1
|
Chu Y, Yuan Q, Jiang H, Wu L, Xie Y, Zhang X, Li L. A comprehensive review of the anticancer effects of decursin. Front Pharmacol 2024; 15:1303412. [PMID: 38444945 PMCID: PMC10912667 DOI: 10.3389/fphar.2024.1303412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Cancer is a globally complex disease with a plethora of genetic, physiological, metabolic, and environmental variations. With the increasing resistance to current anticancer drugs, efforts have been made to develop effective cancer treatments. Currently, natural products are considered promising cancer therapeutic agents due to their potent anticancer activity and low intrinsic toxicity. Decursin, a coumarin analog mainly derived from the roots of the medicinal plant Angelica sinensis, has a wide range of biological activities, including anti-inflammatory, antioxidant, neuroprotective, and especially anticancer activities. Existing studies indicate that decursin affects cell proliferation, apoptosis, autophagy, angiogenesis, and metastasis. It also indirectly affects the immune microenvironment and can act as a potential anticancer agent. Decursin can exert synergistic antitumor effects when used in combination with a number of common clinical anticancer drugs, enhancing chemotherapy sensitivity and reversing drug resistance in cancer cells, suggesting that decursin is a good drug combination. Second, decursin is also a promising lead compound, and compounds modifying its structure and formulation form also have good anticancer effects. In addition, decursin is not only a key ingredient in several natural herbs and dietary supplements but is also available through a biosynthetic pathway, with anticancer properties and a high degree of safety in cells, animals, and humans. Thus, it is evident that decursin is a promising natural compound, and its great potential for cancer prevention and treatment needs to be studied and explored in greater depth to support its move from the laboratory to the clinic.
Collapse
Affiliation(s)
- Yueming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Qiang Yuan
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hangyu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Liang Wu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Yutao Xie
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Xiaofen Zhang
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Lin Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
4
|
Ku JM, Kim MJ, Choi YJ, Lee SY, Im JY, Jo YK, Yoon S, Kim JH, Cha JW, Shin YC, Ko SG. JI017 Induces Cell Autophagy and Apoptosis via Elevated Levels of Reactive Oxygen Species in Human Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24087528. [PMID: 37108692 PMCID: PMC10145189 DOI: 10.3390/ijms24087528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is one of the most common malignant tumors and a leading cause of cancer-related death in the worldwide. Various anticancer drugs, such as cisplatin and pemetrexed, have been developed for lung cancer treatment but due their drug resistance and side effects, novel treatments need to be developed. In this study, the efficacy of the natural drug JI017, which is known to have few side effects, was tested in lung cancer cells. JI017 inhibited A549, H460, and H1299 cell proliferation. JI017 induced apoptosis, regulated apoptotic molecules, and inhibited colony formation. Additionally, JI017 increased intracellular ROS generation. JI017 downregulated PI3K, AKT, and mTOR expression. JI017 increased the cytosolic accumulation of LC3. We found that JI017 promoted apoptosis through ROS-induced autophagy. Additionally, the xenograft tumor size was smaller in JI017-treated mice. We found that JI017 treatment increased MDA concentrations, decreased Ki-67 protein levels, and increased cleaved caspase-3 and LC3 levels in vivo. JI017 decreased cell proliferation and increased apoptosis by inducing autophagy signaling in H460 and H1299 lung cancer cells. Targeting JI017 and autophagy signaling could be useful in lung cancer treatment.
Collapse
Affiliation(s)
- Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| | - Min Jeong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Seo Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji-Yeong Im
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yong-Kyu Jo
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sanghoon Yoon
- Department of Applied Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji-Hyun Kim
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jie Won Cha
- Department of Applied Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| |
Collapse
|
5
|
Decursin alleviates LPS-induced lung epithelial cell injury by inhibiting NF-κB pathway activation. Allergol Immunopathol (Madr) 2023; 51:37-43. [PMID: 36617820 DOI: 10.15586/aei.v51i1.689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To reveal the possible effects of decursin on viability, oxidative stress, and inflammatory response in lipopolysaccharide (LPS)-treated human bronchial epithelial cells-2B (BEAS-2B) and human pulmonary artery endothelial cells (HPAEC) cells, and revealed the potential mechanisms. METHODS LPS was used to induce acute lung injury (ALI) in normal human lung epithelial cells, including BEAS-2B and HPAEC cells. Cell viability and apoptosis in response to LPS and decursin in BEAS-2B and HPAEC cells were, respectively, evaluated by MTT colorimetric and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The oxidative stress and inflammatory response in LPS-treated BEAS-2B and HPAEC cells were detected by enzyme-linked-immunosorbent serologic assay. In addition, the role of decursin in nuclear -factor-kappa B (NF-κB) activation was analyzed by immunoblot and immunofluorescence assays. RESULTS Our data revealed that decursin could alleviate the viability of LPS-induced BEAS-2B and HPAEC cells. Decursin could also reduce LPS-induced oxidative stress in BEAS-2B and HPAEC cells. In addition, it could reduce LPS-induced inflammation in BEAS-2B and HPAEC cells. Mechanically, decursin suppressed the activation of NF-κB pathway. CONCLUSION Decursin suppressed NF-κB pathway, and therefore alleviated ALI.
