1
|
Zhao J, Zhu K, Li N, Xing L, Sheng R, Shen Y, Guo R. Synthetic and Pharmacological Activities of Alantolactone and Its Derivatives. Chem Biodivers 2025; 22:e202401798. [PMID: 39679983 DOI: 10.1002/cbdv.202401798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Alantolactone, a sesquiterpene lactone, is isolated from the traditional Chinese medicinal herb Inula helenium L. (Asteraceae). Alantolactone is known as its wide spectrum of biological effects, including antimicrobial, antifungal, antiviral, and anthelmintic activities; anti-inflammatory activities; and antiproliferative effects on several cancer cell lines. Thus, it has received extensive attention, causing in-depth research in medicinal chemistry, and numerous undescribed alantolactone derivatives have been synthesized through different strategies. Herein, recent advances in diverse bioactivities and mechanism of alantolactone, including its derivatives, were summarized.
Collapse
Affiliation(s)
- Jianjun Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Kai Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Na Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lin Xing
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai, China
| |
Collapse
|
2
|
Nair AC, Benny S, Aneesh TP, Sudheesh MS, Lakshmi PK. Comprehensive profiling of traditional herbomineral formulation Manasamitra vatakam in rat brain following oral administration and in-silico screening of the identified compound for anti-Alzheimer's activity. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119024. [PMID: 39489356 DOI: 10.1016/j.jep.2024.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multi-targeted drug therapy has received substantial attention for the treatment of diseases of multifactorial origin, such as neurodegenerative diseases. Manasamitra vatakam (MMV) is a traditional Ayurvedic formulation used to improve cognitive impairment and mental illness. Here we have used a unique method for leveraging the barrier properties of the intestinal and blood-brain barrier (BBB) to screen and identify the bioactive molecules against Alzheimer's disease (AD). The current method exemplifies a facile method to expedite drug discovery from traditional formulations. AIM OF THE STUDY The present study aimed to identify the phytoconstituents of MMV that reach the brain tissue and to predict major bioactive constituents by computational docking studies. MATERIALS AND METHODS After oral administration of the formulation, brain samples from male Sprague Dawley rats were collected at different time intervals and analyzed by liquid chromatography-mass spectrometry (LC-MS) to identify the phytoconstituents. In silico molecular docking studies were carried out to analyze the binding affinity of the compounds to the target proteins of AD using Schrodinger Maestro. The molecular dynamic studies were carried out for all the docked complexes having higher docking scores. RESULTS 34 phytoconstituents were identified by LC-MS analysis of brain homogenates. In the in silico docking study, the phytoconstituents chrysin, convolvin, rutin, galangin, palmatoside G, isoliquiritigenin, quercetin, and naringenin showed higher docking score against the target proteins of AD. These compounds may serve as the primary bioactive compounds responsible for the neuroprotective activity of the herbal formulation. Furthermore, molecular dynamic studies indicated that the galangin-acetylcholinesterase enzyme complex has the highest stability among these eight compounds. CONCLUSION The study, together with previous in vivo and in vitro efficacy results, suggests that BBB-permeable compounds with high binding affinities for the target proteins of AD might be responsible for the effectiveness of MMV against AD.
Collapse
Affiliation(s)
- Anju C Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - P K Lakshmi
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
3
|
Wang R, Liu Y, Jiang Y, Zhang Y, Zhang Y, Wang B, Lu H, Su H, Liao W, Liu L, Li F, Zhang W, Ma S. Shenling Baizhu San alleviates central fatigue through SIRT1-PGC-1α-Mediated mitochondrial biogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119110. [PMID: 39571696 DOI: 10.1016/j.jep.2024.119110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenling Baizhu San (SLBZS) is a Traditional Chinese Medicine (TCM) formula composed of 10 medicinal herbs, historically used to strengthen the spleen, replenish qi, and alleviate fatigue-related symptoms. SLBZS originates from the 'Taiping Huimin Heji Ju Fang' of the Song Dynasty. Central fatigue (CF), a subtype of fatigue, is considered in TCM to be closely associated with spleen deficiency. However, there is currently a lack of research on SLBZS's therapeutic effects on CF and the pharmacological mechanisms underlying its potential benefits. AIM OF THE STUDY This study aims to assess the effects of SLBZS on CF in rats induced by the Modified Multiple Platform Method (MMPM) and to elucidate the underlying mechanisms, focusing on mitochondrial biogenesis and SIRT1/PGC-1α pathway regulation. MATERIALS AND METHODS CF was induced in male Wistar rats using MMPM, involving intermittent sleep deprivation over 21 days. SLBZS was administered at low(LSLBZS), medium(MSLBZS), and high doses(HSLBZS). Chemical components of SLBZS were identified and quantified using Liquid Chromatography-Tandem Mass Spectrometry(LC-MS/MS). Behavioral tests evaluated physical performance, emotional state, and cognitive function, while serum biochemical markers, mitochondrial morphology, and the protein and gene expression levels of the SIRT1/PGC-1α pathway were analyzed to explore underlying mechanisms. RESULTS A total of 141 main compounds in SLBZS were identified, comprising various components such as flavonoids, phenylpropanoids, terpenoids, among others. SLBZS significantly improved physical performance, alleviated negative emotions, and enhanced cognitive function in CF rats. Biochemically, SLBZS increased serum ATP levels and reduced fatigue-related markers. Mitochondrial analysis demonstrated that SLBZS reversed mitochondrial degeneration, increased mitochondrial number, and increased mtDNA copy number in the hippocampus. Furthermore, SLBZS upregulated SIRT1/PGC-1α pathway expression at both the protein and gene levels in the hippocampus. Notably, the HSLBZS group demonstrated particularly pronounced effects. CONCLUSION SLBZS significantly alleviates CF symptoms enhances mitochondrial function via upregulating the SIRT1/PGC-1α pathway, positioning it as a promising alternative for CF management by addressing both its physiological and symptomatic aspects.
