangzhou 311402, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China
| | - Xiankang Fan
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Daodong Pan
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Ahmad MF, Ahmad FA, Hasan N, Alsayegh AA, Hakami O, Bantun F, Tasneem S, Alamier WM, Babalghith AO, Aldairi AF, Kambal N, Elbendary EY. Ganoderma lucidum: Multifaceted mechanisms to combat diabetes through polysaccharides and triterpenoids: A comprehensive review. Int J Biol Macromol 2024; 268:131644. [PMID: 38642691 DOI: 10.1016/j.ijbiomac.2024.131644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Diabetes is a chronic metabolic disorder. Diabetes complications can affect many organs and systems in the body. Ganoderma lucidum (G. lucidum) contains various compounds that have been studied for their potential antidiabetic effects, including polysaccharides, triterpenoids (ganoderic acids, ganoderol B), proteoglycans, and G. lucidum extracts. G. lucidum polysaccharides (GLPs) and triterpenoids have been shown to act through distinct mechanisms, such as improving glucose metabolism, modulating the mitogen-activated protein kinase (MAPK) system, inhibiting the nuclear factor-kappa B (NF-κB) pathway, and protecting the pancreatic beta cells. While GLPs exhibit a significant role in controlling diabetic nephropathy and other associated complications. This review states the G. lucidum antidiabetic mechanisms of action and potential biologically active compounds that contribute to diabetes management and associated complications. To make G. lucidum an appropriate replacement for the treatment of diabetes with fewer side effects, more study is required to completely comprehend the number of physiologically active compounds present in it as well as the underlying cellular mechanisms that influence their effects on diabetes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gurugram 122103, Haryana, India
| | - Nazim Hasan
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia.
| | - Abdulrahman A Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Tasneem
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia
| | - Waleed M Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah F Aldairi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ehab Y Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Chan SW, Tomlinson B, Chan P, Lam CWK. The beneficial effects of Ganoderma lucidum on cardiovascular and metabolic disease risk. PHARMACEUTICAL BIOLOGY 2021; 59:1161-1171. [PMID: 34465259 PMCID: PMC8409941 DOI: 10.1080/13880209.2021.1969413] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 05/16/2023]
Abstract
CONTEXT Various herbal medicines are thought to be useful in the management of cardiometabolic disease and its risk factors. Ganoderma lucidum (Curtis) P. Karst. (Ganodermataceae), also known as Lingzhi, has received considerable attention for various indications, including some related to the prevention and treatment of cardiovascular and metabolic disease by ameliorating major cardiovascular risk factors. OBJECTIVE This review focuses on the major studies of the whole plant, plant extract, and specific active compounds isolated from G. lucidum in relation to the main risk factors for cardiometabolic disease. METHODS References from major databases including PubMed, Web of Science, and Google Scholar were compiled. The search terms used were Ganoderma lucidum, Lingzhi, Reishi, cardiovascular, hypoglycaemic, diabetes, dyslipidaemia, antihypertensive, and anti-inflammatory. RESULTS A number of in vitro studies and in vivo animal models have found that G. lucidum possesses antioxidative, antihypertensive, hypoglycaemic, lipid-lowering, and anti-inflammatory properties, but the health benefits in clinical trials are inconsistent. Among these potential health benefits, the most compelling evidence thus far is its hypoglycaemic effects in patients with type 2 diabetes or hyperglycaemia. CONCLUSIONS The inconsistent evidence about the potential health benefits of G. lucidum is possibly because of the use of different Ganoderma formulations and different study populations. Further large controlled clinical studies are therefore needed to clarify the potential benefits of G. lucidum preparations standardised by known active components in the prevention and treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
5
|