Collapse
|
6
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
7
|
LC-MS Profiled Chemical Constituents, Molecular Modeling, and In vitro Bioactivity Evaluations of Suaeda vermiculata Extracts as Anti-Hepatocellular Carcinoma Preparation: Assessment of the Constituents’ Role, and Receptor Docking Feasibility Based Activity Projections. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
8
|
Lee SE, Lim C, Cho S. Angelica gigas root ameliorates ischaemic stroke-induced brain injury in mice by activating the PI3K/AKT/mTOR and MAPK pathways. PHARMACEUTICAL BIOLOGY 2021; 59:662-671. [PMID: 34062098 PMCID: PMC8172223 DOI: 10.1080/13880209.2021.1928241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Traditionally, the root of Angelica gigas Nakai (Umbelliferae), has long been used to treat ischaemic diseases and is considered safe in humans. OBJECTIVE To investigate the neuroprotective effects of a methanol extract of A. gigas root (AGmex) on the middle cerebral artery occlusion (MCAO)-induced brain injury in mice, and the underlying mechanisms. MATERIALS AND METHODS Two hours of transient MCAO (tMCAO) was induced in C57BL/6 mice (MCAO control group and AGmex groups), AGmex was administered to the AGmex group at 300-3,000 mg/kg bw at 1, 1, and 24 h before tMCAO or at 1000 mg/kg bw at 1 h before and after tMCAO. Infarction volumes, tissue staining, and western blotting were used to investigate the mechanism underlying the neuroprotective effects of AGmex. RESULTS The median effective dose (ED50) could not be measured because the AGmex treatment did not reduce the infarction volume caused by 2 h of tMCAO to within 50%; however, pre-treatment with AGmex twice at 1,000 mg/kg bw before tMCAO significantly reduced the infarction volumes. The proteins related to cell growth, differentiation, and death were upregulated by this treatment, and the major recovery mechanisms appeared to involve the attenuation of the mitochondrial function of Bcl-2/Bax and activation of the PI3K/AKT/mTOR and MAPK signalling pathways in ischaemic neurons. CONCLUSIONS This study provides evidence supporting the use of A. gigas root against ischaemic stroke and suggests a novel developmental starting point for the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Se-Eun Lee
- Research Institute for Korean Medicine, Yangsan Campus of Pusan National University, Yangsan-si, Republic of Korea
| | - Chiyeon Lim
- College of Medicine, Dongguk University, Ilsandong-gu, Republic of Korea
| | - Suin Cho
- School of Korean Medicine, Yangsan Campus of Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
9
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
10
|
Kim MJ, Ku JM, Hong SH, Kim HI, Kwon YY, Park JS, Jung DH, Shin YC, Ko SG. In vitro Anticancer Effects of JI017 on Two Prostate Cancer Cell Lines Involve Endoplasmic Reticulum Stress Mediated by Elevated Levels of Reactive Oxygen Species. Front Pharmacol 2021; 12:683575. [PMID: 34054558 PMCID: PMC8155384 DOI: 10.3389/fphar.2021.683575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer, and prostate cancer is the second most common cause of cancer death in United States men after lung cancer. Many therapies are used to treat prostate cancer, and chemotherapy is one of the most relevant treatments. However, chemotherapy has many side effects, and repeated administration of chemotherapeutic agents leads to acquired resistance. Thus, new drugs with few side effects are needed. We investigated the molecular mechanism of action of JI017 in human prostate cancer cells. We identified an endoplasmic reticulum (ER) stress pathway that depended on the reactive oxygen