1
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
2
|
Almeida PSD, Barão K, Forones NM. SARCOPENIA AND GASTROINTESTINAL CANCER: NUTRITIONAL APPROACH FOCUSING ON CURCUMIN SUPPLEMENTATION. ARQUIVOS DE GASTROENTEROLOGIA 2025; 62:e24068. [PMID: 40197883 PMCID: PMC12043197 DOI: 10.1590/s0004-2803.24612024-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/15/2024] [Indexed: 04/10/2025]
Abstract
BACKGROUND Sarcopenia is a syndrome characterized by decreased strength, quantity and/or quality of skeletal muscle mass. When associated with cancer, it correlates with poorer clinical outcomes. Cancers of the gastrointestinal tract, prevalent globally and in Brazil, are associated with a greater nutritional risk. Early detection and intervention for nutritional risks are critical in this population. Recent studies on turmeric/curcumin have demonstrated beneficial effects in cancer patients. Specifically, curcumin have shown promise in reducing muscle depletion, oxidative stress, and improving strength and fatigue, factors related to sarcopenia. This review aims to elucidate sarcopenia and sarcopenia secondary to cancer, emphasizing nutritional management and the role of curcumin supplementation. Effective cancer management, whether with or without sarcopenia, demands comprehensive public health strategies and multimodal interventions within healthcare institutions. Nutrition is pivotal across the cancer care journey, encompassing screening, guidance, and provision of nutrients that support maintaining or recovering body composition. Curcumin supplementation emerges as a potential adjuvant to the standard cancer treatment and sarcopenia management. Nevertheless, further clinical studies are warranted to substantiate these findings. BACKGROUND • Sarcopenia is a syndrome characterized by decreased strength, quantity and/or quality of skeletal muscle mass. BACKGROUND • Sarcopenia when associated with cancer, it correlates with poorer clinical outcomes. BACKGROUND • Curcumin has shown promise in reducing muscle depletion, oxidative stress, and improving strength and fatigue, factors related to sarcopenia. BACKGROUND • Curcumin supplementation emerges as a potential adjuvant to the standard cancer treatment and sarcopenia management.
Collapse
Affiliation(s)
- Pamela S de Almeida
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| | - Katia Barão
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| | - Nora M Forones
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| |
Collapse
|
3
|
Porfyris O, Detopoulou P, Adamantidi T, Tsoupras A, Papageorgiou D, Ioannidis A, Rojas Gil AP. Phytochemicals as Chemo-Preventive and Therapeutic Agents Against Bladder Cancer: A Comprehensive Review. Diseases 2025; 13:103. [PMID: 40277814 PMCID: PMC12026019 DOI: 10.3390/diseases13040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Bladder cancer has a high incidence worldwide and is characterized by a high recurrence rate, metastatic potential, and a significant socioeconomic burden. Conventional treatment modalities usually exhibit serious adverse complications, which also negatively affect patients' quality of life. In the context of exploring new treatment approaches with fewer side effects, the utilization of natural compounds as alternative and/or complementary therapeutic options seems appealing. In the present study, the potential use and effects of various bioactive phytochemicals, including curcumin, resveratrol, epigallocatechin, genistein, and several others, in bladder cancer treatment are thoroughly reviewed. A special focus is given to their potential to beneficially modulate important molecular signaling pathways and mechanisms affecting cell survival, proliferation, migration, and apoptosis, which play a crucial role in the pathogenesis of bladder cancer, such as the PI3K/AKT/mTOR, Ras/Raf/MEK/MAPK, Wnt/β-Catenin, Notch, Hedgehog, Hippo, JAK2/STAT3, and PAF/PAF-receptor pathways. Nevertheless, most studies have been conducted in cell cultures and animal models. Due to differences in genetics and metabolism, more clinical trials are needed to ensure the bio-efficacy of these phytochemicals in humans.
Collapse
Affiliation(s)
- Orestis Porfyris
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Paraskevi Detopoulou
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece;
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Dimitris Papageorgiou
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese Panarcadian Hospital of Tripoli, Red Cross Terminal (Administrative Services) 2nd Floor, 22100 Tripoli, Greece;
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| |
Collapse
|
4
|
Shadnoush M, Momenan M, Seidel V, Tierling S, Fatemi N, Nazemalhosseini-Mojarad E, Norooz MT, Cheraghpour M. A comprehensive update on the potential of curcumin to enhance chemosensitivity in colorectal cancer. Pharmacol Rep 2025; 77:103-123. [PMID: 39304638 DOI: 10.1007/s43440-024-00652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a major cause of cancer-related mortality worldwide. The efficacy of chemotherapy agents in CRC treatment is often limited due to toxic side effects, heterogeneity of cancer cells, and the possibility of chemoresistance which promotes cancer cell survival through several mechanisms. Combining chemotherapy agents with natural compounds like curcumin, a polyphenol compound from the Curcuma longa plant, has been reported to overcome chemoresistance and increase the sensitivity of cancer cells to chemotherapeutics. Curcumin, alone or in combination with chemotherapy agents, has been demonstrated to prevent chemoresistance by modulating various signaling pathways, reducing the expression of drug resistance-related genes. The purpose of this article is to provide a comprehensive update on studies that have investigated the ability of curcumin to enhance the efficacy of chemotherapy agents used in CRC. It is hoped that it can serve as a template for future research on the efficacy of curcumin, or other natural compounds, combined with chemotherapy agents to maximize the effectiveness of therapy and reduce the side effects that occur in CRC or other cancers.
Collapse
Affiliation(s)
- Mahdi Shadnoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Momenan
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Tayefeh Norooz
- General Surgery Department, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.Box, Tehran, 16635-148, Iran.
