1
|
Ma Y, Zhao Y, Luo M, Jiang Q, Liu S, Jia Q, Bai Z, Wu F, Xie J. Advancements and challenges in pharmacokinetic and pharmacodynamic research on the traditional Chinese medicine saponins: a comprehensive review. Front Pharmacol 2024; 15:1393409. [PMID: 38774213 PMCID: PMC11106373 DOI: 10.3389/fphar.2024.1393409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Recent research on traditional Chinese medicine (TCM) saponin pharmacokinetics has revealed transformative breakthroughs and challenges. The multicomponent nature of TCM makes it difficult to select representative indicators for pharmacokinetic studies. The clinical application of saponins is limited by their low bioavailability and short half-life, resulting in fluctuating plasma concentrations. Future directions should focus on novel saponin compounds utilizing colon-specific delivery and osmotic pump systems to enhance oral bioavailability. Optimizing drug combinations, such as ginsenosides with aspirin, shows therapeutic potential. Rigorous clinical validation is essential for practical applications. This review emphasizes a transformative era in saponin research, highlighting the need for clinical validation. TCM saponin pharmacokinetics, guided by traditional principles, are in development, utilizing multidisciplinary approaches for a comprehensive understanding. This research provides a theoretical basis for new clinical drugs and supports rational clinical medication.
Collapse
Affiliation(s)
- Yuhan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mingxia Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Sha Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qi Jia
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhixun Bai
- Organ Transplant Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Zhao YC, Li LP, Li XY, Wang CC, Yang JY, Xue CH, Wang YM, Zhang TT. The synergistic effect of sea cucumber saponins and caffeine on preventing obesity in high-fat diet-fed mice by extending the action duration of caffeine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3950-3960. [PMID: 36377349 DOI: 10.1002/jsfa.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Sea cucumber saponins (SCSs) exhibit a unique structure and high bioactivities and might have specialized implications on caffeine metabolic process by altering the activity of N-demethylation enzyme CYP1A2. The present study aimed to clarify the effects of SCS on caffeine metabolism in vivo and in vitro, as well as the synergistic anti-obesity effect of SCS and caffeine on high-fat diet-induced obese mice. RESULTS Results found that SCS administration significantly postponed the elimination rate of caffeine and its metabolites in vivo, and further study found CYP1A2-mediated caffeine metabolism was remarkably inhibited in a dose-dependent manner in vitro. The synergistic effect of the SCS and caffeine combination could decrease the total weight of white adipose tissue by 52% compared with high-fat diet-treated group. CONCLUSION SCS could prolong caffeine action time, and the combination of the two substances exhibited joint action on high-fat diet-induced obese mice. These findings might provide a basis for the development of functional foods and potential application using the combination of SCS and caffeine. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Le-Ping Li
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology/ETH Zürich, Zurich, Switzerland
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Dong B, Ma P, Chen X, Peng Y, Peng C, Li X. Drug-polysaccharide/herb interactions and compatibility rationality of Sijunzi decoction based on comprehensive pharmacokinetic screening for multi-components in rats with spleen deficiency syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115871. [PMID: 36309112 DOI: 10.1016/j.jep.2022.115871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sijunzi decoction (SJZD) is composed of four herbs, namely Ginseng Radix et Rhizoma (RG, Panax ginseng C.A.Mey.), Atractylodes Macrocephalae Rhizoma (AM, Atractylodes macrocephala Koidz.), Poria (Poria cocos (Schw.) Wolf), and Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle (GRP, derived from Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat. or Glycyrrhiza glabra L.) based on the compatibility theory of traditional Chinese medicine (TCM), which is a classical formula for the treatment of spleen deficiency syndrome (SDS) in TCM. The polysaccharides and non-polysaccharides (NPSs) composition represented by flavonoids, saponins and terpenoids are the important pharmacodynamic material basis of SJZD. AIM OF THE STUDY The aim of this study was to investigate the pharmacokinetic characteristics of SJZD in normal rats and SDS rats, and explore the potential interactions between NPSs and polysaccharides in SJZD, as well as the compatibility rationality of SJZD. MATERIALS AND METHODS SDS model was established by oral administration of Radix Rhei (Rheum officinale Baill.) extract, loaded swimming, and intermittent fasting. A rapid, sensitive and reliable ultrafast liquid chromatography tandem mass spectrometry (UFLC-MS/MS) method was developed for the simultaneous analysis of fifteen representative compounds in rat plasma to investigate the differences in pharmacokinetics between normal and SDS rats. The SJZD-NPS samples were prepared by removing the polysaccharides of SJZD to explore the interactions between NPSs and polysaccharides of SJZD. According to the compatibility theory of TCM, four incomplete formulae of SJZD were obtained by randomly removing an herb (also called 'que fang' in TCM), and their pharmacokinetic differences were compared to elucidate the rationality of SJZD compatibility with oral administration to SDS rats. RESULTS The established UFLC-MS/MS method showed perfect performance in simultaneously analyzing fifteen compounds of SJZD in rat plasma. Compared with normal rats, the absorption efficiency of NPSs in SDS rats was lower, accompanied by the prolonged residence time (Cmax and AUC0-t reduced, while MRT0-t increased). Polysaccharides have the potential to enhance intestinal metabolism of glycosides among these components, thereby contributing to the circulating distribution of corresponding metabolites (e.g. aglycones). Furthermore, the compatibility of the four herbs in SJZD could alter their pharmacokinetic characteristics, and potentially improve the absorption of the effective components of RG and AM, which is in accordance with the principle that "monarch" and "minister" herbs play a major role in TCM. In detail, the improved absorption of ginsenosides was mainly regulated by GRP (the "guide" herb in SJZD), together with the effects of AM ("minister" herb) and Poria ("adjuvant" herb) on the pharmacokinetics of components in GRP, implying that herb-herb interactions existed in SJZD and demonstrated the compatibility rationality of SJZD potentially. CONCLUSION This study laid a solid foundation for revealing the pharmacodynamic material basis and subsequent action mechanism of SJZD, as well as provided new insights into the compatibility of SJZD. The comprehensive pharmacokinetic approach adopted in the current research also provides a valuable strategy for TCM formulae research.
Collapse
Affiliation(s)
- Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
4
|
Effects and Mechanism of Action of Panax notoginseng Saponins on the Pharmacokinetics of Warfarin. Eur J Drug Metab Pharmacokinet 2022; 47:331-342. [PMID: 35138605 DOI: 10.1007/s13318-022-00753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUD The interactions between Chinese herbs and drugs pose a great challenge to the combined clinical application of Chinese herbs and drugs. Chinese medicinal products contain complex pharmacologically active components that may influence the in vivo processes of drugs in a variety of ways. In China, drugs based on Panax ginseng total saponins (PNS) are often combined with warfarin for the treatment of cardiovascular diseases. OBJECTIVES To assess the effects of Panax notoginseng saponins (PNS) on the pharmacokinetics of warfarin and its mechanism. METHOD Blood was collected for the determination of the prothrombin time (PT) and international normalized ratio (INR) from rats treated with warfarin alone or with warfarin + PNS. The plasma concentration of warfarin was determined by high-performance liquid chromatography. Western blot was used to detect the expression of cytochrome P450 (CYP) enzymes. RESULTS When warfarin and PNS were co-administered, the PT and INR increased compared to when warfarin was given alone. 72 hours after administration, compared to the warfarin alone group, the warfarin + low-dose PNS, warfarin + medium-dose PNS, and warfarin + high-dose PNS groups showed 110%, 122%, and 126% increases in PT, respectively (all P < 0.05), as well as 111%, 124%, and 128% increases in INR (all P < 0.05). Compared with the warfarin alone group, the clearance rate (CL/F) of warfarin in the warfarin + low-dose PNS, warfarin + medium-dose PNS, and warfarin + high-dose PNS groups was 10% (P > 0.05), 23% (P < 0.05), and 33% (P < 0.05) lower, respectively, while the systemic exposure (area under the concentration-time curve, AUC0-t) increased by 106% (P > 0.05), 119% (P < 0.05), and 134% (P < 0.05), respectively, and the blood concentration of warfarin incresed by 112%, 113%, and 114%, respectively (all P > 0.05). After combined treatment of HepG2 cells with warfarin + PNS, CYP1A2 expression was upregulated (P < 0.05) and CYP3A4 was downregulated (P < 0.05) but there was no effect on CYP2C9. In animal experiments, PNS had different effect on the expression of CYP1A2 in different doses. While a low dose of PNS resulted in downregulated CYP1A2 expression (P < 0.05), a medium dose resulted in upregulation (P < 0.05), and CYP1A2 expression was not significantly affected by a high dose of PNS (P > 0.05). Meanwhile, PNS at all doses downregulated the expression of CYP3A4 (P < 0.05) but had no effect on the expression of CYP2C9 (P > 0.05). CONCLUSION PNS can increase the blood concentration of warfarin, as well as the exposure time, and it can enhance the anticoagulant effect of warfarin by inhibiting the expression of the liver enzyme CYP3A4.