species (ROS) pathway and played a crucial role in JI017-induced apoptosis. We measured cell viability by the MTS assay to determine the effect of JI017. Analysis of apoptosis, mitochondrial dysfunction, and cell cycle features was performed by flow cytometry. We used western blot and RT-PCR to measure the levels of the proteins of the unfolded protein response (UPR) pathway and apoptosis markers. Immunoprecipitation assay and transfection were used to determine the expression levels of proteins interacting with the pathways influenced by JI017 in prostate cancer cells. The anticancer effects induced by JI017 were evaluated. JI017 induced cell death that regulated apoptotic molecules and caused cell cycle arrest that inhibited the proliferation of cancer cells. Moreover, JI017 generated ROS. Accumulation of ROS caused ER stress through the PERK-eIF2α-CHOP and IRE1α-CHOP pathways. Furthermore, persistent activation of the UPR pathway induced by JI017 treatment triggered mitochondrial dysfunction, including dissipation of mitochondrial membrane potential, which activated intrinsic apoptotic pathway in human prostate cancer cells. The data indicated that N-acetyl-L-cysteine diminished apoptosis. We demonstrated that JI017 induced ER stress and cell death. Anticancer properties of JI017 in prostate cancer cells and in a human prostate cancer model involved ROS-mediated ER stress. Thus, JI017 treatment provides a new strategy for chemotherapy of prostate cancer.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Pharmacological Toxicology Laboratory, Jeil Pharmaceutical, Yongin-si, South Korea
| | - Se Hyang Hong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hyo In Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, Boston, MA, United States
| | - Yun Young Kwon
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Joon-Sang Park
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Deok Hyun Jung
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
11
|
Cheon C, Ko SG. A Phase I Study to Evaluate the Safety of the Herbal Medicine SH003 in Patients With Solid Cancer. Integr Cancer Ther 2021; 19:1534735420911442. [PMID: 32186413 PMCID: PMC7081467 DOI: 10.1177/1534735420911442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Cancer is a major health problem worldwide and the
leading cause of death in many countries. Preclinical studies have shown the
therapeutic anticancer effects of SH003, a novel herbal medicine containing
Astragalus membranaceus, Angelica gigas, and
Trichosanthes kirilowii. The present study investigated the
maximum tolerated dose of SH003 in patients with solid cancers.
Methods: This open-label, dose-escalation trial used the
traditional 3 + 3 dose-escalation design. Patients with solid cancers were
recruited and administered 1 to 4 tablets of SH003 thrice daily for 3 weeks
according to the dose level. Adverse events were evaluated according to the
Common Terminology Criteria for Adverse Events (CTCAE). Dose-limiting toxicities
(DLTs) were defined as Grade 3 or higher adverse events based on CTCAE. The
maximum tolerated dose was defined as the highest dose at which no more than 1
of 6 patients experienced DLT. Results: The present study enrolled
11 patients. A total of 31 adverse events occurred. According to the CTCAE, all
the observed adverse events were grade 2 or less and no adverse events of grade
3 or more corresponding to DLT occurred. Conclusion: The study
results indicated that the maximum tolerated dose of SH003 was 4800 mg/day. A
Phase 2 study is required to determine the efficacy of SH003 in patients with
cancer at a dose of 4800 mg/day or less.