Dizeci N, Onar O, Karaca B, Demirtas N, Coleri Cihan A, Yildirim O. Comparison of the chemical composition and biological effects of Clitocybe nebularis and Infundibulicybe geotropa. Mycologia 2021; 113:1156-1168. [PMID: 34477496 DOI: 10.1080/00275514.2021.1951076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Clitocybe mushrooms have long been recognized for their various therapeutic potential and medicinal properties. A few members of the genus are considered edible and many others are poisonous. This study investigated the ethanolic extracts obtained from C. nebularis (CN) and I. geotropa (IG) mushrooms for phenolic content and antioxidant, antiproliferative, antimicrobial, and antibiofilm activities. The data from ultra-performance liquid chromatography and Fourier transform infrared spectroscopy analysis of the mushrooms were presented for the first time. According to the results, both ethanolic extracts contain high levels of phenolic (catechin, myricetin, quercetin, rutin, gallic acid, vanillic acid) compounds. Fourier transform infrared spectroscopy results may suggest the presence of clitopycin in CN extract. The ethanol extract of CN scavenged about 79% and the IG 78% of the free 2,2-diphenyl-1-picrylhydrazyl radicals. Additionally, the CN and IG extracts inhibited glutathione-S-transferase by 10%-18% at all concentrations. The CN extract effectively inhibited aldose reductase by 30%-80% at all concentrations. Besides, the CN extract showed promising antiproliferative activity on HT-29 and MCF-7 cell lines. On the other hand, CN and IG extracts displayed inhibitory effects on some multidrug-resistant Gram-positive bacteria and effectively inhibited biofilm production. The obtained results showed that C. nebularis and I. geotropa extracts presented inhibition of biofilm production. Therefore, C. nebularis was demonstrated to be a potential source of natural medicine.
Collapse
Affiliation(s)
- Naz Dizeci
- Department of Medical Biology and Genetic, Faculty of Medicine, Ankara Medipol University, Altındağ, Ankara 06050, Turkey
| | - Okan Onar
- Department of Biology, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
| | - Basar Karaca
- Department of Biology, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
| | - Nergiz Demirtas
- Food Chemical Analysis Laboratory, Food Control Laboratory, The Ministry of Food, Agriculture and Livestock, Ankara, Turkey
| | - Arzu Coleri Cihan
- Department of Biology, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
| | - Ozlem Yildirim
- Department of Biology, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
| |
Collapse
|
6
|
Wińska K, Mączka W, Gabryelska K, Grabarczyk M. Mushrooms of the Genus Ganoderma Used to Treat Diabetes and Insulin Resistance. Molecules 2019; 24:E4075. [PMID: 31717970 PMCID: PMC6891282 DOI: 10.3390/molecules24224075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy of diabetes mellitus, especially in the case of chronic disease when the body is no longer able to produce adequate insulin or when it cannot use the produced insulin effectively. This minireview summarizes the perspectives, recent advances, and major challenges of medicinal mushrooms from Ganoderma genus with reference to their antidiabetic activity. The most active ingredients of those mushrooms are polysaccharides and triterpenoids. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of those compounds.
Collapse
Affiliation(s)
- Katarzyna Wińska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Wanda Mączka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | | | - Małgorzata Grabarczyk
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| |
Collapse
|
7
|
A New Flavanone as a Potent Antioxidant Isolated from Chromolaena odorata L. Leaves. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1453612. [PMID: 31316568 PMCID: PMC6604423 DOI: 10.1155/2019/1453612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/20/2019] [Indexed: 11/17/2022]
Abstract
Chromolaena odorata L. (Asteraceae) is one of the tropical plants which is widely used as traditional medicines for diabetes and soft tissue wounds treatment in some regions in East Indonesia. The present study was aimed at determining the bioactive compounds of C. odorata leaves. The methanol and ethyl acetate extracts of C. odorata leaves have the inhibitory activity against 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals as well as α-glucosidase rat intestine enzyme. A new flavanone was isolated from the methanol extract and elucidated as 5,3'-dihydroxy-7,6'-dimethoxyflavanone or, namely, odoratenin (1) together with two known compounds: isosakuranetin (2) and subscandenin (3). The antioxidant activity of odoratenin (1) exhibited very potent ABTS radical inhibitory activity with IC50 value of 23.74 μM which is lower than that of trolox (IC50 31.32 μM) as a positive control. The result showed that a new flavanone, odoratenin (1), should be potential as an antioxidant source.