| |
Collapse
|
5
|
Hajimirzaei P, Eyni H, Razmgir M, Abolfazli S, Pirzadeh S, Ahmadi Tabatabaei FS, Vasigh A, Yazdanian N, Ramezani F, Janzadeh A, Butler AE, Sahebkar A. The analgesic effect of curcumin and nano-curcumin in clinical and preclinical studies: a systematic review and meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:393-416. [PMID: 39186190 DOI: 10.1007/s00210-024-03369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Chronic pain remains a treatment challenge. Curcumin, a natural plant product found in the Curcuma genus, has been shown to possess anti-inflammatory, antioxidant, and neuroprotective properties. In this systematic review and meta-analysis, we aimed to evaluate the efficacy of curcumin and nano-curcumin for treating chronic pain in clinical and preclinical studies. A systematic search was performed through PubMed, SCOPUS, Web of Science Core Collection, Cochrane, and Google Scholar up to April 1, 2023, using relevant keywords. Trials that met the inclusion criteria were included in this study. We applied the mean difference (MD) or standardized mean difference (SMD) in random or fixed-effects models to analyze the impact of combined trials. We also evaluated the potential risk of bias using the Higgins method for clinical studies and the SYRCLE Risk of Bias tool for animal studies. Our meta-analysis included 59 studies, comprising 29 animal studies and 30 clinical studies. Curcumin strongly reduced pain in preclinical studies, and both the intraperitoneal (SMD = 1.48; 95% CI, 0.81 to 2.14; p < 0.001, and I2 = 77.9%) and oral (SMD = 1.27; 95% CI, 1.01 to 1.55; p < 0.001, and I2 = 0.0%) administration method of curcumin had pain-relieving effects. However, the subcutaneous method (SMD = 0.24; 95% CI, - 0.89 to 1.38; p = 0.67) had no effect. The drug's efficacy within the 100-250 mg range (SMD = 1.46; 95% CI, 0.76 to 2.15; p < 0.001; and I2 = 73.4%) surpassed that observed above 250 mg (SMD = 1.23; 95% CI, 0.89 to 1.57; p < 0.001; and I2 = 0.0%). In clinical studies, nano-curcumin had a powerful effect on pain reduction compared to placebo (MD = - 1.197; CI 95% (- 1.94 to - 0.45); p = 0.002; and I2 = 80.9%), and the effects of NSAIDs on pain were not significantly altered when used in combination with Curcuma longa extract (MD = - 0.23; CI 95% (- 0.99 to 0.53); p = 0.554; and I2 = 92%). In addition, the effect of increased bioavailability of curcumin (MD = - 1.54; CI 95% (- 2.06 to - 1.02); p < 0.001; and I2 = 89.6%), curcumin (MD = - 1.35; CI 95% (- 2.451 to - 0.252); p = 0.016; and I2 = 90.8%), and nano-curcumin was greater than placebo. Our meta-analysis suggests that curcumin and nano-curcumin are effective in reducing chronic pain. These findings have important implications for pharmaceutical science and may lead to the development of new treatments for chronic pain. However, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Pooya Hajimirzaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Eyni
- Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Razmgir
- Department of Medical Library and Information, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simin Pirzadeh
- Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ayda Vasigh
- International Campus of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Yazdanian
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Sic A, Manzar A, Knezevic NN. The Role of Phytochemicals in Managing Neuropathic Pain: How Much Progress Have We Made? Nutrients 2024; 16:4342. [PMID: 39770963 PMCID: PMC11678138 DOI: 10.3390/nu16244342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Neuropathic pain is a complex and debilitating condition resulting from nerve damage, characterized by sensations such as burning, tingling, and shooting pain. It is often associated with conditions such as multiple sclerosis (MS), Guillain-Barré syndrome (GBS), and diabetic polyneuropathy. Conventional pain therapies frequently provide limited relief and are accompanied by significant side effects, emphasizing the need to explore alternative treatment options. Phytochemicals, which are bioactive compounds derived from plants, have gained attention for their potential in neuropathic pain management due to their diverse pharmacological properties, including anti-inflammatory, antioxidant, and neuroprotective effects. This review evaluates the mechanisms by which specific phytochemicals, such as curcumin, resveratrol, and capsaicin, influence neuropathic pain pathways, particularly their role in modulating inflammatory processes, reducing oxidative stress, and interacting with ion channels and signaling pathways. While curcumin and resveratrol are primarily considered dietary supplements, their roles in managing neuropathic pain require further clinical investigation to establish their efficacy and safety. In contrast, capsaicin is an active ingredient derived from chili peppers that has been developed into approved topical treatments widely used for managing neuropathic and musculoskeletal pain. However, not all phytochemicals have demonstrated consistent efficacy in managing neuropathic pain, and their effects can vary depending on the compound and the specific condition. The pathophysiology of neuropathic pain, involving maladaptive changes in the somatosensory nervous system, peripheral and central sensitization, and glial cell activation, is also outlined. Overall, this review emphasizes the need for continued high-quality clinical studies to fully establish the therapeutic potential of phytochemicals in neuropathic pain management.
Collapse
Affiliation(s)
- Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (A.S.); (A.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aarish Manzar
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (A.S.); (A.M.)
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (A.S.); (A.M.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Hosseini S, Rahsepar S, Naghipour S, Elyasi S. Is oral nano-curcumin formulation a safe and effective measure for preventing cisplatin-induced nephrotoxicity in cancer patients? Anticancer Drugs 2024; 35:859-866. [PMID: 39017207 DOI: 10.1097/cad.0000000000001639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nephrotoxicity is one of the most important complications in cancer patients under treatment with cisplatin-containing regimens. Curcumin, as the most important active component of Curcuma longa, is an antioxidant and anti-inflammatory compound. In this clinical trial, we assessed the preventive effect of nano-curcumin oral formulation against cisplatin-induced nephrotoxicity in cancer patients. In this triple-blind clinical trial 30 cancer patients on cisplatin were randomly included in the treatment group, receiving nano-curcumin 40 mg capsules ( n = 15) or the placebo group ( n = 15) twice a day during four chemotherapy courses. Kidney function was measured at the beginning of the study and then at the end of each course of chemotherapy. There was no significant difference in acute kidney injury occurrence rate and creatinine and blood urine nitrogen serum levels between the treatment and placebo groups at the end of each chemotherapy course ( P value >0.05). Just at the end of the first course, the difference was close to significant ( P = 0.055). We also found no difference in mortality and recurrence rate in an average 30-month follow-up. Nano-curcumin in the prescribed dose and duration was not effective in preventing cisplatin-induced nephrotoxicity in cancer patients in comparison with the placebo. Further studies with larger sample size using different doses and duration of nano-curcumin are recommended.
Collapse
Affiliation(s)
- Sare Hosseini
- Cancer Research Center, Mashhad University of Medical Sciences,
- Department of Radiation Oncology, Faculty of Medicine, Mashhad University of Medical Sciences
| | - Sara Rahsepar
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| | - Sara Naghipour
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Tsoupras A, Adamantidi T, Finos MA, Philippopoulos A, Detopoulou P, Tsopoki I, Kynatidou M, Demopoulos CA. Re-Assessing the Role of Platelet Activating Factor and Its Inflammatory Signaling and Inhibitors in Cancer and Anti-Cancer Strategies. FRONT BIOSCI-LANDMRK 2024; 29:345. [PMID: 39473406 DOI: 10.31083/j.fbl2910345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025]
Abstract
Since 2000s, we have outlined the multifaceted role of inflammation in several aspects of cancer, via specific inflammatory mediators, including the platelet activating factor (PAF) and PAF-receptor (PAFR) related signaling, which affect important inflammatory junctions and cellular interactions that are associated with tumor-related inflammatory manifestations. It is now well established that disease-related unresolved chronic inflammatory responses can promote carcinogenesis. At the same time, tumors themselves are able to promote their progression and metastasis, by triggering an inflammation-related vicious cycle, in which PAF and its signaling play crucial role(s), which usually conclude in tumor growth and angiogenesis. In parallel, new evidence suggests that PAF and its signaling also interact with several inflammation-related cancer treatments by inducing an antitumor immune response or, conversely, promoting tumor recurrence. Within this review article, the current knowledge and future perspectives of the implication of PAF and its signaling in all these important aspects of cancer are thoroughly re-assessed. The potential beneficial role of PAF-inhibitors and natural or synthetic modulators of PAF-metabolism against tumors, tumor progression and metastasis are evaluated. Emphasis is given to natural and synthetic molecules with dual anti-PAF and anti-cancer activities (Bio-DAPAC-tives), with proven evidence of their antitumor potency through clinical trials, as well as on metal-based anti-inflammatory mediators that constitute a new class of potent inhibitors. The way these compounds may promote anti-tumor effects and modulate the inflammatory cellular actions and immune responses is also discussed. Limitations and future perspectives on targeting of PAF, its metabolism and receptor, including PAF-related inflammatory signaling, as part(s) of anti-tumor strategies that involve inflammation and immune response(s) for an improved outcome, are also evaluated.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Marios Argyrios Finos
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Athanassios Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Paraskevi Detopoulou
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
| | - Ifigeneia Tsopoki
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Maria Kynatidou
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Constantinos A Demopoulos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
9
|
Niederreiter M, Klein J, Schmitz SBM, Werner J, Mayer B. Anti-Cancer Properties of Two Intravenously Administrable Curcumin Formulations as Evaluated in the 3D Patient-Derived Cancer Spheroid Model. Int J Mol Sci 2024; 25:8543. [PMID: 39126111 PMCID: PMC11313667 DOI: 10.3390/ijms25158543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Curcumin (Cur) is a heavily used complementary derived drug from cancer patients. Spheroid samples derived from 82 patients were prepared and treated after 48 h with two Cur formulations (CurA, CurB) in mono- and combination therapy. After 72 h, cell viability and morphology were assessed. The Cur formulations had significant inhibitory effects of -8.47% (p < 0.001), CurA of -10.01% (-50.14-23.11%, p = 0.001) and CurB of -6.30% (-33.50-19.30%, p = 0.006), compared to their solvent controls Polyethylene-glycol, β-Cyclodextrin (CurA) and Kolliphor-ELP, Citrate (CurB). Cur formulations were more effective in prostate cancer (-19.54%) and less effective in gynecological non-breast cancers (0.30%). CurA showed better responses in samples of patients <40 (-13.81%) and >70 years of age (-17.74%). CurB had stronger effects in metastasized and heavily pretreated tumors. Combinations of Cur formulations and standard therapies were superior in 20/47 samples (42.55%) and inferior in 7/47 (14.89%). CurB stimulated chemo-doublets more strongly than monotherapies (-0.53% vs. -6.51%, p = 0.022) and more effectively than CurA (-6.51% vs. 3.33%, p = 0.005). Combinations of Cur formulations with Artesunate, Resveratrol and vitamin C were superior in 35/70 (50.00%) and inferior in 16/70 (22.86%) of samples. Cur formulations were significantly enhanced by combination with Artesunate (p = 0.020). Cur formulations showed a high variance in their anti-cancer effects, suggesting a need for individual testing before administration.