Collapse
Affiliation(s)
- Chunhoo Cheon
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Cao Y, Shi Y, Cai Y, Hong Z, Chai Y. The Effects of Traditional Chinese Medicine on P-Glycoprotein-Mediated Multidrug Resistance and Approaches for Studying the Herb-P-Glycoprotein Interactions. Drug Metab Dispos 2020; 48:972-979. [PMID: 32816867 DOI: 10.1124/dmd.120.000050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 02/13/2025] Open
Abstract
As a member of the ATP-dependent membrane transport proteins, P-Glycoprotein (P-gp) is known to pump substrates out of cells using an ATP-dependent mechanism. The overexpression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the efficacy of extensive antitumor drugs and leads to multidrug resistance (MDR) clinically. The combination of anticancer drugs with P-gp inhibitor has been an attractive and promising strategy to reverse MDR in cancer treatment. However, nonspecific or nonselective distribution of P-gp inhibitors to nontarget organs is one of the most fatal shortcomings in clinical application. Thus, there is an urgent need for effective and nontoxic MDR reversal agents, particularly in P-gp-mediated MDR. Traditional Chinese medicine (TCM) natural products may prove less toxic for use in P-gp inhibition to promote MDR reversal. P-gp modulatory effects have been previously demonstrated using selected TCM, including the flavonoid, alkaloid, terpenoid, coumarin, and quinonoid compounds, and some Chinese medicine extracts. Moreover, the approaches for screening active components from TCM are necessary, and these approaches face challenges. At present, the approaches to study the interaction between TCM and P-gp are divided into in vitro, in vivo, and in silico methods. This review will provide an overview and update on the role of TCM in overcoming P-gp-mediated MDR and the approaches to study the interaction between TCM and P-gp. SIGNIFICANCE STATEMENT: This review summarized some traditional Chinese medicines identified to have a modulatory effect on P-gp, including flavonoids, alkaloids, terpenoids, coumarins, quinonoid compounds, and some Chinese medicine extracts, and it introduced possible mechanisms. The approaches to study the interaction between TCM and P-gp are divided into in vitro, in vivo, and in silico methods.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Drug Evaluation, Preclinical
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor/methods
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Herb-Drug Interactions
- Humans
- Molecular Docking Simulation
- Neoplasms/drug therapy
- Neoplasms/pathology
Collapse
Affiliation(s)
- Yuhong Cao
- School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical (Chinese Materia Medica) Metabolites Research, Shanghai, China (Yu.C., Y.S., Yi.C., Z.H., Y.Ch.) and School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China (Yi.C.)
| | - Yiwei Shi
- School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical (Chinese Materia Medica) Metabolites Research, Shanghai, China (Yu.C., Y.S., Yi.C., Z.H., Y.Ch.) and School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China (Yi.C.)
| | - Ying Cai
- School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical (Chinese Materia Medica) Metabolites Research, Shanghai, China (Yu.C., Y.S., Yi.C., Z.H., Y.Ch.) and School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China (Yi.C.)
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical (Chinese Materia Medica) Metabolites Research, Shanghai, China (Yu.C., Y.S., Yi.C., Z.H., Y.Ch.) and School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China (Yi.C.)
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical (Chinese Materia Medica) Metabolites Research, Shanghai, China (Yu.C., Y.S., Yi.C., Z.H., Y.Ch.) and School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China (Yi.C.)
| |
Collapse
|
13
|
Yuan P, Zhou Q, Hu X. WS 2 Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1698-1709. [PMID: 31916439 DOI: 10.1021/acs.est.9b05537] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Emerging transition-metal dichalcogenide (TMDC) nanosheets, such as WS2 nanosheets, have shown tremendous potential for use in many fields such as intelligent manufacturing and environmental protection. However, considerable knowledge gaps still exist regarding the impact of TMDCs on environmental risks, especially risks involving organic pollutants. Here, a synergistic toxicity between WS2 nanosheets and organic pollutants (triclosan or tris(1,3-dichloro-2-propyl) phosphate) was found using the median-effect and combination index equations. In particular, the effect of synergy had a higher magnitude at low cytotoxicity levels and a noncytotoxic concentration of WS2 nanosheets clearly enhanced the cytotoxicity and intracellular accumulation of organic pollutants. On the one hand, WS2 nanosheets damaged the plasma membrane and cytoskeleton, resulting in increased membrane permeability and organic pollutant uptake. On the other hand, as shown by fluorescence substrate accumulation experiments and molecular dynamics simulations, WS2 nanosheets affected the secondary structure of the efflux pumps and competitively bound with efflux pumps, blocking xenobiotic removal. This work emphasized that TMDCs, especially at the noncytotoxic level, in combination with organic pollutants caused damage that cannot be ignored, providing insight into comprehensive safety assessment and the specific toxicological mechanisms of TMDCs that accompany organic pollutant exposure.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| |
Collapse
|
14
|
Kang YY, Kim JY, Song J, Mok H. Enhanced intracellular uptake and stability of umbelliferone in compound mixtures from Angelica gigas in vitro. J Pharmacol Sci 2019; 140:8-13. [DOI: 10.1016/j.jphs.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
|
15
|
Oh ST, Lee S, Hua C, Koo BS, Pak SC, Kim DI, Jeon S, Shin BA. Decursin induces apoptosis in glioblastoma cells, but not in glial cells via a mitochondria-related caspase pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 23:29-35. [PMID: 30627007 PMCID: PMC6315092 DOI: 10.4196/kjpp.2019.23.1.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 11/15/2022]
Abstract
Decursin is a major biological active component of Angelica gigas Nakai and is known to induce apoptosis of metastatic prostatic cancer cells. Recently, other reports have been commissioned to examine the anticancer activities of this plant. In this study, we evaluated the inhibitory activity and related mechanism of action of decursin against glioblastoma cell line. Decursin demonstrated cytotoxic effects on U87 and C6 glioma cells in a dose-dependent manner but not in primary glial cells. Additionally, decursin increased apoptotic bodies and phosphorylated JNK and p38 in U87 cells. Decursin also down-regulated Bcl-2 as well as cell cycle dependent proteins, CDK-4 and cyclin D1. Furthermore, decursin-induced apoptosis was dependent on the caspase activation in U87 cells. Taken together, our data provide the evidence that decursin induces apoptosis in glioblastoma cells, making it a potential candidate as a chemotherapeutic drug against brain tumor.