Collapse
|
8
|
Grochowski DM, Skalicka-Woźniak K, Orhan IE, Xiao J, Locatelli M, Piwowarski JP, Granica S, Tomczyk M. A comprehensive review of agrimoniin. Ann N Y Acad Sci 2017; 1401:166-180. [PMID: 28731232 DOI: 10.1111/nyas.13421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
Abstract
Plant tannins are a unique class of polyphenols with relatively high molecular weights. Within the ellagitannins group, agrimoniin--dimeric ellagitannin--is one of the most representative compounds found in many plant materials belonging to the Rosaceae family. Agrimoniin was first isolated in 1982 from roots of Agrimonia pilosa Ledeb. (Rosaceae), a plant traditionally used in Japan and China as an antidiarrheal, hemostatic, and antiparasitic agent. Agrimoniin is a constituent of medicinal plants, which are often applied orally in the form of infusions, decoctions, or tinctures. It is also present in commonly consumed food products, such as strawberries and raspberries. It is metabolized by human gut microbiota into a series of low-molecular-weight urolithins with proven anti-inflammatory and anticancer in vivo and in vitro bioactivities. The compound has received widespread interest owing to some interesting biological effects and therapeutic activities, which we elaborate in the present review. Additionally, we present an overview of the techniques used for the analysis, isolation, and separation of agrimoniin from the practical perspective.
Collapse
Affiliation(s)
- Daniel M Grochowski
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Jakub P Piwowarski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
9
|
Kim SB, Hwang SH, Suh HW, Lim SS. Phytochemical Analysis of Agrimonia pilosa Ledeb, Its Antioxidant Activity and Aldose Reductase Inhibitory Potential. Int J Mol Sci 2017; 18:ijms18020379. [PMID: 28208627 PMCID: PMC5343914 DOI: 10.3390/ijms18020379] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to determine aldose reductase (AR) inhibitory activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of compounds from Agrimonia pilosa Ledeb (AP). We isolated agrimoniin (AM), four flavonoid glucosides and two flavonoid glucuronides from the n-butanol fraction of AP 50% methanol extract. In addition to isolated compounds, the AR-inhibitory activity and the DPPH free radical scavenging activity of catechin, 5-flavonoids, and 4-flavonoid glucosides (known components of AP) against rat lens AR (RLAR) and DPPH assay were measured. AM showed IC50 values of 1.6 and 13.0 μM against RLAR and DPPH scavenging activity, respectively. Additionally, AM, luteolin-7-O-glucuronide (LGN), quercitrin (QU), luteolin (LT) and afzelin (AZ) showed high inhibitory activity against AR and were first observed to decrease sorbitol accumulation in the rat lens under high-sorbitol conditions ex vivo with inhibitory values of 47.6%, 91.8%, 76.9%, 91.8% and 93.2%, respectively. Inhibition of recombinant human AR by AM, LGN and AZ exhibited a noncompetitive inhibition pattern. Based on our results, AP and its constituents may play partial roles in RLAR and oxidative radical inhibition. Our results suggest that AM, LGN, QU, LT and AZ may potentially be used as natural drugs for treating diabetic complications.
Collapse
Affiliation(s)
- Set Byeol Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
| | - Seung Hwan Hwang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
| | - Hong-Won Suh
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
| |
Collapse
|
10
|
A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-A y mice. Eur J Med Chem 2017; 127:1035-1046. [DOI: 10.1016/j.ejmech.2016.11.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
11
|
Amen Y, Zhu Q, Tran HB, Afifi MS, Halim AF, Ashour A, Shimizu K. Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors. J Nat Med 2017; 71:380-388. [PMID: 28074433 DOI: 10.1007/s11418-016-1069-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/27/2016] [Indexed: 11/27/2022]
Abstract
Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure-activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure-activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.