Collapse
Affiliation(s)
- Ruochong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yawen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yifei Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Binshi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haixin Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hui Su
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Wenyong Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Leilei Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Feng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Weiyue Zhang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Shuran Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Chen S, Han C, Wang X, Zhang Q, Yang X. Alantolactone improves cognitive impairment in rats with Porphyromonas gingivalis infection by inhibiting neuroinflammation, oxidative stress, and reducing Aβ levels. Brain Res 2024; 1845:149203. [PMID: 39208968 DOI: 10.1016/j.brainres.2024.149203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Neuroinflammation caused by the chronic periodontal pathogen Porphyromonas gingivalis is growing regarded as as a key factor in the pathogenesis of Alzheimer's disease (AD). Alantolactone (AL), a sesquiterpene lactone isolated from the root of Inula racemosa Hook. f, has been proven to provide various neuroprotective effects. However, whether AL can improve cognitive impairment caused by P. gingivalis infection remains unclear. In this research, a rat model of P. gingivalis infection was used to examine the neuroprotective benefits of AL. The results revealed that 6 weeks of AL treatment (50 and 100 mg/kg) shortened escape latency and increased the number of crossings over the platform location and time spent in the target quadrant of P. gingivalis-infected rats in the Morris water maze experiment. By activating the Nrf2/HO-1 pathway, AL suppressed malondialdehyde (MDA) levels and simultaneously increased the activity of total superoxide dismutase (T-SOD). Furthermore, AL lowered the presence of IL-6, IL-1β, and TNFα in the hippocampal and cortical tissues of P. gingivalis-infected rats by inhibiting astrocyte and microglial activation and NF-κB phosphorylation. AL also significantly reduced Aβ levels in the cortical and hippocampus tissues of rats infected with P. gingivalis. In conclusion, AL improved cognitive impairment in P. gingivalis-infected rats by inhibiting neuroinflammation, reducing Aβ1-42 level, and exerting antioxidative stress effects.
Collapse
Affiliation(s)
| | - Cheng Han
- Qinghai University Graduate School, Xining, China
| | - XinHao Wang
- Qinghai University Graduate School, Xining, China
| | - QingXin Zhang
- Department of Magnetic Resonance, Qinghai Provincial People's Hospital, Xining 810000, China.
| | - XiaoLi Yang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining 810000, China.
| |
Collapse
|
5
|
Yang G, Yang L, Xu F. Isoalantolactone: a review on its pharmacological effects. Front Pharmacol 2024; 15:1453205. [PMID: 39376605 PMCID: PMC11456459 DOI: 10.3389/fphar.2024.1453205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Isoalantolactone (ISA) is a sesquiterpene lactone that could be isolated from Inula helenium as well as many other herbal plants belonging to Asteraceae. Over the past 2 decades, lots of researches have been made on ISA, which owns multiple pharmacological effects, such as antimicrobial, anticancer, anti-inflammatory, neuroprotective, antidepressant-like activity, as well as others. The anticancer effects of ISA involve proliferation inhibition, ROS overproduction, apoptosis induction and cell cycle arrest. Through inhibiting NF-κB signaling, ISA exerts its anti-inflammatory effects which are involved in the neuroprotection of ISA. This review hackled the reported pharmacological effects of ISA and associated mechanisms, providing an update on understanding its potential in drug development.
Collapse
Affiliation(s)
- Guang Yang
- Department of Traditional Chinese Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Hwang YJ, Jung GS, Lee KM. Alantolactone alleviates epithelial-mesenchymal transition by regulating the TGF-β/STAT3 signaling pathway in renal fibrosis. Heliyon 2024; 10:e36253. [PMID: 39253189 PMCID: PMC11382038 DOI: 10.1016/j.heliyon.2024.e36253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Objective The epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs) plays a crucial role in renal interstitial fibrosis and inflammation, which are key components of chronic kidney disease (CKD). Alantolactone, a selective inhibitor of signal transducer and activator of transcription 3 (STAT3), is used in Chinese herbal medicine. Despite its use, the effects of alnatolactone on EMT of RTECs has not been fully elucidated. Methods In this study, we investigated the potential of alantolactone to EMT in vivo and in vitro. Our experiments were performed using a unilateral ureteral obstruction (UUO) models and HK-2 cells, RTECs, treated with transforming growth factor (TGF-β). Results Alantolactone decreased tubular injury and reduced the expression of vimentin, a key EMT marker, while increasing E-cadherin expression in UUO kidneys. Similarly, in RTECs, alantolactone inhibited TGF-β-induced EMT and its markers. Furthermore, alantolactone attenuated UUO- and TGF-β-induced STAT3 phosphorylation both in vivo and in vitro, and inhibited the expression of TWIST, an EMT transcription factor, in both models. Conclusion Alantolactone improves EMT in RTECs by inhibiting STAT3 phosphorylation and Twist expression, suggesting its potential as a therapeutic agent for kidney fibrosis.