Collapse
|
5
|
Zhang Y, Liu L, Li N, Wang Y, Yue X. 3D scaffold fabricated with composite material for cell culture and its derived platform for safety evaluation of drugs. Toxicology 2021; 466:153066. [PMID: 34919984 DOI: 10.1016/j.tox.2021.153066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022]
Abstract
In order to overcome the weakness of conventional approaches for cell culture, and provide cells with more in vivo-like microenvironment for studying hepatotoxicity of drugs, "multiple-in-one" strategy was adopted to fabricate a 3D scaffold of silk fibroin/hydroxyapatite/poly lacticco-glycolic acid (SF/HA/PLGA), where HepG2 cells were cultivated and the toxicity of drugs to the cells was investigated. The prepared 3D scaffold proves to bear proper porosity, excellent mechanical property, steady pH environment and good biocompatibility for cell culture. Furthermore, the validity of the developed 3D-SF/HA/PLGA-scaffold based platform was verified by probing the toxicity of a known drug-induced liver injury (DILI) concern acetaminophen (APAP) to HepG2 cells. Eventually, an application of the platform to dioscin (a medicinal plant extract) reveals the hepatotoxicity of dioscin, which involves the inhibition of the expression of CYP3A4 mRNA in the cells. The developed 3D-SF/HA/PLGA-scaffold platform may become a universal avenue for safety evaluation of drugs.
Collapse
Affiliation(s)
- Yanni Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Le Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Na Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Yihua Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Xuanfeng Yue
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering of Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| |
Collapse
|
6
|
Petersen MJ, Bergien SO, Staerk D. A systematic review of possible interactions for herbal medicines and dietary supplements used concomitantly with disease-modifying or symptom-alleviating multiple sclerosis drugs. Phytother Res 2021; 35:3610-3631. [PMID: 33624893 DOI: 10.1002/ptr.7050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is a demyelinating disease affecting the central nervous system, with no curative medicine available. The use of herbal drugs and dietary supplements is increasing among people with MS (PwMS), raising a need for knowledge about potential interactions between conventional MS medicine and herbal drugs/dietary supplements. This systematic review provides information about the safety of simultaneous use of conventional MS-drugs and herbal drugs frequently used by PwMS. The study included 14 selected disease-modifying treatments and drugs frequently used for symptom-alleviation. A total of 129 published papers found via PubMed and Web of Science were reviewed according to defined inclusion- and exclusion criteria. Findings suggested that daily recommended doses of Panax ginseng and Ginkgo biloba should not be exceeded, and herbal preparations differing from standardized products should be avoided, especially when combined with anticoagulants or substrates of certain cytochrome P450 isoforms. Further studies are required regarding ginseng's ability to increase aspirin bioavailability. Combinations between chronic cannabis use and selective serotonin reuptake inhibitors or non-steroidal antiinflammatory drugs should be carefully monitored, whereas no significant evidence for drug-interactions between conventional MS-drugs and ginger, cranberry, vitamin D, fatty acids, turmeric, probiotics or glucosamine was found.