Collapse
Affiliation(s)
- Yhiya Amen
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan.,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Qinchang Zhu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan.,Department of Pharmacy, School of Medicine, Shenzhen University, 3688 Nanhai Boulevard, Nanshan District, Shenzhen, Guangdong, 518060, China
| | - Hai-Bang Tran
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Mohamed S Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed F Halim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
12
|
Tubulin polymerization-stimulating activity of Ganoderma triterpenoids. J Nat Med 2017; 71:457-462. [PMID: 28078535 DOI: 10.1007/s11418-017-1072-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023]
Abstract
Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.
Collapse
|
13
|
Grienke U, Kaserer T, Pfluger F, Mair CE, Langer T, Schuster D, Rollinger JM. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. PHYTOCHEMISTRY 2015; 114:114-24. [PMID: 25457486 PMCID: PMC4948669 DOI: 10.1016/j.phytochem.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 05/14/2023]
Abstract
The species complex around the medicinal fungus Ganoderma lucidum Karst. (Ganodermataceae) is widely known in traditional medicines, as well as in modern applications such as functional food or nutraceuticals. A considerable number of publications reflects its abundance and variety in biological actions either provoked by primary metabolites, such as polysaccharides, or secondary metabolites, such as lanostane-type triterpenes. However, due to this remarkable amount of information, a rationalization of the individual Ganoderma constituents to biological actions on a molecular level is quite challenging. To overcome this issue, a database was generated containing meta-information, i.e., chemical structures and biological actions of hitherto identified Ganoderma constituents (279). This was followed by a computational approach subjecting this 3D multi-conformational molecular dataset to in silico parallel screening against an in-house collection of validated structure- and ligand-based 3D pharmacophore models. The predictive power of the evaluated in silico tools and hints from traditional application fields served as criteria for the model selection. Thus, the focus was laid on representative druggable targets in the field of viral infections (5) and diseases related to the metabolic syndrome (22). The results obtained from this in silico approach were compared to bioactivity data available from the literature. 89 and 197 Ganoderma compounds were predicted as ligands of at least one of the selected pharmacological targets in the antiviral and the metabolic syndrome screening, respectively. Among them only a minority of individual compounds (around 10%) has ever been investigated on these targets or for the associated biological activity. Accordingly, this study discloses putative ligand target interactions for a plethora of Ganoderma constituents in the empirically manifested field of viral diseases and metabolic syndrome which serve as a basis for future applications to access yet undiscovered biological actions of Ganoderma secondary metabolites on a molecular level.
Collapse
Affiliation(s)
- Ulrike Grienke
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Florian Pfluger
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christina E Mair
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
14
|
Ma HT, Hsieh JF, Chen ST. Anti-diabetic effects of Ganoderma lucidum. PHYTOCHEMISTRY 2015; 114:109-113. [PMID: 25790910 DOI: 10.1016/j.phytochem.2015.02.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Ganoderma lucidum is a white rot fungus widely used as a tonic for the promotion of longevity and health. Extracts of G. lucidum have been recognized as an alternative adjuvant treatment for diabetes. Among the many biologically active constituents of G. lucidum, polysaccharides, proteoglycans, proteins and triterpenoids have been shown to have hypoglycemic effects. G. lucidum polysaccharides have been reported to have hypoglycemic activity by increasing plasma insulin levels and decreasing plasma sugar levels in mice. Protein tyrosine phosphatase 1B is a promising therapeutic target in diabetes, and G. lucidum proteoglycan can inhibit this enzyme in vitro. Moreover, G. lucidum triterpenoids were shown to have inhibitory activity on aldose reductase and α-glucosidase that can suppress postprandial hyperglycemia. In addition, a protein Ling Zhi-8 extracted from G. lucidum significantly decreased lymphocyte infiltration and increased the antibody detection of insulin in diabetic mice. This review summarizes most of the research about the hypoglycemic action effects of polysaccharides, proteoglycans, proteins and tritrerpenoids from G. lucidum as a guide for future research.