Collapse
Affiliation(s)
- Yeo Jin Hwang
- Division of AI, Big Data and Block Chain, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Gwon-Soo Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Kyeong-Min Lee
- Division of Biomedical Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| |
Collapse
|
7
|
Balkrishna A, Bhattacharya K, Shukla S, Varshney A. Neuroprotection by Polyherbal Medicine Divya-Medha-Vati Against Scopolamine-Induced Cognitive Impairment Through Modulation of Oxidative Stress, Acetylcholine Activity, and Cell Signaling. Mol Neurobiol 2024; 61:1363-1382. [PMID: 37707741 DOI: 10.1007/s12035-023-03601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer disease is associated with cognitive impairments and neuronal damages. In this study, Scopolamine, a model drug used for the generation of Alzheimer-like symptoms induced cognitive dysfunction in C57BL/6 mice. It also elevated acetylcholine esterase (AcHE) activity, and reduced antioxidant (superoxide dismutase and catalase) activity in cortex tissue. Scop reduced neuronal density and increased pyknotic neurons in hippocampus tissue. In mouse neuroblastoma (Neuro2a) cells, Scop triggered a dose-dependent loss of cell viability and neurite outgrowth reduction. Scop-treated Neuro2a cells showed oxidative stress and reduction in mRNA expression for brain-derived neurotrophic factor (BDNF), nerve growth factor-1 (NGF-1), and Synapsin-1 (SYN-1) genes. Mice treated with Divya-Medha-Vati (DMV), an Ayurvedic polyherbal medicine showed protection against Scop-induced cognitive impairment (Morris Water Maze Escape Latency, and Elevated Plus Maze Transfer Latency). DMV protected against Scop-induced AcHE activity, and loss of antioxidant activities in the mice brain cortex while sustaining neuronal density in the hippocampus region. In the Neuro2a cells, DMV reduced Scop-induced loss of cell viability and neurite outgrowth loss. DMV protected the cells against induction of oxidative stress and promoted mRNA expression of BDNF, NGF-1, and SYN-1 genes. Phytochemical profiling of DMV showed the presence of Withanolide A, Withanolide B, Bacopaside II, Jujubogenin, Apigenin, Gallic acid, Caffeic acid, and Quercetin that are associated with antioxidant and neurostimulatory activities. In conclusion, the study showed that Divya-Medha-Vati was capable of promoting neuronal health and inhibiting Alzheimer-like cognitive dysfunction through enhanced antioxidant activities and modulation of neuronal activities.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Uttarakhand, Haridwar, 249 405, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow, G41 1AU, UK
- Vedic Acharya Samaj Foundation Inc, NFP 21725 CR 33, Groveland, FL, 34736, USA
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India.
| | - Sunil Shukla
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India.
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Uttarakhand, Haridwar, 249 405, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
8
|
Lv X, Lin Y, Zhu X, Cai X. Isoalantolactone suppresses gallbladder cancer progression via inhibiting the ERK signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:556-567. [PMID: 36994917 PMCID: PMC10064832 DOI: 10.1080/13880209.2023.2191645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Gallbladder cancer (GBC) is the most common malignant tumour of the biliary tract. Isoalantolactone (IAL), an active sesquiterpene lactone compound isolated from the roots of Inula helenium L. (Asteraceae), has antitumour effects. OBJECTIVE This study investigates the effects of IAL on GBC. MATERIALS AND METHODS In vitro, NOZ and GBC-SD cells were treated with IAL (0, 10, 20 and 40 μM) for 24 h. The DMSO-treated cells were selected as a control. Cell proliferation, migration, invasion and apoptosis were measured by the CCK-8 assay, transwell assay, flow cytometry and western blot. In vivo, subcutaneous tumour xenografts were constructed by injecting nude mice (BALB/C) with 5 × 106 NOZ cells. Mice were divided into the control group (equal amount of DMSO), the IAL group (10 mg/kg/day) and the IAL + Ro 67-7476 group (IAL, 10 mg/kg/day; Ro 67-7476, 4 mg/kg/day). The study duration was 30 days. RESULTS Compared with the DMSO group, cell proliferation of NOZ (IC50 15.98 μM) and GBC-SD (IC50 20.22 μM) was inhibited by about 70% in the IAL 40 μM group. Migration and invasion were suppressed by about 80%. Cell apoptosis rate was increased about three-fold. The phosphorylation level of ERK was decreased to 30-35%. Tumour volume and weight (about 80% reduction) were suppressed by IAL in vivo. Moreover, the effects of IAL were abolished by Ro 67-7476 in vitro and in vivo. DISCUSSION AND CONCLUSIONS Our findings indicate that IAL could inhibit GBC progression in vitro and in vivo by inhibiting the ERK signalling pathway.
Collapse
Affiliation(s)
- Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqi Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
An MnO2-ZIF-67 immobilized acetylcholinesterase method for acetylcholinesterase activity assay and inhibitor screening from Inula macrophylla based on capillary electrophoresis. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Isoalantolactone (IAL) Regulates Neuro-Inflammation and Neuronal Apoptosis to Curb Pathology of Parkinson's Disease. Cells 2022; 11:cells11182927. [PMID: 36139502 PMCID: PMC9497122 DOI: 10.3390/cells11182927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which neuronal apoptosis and associated inflammation are involved in its pathogenesis. However, there is still no specific treatment that can stop PD progression. Isoalantolactone (IAL) plays a role in many inflammation-related diseases. However, its effect and mechanism in PD remain unclear. In this study, results showed that IAL administration ameliorated 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD-related pathological impairment and decreased motor activity in mice. Results from in vitro mechanistic studies showed that IAL regulated apoptosis-related proteins by activating the AKT/Nrf2 pathway, thereby suppressing the apoptosis of SN4741 cells induced by N-methyl-4-phenylpyridinium Iodide (MPP+). On the other hand, IAL inhibited LPS-induced release of pro-inflammatory mediators in BV2 cells by activating the AKT/Nrf2/HO-1 pathway and inhibiting the NF-κB pathway. In addition, IAL protected SN4741 from microglial activation-mediated neurotoxicity. Taken together, these results highlight the beneficial role of IAL as a novel therapy and potential PD drug due to its pharmacological profile.