Collapse
Affiliation(s)
- Marlene Niederreiter
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Julia Klein
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Sebastian B. M. Schmitz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Barbara Mayer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| |
Collapse
|
10
|
Amaroli A, Panfoli I, Bozzo M, Ferrando S, Candiani S, Ravera S. The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers (Basel) 2024; 16:2580. [PMID: 39061221 PMCID: PMC11275093 DOI: 10.3390/cancers16142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, exhibits significant therapeutic potential in cancer management. This review explores curcumin's mechanisms of action, the challenges related to its bioavailability, and its enhancement through modern technology and approaches. Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators. Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers. However, its clinical application is limited by its poor bioavailability due to its rapid metabolism and low absorption. Novel delivery systems, such as curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy. Additionally, photodynamic therapy has emerged as a complementary approach, where light exposure enhances curcumin's anticancer effects by modulating molecular pathways crucial for tumor cell growth and survival. Studies highlight that combining low concentrations of curcumin with visible light irradiation significantly boosts its antitumor efficacy compared to curcumin alone. The interaction of curcumin with cytochromes or drug transporters may play a crucial role in altering the pharmacokinetics of conventional medications, which necessitates careful consideration in clinical settings. Future research should focus on optimizing delivery mechanisms and understanding curcumin's pharmacokinetics to fully harness its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Andrea Amaroli
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| | - Matteo Bozzo
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Sara Ferrando
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Simona Candiani
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
11
|
Islam MZ, Akter J, Hossain MA, Islam MS, Islam P, Goswami C, Nguyen HTT, Miyamoto A. Anti-Inflammatory, Wound Healing, and Anti-Diabetic Effects of Pure Active Compounds Present in the Ryudai Gold Variety of Curcuma longa. Molecules 2024; 29:2795. [PMID: 38930859 PMCID: PMC11206846 DOI: 10.3390/molecules29122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Turmeric (Curcuma longa) contains curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Nevertheless, curcumin is the most researched active ingredient for its numerous pharmacological effects. We investigated the impact of these curcuminoids found in Ryudai gold, an approved cultivar of Curcuma longa, on wound healing, inflammation, and diabetes. Sub-planter injections of carrageenan induced acute paw inflammation in rats. The wound-healing ability of 1% curcuminoids was examined by making a 6 mm round wound on the shaved dorsum of the mice with a biopsy punch. A single intraperitoneal injection of streptozotocin (50 mg/kg) was used to induce diabetes in mice. Curcuminoids at a dose rate of 100 mg/kg body weight were used with feed and as a gastric gavage to treat diabetes and inflammation in experimental animals. Paw thickness was measured at 1, 3, and 6 h following carrageenan injection. After three hours, mean paw volume was 58% in carrageenan-injected mice, which was 35%, 37%, and 31% in the curcumin, DMC, and BDMC groups, respectively. Histopathology of the paw tissue demonstrated severe infiltration of inflammatory cells and thickening of the dermis, which were remarkably improved by the curcuminoids. The wound-healing abilities were significantly higher in the curcumin- (95.0%), DMC- (93.17%), and BDMC-treated (89.0%) groups, in comparison to that of the control (65.09%) group at day nine. There were no significant differences in wound-healing activity among the groups treated with 1% curcuminoids throughout the study. Streptozotocin-induced diabetes was characterized by an increased blood glucose (552.2 mg/dL) and decreased body weight (31.2 g), compared to that of the control rats (145.6 mg/dL and 46.8 g blood glucose and body weight, respectively). It also caused an increase in serum alanine aminotransferase (ALT; 44.2 U/L) and aspartate aminotransferase (AST; 55.8 U/L) compared to that of the control group (18.6 U/L and 20.1 U/L, respectively). Histopathological examination of the liver showed that diabetes caused hepatic cellular necrosis, congestion of the central vein, and parenchymatous degeneration. However, all three curcuminoids significantly decreased blood glucose levels, ALT, and AST and improved the histopathological score of the liver. These results evidenced that not only curcumin but also DMC and BDMC have potent anti-inflammatory, wound healing, and anti-diabetic efficacy, and the Ryudai gold variety of turmeric could be used as a functional food supplement.
Collapse
Affiliation(s)
- Md Zahorul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.S.I.); (P.I.)
| | - Jesmin Akter
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Md Amzad Hossain
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Md Shafiqul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.S.I.); (P.I.)
| | - Purba Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.S.I.); (P.I.)
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Ha Thi Thanh Nguyen
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam;
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan;
| |
Collapse
|
12
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
13
|
Cozmin M, Lungu II, Gutu C, Stefanache A, Duceac LD, Șoltuzu BD, Damir D, Calin G, Bogdan Goroftei ER, Grierosu C, Boev M. Turmeric: from spice to cure. A review of the anti-cancer, radioprotective and anti-inflammatory effects of turmeric sourced compounds. Front Nutr 2024; 11:1399888. [PMID: 38863589 PMCID: PMC11165187 DOI: 10.3389/fnut.2024.1399888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Turmeric (Curcuma longa) has been extensively studied for its diverse pharmacological properties, including its potential role as an anticancer agent, antioxidant, and radioprotector. This review provides an overview of the chemical composition of turmeric, focusing on its main bioactive compounds, such as curcuminoids and volatile oils. Curcumin, the most abundant curcuminoid in turmeric, has been widely investigated for its various biological activities, including anti-inflammatory, antioxidant, and anticancer effects. Numerous in vitro and in vivo studies have demonstrated the ability of curcumin to modulate multiple signaling pathways involved in carcinogenesis, leading to inhibition of cancer cell proliferation, induction of apoptosis, and suppression of metastasis. Furthermore, curcumin has shown promising potential as a radioprotective agent by mitigating radiation-induced oxidative stress and DNA damage. Additionally, turmeric extracts containing curcuminoids have been reported to exhibit potent antioxidant activity, scavenging free radicals and protecting cells from oxidative damage. The multifaceted pharmacological properties of turmeric make it a promising candidate for the development of novel therapeutic strategies for cancer prevention and treatment, as well as for the management of oxidative stress-related disorders. However, further research is warranted to elucidate the underlying mechanisms of action and to evaluate the clinical efficacy and safety of turmeric and its bioactive constituents in cancer therapy and radioprotection. This review consolidates the most recent relevant data on turmeric's chemical composition and its therapeutic applications, providing a comprehensive overview of its potential in cancer prevention and treatment, as well as in radioprotection.