Collapse
Affiliation(s)
- Seung Tack Oh
- Research Institute, Dongkwang Pharmaceutical Company, Ltd., Seoul 04535, Korea
| | - Seongmi Lee
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul 04933, Korea
| | - Cai Hua
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, Korea
| | - Byung-Soo Koo
- Department of Neuropsychiatry, College of Korean Medicine, Dongguk University, Goyang 10326, Korea
| | - Sok Cheon Pak
- School of Biomedical Sciences, Charles Sturt University, Bathurst, NSW 2795 Australia
| | - Dong-Il Kim
- Department of Obstetrics & Gynecology, College of Korean Medicine, Dongguk University, Goyang 10326, Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, Korea
| | - Boo Ahn Shin
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
16
|
Carboplatin– Angelica gigas Nakai combination synergistically enhances apoptosis by suppressed Akt, Erk, and Stat3 expression in H460 human lung cancer cells. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218805343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The lower potency of low dose of carboplatin often requires combination with other drugs to improve its efficacy. Newer and more potent carboplatin-based combination therapies are investigated for treatment. We investigated whether paclitaxel, carboplatin, and Angelica gigas Nakai (AGN) affect viability of H460 cells by MTT assay. Western blot analysis was used to measure the expression of various modulators, such as p-Stat3, p-Akt, and p-Erk. Paclitaxel, carboplatin, and AGN affected the viability of H460 cells. Paclitaxel, carboplatin, and AGN suppressed p-Akt, p-Erk, and p-Stat3 expression. AGN combined with carboplatin significantly decreased c-Jun, HIF-1α, and VEGF levels. AGN combined with carboplatin significantly increased p21 and p27 levels and suppressed cyclin D1 and cyclin E levels. AGN combined with carboplatin-induced apoptosis by increasing Bax and cleavage of caspase and Parp level and by suppressing Bcl-2 level. Our results clearly demonstrate that AGN combined with carboplatin could be a useful compound for treating lung cancer.
Collapse
|
17
|
Li J, Wang H, Wang L, Tan R, Zhu M, Zhong X, Zhang Y, Chen B, Wang L. Decursin inhibits the growth of HepG2 hepatocellular carcinoma cells via Hippo/YAP signaling pathway. Phytother Res 2018; 32:2456-2465. [PMID: 30251417 DOI: 10.1002/ptr.6184] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital; Southwest Medical University; Luzhou China
| | - Honglian Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital; Southwest Medical University; Luzhou China
| | - Lu Wang
- Department of Nephrology; The Affiliated Hospital of Southwest Medical University; Luzhou China
| | - Ruizhi Tan
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital; Southwest Medical University; Luzhou China
| | - Menglian Zhu
- Department of Nephrology; The Affiliated Traditional Medicine Hospital of Southwest Medical University; Luzhou China
| | - Xia Zhong
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital; Southwest Medical University; Luzhou China
| | - Yuwei Zhang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital; Southwest Medical University; Luzhou China
| | - Bo Chen
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital; Southwest Medical University; Luzhou China
- Department of Human Anatomy; Southwest Medical University; Luzhou China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital; Southwest Medical University; Luzhou China
| |
Collapse
|
18
|
Angelica gigas Nakai Has Synergetic Effects on Doxorubicin-Induced Apoptosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6716547. [PMID: 30155480 PMCID: PMC6093040 DOI: 10.1155/2018/6716547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022]
Abstract
Natural products are valuable sources for drug discovery because they have a wide variety of useful chemical components and biological properties. A quick reevaluation of the potential therapeutic properties of established natural products was made possible by the recent development of the methodology and improvement in the accuracy of an automated high-throughput screening system. In this study, we screened natural product libraries to detect compounds with anticancer effects using HeLa cells. Of the 420 plant extracts screened, the extract of Angelica gigas Nakai (AGN) was the most effective in reducing cell viability of HeLa cells. Markers of apoptosis, such as exposure of phosphatidylserine and cleavage of caspase-7 and PARP, were increased by treatment with the AGN extract. Treatment of the AGN extract increased expression of PKR as well as ATF4 and CHOP, the unfolded protein response genes. In addition, cotreatment of doxorubicin and the AGN extract significantly increased doxorubicin-induced apoptosis in HeLa cells. Decursin and decursinol angelate, which were known to have anticancer effects, were the main components of the AGN extract. These results suggest that the extract of AGN containing, decursin and decursinol angelate, increases doxorubicin susceptibility.