Collapse
Affiliation(s)
- Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Effects of Xuesaitong on the Pharmacokinetics of Losartan: An In Vivo UPLC-MS/MS Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8373476. [PMID: 31511782 PMCID: PMC6710810 DOI: 10.1155/2019/8373476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/20/2019] [Accepted: 07/24/2019] [Indexed: 11/24/2022]
Abstract
The aim of this study was to examine whether Xuesaitong, a multiherbal formulation for coronary heart disease, alters the pharmacokinetics of losartan. Adult male Sprague Dawley rats randomly received losartan (10 mg/kg) or losartan plus Xuesaitong (10 mg/kg) through an oral gavage (n = 6). Multiple blood samples were obtained for up to 36 h to determine the concentrations of losartan and its active metabolite, EXP3174, through ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Pharmacokinetics were estimated using a noncompartmental model. The half-life (t1/2) of losartan was decreased by Xuesaitong (4.26 ± 1.51 vs. 6.35 ± 2.10 h; P < 0.05). The apparent volume of distribution (Vd) of losartan was also decreased by the combination of losartan and Xuesaitong (4.41 ± 1.61 vs. 7.20 ± 2.41 mL; P < 0.05). The time to maximum concentration (Tmax) of losartan was increased by Xuesaitong (1.06 ± 1.04 vs. 0.13 ± 0.05 h; P < 0.05). Xuesaitong also decreased the t1/2 of EXP3174 (8.22 ± 1.41 vs. 6.29 ± 1.38 h; P < 0.05). These results suggest that there is a complex interaction between losartan and Xuesaitong. In addition to enhanced elimination of losartan and EXP3174, Xuesaitong may also decrease the absorption rate and Vd of losartan.
Collapse
|
8
|
Tousen Y, Takebayashi J, Kondo T, Fuchino H, Kawano N, Inui T, Yoshimatsu K, Kawahara N, Ishimi Y. Safety and Efficacy Assessment of Isoflavones from Pueraria (Kudzu) Flower Extract in Ovariectomised Mice: A Comparison with Soy Isoflavones. Int J Mol Sci 2019; 20:ijms20122867. [PMID: 31212773 PMCID: PMC6627882 DOI: 10.3390/ijms20122867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/08/2019] [Accepted: 06/09/2019] [Indexed: 01/24/2023] Open
Abstract
Numerous Foods with Function Claims that contain the extract of Pueraria flower (kudzu) isoflavones (PFI) are available in the Japanese market. These are labelled with function claims of reducing visceral fat. However, these foods have not undergone proper safety assessment such as the evaluation of their oestrogenic activity and effects on drug-metabolising enzymes (cytochrome P-450: CYP) in the liver. This study evaluated the estrogenic effect and the hepatic CYP activity and mRNA expression in normal female mice as a safety assessment of PFI (Experiment 1). In addition, the bone mineral density and visceral fat weight in ovariectomised mice (OVX) compared to soy isoflavones (SI) was evaluated to assess the efficacy of PFI (Experiment 2). OVX control fed a control diet, OVX fed a PFI diet (the recommended human intake of PFI), OVX fed a PFI20 diet (20- times the recommended PFI), OVX fed an SI diet (the recommended human intake of SI), and OVX fed an SI20 diet (20 -times the recommended intake of SI) for 28 days in Experiment 2. Body, liver, and visceral fat weights were not affected by the PFI, PFI20, SI, or SI20 diets. The hepatic CYP1A and CYP3A activities were elevated by the SI20 treatment. Ovariectomy-induced bone loss was inhibited by the SI20 treatment, but not by the PFI20 treatment. These results suggest that (1) PFI intake in human doses had no oestrogenic properties and did not affect CYP activity in the liver; (2) there was no evidence that PFI affects the amount of visceral fat in OVX mice.