Collapse
Affiliation(s)
- Mihai Cozmin
- "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania
| | | | - Cristian Gutu
- University Dunarea de Jos Faculty of Medicine and Pharmacy, Galați, Romania
- "Dr. Aristide Serfioti” Military Emergency Clinical Hospital, Galați, Romania
| | - Alina Stefanache
- "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Letitia Doina Duceac
- "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania
- University Dunarea de Jos Faculty of Medicine and Pharmacy, Galați, Romania
- Prof. Dr. Nicolae Oblu” Neurosurg Hospital Iasi, 2 Ateneului, Iasi, Romania
| | | | - Daniela Damir
- "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Gabriela Calin
- "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania
| | - Elena Roxana Bogdan Goroftei
- University Dunarea de Jos Faculty of Medicine and Pharmacy, Galați, Romania
- Sf. Ioan Emergency Clinical Hospital for Children, 2 Gheorghe Asachi Str., Galați, Romania
| | - Carmen Grierosu
- "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania
| | - Monica Boev
- University Dunarea de Jos Faculty of Medicine and Pharmacy, Galați, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, Galați, Romania
| |
Collapse
|
14
|
Park YM, Lee HY, Shin DY, Kim SH, Yoo Y, Kim MJ, Kim MJ, Yang HJ, Park KH. Augmentation of NK-cell activity and immunity by combined natural polyphenols and saccharides in vitro and in vivo. Int J Biol Macromol 2024; 268:131908. [PMID: 38679269 DOI: 10.1016/j.ijbiomac.2024.131908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Curcuma longa and Sargassum coreanum are commonly used in traditional pharmaceutical medicine to improve immune function in chronic diseases. The present study was designed to systematically elucidate the in vitro and in vivo immuno-enhancing effects of a combination of C. longa and S. coreanum extracts (CS) that contain polyphenols and saccharides as functional molecules in a cyclophosphamide (Cy)-induced model of immunosuppression. In primary splenocytes, we observed the ameliorative effects of CS on a Cy-induced immunosuppression model with low cytotoxicity and an optimal mixture procedure. CS treatment enhanced T- and B-cell proliferation, increased splenic natural killer-cell activity, and restored cytokine release. Wistar rats were orally administered low (30 mg/kg), intermediate (100 mg/kg), or high (300 mg/kg) doses of CS for four weeks, followed by oral administration of Cy (5 mg/kg) for four weeks. Compared with the vehicle group, low-, intermediate-, and high-dose CS treatment accelerated dose-dependent recovery of the serum level of tumor necrosis factor-α, interferon-γ, interleukin-2, and interleukin-12. These results suggest that CS treatment accelerates the amelioration of immune deficiency in Cy-treated primary splenocytes and rats, which supports considering it for immunity maintenance. Our findings provide experimental evidence for further research and clinical application in immunosuppressed patients.
Collapse
Affiliation(s)
- Young Mi Park
- INVIVO Co. Ltd., 121, Nonsan 32992, Republic of Korea; Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54651, Republic of Korea
| | - Hak Yong Lee
- INVIVO Co. Ltd., 121, Nonsan 32992, Republic of Korea
| | | | - Suk Hun Kim
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Yeol Yoo
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Min Ji Kim
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Min Jung Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hye Jeong Yang
- Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue and Department of Oriental Pharmaceutical Development, Nambu University, Gwangju 62271, Republic of Korea; Department of Emergency Medicine and BioMedical Science Graduate Program (BMSGP), Chonnam National University, Gwangju 61469, Republic of Korea.
| |
Collapse
|
15
|
Boretti A. Evidence for the use of curcumin in radioprotection and radiosensitization. Phytother Res 2024; 38:464-469. [PMID: 36897074 DOI: 10.1002/ptr.7803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
Curcumin has antineoplastic properties and is considered a chemotherapeutic and chemopreventive agent. Curcumin may be associated with radiation therapy (RT) as a radiosensitizer for cancer cells and a radioprotector for normal cells. In principle, it may result in a reduction of RT dosage for the same therapeutic effect on cancer cells, and further reduced damage to normal cells. Though the overall level of evidence is modest, limited to in vivo and in vitro experiences and practically no clinical trials, as the risks of adverse effects are extremely low, it is reasonable to promote the general supplementation with curcumin during RT targeting the reduction of side effects through anti-inflammatory mechanisms.
Collapse
|
16
|
Ruiz de Porras V, Figols M, Font A, Pardina E. Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury. Life Sci 2023; 332:122119. [PMID: 37741319 DOI: 10.1016/j.lfs.2023.122119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Despite significant advances in cancer therapeutics, chemotherapy remains the cornerstone of treatment for many tumors. Importantly, however, chemotherapy-induced toxicity, including hepatotoxicity, can lead to the interruption or discontinuation of potentially effective therapy. In recent years, special attention has been paid to the search for complementary therapies to mitigate chemotherapy-induced toxicity. Although there is currently a lack of specific interventions to mitigate or prevent hepatotoxicity in chemotherapy-treated patients, the polyphenol compound curcumin has emerged as a potential strategy to overcome this adverse effect. Here we review, firstly, the molecular and physiological mechanisms and major risk factors of chemotherapy-induced hepatotoxicity. We then present an overview of how curcumin has the potential to mitigate hepatotoxicity by targeting specific molecular mechanisms. Hepatotoxicity is a well-described side effect of cytotoxic drugs that can limit their clinical application. Inflammation and oxidative stress are the most common mechanisms involved in hepatotoxicity. Several studies have shown that curcumin could prevent and/or palliate chemotherapy-induced liver injury, mainly due to its anti-inflammatory, antioxidant, antifibrotic and hypolipidemic properties. Further clinical investigation using bioavailable curcumin formulations is warranted to demonstrate its efficacy as an hepatoprotective agent in cancer patients.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- Grup de Recerca en Toxicologia (GRET), Unitat de Toxicologia, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda Joan XXIII s/n, 08028 Barcelona, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| | - Mariona Figols
- Medical Oncology Department, Althaia Xarxa Assistencial Universitària de Manresa, C/ Dr. Joan Soler, 1-3, 08243, Manresa, Barcelona, Spain
| | - Albert Font
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Medical Oncology Department, Catalan Institute of Oncology, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - Eva Pardina
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
Pérez-Fernández V, Thananjeyan AL, Ullah F, Münch G, Cameron M, Gyengesi E. The effects of a highly bioavailable curcumin Phytosome TM preparation on the retinal architecture and glial reactivity in the GFAP-IL6 mice. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1205542. [PMID: 38983084 PMCID: PMC11182199 DOI: 10.3389/fopht.2023.1205542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 07/11/2024]
Abstract
Uncontrolled, chronic inflammation in the retina can disturb retinal structure and function leading to impaired visual function. For the first time, in a mouse model of chronic neuroinflammation (GFAP-IL6), we investigated the impact of chronic glial activation on the retinal microglia population and structure. In addition, we tested a curcumin PhytosomeTM preparation with enhanced bioavailability to investigate the effects of a cytokine-suppressing anti-inflammatory drug on retinal architecture. Curcumin PhytosomeTM was fed to 3-month old GFAP-IL6 mice for 4 weeks and compared to their untreated GFAP-IL6 counterparts as well as wild type mice on control diet. Microglial numbers and morphology together with neuronal numbers were characterized using immunohistochemistry and cell reconstruction in the retina, using retinal wholemount and slices. GFAP-IL6 mice showed a significant increase in Iba1-labelled mononuclear phagocytes, including microglia, and displayed altered glial morphology. This resulted in a reduction in cone density and a thinning of the retinal layers compared to wild type mice. Curcumin PhytosomeTM treatment contributed to decreased microglial density, significantly decreasing both soma and cell size compared to control diet, as well as preventing the thinning of the retinal layers. This study is the first to characterize the impact of chronic retinal inflammation in the GFAP-IL6 mouse and the therapeutic benefit of enhanced bioavailable curcumin PhytosomeTM to significantly reduce microglia density and prevent neuronal loss. These data suggest that curcumin could be used as a complementary therapy alongside traditional treatments to reduce associated retinal inflammation in a variety of retinal diseases.