Collapse
Affiliation(s)
- Haou-Tzong Ma
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jung-Feng Hsieh
- Department of Food Science, Fu Jen Catholic University, Taipei 242, Taiwan
| | - Shui-Tein Chen
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
15
|
Li H, Nam WS, Moon B, Lee C. Antioxidant activity and phenolic content of brick caps mycelium (Naematoloma sublateritium) extracts. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0195-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Fatmawati S, Kondo R, Shimizu K. Structure–activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors. Bioorg Med Chem Lett 2013; 23:5900-3. [DOI: 10.1016/j.bmcl.2013.08.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/28/2022]
|
17
|
Veeresham C, Rama Rao A, Asres K. Aldose reductase inhibitors of plant origin. Phytother Res 2013; 28:317-33. [PMID: 23674239 DOI: 10.1002/ptr.5000] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/01/2013] [Accepted: 03/22/2013] [Indexed: 12/17/2022]
Abstract
Diabetic complications are attributed to hyperglycaemic condition which is in turn associated with the polyol pathway and advanced glycation end products. Aldose reductase (AR) is the principal enzyme of polyol pathway which plays a vital role in the development of diabetic complications. AR inhibitory activity can be screened by both in vitro and in vivo methods. In vitro assays for AR enzyme are further classified on the basis of the source of enzyme such as rat lens, rat kidney, cataracted human eye lens, bovine eyes and human recombinant AR enzymes, whereas the in vivo model is based on the determination of lens galactitol levels. A number of synthetic AR inhibitors (ARIs) including tolrestat and sorbinil have been developed, but all of these suffer from drawbacks such as poor permeation and safety issues. Therefore, pharmaceutical companies and many researchers have been carrying out research to find new, potent and safe ARIs from natural sources. Thus, many naturally occurring compounds have been reported to have AR inhibitory activity. The present review attempts to highlight phytochemicals and plant extracts with potential AR inhibitory activity. It also summarizes the classes of compounds which have proven AR inhibitory activity. Phytochemicals such as quercetin, kaempferol and ellagic acid are found to be the most promising ARIs. The exhaustive literature presented in this article clearly indicates the role of plant extracts and phytochemicals as potential ARIs.
Collapse
Affiliation(s)
- Ciddi Veeresham
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, AP, 506009, India
| | | | | |
Collapse
|
18
|
Veeresham C, Swetha E, Rao AR, Asres K. In Vitro
and In Vivo
Aldose Reductase Inhibitory Activity of Standardized Extracts and the Major Constituent of Andrographis paniculata. Phytother Res 2012; 27:412-6. [DOI: 10.1002/ptr.4722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Ciddi Veeresham
- University College of Pharmaceutical Sciences; Kakatiya University, Pharmacognosy; Warangal Andhra Pradesh 506009 India
| | - Ettireddy Swetha
- University College of Pharmaceutical Sciences; Kakatiya University, Pharmacognosy; Warangal Andhra Pradesh 506009 India
| | - Ajmeera Rama Rao
- University College of Pharmaceutical Sciences; Kakatiya University, Pharmacognosy; Warangal Andhra Pradesh 506009 India
| | - Kaleab Asres
- School of Pharmacy; Addis Ababa University; Addis Ababa Ethiopia
| |
Collapse
|
19
|
Fatmawati S, Shimizu K, Kondo R. Structure–activity relationships of ganoderma acids from Ganoderma lucidum as aldose reductase inhibitors. Bioorg Med Chem Lett 2011; 21:7295-7. [DOI: 10.1016/j.bmcl.2011.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
|
20
|
Fatmawati S, Shimizu K, Kondo R. Ganoderol B: a potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:1053-5. [PMID: 21596546 DOI: 10.1016/j.phymed.2011.03.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 02/03/2011] [Accepted: 03/26/2011] [Indexed: 05/19/2023]
Abstract
α-Glucosidase inhibitor has considerable potential as a diabetes mellitus type 2 drug because it prevents the digestion of carbohydrates. The search for the constituents reducing α-glucosidase activity led to the finding of active compounds in the fruiting body of Ganoderma lucidum. The CHCl(3) extract of the fruiting body of G. lucidum was found to show inhibitory activity on α-glucosidase in vitro. The neutral fraction, with an IC(50) of 88.7 μg/ml, had stronger inhibition than a positive control, acarbose, with an IC(50) of 336.7 μg/ml (521.5 μM). The neutral fraction was subjected to silica gel column chromatography and repeated p-HPLC to provide an active compound, (3β,24E)-lanosta-7,9(11),24-trien-3,26-diol (ganoderol B). It was found to have high α-glucosidase inhibition, with an IC(50) of 48.5 μg/ml (119.8 μM).