Collapse
|
19
|
Cheon C, Kang S, Ko Y, Kim M, Jang BH, Shin YC, Ko SG. Single-arm, open-label, dose-escalation phase I study to evaluate the safety of a herbal medicine SH003 in patients with solid cancer: a study protocol. BMJ Open 2018; 8:e019502. [PMID: 30082340 PMCID: PMC6078237 DOI: 10.1136/bmjopen-2017-019502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Cancer is a major health problem worldwide and the leading cause of death in many countries. The number of patients with cancer and socioeconomic costs of cancer continues to increase. SH003 is a novel herbal medicine consisting of Astragalus membranaceus, Angelica gigas and Trichosanthes Kirilowii Maximowicz. Preclinical studies have shown that SH003 has therapeutic anticancer effects. The aim of this study is to determine the maximum tolerated dose of SH003 in patients with solid cancers. METHODS AND ANALYSIS This study is an open-label, dose-escalation trial evaluating the safety and tolerability of SH003. The traditional 3+3 dose-escalation design will be implemented. Patients with solid cancers will be recruited. According to dose level, the patients will receive one to four tablets of SH003, three times a day for 3 weeks. Toxicity will be evaluated using common terminology criteria for adverse events (CTCAE). Dose-limiting toxicities are defined as grade 3 or higher adverse events based on CTCAE. The maximum tolerated dose will be determined by the highest dose at which no more than one of six patients experiences dose-limiting toxicity. ETHICS AND DISSEMINATION This study has been approved by the institutional review board of the Ajou University Hospital (reference AJIRB-MED-CT1-16-311). The results of this study will be disseminated through a scientific journal and a conference. TRIAL REGISTRATION NUMBER NCT03081819; Pre-results.
Collapse
Affiliation(s)
- Chunhoo Cheon
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sohyeon Kang
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youme Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mia Kim
- Department of Cardiovascular and Neurologic Disease (Stroke Center), College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bo-Hyoung Jang
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong-Cheol Shin
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Ku JM, Hong SH, Kim SR, Choi HS, Kim HI, Kim DU, Oh SM, Seo HS, Kim TY, Shin YC, Cheon C, Ko SG. The prevention of 2,4-dinitrochlorobenzene-induced inflammation in atopic dermatitis-like skin lesions in BALB/c mice by Jawoongo. Altern Ther Health Med 2018; 18:215. [PMID: 30005655 PMCID: PMC6045835 DOI: 10.1186/s12906-018-2280-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/06/2018] [Indexed: 01/09/2023]
Abstract
Background Jawoongo is an herbal mixture used in traditional medicine to treat skin diseases. This study aimed to investigate whether Jawoongo ameliorates Atopic dermatitis (AD)-like pathology in mice and to understand its underlying cellular mechanisms. Methods AD was induced by 2, 4-Dinitrocholrlbenzene (DNCB) in BALB/c mice. Treatment with Jawoongo was assessed to study the effect of Jawoongo on AD in mice. Histological Analysis, blood analysis, RT-PCR, western blot analysis, ELISA assay and cell viability assay were performed to verify the inhibitory effect of Jawoongo on AD in mice. Results We found that application of Jawoongo in an ointment form on AD-like skin lesions on DNCB-exposed BALB/c mice reduced skin thickness and ameliorated skin infiltration with inflammatory cells, mast cells and CD4+ cells. The ointment also reduced the mRNA levels of IL-2, IL-4, IL-13 and TNF-α in the sensitized skin. Leukocyte counts and the levels of IgE, IL-6, IL-10 and IL-12 were decreased in the blood of the DNCB-treated mice. Furthermore, studies on cultured cells demonstrated that Jawoongo exhibits anti-inflammatory activities, including the suppression of proinflammatory cytokine expression, nitric oxide (NO) production, and inflammation-associated