Collapse
Affiliation(s)
- Víctor Pérez-Fernández
- Department of Anatomy and Cell Biology, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Faheem Ullah
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
- Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Gerald Münch
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
| | - Morven Cameron
- Department of Anatomy and Cell Biology, Western Sydney University, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
18
|
Cazzaniga M, Zonzini GB, Di Pierro F, Palazzi CM, Cardinali M, Bertuccioli A. Influence of the microbiota on the effectiveness and toxicity of oncological therapies, with a focus on chemotherapy. Pathol Oncol Res 2023; 29:1611300. [PMID: 37593337 PMCID: PMC10427764 DOI: 10.3389/pore.2023.1611300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Recent studies have highlighted a possible correlation between microbiota composition and the pathogenesis of various oncological diseases. Also, many bacterial groups are now directly or indirectly associated with the capability of stimulating or inhibiting carcinogenic pathways. However, little is known about the importance and impact of microbiota patterns related to the efficacy and toxicity of cancer treatments. We have recently begun to understand how oncological therapies and the microbiota are closely interconnected and could influence each other. Chemotherapy effectiveness, for example, appears to be strongly influenced by the presence of some microorganisms capable of modulating the pharmacokinetics and pharmacodynamics of the compounds used, thus varying the real response and therefore the efficacy of the oncological treatment. Similarly, chemotherapeutic agents can modulate the microbiota with variations that could facilitate or avoid the onset of important side effects. This finding has or could have considerable relevance as it is possible that our ability to modulate and modify the microbial structure before, during, and after treatment could influence all the clinical parameters related to pharmacological treatments and, eventually, the prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, Varese, Italy
| | | | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, Azienda Unità Sanitaria Locale Romagna, Rimini, Italy
| | | |
Collapse
|
19
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
20
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
21
|
Brockmueller A, Samuel SM, Mazurakova A, Büsselberg D, Kubatka P, Shakibaei M. Curcumin, calebin A and chemosensitization: How are they linked to colorectal cancer? Life Sci 2023; 318:121504. [PMID: 36813082 DOI: 10.1016/j.lfs.2023.121504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Colorectal cancer (CRC) is one of the leading malignant diseases worldwide with a high rate of metastasis and poor prognosis. Treatment options include surgery, which is usually followed by chemotherapy in advanced CRC. With treatment, cancer cells could become resistant to classical cytostatic drugs such as 5-fluorouracil (5-FU), oxaliplatin, cisplatin, and irinotecan, resulting in chemotherapeutic failure. For this reason, there is a high demand for health-preserving re-sensitization mechanisms including the complementary use of natural plant compounds. Calebin A and curcumin, two polyphenolic turmeric ingredients derived from the Asian Curcuma longa plant, demonstrate versatile anti-inflammatory and cancer-reducing abilities, including CRC-combating capacity. After an insight into their epigenetics-modifying holistic health-promoting effects, this review compares functional anti-CRC mechanisms of multi-targeting turmeric-derived compounds with mono-target classical chemotherapeutic agents. Furthermore, the reversal of resistance to chemotherapeutic drugs was presented by focusing on calebin A's and curcumin's capabilities to chemosensitize or re-sensitize CRC cells to 5-FU, oxaliplatin, cisplatin, and irinotecan. Both polyphenols enhance the receptiveness of CRC cells to standard cytostatic drugs converting them from chemoresistant into non-chemoresistant CRC cells by modulating inflammation, proliferation, cell cycle, cancer stem cells, and apoptotic signaling. Therefore, calebin A and curcumin can be tested for their ability to overcome cancer chemoresistance in preclinical and clinical trials. The future perspective of involving turmeric-ingredients curcumin or calebin A as an additive treatment to chemotherapy for patients with advanced metastasized CRC is explained.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar.
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia.
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| |
Collapse
|
22
|
Kalachaveedu M, Senthil R, Azhagiyamanavalan S, Ravi R, Meenakshisundaram H, Dharmarajan A. Traditional medicine herbs as natural product matrices in cancer chemoprevention: A trans pharmacological perspective (scoping review). Phytother Res 2023; 37:1539-1573. [PMID: 36788644 DOI: 10.1002/ptr.7747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 10/20/2022] [Accepted: 12/18/2022] [Indexed: 02/16/2023]
Abstract
Emerging evidence on molecular biology related to tumors, inflammation, and immunity, highlights their architectural commonality shifting cancer treatment paradigms toward more economical prevention than treatment. Statistical surveys reveal exponentially growing herbal drug supplementation in cancer worldwide as vast pre-clinical and clinical data unravel their multi-mechanistic pharmacology. The integrative oncological approach calls for more "holistic" principles to be amalgamated into cancer care. New cancer drug development from herbs need not be limited by the archetypal 'RCT-Standardization' bottlenecks. Based on comprehensive literature scoping as per Prisma-ScR guidelines, we herein concurrently reviewed evidence-based research reports of selected Indian Traditional Medicine (ITM) herbs of anticancer repute in parallel with their holistic therapeutics; a rationalistic exploration of ITM's scientific genre. Their synergy effect on cancer revisited using a trans-pharmacological approach validates ITM's seemingly simplistic health/disease equation model, showing a fresh new avenue for re-purposing whole herbal drug complexes in cancer management. Herbal drugs as per ITM are natural matrices whose dynamics of interaction in the etiopathology of cancer are conceptually and mechanistically integrative. Lateral perspective to the same as laid out in this review holds the key to their effectual development as more tangible cancer chemopreventives/new drug targets/leads if not as new pharmacological tools.
Collapse
Affiliation(s)
- Mangathayaru Kalachaveedu
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Reshma Senthil
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sowndarya Azhagiyamanavalan
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Ramnarayanan Ravi
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Arunasalam Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
23
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
24
|
Ostadi A, Arab‐Zozani M, Zarei E, Ferns GA, Bahrami A. Therapeutic effect of turmeric on radiodermatitis: A systematic review. Physiol Rep 2023; 11:e15624. [PMID: 36872842 PMCID: PMC9986689 DOI: 10.14814/phy2.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Radiodermatitis (RD) occurs in 95% of cancer patients undergoing radiation therapy. At present, there is no effective treatment for the management of this complication of radiotherapy. Turmeric (Curcuma longa) is a polyphenolic and biologically active natural compound with various pharmacological functions. The aim of this systematic review was to determine the efficacy of curcumin supplementation for reducing RD severity. This review complied with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A comprehensive literature search was conducted in Cochrane library, PubMed, Scopus, Web of Science, and MEDLINE databases. A total of seven studies comprising 473 cases and 552 controls were included in this review. Four studies demonstrated that curcumin supplementation had a beneficial effect on RD intensity. These data provide evidence for the potential clinical use of curcumin in supportive cancer care. Further large prospective and well-designed trials are warranted to exactly determine the "real effective extract, supplemental form and dose of curcumin" for RD prevention and treatment of patients receiving radiotherapy.