Collapse
|
11
|
Pharmacological sequestration of mitochondrial calcium uptake protects against dementia and β-amyloid neurotoxicity. Sci Rep 2022; 12:12766. [PMID: 35896565 PMCID: PMC9329451 DOI: 10.1038/s41598-022-16817-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
All forms of dementia including Alzheimer's disease are currently incurable. Mitochondrial dysfunction and calcium alterations are shown to be involved in the mechanism of neurodegeneration in Alzheimer's disease. Previously we have described the ability of compound Tg-2112x to protect neurons via sequestration of mitochondrial calcium uptake and we suggest that it can also be protective against neurodegeneration and development of dementia. Using primary co-culture neurons and astrocytes we studied the effect of Tg-2112x and its derivative Tg-2113x on β-amyloid-induced changes in calcium signal, mitochondrial membrane potential, mitochondrial calcium, and cell death. We have found that both compounds had no effect on β-amyloid or acetylcholine-induced calcium changes in the cytosol although Tg2113x, but not Tg2112x reduced glutamate-induced calcium signal. Both compounds were able to reduce mitochondrial calcium uptake and protected cells against β-amyloid-induced mitochondrial depolarization and cell death. Behavioral effects of Tg-2113x on learning and memory in fear conditioning were also studied in 3 mouse models of neurodegeneration: aged (16-month-old) C57Bl/6j mice, scopolamine-induced amnesia (3-month-old mice), and 9-month-old 5xFAD mice. It was found that Tg-2113x prevented age-, scopolamine- and cerebral amyloidosis-induced decrease in fear conditioning. In addition, Tg-2113x restored fear extinction of aged mice. Thus, reduction of the mitochondrial calcium uptake protects neurons and astrocytes against β-amyloid-induced cell death and contributes to protection against dementia of different ethology. These compounds could be used as background for the developing of a novel generation of disease-modifying neuroprotective agents.
Collapse
|
12
|
Wasp Venom Ameliorates Scopolamine-Induced Learning and Memory Impairment in Mice. Toxins (Basel) 2022; 14:toxins14040256. [PMID: 35448865 PMCID: PMC9029392 DOI: 10.3390/toxins14040256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
This study investigated the effects of wasp venom (WV) from the yellow-legged hornet, Vespa velutina, on scopolamine (SCO)-induced memory deficits in mice, as well as the antioxidant activity in HT22 murine hippocampal neuronal cells in parallel comparison with bee venom (BV). The WV was collected from the venom sac, freeze-dried. Both venoms exhibited free radical scavenging capabilities in a concentration-dependent manner. In addition, the venom treatment enhanced cell viability at the concentrations of ≤40 µg/mL of WV and ≤4 µg/mL of BV in glutamate-treated HT22 cells, and increased the transcriptional activity of the antioxidant response element (ARE), a cis-acting enhancer which regulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-downstream antioxidant enzymes. Concurrently, WV at 20 µg/mL significantly increased the expression of a key antioxidant enzyme heme oxygenase 1 (HO-1) in HT22 cells despite no significant changes observed in the nuclear level of Nrf2. Furthermore, the intraperitoneal administration of WV to SCO-treated mice at doses ranged from 250 to 500 µg/kg body weight ameliorated memory impairment behavior, reduced histological injury in the hippocampal region, and reduced oxidative stress biomarkers in the brain and blood of SCO-treated mice. Our findings demonstrate that WV possess the potential to improve learning and memory deficit in vivo while further study is needed for the proper dose and safety measures and clinical effectiveness.
Collapse
|
13
|
Liu X, Bian L, Duan X, Zhuang X, Sui Y, Yang L. Alantolactone: A sesquiterpene lactone with diverse pharmacological effects. Chem Biol Drug Des 2021; 98:1131-1145. [PMID: 34624172 DOI: 10.1111/cbdd.13972] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
Alantolactone (Ala) is a sesquiterpene lactone that can be isolated from many herbal plants belonging to Asteraceae. Besides the antimicrobial activities against bacteria, fungi and viruses, Ala has also demonstrated significant anti-inflammatory effects in various models by inhibiting NF-κB and MAPKs to decrease the pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. The antitumor effects of Ala have been demonstrated in vitro and in vivo via inducing intrinsic apoptosis, oxidative stress, ER stress, cell cycle arrest and inhibiting autophagy and STAT3 phosphorylation, which are also involved in its combination or synergy with other antitumor drugs. Ala also has neuroprotective activity through attenuating oxidative stress and inflammation, besides its modulation of glucose and lipid metabolism. This review summarizes the recent advances of the pharmacological effects of Ala, including anti-inflammatory, antitumor, antimicrobial, neuroprotective activities, as well as the underlying mechanisms. Ala might be employed as a potential lead to develop drugs for multiple diseases.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Lijuan Bian
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoqin Duan
- Department of Rehabilitation Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xinming Zhuang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Kim MY, Lee H, Ji SY, Kim SY, Hwangbo H, Park SH, Kim GY, Park C, Leem SH, Hong SH, Choi YH. Induction of Apoptosis by Isoalantolactone in Human Hepatocellular Carcinoma Hep3B Cells through Activation of the ROS-Dependent JNK Signaling Pathway. Pharmaceutics 2021; 13:pharmaceutics13101627. [PMID: 34683920 PMCID: PMC8540929 DOI: 10.3390/pharmaceutics13101627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Isoalantolactone (IALT) is one of the isomeric sesquiterpene lactones isolated from the roots of Inula helenium L. IALT is known to possess various biological and pharmacological activities, but its anti-cancer mechanisms are not well understood. The aim of the present study was to investigate the anti-proliferative effects of IALT in human hepatocellular carcinoma (HCC) cells and to evaluate the potential anti-cancer mechanisms. Our results demonstrated that IALT treatment concentration-dependently suppressed the cell survival of HCC Hep3B cells, which was associated with the induction of apoptosis. IALT increased the expression of death-receptor-related proteins, activated caspases, and induced Bid truncation, subsequently leading to cleavage of poly (ADP-ribose) polymerase. In addition, IALT contributed to the cytosolic release of cytochrome c by destroying mitochondrial integrity, following an increase in the Bax/Bcl-2 expression ratio. However, IALT-mediated growth inhibition and apoptosis were significantly attenuated in the presence of a pan-caspase inhibitor, suggesting that IALT induced caspase-dependent apoptosis in Hep3B cells. Moreover, IALT activated the mitogen-activated protein kinases signaling pathway, and the anti-cancer effect of IALT was significantly diminished in the presence of a potent c-Jun N-terminal kinase (JNK) inhibitor. IALT also improved the generation of intracellular reactive oxygen species (ROS), whereas the ROS inhibitor significantly abrogated IALT-induced growth reduction, apoptosis, and JNK activation. Furthermore, ROS-dependent apoptosis was revealed as a mechanism involved in the anti-cancer activity of IALT in a 3D multicellular tumor spheroid model of Hep3B cells. Taken together, our findings indicate that IALT exhibited anti-cancer activity in HCC Hep3B cells by inducing ROS-dependent activation of the JNK signaling pathway.