Collapse
Affiliation(s)
- Yuko Tousen
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | - Jun Takebayashi
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | - Takashi Kondo
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition,1-2 Hachimandai Tsukuba-shi, Ibaraki 305-0843, Japan.
| | - Noriaki Kawano
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition,1-2 Hachimandai Tsukuba-shi, Ibaraki 305-0843, Japan.
| | - Takayuki Inui
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition,1-2 Hachimandai Tsukuba-shi, Ibaraki 305-0843, Japan.
| | - Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition,1-2 Hachimandai Tsukuba-shi, Ibaraki 305-0843, Japan.
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition,1-2 Hachimandai Tsukuba-shi, Ibaraki 305-0843, Japan.
| | - Yoshiko Ishimi
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
- Tokyo University of Agriculture, NODAI Research Institute, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
9
|
Karlik W, Chłopecka M, Bamburowicz-Klimkowska M, Mendel M. Modulations of bovine hepatic microsomal metabolism of benzimidazoles by secondary plant metabolites. J Vet Pharmacol Ther 2018; 42:222-229. [PMID: 30474118 DOI: 10.1111/jvp.12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 10/27/2022]
Abstract
The study was aimed to estimate the effect of plant secondary metabolites present in ruminants diet and phytogenic feed additives on liver microsomal metabolism of albendazole and fenbendazole. The selected phytocompounds comprised of flavonoids (apigenin, quercetin) and saponins (hederagenin, medicagenic acid). The experiments were performed on liver microsomal fraction obtained from routinely slaughtered cows. The intensity of albendazole and fenbendazole metabolism in the presence of flavonoids and saponins was analyzed in equimolar concentration (100 μM). The obtained results revealed that both flavonoids and saponins intensify the metabolism of albendazole and fenbendazole in bovine microsomes. In the case of albendazole, apigenin and quercetin doubled the amount of degraded drug and the amount of produced albendazole sulfoxide. Additionally, both flavonoids increased the amount of produced albendazole sulfone. Saponins, hederagenin, and medicagenic acid intensified the degradation of albendazole (1.8-fold) and the production of albendazole sulfoxide (twofold). Medicagenic acid inhibited the production of albendazole sulfone. In the case of fenbendazole, the degradation of the drug and the production of oxfendazole were increased four and five times in the presence of saponins and flavonoids, respectively. The enhancement of benzimidazoles' metabolism caused by the studied plant metabolites could change pharmacokinetics and the efficacy of benzimidazoles' treatment in cattle.
Collapse
Affiliation(s)
- Wojciech Karlik
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Marta Mendel
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Pang HH, Li MY, Wang Y, Tang MK, Ma CH, Huang JM. Effect of compatible herbs on the pharmacokinetics of effective components of Panax notoginseng in Fufang Xueshuantong Capsule. J Zhejiang Univ Sci B 2017; 18:343-352. [PMID: 28378572 DOI: 10.1631/jzus.b1600235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fufang Xueshuantong (FXT) is a well-known Chinese herbal formula which has been used to treat cardiovascular and ophthalmic diseases, especially diabetic retinopathy. Panax notoginseng (Burkill) F.H. Chen (PN) is the main herb of FXT, whose major bioactive constituents are ginsenosides. However, the scientific basis of the compatibility of FXT is still ambiguous. The present study investigated the scientific basis of the compatibility of FXT by comparing the pharmacokinetics of marker compounds after oral administrations of PN and FXT. A high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method was developed for simultaneous detection of notoginsenoside R1 (NR1), ginsenoside Rg1 (GRg1), and ginsenoside Rb1 (GRb1) in rat plasma. The pharmacokinetic studies of FXT and PN were performed using the established method with the pharmacokinetic parameters being determined by non-compartmental analysis. The results showed that the pharmacokinetic parameters (maximum concentration, area under the curve (AUC0-t), clearance, and mean residence time) of NR1, GRg1, and GRb1 were significantly different after oral administration of FXT (P<0.05) compared with PN. The AUC0-t values of GRg1 and GRb1 were 1.7- and 3.4-fold greater, respectively, in FXT than in PN. The compatible herbs of FXT could prolong the retention time and increase the systemic exposure of NR1, GRg1, and GRb1 compared with PN in vivo, providing some scientific basis for the compatibility and clinical use of FXT.