Collapse
Affiliation(s)
- Atieh Ostadi
- Faculty of Paramedical, Mashhad BranchIslamic Azad UniversityMashhadIran
| | - Morteza Arab‐Zozani
- Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| | - Elham Zarei
- Mashhad University of Medical SciencesMashhadIran
| | - Gordon A. Ferns
- Brighton & Sussex Medical SchoolDivision of Medical EducationFalmerUK
| | - Afsane Bahrami
- Clinical Research Development UnitImam Reza Hospital, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Clinical Research Development Unit of Akbar HospitalFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
25
|
Panknin TM, Howe CL, Hauer M, Bucchireddigari B, Rossi AM, Funk JL. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int J Mol Sci 2023; 24:4476. [PMID: 36901908 PMCID: PMC10003109 DOI: 10.3390/ijms24054476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Medicinal properties of turmeric (Curcuma longa L.), a plant used for centuries as an anti-inflammatory, are attributed to its polyphenolic curcuminoids, where curcumin predominates. Although "curcumin" supplements are a top-selling botanical with promising pre-clinical effects, questions remain regarding biological activity in humans. To address this, a scoping review was conducted to assess human clinical trials reporting oral curcumin effects on disease outcomes. Eight databases were searched using established guidelines, yielding 389 citations (from 9528 initial) that met inclusion criteria. Half focused on obesity-associated metabolic disorders (29%) or musculoskeletal disorders (17%), where inflammation is a key driver, and beneficial effects on clinical outcomes and/or biomarkers were reported for most citations (75%) in studies that were primarily double-blind, randomized, and placebo-controlled trials (77%, D-RCT). Citations for the next most studied disease categories (neurocognitive [11%] or gastrointestinal disorders [10%], or cancer [9%]), were far fewer in number and yielded mixed results depending on study quality and condition studied. Although additional research is needed, including systematic evaluation of diverse curcumin formulations and doses in larger D-RCT studies, the preponderance of current evidence for several highly studied diseases (e.g., metabolic syndrome, osteoarthritis), which are also clinically common, are suggestive of clinical benefits.
Collapse
Affiliation(s)
| | - Carol L. Howe
- The University of Arizona Health Science Library, Tucson, AZ 85724, USA
| | - Meg Hauer
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Anthony M. Rossi
- Department of Physiology, Honors College, University of Arizona, Tucson, AZ 85724, USA
| | - Janet L. Funk
- Department of Medicine and School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
26
|
Duan N, Hu X, Zhou R, Li Y, Wu W, Liu N. A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Mol Nutr Food Res 2023; 67:e2200435. [PMID: 36698331 DOI: 10.1002/mnfr.202200435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is the local environment where malignant cells strive and survive, composed of cancer cells and their surroundings, regulating essential tumor survival, and promotion functions. Dietary flavonoids are abundantly present in common vegetables and fruits and exhibit good anti-cancer activities, which significantly inhibit tumorigenesis by targeting TME constituents and their interaction with cancer cells. This review aims to synthesize information concerning the modulation of TME by dietary flavonoids, as well as to provide insights into the molecular basis of its potential anti-tumor activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the TME processes, involving cell proliferation, invasion and migration, continuous angiogenesis, and immune inflammation. This study will provide a theoretical basis for the development of the leading compound targeting TME for anti-cancer therapies from these dietary flavonoids.
Collapse
Affiliation(s)
- Namin Duan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.,Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
27
|
Layos L, Martínez-Balibrea E, Ruiz de Porras V. Curcumin: A Novel Way to Improve Quality of Life for Colorectal Cancer Patients? Int J Mol Sci 2022; 23:ijms232214058. [PMID: 36430537 PMCID: PMC9695864 DOI: 10.3390/ijms232214058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in men and the second most common in women. Treatment of metastatic CRC consists of highly toxic chemotherapeutic drug combinations that often negatively affect patient quality of life (QoL). Moreover, chemotherapy-induced toxicity and chemotherapy resistance are among the most important factors limiting cancer treatment and can lead to the interruption or discontinuation of potentially effective therapy. Several preclinical studies have demonstrated that curcumin acts through multiple cellular pathways and possesses both anti-cancer properties against CRC and the capacity to mitigate chemotherapy-related side effects and overcome drug resistance. In this review article, we suggest that the addition of curcumin to the standard chemotherapeutic treatment for metastatic CRC could reduce associated side-effects and overcome chemotherapy resistance, thereby improving patient QoL.
Collapse
Affiliation(s)
- Laura Layos
- Medical Oncology Department, Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les escoles s/n, 08916 Badalona, Spain
| | - Eva Martínez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les escoles s/n, 08916 Badalona, Spain
- ProCURE Program, Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les escoles s/n, 08916 Badalona, Spain
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les escoles s/n, 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-(93)-5546301
| |
Collapse
|
28
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
D’Egidio F, Lombardozzi G, Kacem Ben Haj M’Barek HE, Mastroiacovo G, Alfonsetti M, Cimini A. The Influence of Dietary Supplementations on Neuropathic Pain. Life (Basel) 2022; 12:1125. [PMID: 36013304 PMCID: PMC9410423 DOI: 10.3390/life12081125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is defined as pain caused by a lesion or disease of the somatosensory nervous system and affects 7-10% of the worldwide population. Neuropathic pain can be induced by the use of drugs, including taxanes, thus triggering chemotherapy-induced neuropathic pain or as consequence of metabolic disorders such as diabetes. Neuropathic pain is most often a chronic condition, and can be associated with anxiety and depression; thus, it negatively impacts quality of life. Several pharmacologic approaches exist; however, they can lead numerous adverse effects. From this perspective, the use of nutraceuticals and diet supplements can be helpful in relieve neuropathic pain and related symptoms. In this review, we discuss how diet can radically affect peripheral neuropathy, and we focus on the potential approaches to ameliorate this condition, such as the use of numerous nutritional supplements or probiotics.
Collapse
Affiliation(s)
- Francesco D’Egidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Giorgia Lombardozzi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Housem E. Kacem Ben Haj M’Barek
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Giada Mastroiacovo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
31
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
32
|
Formulated Curcumin Prevents Paclitaxel-Induced Peripheral Neuropathy through Reduction in Neuroinflammation by Modulation of α7 Nicotinic Acetylcholine Receptors. Pharmaceutics 2022; 14:pharmaceutics14061296. [PMID: 35745868 PMCID: PMC9227889 DOI: 10.3390/pharmaceutics14061296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023] Open
Abstract
Paclitaxel is widely used in the treatment of various types of solid malignancies. Paclitaxel-induced peripheral neuropathy (PIPN) is often characterized by burning pain, cold, and mechanical allodynia in patients. Currently, specific pharmacological treatments against PIPN are lacking. Curcumin, a polyphenol of Curcuma longa, shows antioxidant, anti-inflammatory, and neuroprotective effects and has recently shown efficacy in the mitigation of various peripheral neuropathies. Here, we tested, for the first time, the therapeutic effect of 1.5% dietary curcumin and Meriva (a lecithin formulation of curcumin) in preventing the development of PIPN in C57BL/6J mice. Curcumin or Meriva treatment was initiated one week before injection of paclitaxel and continued throughout the study (21 days). Mechanical and cold sensitivity as well as locomotion/motivation were tested by the von Frey, acetone, and wheel-running tests, respectively. Additionally, sensory-nerve-action-potential (SNAP) amplitude by caudal-nerve electrical stimulation, electronic microscopy of the sciatic nerve, and inflammatory-protein quantification in DRG and the spinal cord were measured. Interestingly, a higher concentration of curcumin was observed in the spinal cord with the Meriva diet than the curcumin diet. Our results showed that paclitaxel-induced mechanical hypersensitivity was partially prevented by the curcumin diet but completely prevented by Meriva. Both the urcumin diet and the Meriva diet completely prevented cold hypersensitivity, the reduction in SNAP amplitude and reduced mitochondrial pathology in sciatic nerves observed in paclitaxel-treated mice. Paclitaxel-induced inflammation in the spinal cord was also prevented by the Meriva diet. In addition, an increase in α7 nAChRs mRNA, known for its anti-inflammatory effects, was also observed in the spinal cord with the Meriva diet in paclitaxel-treated mice. The use of the α7 nAChR antagonist and α7 nAChR KO mice showed, for the first time in vivo, that the anti-inflammatory effects of curcumin in peripheral neuropathy were mediated by these receptors. The results presented in this study represent an important advance in the understanding of the mechanism of action of curcumin in vivo. Taken together, our results show the therapeutic potential of curcumin in preventing the development of PIPN and further confirms the role of α7 nAChRs in the anti-inflammatory effects of curcumin.