Collapse
Affiliation(s)
- Min Yeong Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - So Young Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Hyun Hwangbo
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Korea;
| | - Gi-Young Kim
- Department of Marine Life Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Korea;
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Sciences, Dong-A University, Busan 49315, Korea;
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Correspondence: (S.H.H.); (Y.H.C.); Tel.: +82-051-890-3334 (S.H.H.); +82-051-890-3319 (Y.H.C.)
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Correspondence: (S.H.H.); (Y.H.C.); Tel.: +82-051-890-3334 (S.H.H.); +82-051-890-3319 (Y.H.C.)
| |
Collapse
|
15
|
Lunz K, Stappen I. Back to the Roots-An Overview of the Chemical Composition and Bioactivity of Selected Root-Essential Oils. Molecules 2021; 26:3155. [PMID: 34070487 PMCID: PMC8197530 DOI: 10.3390/molecules26113155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that-besides their aromatic properties-their biological activity can often be attributed to volatile constituents. This review provides a comprehensive overview of investigations into the chemical composition of essential oils and volatile components obtained from selected aromatic roots, including Angelica archangelica, Armoracia rusticana, Carlina sp., Chrysopogon zizanioides, Coleus forskohlii, Inula helenium, Sassafras albidum, Saussurea costus, and Valeriana officinalis. Additionally, their most important associated biological impacts are reported, such as anticarcinogenic, antimicrobial, antioxidant, pesticidal, and other miscellaneous properties. Various literature and electronic databases-including PubMed, ScienceDirect, Springer, Scopus, Google Scholar, and Wiley-were screened and data was obtained accordingly. The results indicate the promising properties of root-essential oils and their potential as a source for natural biologically active products for flavor, pharmaceutical, agricultural, and fragrance industries. However, more research is required to further establish the mechanism of action mediating these bioactivities as well as essential oil standardization because the chemical composition often strongly varies depending on external factors.
Collapse
Affiliation(s)
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
16
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
17
|
Isoalantolactone inhibits RANKL-induced osteoclast formation via multiple signaling pathways. Int Immunopharmacol 2020; 84:106550. [PMID: 32388216 DOI: 10.1016/j.intimp.2020.106550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
The metabolicosteopathy known as postmenopausal osteoporosisiscaused by disruption of the balance between bone resorption and osteogenesis, processes that are mediated by osteoclasts and osteoblasts, respectively. The current therapeutic approaches to treating osteoporosis have several limitations. In this study, we demonstrated that the natural chemical compound isoalantolactone (IAL) could inhibit osteoclastogenesis, without affecting osteogenesis. This is the first study reporting a role of IAL in suppressing the receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast formation in a dose-dependent manner, and downregulating the expression of osteoclast-related marker genes. Furthermore, IAL abrogated the phosphorylation of c-Jun N-terminal kinase (JNK)/p38, NF-κB, and phosphatidylinositol 3-kinase (PI3K)-AKT, and also diminished the expression of osteoclastogenesis-related proteins. In conclusion, our results indicated that IAL has promise for the treatment of osteoporosis and other metabolicbone diseases.