Collapse
Affiliation(s)
- Huan-Huan Pang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Meng-Yi Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yuan Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Min-Ke Tang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Chang-Hua Ma
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jian-Mei Huang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
11
|
|
12
|
Guo M, Dai X, Hu D, Zhang Y, Sun Y, Ren W, Wang L. Potential pharmacokinetic effect of rifampicin on enrofloxacin in broilers: Roles of P-glycoprotein and BCRP induction by rifampicin. Poult Sci 2016; 95:2129-35. [PMID: 27118859 DOI: 10.3382/ps/pew148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
P-glycoprotein ( P-GP: , encoding gene Abcb1) and Breast Cancer Resistance Protein ( BCRP: , encoding gene Abcg2) are transport proteins that play a major role in modulating the bioavailability of oral drugs in humans and rodents. It has been shown that rifampicin is the typical inducer of P-gp in rodents by activating the nuclear receptor. However, its effect on Abcb1, Abcg2, CYP3A, and chicken xenobiotic-sensing orphan nuclear receptor ( CXR: ) mRNA expression in broilers is poorly understood. This study explored the effect of rifampicin on mRNA expression of Abcb1, Abcg2, CYP3A37, CXR as well as its effect on the pharmacokinetics of enrofloxacin in broilers. The mRNA levels of Abcb1, Abcg2, CYP3A37, and CXR were significantly increased in the liver (except Abcg2), kidney, jejunum, and ileum (P < 0.05) but not significantly changed in the duodenum (P > 0.05) after treated with rifampicin. Further analysis revealed that the variation tendencies of Abcb1, Abcg2, and CYP3A37 expression levels were significantly correlated with CXR mRNA expression levels in liver, kidney, jejunum, and ileum. Coadministration of rifampicin significantly changed the pharmacokinetic behavior of enrofloxacin orally administered by showing clearly lower AUC0-∞, AUC0-t, and Cmax as well as longer Tmax. The bioavailability of orally administered enrofloxacin was decreased from 72.5% to 24.8% by rifampicin. However, rifampicin did not significantly change the pharmacokinetics of enrofloxacin following intravenous administration. Our study shows that rifampicin up-regulated the small intestinal level of P-gp and BCRP and suggests that P-gp and BCRP are key factors that affected pharmacokinetic behavior of orally administered enrofloxacin by limiting its absorption from the intestine in broilers.
Collapse
Affiliation(s)
- Mengjie Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China Center for Safety Evaluation of Drugs, Science and Technology Division, Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiaohua Dai
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Dongmin Hu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Yu Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Yong Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Weilong Ren
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| |
Collapse
|
13
|
JING XY, PENG YR, WANG XM, DUAN JA. Effects of Ziziphus jujuba fruit extracts on cytochrome P450 (CYP1A2) activity in rats. Chin J Nat Med 2015; 13:588-94. [DOI: 10.1016/s1875-5364(15)30054-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Indexed: 10/23/2022]
|
14
|
Li W, Zhao L, Le J, Zhang Y, Liu Y, Zhang G, Chai Y, Hong Z. Evaluation of Tetrahydropalmatine Enantiomers on the Activity of Five Cytochrome P450 Isozymes in Rats Using a Liquid Chromatography / Mass Spectrometric Method and a Cocktail Approach. Chirality 2015; 27:551-6. [PMID: 26032585 DOI: 10.1002/chir.22469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/19/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