Collapse
|
33
|
Bishayee A, Karaboga Arslan A, Uzunhisarcıklı E, Yerer M. The golden spice curcumin in cancer: A perspective on finalized clinical trials during the last 10 years. J Cancer Res Ther 2022; 18:19-26. [DOI: 10.4103/jcrt.jcrt_1017_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Maschio M, Maialetti A, Marchesi F, Gumenyuk S, Pisani F, Papa E, Galiè E, Koudriavtseva T, Graziano G, Giannarelli D, Mengarelli A. Prevention of Bortezomib-Induced Peripheral Neuropathy in Newly Multiple Myeloma Patients Using Nervonic Acid, Curcuma Rizoma, and L-Arginine Compound: A Pilot Study. Integr Cancer Ther 2022; 21:15347354221114142. [PMID: 35866451 PMCID: PMC9403460 DOI: 10.1177/15347354221114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION This is a phase II pilot study to evaluate the efficacy of a nutraceutical compound composed of nervonic acid, curcuma rizoma, and l-Arginine to prevent the onset of bortezomib-induced peripheral neuropathy (BIPN) in 16 newly diagnosed multiple myeloma (MM) patients treated with bortezomib (BTZ) over 6 months. MATERIALS AND METHODS Assessments included neurological examination and electroneurography, Common Terminology Criteria for Adverse Events (NCI-CTCAE), reduced version of Total Neuropathic Score (TNSr), pain evaluation, functional autonomy scales, self-perceived symptoms and quality of life questionnaires at baseline and after 6 months. RESULTS No patients were symptomatic at baseline, despite neurophysiological data and TNSr evidence of peripheral neuropathy (PN) in 11 of them. After 6 months, only 9 patients completed the study. All had modifications in neurological examination with 8 out of 9 showing neurophysiological data of PN (2 of which had a NCI-CTCAE grade of neurotoxicity ≥2); 4 patients dropped out due to BIPN, 2 because of MM progression, 1 for scarce compliance. DISCUSSION In our study, the compound was not adequate to prevent BIPN. The incidence of subclinical PN in MM patients is a risk factor for the development of severe neurotoxicity during BTZ treatment. For this reason to evaluate the efficacy of any preventive compound, as well as to manage MM patients, it should be mandatory to include neurophysiological study as a standard procedure.
Collapse
Affiliation(s)
- Marta Maschio
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | | - Elena Papa
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Edvina Galiè
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Kumar A, Hegde M, Parama D, Kunnumakkara AB. Curcumin: The Golden Nutraceutical on the Road to Cancer Prevention and Therapeutics. A Clinical Perspective. Crit Rev Oncog 2022; 27:33-63. [PMID: 37183937 DOI: 10.1615/critrevoncog.2023045587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Dey Parama
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
36
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
37
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
38
|
Kumar A, Harsha C, Parama D, Girisa S, Daimary UD, Mao X, Kunnumakkara AB. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases. Phytother Res 2021; 35:6768-6801. [PMID: 34498308 DOI: 10.1002/ptr.7264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/16/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
The last decade has seen an unprecedented rise in the prevalence of chronic diseases worldwide. Different mono-targeted approaches have been devised to treat these multigenic diseases, still most of them suffer from limited success due to the off-target debilitating side effects and their inability to target multiple pathways. Hence a safe, efficacious, and multi-targeted approach is the need for the hour to circumvent these challenging chronic diseases. Curcumin, a natural compound extracted from the rhizomes of Curcuma longa, has been under intense scrutiny for its wide medicinal and biological properties. Curcumin is known to manifest antibacterial, antiinflammatory, antioxidant, antifungal, antineoplastic, antifungal, and proapoptotic effects. A plethora of literature has already established the immense promise of curcuminoids in the treatment and clinical management of various chronic diseases like cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases. To date, more than 230 clinical trials have opened investigations to understand the pharmacological aspects of curcumin in human systems. Still, further randomized clinical studies in different ethnic populations warrant its transition to a marketed drug. This review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
39
|
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The Role of Curcumin in Cancer Treatment. Biomedicines 2021; 9:1086. [PMID: 34572272 PMCID: PMC8464730 DOI: 10.3390/biomedicines9091086] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Curcumin is a polyphenol extracted from the rhizomes of the turmeric plant, Curcuma longa which has anti-inflammatory, and anticancer properties. Chronic inflammation is associated with the development of cancer. Curcumin acts on the regulation of various immune modulators, including cytokines, cyclooxygenase-2 (COX-2), and reactive oxygen species (ROS), which partly explains its anticancer effects. It also takes part in the downregulation of growth factors, protein kinases, oncogenic molecules and various signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), c-Jun N-terminal kinase (JNK) and signal transducer and activator of transcription 3 (STAT3) signaling. Clinical trials of curcumin have been completed or are ongoing for various types of cancer. This review presents the molecular mechanisms of curcumin in different types of cancer and the evidence from the most recent clinical trials.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Georgios D. Lianos
- Department of Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Spyridon Voulgaris
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Neurosurgery, School of Medicine Ioannina, University of Ioannina, 45500 Ioannina, Greece
| | - Athanasios P. Kyritsis
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
| | - George A. Alexiou
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Neurosurgery, School of Medicine Ioannina, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
40
|
Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev 2021; 69:101364. [PMID: 34000462 DOI: 10.1016/j.arr.2021.101364] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging increases the susceptibility to a diverse set of diseases and disorders, including neurodegeneration, cancer, diabetes, and arthritis. Natural compounds are currently being explored as alternative or complementary agents to treat or prevent aging-related malfunctions. Curcumin, a phytochemical isolated from the spice turmeric, has garnered great interest in recent years. With anti-oxidant, anti-inflammatory, anti-microbial, and other physiological activities, curcumin has great potential for health applications. However, the benefits of curcumin are restricted by its low bioavailability and stability in biological systems. Curcumin nanoformulations, or nano-curcumin, may overcome these limitations. This review discusses different forms of nano-curcumin that have been evaluated in vitro and in vivo to treat or prevent aging-associated health impairments. We describe current barriers for the routine use of curcumin nanoformulations in the clinic. Our review highlights outstanding questions and future work that is needed to ensure nano-curcumin is efficient and safe to lessen the burden of aging-related health problems.