Collapse
|
18
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
19
|
Hou Y, Qieni X, Li N, Bai J, Li R, Gongbao D, Liang Y, Fan F, Wencheng D, Wang Z, Nima C, Meng X, Zhang Y, Wang X. Longzhibu disease and its therapeutic effects by traditional Tibetan medicine: Ershi-wei Chenxiang pills. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112426. [PMID: 31775011 DOI: 10.1016/j.jep.2019.112426] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/14/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershi-wei Chenxiang pills (ECP) or Aga Nixiu wan (ཨ་གར་ཉི་ཤུ།), composed of 20 Tibetan medicines, has the effect of promoting blood circulation to remove blood stasis. As a common and frequent prescription used by traditional Tibetan medicine in clinical treatment of Longzhibu disease (cerebral ischemia sequelae), it has a significant effect. However, its anti-cerebral ischemia mechanism is still unclear. MATERIALS AND METHODS The chemical components of ECP were determined by high-performance liquid chromatography and gas chromatography-mass spectrometry. SD rats were randomly divided into Sham, MCAO, Nim (20.00 mg/kg), and ECP (1.33 and 2.00 g/kg) groups, with 13 animals in each group. After 14 days of oral administration, we established a model of cerebral ischemia reperfusion injury by blocking the middle cerebral artery of rats. After 24 h of reperfusion injury, we evaluated the protective effect of ECP on ischemic brain by neural function score, TTC, H&E and Nissl staining. TUNEL fluorescence, western blot and immunohistochemistry were used to detect the phenomenon of apoptosis and the expression of apoptosis-related proteins Bax, Bcl-2, Cyto-c and activated Caspase-3. Furthermore, western blot, qRT-PCR and immunohistochemistry were employed to detect CaMKⅡ, ATF4 and c-Jun gene and protein expression. RESULTS ECP contains agarotetrol, eugenol, oleanolic acid, ursolic acid, dehydrodiisoeugenol, hydroxysafflor yellow A, kaempferide, gallic acid, alantolactone, isoalantolactone, costunolide, dehydrocostus lactone, brucine, strychnine, echinacoside, bilirubin and cholic acid. Compared with MCAO group, ECP can significantly ameliorate the neurological deficit of cerebral ischemia in rats and reduce the volume of cerebral infarction. Pathological and Nissl staining results showed that ECP sharply inhibited the inflammatory infiltration injury of neurons and increased the activity of neurons in comparation with the MCAO group. TUNEL fluorescence apoptosis results confirmed that ECP obviously inhibited the apoptosis of neurons. Meanwhile, the results of immunohistochemistry and western blot demonstrated that EPC can dramatically inhibit the expression of pro-apoptotic proteins Bax, Cyto-c and activated Caspase-3, while increase the level of anti-apoptotic protein Bcl-2. In addition, compared with MCAO group, CaMK Ⅱ gene and protein expression were improved significantly by ECP administration. while, the expression of ATF4 and c-Jun genes and proteins were decreased. CONCLUSIONS In conclusion, this study preliminarily demonstrated that the protective effect of ECP on ischemic brain is related to the improvement of neurological deficit, reducing the size of cerebral infarction, improving the activity of neurons, inhibiting the mitochondrial apoptosis pathway by regulating the protein expression of CaMKⅡ, ATF4 and c-Jun. However, further in vivo and in vitro investigations are still needed to clarify the underlying mechanism of ECP in treating cerebral ischemia sequelae.
Collapse
Affiliation(s)
- Ya Hou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiangmao Qieni
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinrong Bai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongzhi Gongbao
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yusheng Liang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dangzhi Wencheng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhang Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ciren Nima
- Tibetan Traditional Medical College, Lhasa, 850000, China
| | - Xianli Meng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Ju S, Seo JY, Lee SK, Oh J, Kim JS. Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism. J Ginseng Res 2019; 45:108-118. [PMID: 33437162 PMCID: PMC7791004 DOI: 10.1016/j.jgr.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
Background Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be metabolized to a biologically active substance, compound K. Previous research showed that compound K could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable level of compound K has cognitive improving and neuroprotective effects. Methods A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains were collected, histologically examined (hematoxylin and eosin staining), and the expressions of antioxidant proteins analyzed by western blot. Results Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg body weight reversed scopolamine-induced learning and memory deficits. Histological examination demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hippocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity by decreasing the intracellular levels of reactive oxygen species. Conclusion These findings suggest that HRGE administration can effectively alleviate hippocampus-mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
- BW, body weight
- CCK-8, cell counting kit-8
- Cognition
- DCF, dichlorofluorescein
- DCFH, 2,7-dichlorodihydrofluorescein
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- H&E, hematoxylin and eosin
- HO-1, heme oxygenase-1
- HRGE, hydrolyzed red ginseng extract
- KO, knockout
- Korean Red Ginseng
- Learning and memory
- NQO1, NAD(P):quinone oxidoreductase 1
- Neuroprotection
- Nrf2, nuclear-factor-E2-related factor 2
- PPD, protopanaxadiol
- Pectinase-mediated hydrolysis
- RGE, red ginseng extract
- ROS, reactive oxygen species
- WT, wild-type
Collapse
Affiliation(s)
- Sunghee Ju
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yeon Seo
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, Republic of Korea
| | - Seung Kwon Lee
- Ginseng Biotech Research Team, Ilhwa Co. Ltd, Guri, Gyeonggi-do, Republic of Korea
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, Republic of Korea.,Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
21
|
He Y, Cao X, Kong Y, Wang S, Xia Y, Bi R, Liu J. Apoptosis-promoting and migration-suppressing effect of alantolactone on gastric cancer cell lines BGC-823 and SGC-7901 via regulating p38MAPK and NF-κB pathways. Hum Exp Toxicol 2019; 38:1132-1144. [PMID: 31203647 DOI: 10.1177/0960327119855128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gastric cancer is a malignant tumor with high incidence rate and mortality rate. PURPOSE In this study, we investigated the anti-cancer effect of alantolactone, a sesquiterpene lactone, on gastric cancer cell lines BGC-823 and SGC-7901. METHODS BGC-823 and SGC-7901 cells were treated with different concentrations of alantolactone, Hoechst 33258 staining, flow cytometry, wound healing assay, invasion assay, colony forming assay, quantative polymerase chain reaction, and western blot analysis were used to evaluate the anticancer activity of alantolactone to gastric cancer. RESULTS Alantolactone induced apoptosis of gastric cancer cells by regulating the expression of Bax, Bcl-2, and p53, which related to intrinsic apoptotic pathway, and suppressed colony formation, migration, and invasion by mediating the expression of matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9. Cell signaling pathway analysis showed that alantolactone enhanced the phosphorylation of p38 and decreased the translocation of nucleus p65, suggesting that the apoptosis-promoting and migration-suppressing effect of alantolactone might at least partially rely on regulating p38 mitogen-activated protein kinase (p38MAPK) pathway and nuclear factor-κB (NF-κB) pathway. CONCLUSIONS Alantolactone can be used as a potential therapeutic agent for treating gastric cancer.