The aim was to evaluate the effects of tetrahydropalmatine (THP) enantiomers on the activity of five cytochrome P450 (CYP450) isozymes in vivo. A liquid chromatography / mass spectrometric (LC-MS) method was developed for simultaneous determination of five specific probe substrates including metoprolol (2D6), caffeine (1A2), dapsone (3A4), chlorzoxazone (2E1), and tolbutamide (2C9) in rat plasma. Analytes were separated with the mobile phase consisting of 0.1% acetic acid aqueous solution and acetonitrile in a gradient elution. The mass spectrometric detection via selected ion monitoring (SIM) was operated in both positive ion mode (for metoprolol m/z 268, caffeine m/z 195, and dapsone m/z 249) and negative ion mode (for chlorzoxazone m/z 168 and tolbutamide m/z 269) in the same run. Linear correlation was obtained (r(2) > 0.99) over the concentration range of 0.050-25.0 µg/mL for caffeine and dapsone, 0.025-10.0 µg/mL for metoprolol, 0.050-50.0 µg/mL for chlorzoxazone, and 0.25-100.0 µg/mL for tolbutamide. Intra- and interday precision were less than 12.09%. The matrix effect ranged from 87.50% to 109.25% and the absolute recoveries were greater than 70%. The method was successfully applied to evaluate the effect of THP enantiomers on the activity of CYP450 isozymes by a cocktail approach. The pharmacokinetic results of five probe drugs indicated that there were stereoselective differences between the two THP enantiomers, i.e., d-THP had the potential to inhibit the activities of CYP2D6 and CYP1A2 isozymes, while l-THP inhibited CYP1A2 isozyme and induced CYP3A4 and CYP2C9 isozymes.
Collapse
Affiliation(s)
- Wuhong Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Liang Zhao
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jian Le
- Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Yinying Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yinli Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Guoqing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
15
|
Manda VK, Dale OR, Awortwe C, Ali Z, Khan IA, Walker LA, Khan SI. Evaluation of drug interaction potential of Labisia pumila (Kacip Fatimah) and its constituents. Front Pharmacol 2014; 5:178. [PMID: 25152732 PMCID: PMC4126480 DOI: 10.3389/fphar.2014.00178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/11/2014] [Indexed: 11/13/2022] Open
Abstract
Labisia pumila (Kacip Fatimah) is a popular herb in Malaysia that has been traditionally used in a number of women's health applications such as to improve libido, relieve postmenopausal symptoms, and to facilitate or hasten delivery in childbirth. In addition, the constituents of this plant have been reported to possess anticancer, antioxidant, and anti-inflammatory properties. Clinical studies have indicated that cytochrome P450s (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR) are the three main modulators of drug-drug interactions which alter the absorption, distribution, and metabolism of drugs. Given the widespread use of Kacip Fatimah in dietary supplements, the current study focuses on determining the potential of its constituents to affect the activities of CYPs, P-gp, or PXR using in vitro assays which may provide useful information toward the risk of herb-drug interaction with concomitantly used drugs. Six compounds isolated from the roots of L. pumila (2 saponins and 4 alkyl phenols) were tested, in addition to the methanolic extract. The extract of L. pumila showed a significant time dependent inhibition (TDI) of CYP3A4, reversible inhibition of CYP2C9 and 2C19 and a weak inhibition of 1A2 and 2D6 as well as an inhibition of P-gp and rifampicin-induced PXR activation. The alkyl phenols inhibited CYP3A4 (TDI), CYP2C9, and 2C19 (reversible) while saponins inhibited P-gp and PXR. In conclusion, L. pumila and its constituents showed significant modulation of all three regulatory proteins (CYPs, P-gp, and PXR) suggesting a potential to alter the pharmacokinetic and pharmacodynamic properties of conventional drugs if used concomitantly.