Collapse
Affiliation(s)
- Maryam Mahjoob
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
41
|
Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188569. [PMID: 34015412 DOI: 10.1016/j.bbcan.2021.188569] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Apoptosis deficiency is one of the most important features observed in neoplastic diseases. The Bcl-2 family is composed of a subset of proteins that act as decisive apoptosis regulators. Research and clinical studies have both demonstrated that the hyperactivation of Bcl-2-related anti-apoptotic effects correlates with cancer occurrence, progression and prognosis, also having a role in facilitating the radio- and chemoresistance of various malignancies. Therefore, targeting Bcl-2 inactivation has provided some compelling therapeutic advantages by enhancing apoptotic sensitivity or reversing drug resistance. Therefore, this pharmacological route turned into one of the most promising routes for cancer treatment. This review discusses some of the well-defined and emerging roles of Bcl-2 as well as its potential clinical value in cancer therapeutics.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
42
|
Zhang Y, Li C, Jia R, Gao R, Zhao Y, Ji Q, Cai J, Li Q, Wang Y. PEG-poly(amino acid)s/EpCAM aptamer multifunctional nanoparticles arrest the growth and metastasis of colorectal cancer. Biomater Sci 2021; 9:3705-3717. [PMID: 34008621 DOI: 10.1039/d1bm00160d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tanshinone II-A (TSIIA) is a derivative of a phenanthrene-quinone extracted from a TCM herb, Salvia miltiorrhiza, and has been widely adopted in the treatment of colorectal cancer (CRC). It is known that TSIIA can lead to the apoptosis and differentiation of certain cell lines and it suppresses the proliferation and metastasis of tumors. However, its poor water solubility and low bioavailability when taken orally have prevented this drug being utilized effectively in the body. A nanoparticle (NP) drug carrier system is a technology that can effectively improve drug utilization and targeting ability. In this study, a new NP drug carrier system is reported: EpCAM targeting TSIIA-encapsulated poly(amino acid)s NPs (EpCAM-TSIIA-NPs). The results show that this new targeted NP drug carrier system has higher cytotoxicity, better water solubility and better targeting ability, and can effectively suppress the proliferation and metastasis of tumors. In addition, the invasion and metastasis mechanism of colorectal cancer (CRC) under β-catenin nuclear meditation suppressed by EpCAM-TSIIA-NPs is also discussed. It is found that the immune-targeted type EpCAM-TSIIA-NPs could effectively enhance the expression of APC and axin when compared to normal NPs. It could improve the stability of β-catenin destruction complex and suppress the occurrence and progression of tumors by stopping the nuclear activities of β-catenin.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chunpu Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
43
|
Effects of Curcumin and Its Different Formulations in Preclinical and Clinical Studies of Peripheral Neuropathic and Postoperative Pain: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22094666. [PMID: 33925121 PMCID: PMC8125634 DOI: 10.3390/ijms22094666] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10–15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.
Collapse
|
44
|
D'Angelo NA, Noronha MA, Kurnik IS, Câmara MCC, Vieira JM, Abrunhosa L, Martins JT, Alves TFR, Tundisi LL, Ataide JA, Costa JSR, Jozala AF, Nascimento LO, Mazzola PG, Chaud MV, Vicente AA, Lopes AM. Curcumin encapsulation in nanostructures for cancer therapy: A 10-year overview. Int J Pharm 2021; 604:120534. [PMID: 33781887 DOI: 10.1016/j.ijpharm.2021.120534] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jorge M Vieira
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Luís Abrunhosa
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Joana T Martins
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, Brazil; College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, Sorocaba, Brazil; Sorocaba Development and Innovation Agency (INOVA Sorocaba), Sorocaba Technology Park, Sorocaba, Brazil
| | - Louise L Tundisi
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Janaína A Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana S R Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Angela F Jozala
- Laboratory of Industrial Microbiology and Fermentation Process (LAMINFE), University of Sorocaba, Sorocaba, Brazil
| | - Laura O Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Priscila G Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, Brazil; College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, Sorocaba, Brazil; Sorocaba Development and Innovation Agency (INOVA Sorocaba), Sorocaba Technology Park, Sorocaba, Brazil
| | - António A Vicente
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
45
|
Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer. Biomolecules 2021; 11:biom11020135. [PMID: 33494431 PMCID: PMC7911475 DOI: 10.3390/biom11020135] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Autophagy, which is a conserved biological process and essential mechanism in maintaining homeostasis and metabolic balance, enables cells to degrade cytoplasmic constituents through lysosomes, recycle nutrients, and survive during starvation. Autophagy exerts an anticarcinogenic role in normal cells and inhibits the malignant transformation of cells. On the other hand, aberrations in autophagy are involved in gene derangements, cell metabolism, the process of tumor immune surveillance, invasion and metastasis, and tumor drug-resistance. Therefore, autophagy-targeted drugs may function as anti-tumor agents. Accumulating evidence suggests that flavonoids have anticarcinogenic properties, including those relating to cellular proliferation inhibition, the induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, the impairment of cell migration, invasion, tumor angiogenesis, and the reduction of multidrug resistance in tumor cells. Flavonoids, which are a group of natural polyphenolic compounds characterized by multiple targets that participate in multiple pathways, have been widely studied in different models for autophagy modulation. However, flavonoid-induced autophagy commonly interacts with other mechanisms, comprehensively influencing the anticancer effect. Accordingly, targeted autophagy may become the core mechanism of flavonoids in the treatment of tumors. This paper reviews the flavonoid-induced autophagy of tumor cells and their interaction with other mechanisms, so as to provide a comprehensive and in-depth account on how flavonoids exert tumor-suppressive effects through autophagy.
Collapse
|
46
|
Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153402. [PMID: 33203590 DOI: 10.1016/j.phymed.2020.153402] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy. PURPOSE This review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications. METHODS We obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects. RESULTS Representative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values. CONCLUSION This review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiao-Lu Wang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | - Dan-Hua He
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
47
|
The Effects of Curcumin on the Side Effects of Anticancer Drugs in Chemotherapy: A Randomized Controlled Trial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:255-273. [DOI: 10.1007/978-3-030-73234-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Braun A, Evdokimov D, Frank J, Pauli P, Üçeyler N, Sommer C. Clustering fibromyalgia patients: A combination of psychosocial and somatic factors leads to resilient coping in a subgroup of fibromyalgia patients. PLoS One 2020; 15:e0243806. [PMID: 33370324 PMCID: PMC7769259 DOI: 10.1371/journal.pone.0243806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
Background Coping strategies and their efficacy vary greatly in patients suffering from fibromyalgia syndrome (FMS). Objective We aimed to identify somatic and psychosocial factors that might contribute to different coping strategies and resilience levels in FMS. Subjects and methods Standardized questionnaires were used to assess coping, pain, and psychological variables in a cohort of 156 FMS patients. Quantitative real-time polymerase chain reaction (qRT-PCR) determined gene expression of selected cytokines in white blood cells of 136 FMS patients and 25 healthy controls. Data of skin innervation, functional and structural sensory profiles of peripheral nociceptive nerve fibers of a previous study were included into the statistics. An exploratory factor analysis was used to define variance explaining factors, which were then included into cluster analysis. Results 54.9% of the variance was explained by four factors which we termed (1) affective load, (2) coping, (3) pain, and (4) pro-inflammatory cytokines (p < 0.05). Considering differences in the emerged factors, coping strategies, cytokine profiles, and disability levels, 118 FMS patients could be categorized into four clusters which we named “maladaptive”, “adaptive”, “vulnerable”, and “resilient” (p < 0.05). The adaptive cluster had low scores in disability and in all symptom categories in contrast to the vulnerable cluster, which was characterized by high scores in catastrophizing and disability (p < 0.05). The resilient vs. the maladaptive cluster was characterized by better coping and a less pro-inflammatory cytokine pattern (p < 0.05). Conclusion Our data suggest that problem- and emotion-focused coping strategies and an anti-inflammatory cytokine pattern are associated with reduced disability and might promote resilience. Additional personal factors such as low anxiety scores, ability of acceptance, and persistence further favor a resilient phenotype. Individualized therapy should take these factors into account.
Collapse
Affiliation(s)
- Alexandra Braun
- Department of Neurology, University of Würzburg, Würzburg, Germany
- * E-mail:
| | | | - Johanna Frank
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), and Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
49
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|
50
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|