molecule levels in numerous types of agonist-stimulated innate immune cell, including human mast cells (HMC-1), murine macrophage RAW264.7 cells, and splenocytes isolated from mice. Conclusion These findings indicate that Jawoongo alleviates DNCB-induced AD-like symptoms via the modulation of several inflammatory responses, indicating that Jawoongo might be a useful drug for the treatment of AD. Electronic supplementary material The online version of this article (10.1186/s12906-018-2280-z) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Nam S, Lee SY, Kang WS, Cho HJ. Development of Resveratrol-Loaded Herbal Extract-Based Nanocomposites and Their Application to the Therapy of Ovarian Cancer. NANOMATERIALS 2018; 8:nano8060384. [PMID: 29857475 PMCID: PMC6027326 DOI: 10.3390/nano8060384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022]
Abstract
Resveratrol (RSV) and the ethanol extract of Angelica gigas Nakai (AGN Ex)-based nanoparticles (NPs) were prepared using the nanocrystal concept. AGN/RSV NPs with 224 nm hydrodynamic size, unimodal size distribution, and negative zeta potential values were developed with the emulsification and solvent evaporation techniques. The crystalline properties of AGN Ex and RSV were transformed during the emulsification and solvent evaporation processes, thus, AGN NPs and AGN/RSV NPs exhibited amorphous states. AGN/RSV NPs held up their initial hydrodynamic size after 24 h of incubation in serum-included media. Sustained release profiles (for 5 days) of decursin (D) and decursinol angelate (DA) (the representative markers of AGN Ex) and RSV were observed at normal physiological pH (pH 7.4). In ovarian cancer (SKOV-3) cells, although AGN/RSV NPs showed a lower cellular entry rate rather than AGN NPs, the cellular accumulated amount of AGN/RSV NPs was similar with that of AGN NPs after 4 h of incubation. The antiproliferation efficiency of AGN/RSV NPs group was significantly higher than the AGN Ex, AGN NPs, and AGN NPs + RSV groups in SKOV-3 cells. AGN/RSV NPs can be one of the promising candidates for therapeutic nanoplatforms against ovarian cancers.
Collapse
Affiliation(s)
- Suyeong Nam
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Wie-Soo Kang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| |
Collapse
|
22
|
DSGOST regulates resistance via activation of autophagy in gastric cancer. Cell Death Dis 2018; 9:649. [PMID: 29844404 PMCID: PMC5974125 DOI: 10.1038/s41419-018-0658-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST in Korean, Danggui-Sini-Jia-Wuzhuyu-Shengian-Tang in Chinese, and Tokishigyakukagoshuyushokyoto (TJ-38) in Japanese), a well-known traditional Korean/Chinese/Japanese medicine, has long been used to treat vascular diseases such as Raynaud’s phenomenon (RP). However, anticancer effect of DSGOST remains elusive. In this study, we checked if DSGOST has an anticancer effect against gastric cancer cells, and investigated the mechanisms underlying DSGOST resistance. Moreover, DSGOST regulates chemoresistance in cisplatin-treated gastric cancer cells. Interestingly, DSGOST treatment induced the accumulation of GFP-LC3 puncta and increased the level of autophagy markers, such as LC3-II, ATG5, and Beclin-1, indicating activated autophagy. Furthermore, DSGOST could activate epithelial-to-mesenchymal transition (EMT) and exosomes via induction of autophagy. DSGOST in combination with TGFβ also induced autophagy and EMT. However, autophagy inhibition induces DSGOST-mediated cell death in gastric cancer cells. In addition, autophagy inhibition blocks the activation of DSGOST-mediated EMT markers including N-cadherin, Snail, Slug, vimentin, β-catenin, p-Smad2, and p-Smad3. Taken together, these findings indicated that prosurvival autophagy was one of the mechanisms involved in the resistance of gastric cancer to DSGOST. Targeting the inhibition of autophagy could be an effective therapeutic approach to overcome resistance to DSGOST in gastric cancer.
Collapse
|