Collapse
Affiliation(s)
- Vamshi K Manda
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Charles Awortwe
- Division of Clinical Pharmacology, University of Stellenbosch Cape Town, South Africa
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA ; Division of Pharmacognosy, Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA ; Division of Pharmacology, Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA ; Division of Pharmacognosy, Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| |
Collapse
|
16
|
Yin Z, Ma L, Xu J, Xia J, Luo D. Pustular drug eruption due to Panax notoginseng saponins. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:957-61. [PMID: 25114505 PMCID: PMC4109629 DOI: 10.2147/dddt.s67015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Panax notoginseng saponins (PNS) are a patented product in the People’s Republic of China, and have extensive effects on the cardiovascular system. Here we report on four elderly patients (one male and three female) with drug eruption induced by PNS injection. All developed a sudden skin rash with pruritus from head to foot, and subsequently accepted hospitalization. In each case, PNS had been used for less than 1 week before appearance of the rash. No specific short-term medications or changes in diet or exposure to environmental factors immediately prior to appearance of the rash were identified. These four patients had some interesting features in common, ie, pustules, fever, and elevated circulating neutrophil counts, which required high-dose, long-term glucocorticoid therapy. To our knowledge, this is the first report of pustular drug eruption induced by PNS and provides a useful reference and warning for clinicians.
Collapse
Affiliation(s)
- ZhiQiang Yin
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, People's Republic of China
| | - LiWen Ma
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, People's Republic of China
| | - JiaLi Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, People's Republic of China
| | - JiPing Xia
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, People's Republic of China
| | - Dan Luo
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Jin SE, Ha H, Jeong SJ, Shin HK. Effects of Korean traditional herbal formula for common cold on the activities of human CYP450 isozymes. ACTA ACUST UNITED AC 2014. [DOI: 10.13048/jkm.14022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Iba MM. The Effects of Panax Notoginseng Saponins (PNS) on the Activities of ‘Rat’ CYP2C9, CYP2D6 and CYP3A4. Phytother Res 2013; 28:150-1. [DOI: 10.1002/ptr.5068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Michael M. Iba
- Department of Pharmacology and Toxicology; Rutgers University; Piscataway NJ 08854 USA
| |
Collapse
|
19
|
Systematic review of recent advances in pharmacokinetics of four classical Chinese medicines used for the treatment of cerebrovascular disease. Fitoterapia 2013; 88:50-75. [DOI: 10.1016/j.fitote.2013.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 12/28/2022]
|
20
|
Braga A, Stein AC, Dischkaln Stolz E, Dallegrave E, Buffon A, do Rego JC, Gosmann G, Fialho Viana A, Kuze Rates SM. Repeated administration of an aqueous spray-dried extract of the leaves of Passiflora alata Curtis (Passifloraceae) inhibits body weight gain without altering mice behavior. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:59-66. [PMID: 23107823 DOI: 10.1016/j.jep.2012.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Passiflora alata is a Southern American species that constitutes many traditional remedies as well as phytomedicines used for sedative and anxiolytic purposes in Brazil. However studies on repeated treatment effects are scarce. AIM OF THE STUDY To evaluate behavioral, physiological and biochemical effects of the repeated treatment with an aqueous spray-dried extract of Passiflora alata leaves containing 2.5% (w/v) of flavonoids (PA) in mice. MATERIAL AND METHODS Male adult CF1 mice were treated (p.o.) for 14 days with PA (2.5; 25 or 250 mg/kg). The feeding behavior was evaluated at the beginning (1h after the first administration) and at the end of the treatment (15th day). The body weight gain and food consumption were monitored along the days. On day 15 mice were evaluated on plus maze, spontaneous locomotor activity, catalepsy and barbiturate sleeping time tests. Serum glucose, lipids, ALT and AST enzymes were determined. Liver, kidney, perirenal fat, epididymal and peritoneal fat were analyzed. RESULTS The repeated treatment with the highest dose tested (250 mg/kg) did not alter the mice behavior on open field, elevated plus maze, catalepsy and barbiturate sleeping time tests. Repeated administration of PA 250 decreased mice feeding behavior and weight gain. PA 25 and PA 250 reduced mice relative liver weight and caused mild hepatic hydropic degeneration as well as a decrease in alanine aminotransferase (ALT) serum level. CONCLUSIONS These results indicate that Passiflora alata does not present central cumulative effects and point to the needs of further studies searching for its hepatotoxicity as well as potential anorexigenic.
Collapse
Affiliation(s)
- Andressa Braga
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|