Collapse
Affiliation(s)
- Y He
- School of Life Science, Liaoning University, Shenyang, China
| | - X Cao
- School of Life Science, Liaoning University, Shenyang, China
| | - Y Kong
- School of Life Science, Liaoning University, Shenyang, China
| | - S Wang
- School of Life Science, Liaoning University, Shenyang, China
| | - Y Xia
- School of Life Science, Liaoning University, Shenyang, China
| | - R Bi
- School of Life Science, Liaoning University, Shenyang, China
| | - J Liu
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
22
|
Tavares WR, Seca AML. Inula L. Secondary Metabolites against Oxidative Stress-Related Human Diseases. Antioxidants (Basel) 2019; 8:E122. [PMID: 31064136 PMCID: PMC6562470 DOI: 10.3390/antiox8050122] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
An imbalance in the production of reactive oxygen species in the body can cause an increase of oxidative stress that leads to oxidative damage to cells and tissues, which culminates in the development or aggravation of some chronic diseases, such as inflammation, diabetes mellitus, cancer, cardiovascular disease, and obesity. Secondary metabolites from Inula species can play an important role in the prevention and treatment of the oxidative stress-related diseases mentioned above. The databases Scopus, PubMed, and Web of Science and the combining terms Inula, antioxidant and secondary metabolites were used in the research for this review. More than 120 articles are reviewed, highlighting the most active compounds with special emphasis on the elucidation of their antioxidative-stress mechanism of action, which increases the knowledge about their potential in the fight against inflammation, cancer, neurodegeneration, and diabetes. Alantolactone is the most polyvalent compound, reporting interesting EC50 values for several bioactivities, while 1-O-acetylbritannilactone can be pointed out as a promising lead compound for the development of analogues with interesting properties. The Inula genus is a good bet as source of structurally diverse compounds with antioxidant activity that can act via different mechanisms to fight several oxidative stress-related human diseases, being useful for development of new drugs.
Collapse
Affiliation(s)
- Wilson R Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal.
| | - Ana M L Seca
- cE3c-Centre for Ecology, Evolution and Environmental Changes/ Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal.
- QOPNA & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Jahanmahin A, Abbasnejad Z, Haghparast A, Ahmadiani A, Ghasemi R. The Effect of Intrahippocampal Insulin Injection on Scopolamine-induced Spatial Memory Impairment and Extracellular Signal-regulated Kinases Alteration. Basic Clin Neurosci 2019; 10:23-36. [PMID: 31031891 PMCID: PMC6484185 DOI: 10.32598/bcn.9.10.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction It is well documented that insulin has neuroprotective and neuromodulator effects and can protect against different models of memory loss. Furthermore, cholinergic activity plays a significant role in memory, and scopolamine-induced memory loss is widely used as an experimental model of dementia. The current study aimed at investigating the possible effects of insulin against scopolamine-induced memory impairment in Wistar rat and its underlying molecular mechanisms. Methods Accordingly, animals were bilaterally cannulated in CA1, hippocampus. Intrahippocampal administration of insulin 6 MU and 12 MU in CA1 per day was performed during first 6 days after surgery. During next four days, the animal's spatial learning and memory were assessed in Morris water maze test (three days of learning and one day of retention test). The animals received scopolamine (1 mg/kg) Intraperitoneally (IP) 30 minutes before the onset of behavioral tests in each day. In the last day, the hippocampi were dissected and the levels of MAPK (mitogen-activated protein kinases) and caspase-3 activation were analyzed by Western blot technique. Results The behavioral results showed that scopolamine impaired spatial learning and memory without activating casapase-3, P38, and JNK, but chronic pretreatment by both doses of insulin was unable to restore this spatial memory impairment. In addition, scopolamine significantly reduced Extracellular signal-Regulated Kinases (ERKs) activity and insulin was unable to restore this reduction. Results revealed that scopolamine-mediated memory loss was not associated with hippocampal damage. Conclusion Insulin as a neuroprotective agent cannot restore memory when there is no hippocampal damage. In addition, the neuromodulator effect of insulin is not potent enough to overwhelm scopolamine-mediated disruptions of synaptic neurotransmission.
Collapse
Affiliation(s)
- Ahmad Jahanmahin
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasnejad
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Kim S, Oh J, Jang CH, Kim JS. Improvement of cognitive function by Gochujang supplemented with tomato paste in a mouse model. Food Sci Biotechnol 2019; 28:1225-1233. [PMID: 31275723 DOI: 10.1007/s10068-019-00565-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
Abstract
Gochujang, a traditional Korean hot sauce, was prepared with a variety of antioxidant-rich supplements to improve its bioactive functions and preference by pungency-sensitive people. Among the tested ingredients, tomato paste exhibited the strongest antioxidant and neuroprotective activities when added as a supplement to traditional gochujang. Furthermore, oral administration of gochujang prepared with tomato paste to mice significantly improved cognitive function compared to original gochujang. As gochujang supplemented with tomato paste was found to contain an appreciable amount of lycopene with neuroprotective activity, it is most likely that the neuroprotective activity and cognitive improvement by the product was partially attributable to cis-lycopene, a highly bioavailable form converted from trans-lycopene during the manufacturing process of the product. However, a further study is required to verify the precise underlying mechanism of action.