Collapse
Affiliation(s)
- Sri Fatmawati
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
21
|
Abstract
There is a rising worldwide prevalence of diabetes, especially type 2 diabetes mellitus (T2DM), which is one of the most challenging health problems in the 21st century. The associated complications of diabetes, such as cardiovascular disease, peripheral vascular disease, stroke, diabetic neuropathy, amputations, renal failure, and blindness result in increasing disability, reduced life expectancy, and enormous health costs. T2DM is a polygenic disease characterized by multiple defects in insulin action in tissues and defects in pancreatic insulin secretion, which eventually leads to loss of pancreatic insulin-secreting cells. The treatment goals for T2DM patients are effective control of blood glucose, blood pressure, and lipids (if elevated) and, ultimately, to avert the serious complications associated with sustained tissue exposure to excessively high glucose concentrations. Prevention and control of diabetes with diet, weight control, and physical activity has been difficult. Treatment of T2DM has centered on increasing insulin levels, either by direct insulin administration or oral agents that promote insulin secretion, improving sensitivity to insulin in tissues, or reducing the rate of carbohydrate absorption from the gastrointestinal tract. This review presents comprehensive and up-to-date information on the mechanism(s) of action, efficacy, pharmacokinetics, pleiotropic effects, drug interactions, and adverse effects of the newer antidiabetic drugs, including (1) peroxisome proliferator-activated-receptor-γ agonists (thiazolidinediones, pioglitazone, and rosiglitazone); (2) the incretin, glucagon-like peptide-) receptor agonists (incretin-mimetics, exenatide. and liraglutide), (3) inhibitors of dipeptidyl-peptidase-4 (incretin enhancers, sitagliptin, and vildagliptin), (4) short-acting, nonsulfonylurea secretagogue, meglitinides (repaglinide and nateglinide), (5) amylin anlog-pramlintide, (6) α-glucosidase inhibitors (miglitol and voglibose), and (7) colesevelam (a bile acid sequestrant). In addition, information is presented on drug candidates in clinical trials, experimental compounds, and some plants used in the traditional treatment of diabetes based on experimental evidence. In the opinion of this reviewer, therapy based on orally active incretins and incretin mimetics with long duration of action that will be efficacious, preserve the β-cell number/function, and block the progression of diabetes will be highly desirable. However, major changes in lifestyle factors such as diet and, especially, exercise will also be needed if the growing burden of diabetes is to be contained.
Collapse
|
22
|
Ganoderic acid Df, a new triterpenoid with aldose reductase inhibitory activity from the fruiting body of Ganoderma lucidum. Fitoterapia 2010; 81:1033-6. [DOI: 10.1016/j.fitote.2010.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/21/2010] [Accepted: 06/27/2010] [Indexed: 11/20/2022]
|