Collapse
Affiliation(s)
- Sunghee Kim
- 1Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jisun Oh
- 2School of Food Science and Technology (BK21PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Chan Ho Jang
- 2School of Food Science and Technology (BK21PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jong-Sang Kim
- 1Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea.,2School of Food Science and Technology (BK21PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
25
|
Ahmadi A, Roghani M, Noori S, Nahri-Niknafs B. Substituted Aminobenzothiazole Derivatives of Tacrine: Synthesis and Study on Learning and Memory Impairment in Scopolamine-Induced Model of Amnesia in Rat. Mini Rev Med Chem 2019; 19:72-78. [PMID: 30009706 DOI: 10.2174/1389557518666180716122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/15/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Currently, there is no conclusive cure for Alzheimer's disease (AD) and existing treatments mainly offer symptomatic relief. Dysfunction of the cholinergic system plays an important role in the pathogenesis of AD. Tacrine (1, 2, 3, 4-tetrahydroacridin-9-amine, III) was the first approved agent for the palliative therapy of AD but its use is associated with some complications. Development of novel multi target derivatives of Tacrine with lower complications is strongly warranted. In this study, new aminobenzothiazole (1-5, with many useful biological and pharmacological properties) analogues (IV-VIII) were synthesized by changing of amine moiety of III. Then, the effects of these new compounds on learning and memory impairment in scopolamine-induced model of amnesia were studied and the outcomes were compared with control and Tacrine groups in rat. MATERIAL AND METHODS The rats received Tacrine or its derivatives (IV-VIII) i.p. for two weeks at a dose of 10 mg/kg. For induction of amnesia, scopolamine at a dose of 1 mg/kg was daily administered i.p. started on day-8 till the end of the study. Behavioral experiments including Y-maze, novel object recognition (discrimination) and passive avoidance paradigms were conducted at week 2. RESULTS Data analysis showed that some Tacrine derivatives, especially VII with 2-amino, 6-nitrobenzothiazole moiety, could markedly and significantly improve alternation score, discrimination ratio and step through latency compared to control and Tacrine groups. CONCLUSION These findings indicated that some of these derivatives (especially compounds VI and VII) are capable to mitigate learning and memory deficits in scopolamine-induced model of amnesia in rats and may have potential benefit in management of patients with AD.
Collapse
Affiliation(s)
- Abbas Ahmadi
- Department of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Sanaz Noori
- Department of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Babak Nahri-Niknafs
- Department of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
26
|
Seo JY, Kim BR, Oh J, Kim JS. Soybean-Derived Phytoalexins Improve Cognitive Function through Activation of Nrf2/HO-1 Signaling Pathway. Int J Mol Sci 2018; 19:E268. [PMID: 29337893 PMCID: PMC5796214 DOI: 10.3390/ijms19010268] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/31/2017] [Accepted: 01/13/2018] [Indexed: 01/19/2023] Open
Abstract
As soy-derived glyceollins are known to induce antioxidant enzymes in various types of cells and tissues, we hypothesized that the compounds could protect neurons from damage due to reactive oxygen species (ROS). In order to examine the neuroprotective effect of glyceollins, primary cortical neurons collected from mice and mouse hippocampal HT22 cells were challenged with glutamate. Glyceollins attenuated glutamate-induced cytotoxicity in primary cortical neuron isolated from mice carrying wild-type nuclear factor (erythroid-derived 2)-like 2 (Nrf2), but the compounds were ineffective in those isolated from Nrf2 knockout mice, suggesting the involvement of the Nrf2 signaling pathway in glyceollin-mediated neuroprotection. Furthermore, the inhibition of heme oxygenase-1 (HO-1), a major downstream enzyme of Nrf2, abolished the suppressive effect of glyceollins against glutamate-induced ROS production and cytotoxicity, confirming that activation of HO-1 by glyceollins is responsible for the neuroprotection. To examine whether glyceollins also improve cognitive ability, mice pretreated with glyceollins were challenged with scopolamine and subjected to behavioral tests. Glyceollins attenuated scopolamine-induced cognitive impairment of mice, but failed to enhance memory in Nrf2 knockout mice, suggesting that the memory-enhancing effect is also mediated by the Nrf2 signaling pathway. Overall, glyceollins showed neuroprotection against glutamate-induced damage, and attenuated scopolamine-induced memory deficits in an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Ji Yeon Seo
- School of Food Science and Biotechnology (BK21plus Program), Kyungpook National University, Daegu 41566, Korea.
| | - Bo Ram Kim
- School of Food Science and Biotechnology (BK21plus Program), Kyungpook National University, Daegu 41566, Korea.
| | - Jisun Oh
- School of Food Science and Biotechnology (BK21plus Program), Kyungpook National University, Daegu 41566, Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21plus Program), Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
27
|
Elufioye TO, Berida TI, Habtemariam S. Plants-Derived Neuroprotective Agents: Cutting the Cycle of Cell Death through Multiple Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:3574012. [PMID: 28904554 PMCID: PMC5585568 DOI: 10.1155/2017/3574012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
Neuroprotection is the preservation of the structure and function of neurons from insults arising from cellular injuries induced by a variety of agents or neurodegenerative diseases (NDs). The various NDs including Alzheimer's, Parkinson's, and Huntington's diseases as well as amyotropic lateral sclerosis affect millions of people around the world with the main risk factor being advancing age. Each of these diseases affects specific neurons and/or regions in the brain and involves characteristic pathological and molecular features. Hence, several in vitro and in vivo study models specific to each disease have been employed to study NDs with the aim of understanding their underlying mechanisms and identifying new therapeutic strategies. Of the most prevalent drug development efforts employed in the past few decades, mechanisms implicated in the accumulation of protein-based deposits, oxidative stress, neuroinflammation, and certain neurotransmitter deficits such as acetylcholine and dopamine have been scrutinized in great detail. In this review, we presented classical examples of plant-derived neuroprotective agents by highlighting their structural class and specific mechanisms of action. Many of these natural products that have shown therapeutic efficacies appear to be working through the above-mentioned key multiple mechanisms of action.
Collapse
Affiliation(s)
| | - Tomayo Ireti Berida
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|