1
|
Kim MG, Boo KH, Kim JH, Kim CS. Immature Citrus unshiu fruit extracts inhibit adipogenesis in 3T3-L1 adipocytes via AMPK and MAPK signaling pathways. PLoS One 2025; 20:e0322619. [PMID: 40338885 PMCID: PMC12061173 DOI: 10.1371/journal.pone.0322619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 05/10/2025] Open
Abstract
In Korea, immature citrus fruits have been extensively explored for their potential utility as functional bio-health materials owing to their various bioactive properties. However, the specific mechanisms by which they exert inhibitory effects on adipogenesis remain unclear. Therefore, this study aimed to examine the anti-obesity effects of 70% ethanol extracts of immature Citrus unshiu fruits and their solvent fractions (n-hexane, ethyl acetate, n-butanol, and water) on 3T3-L1 cells, as well as to explore the underlying molecular mechanisms. Additionally, this study was conducted to identify the bioactive components responsible for the anti-obesity effects. Among the fractions, the hexane fraction exhibited the most potent inhibitory effect on lipid accumulation in 3T3-L1 cells without inducing cytotoxicity. Notably, this effect was concentration-dependent. This fraction also inhibited adipogenesis during the differentiation of 3T3-L1 preadipocytes by downregulating the expression of CCAAT/enhancer-binding proteins (C/EBP), peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein (SREBP), fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4). Moreover, the hexane fraction modulated the activity of AMP-activated protein kinase (AMPK) and mitogen-activated protein kinase (MAPK), both of which play critical roles in lipid metabolism. Specifically, it induced AMPK activation while downregulating MAPK signaling. Phytochemical analysis identified phytol, hexatriacontane, tangeretin, and nobiletin as the main bioactive components responsible for the observed anti-obesity effects of ICE. Overall, our results revealed that ICE exhibited notable anti-obesity activity by targeting the AMPK and MAPK signaling pathways, highlighting its potential as a natural therapeutic agent for obesity management.
Collapse
Affiliation(s)
- Min Gun Kim
- Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Kyung-Hwan Boo
- Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Jae-Hoon Kim
- Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Chang Sook Kim
- Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
2
|
Zhang J, Shen M, Yin Y, Chen Y, Deng X, Mo J, Zhou X, Lin J, Chen X, Xie X, Wu X, Chen X. Carnosic acid reduces lipid content, enhances gut health, and modulates microbiota composition and metabolism in diet-induced obese mice. Food Funct 2025; 16:1888-1902. [PMID: 39932492 DOI: 10.1039/d4fo04534c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Carnosic acid (CA) is a bioactive phenolic diterperne compound found in sage and rosemary. The present study investigated the beneficial effects of CA (50 and 100 mg per kg bw) in diet-induced obese mice and the underlying mechanisms of action. After the intervention, the physiology, lipid metabolism, and tissue morphology, as well as the inflammation, gut microbiota, and metabolomics in the colon were measured. We found that CA improved the composition and metabolism of the gut microbiota in obese mice, with Akkermansia being the dominant bacterium negatively correlated with obesity and various fecal metabolites. Regarding the intestinal barrier function, CA promoted the expression of tight junction proteins and inhibited the TLR4/MyD88/NF-κB signaling pathway in obese mice to alleviate colonic inflammation. These results suggest that CA improved multiple aspects of gut health in diet-induced obesity in mice, providing a scientific basis for future clinical studies in humans.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Mengzhu Shen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Yue Yin
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Yuru Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xianying Deng
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Jingyun Mo
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xiaoling Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Juanying Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xinxin Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xinwei Xie
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, USA.
| | - Xuexiang Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| |
Collapse
|
3
|
Alsuwayt B, Iftikhar N, Hussain AI, Ahmad A, Zafar I, Khanam A, Tan WN, Nahar L, Almuqati AF, Haji EM, Almutairy AF, Sarker SD. The Bioprotective Effects of Marigold Tea Polyphenols on Obesity and Oxidative Stress Biomarkers in High-Fat-Sugar Diet-Fed Rats. Cardiovasc Ther 2024; 2024:3833521. [PMID: 39742004 PMCID: PMC11469925 DOI: 10.1155/2024/3833521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/29/2024] [Indexed: 01/03/2025] Open
Abstract
Background: The research is aimed at exploring the potential of marigold petal tea (MPT), rich in polyphenol contents, against oxidative stress and obesity in a rat model following a high-fat-sugar diet (HFSD). Methods: The MPT was prepared through the customary method of decoction and was subjected to analysis for its polyphenol composition using reversed-phase high-performance liquid chromatography (RP-HPLC). Two specific doses of MPT, namely, 250 and 500 mg/kg body weight (BW), were chosen for the study-referred to as MPT-250 and MPT-500, respectively. Result: The main phenolic acids and flavonoids identified in MPT, with concentrations exceeding 10 mg/100 mL of tea, included catechin, rutin, salicylic acid, gallic acid, sinapic acid, chlorogenic acid, cinnamic acid, and ellagic acid. The total phenolic (TP) and total flavonoid (TF) contents in MPT were measured to be 5.53 and 7.73 mg/g, respectively. Additionally, MPT demonstrated a 57.2% scavenging capacity with 2,2-diphenyl-1-picrylhydrazyl radical. Notably, the administration of a higher dose (MPT-500) showed a significant reduction in body mass index (BMI) and a 51.24% reduction in the rate of increase in BW compared to the HFSD group. The findings indicated that all the treatment groups, that is, orlistat treatment (OT), MPT-250, and MPT-500 groups, experienced reduced levels of serum total cholesterol (TC), triglyceride (TG), and markers of lipoproteins in contrast to the HFSD group. Moreover, MPT helped restore the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH), thereby demonstrating its potential in combating oxidative stress. The MPT-500 group also displayed decreased liver and kidney weights and an improved atherogenic index when compared to the HFSD group. Conclusion: The results clearly indicate that a high dosage of MPT showed antiobesity activity which was comparable to the same effects produced by the conventional drug orlistat.
Collapse
Affiliation(s)
- Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Neelam Iftikhar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abdullah Ijaz Hussain
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Irsa Zafar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Arifa Khanam
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27 78371, Olomouc, Czech Republic
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Esraa Mohammad Haji
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Ali F. Almutairy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
4
|
Wang C, Peng M, Gao Z, Han Q, Fu F, Li G, Su D, Huang L, Guo J, Shan Y. Untargeted Metabolomic Analyses and Antilipidemic Effects of Citrus Physiological Premature Fruit Drop. Int J Mol Sci 2024; 25:1876. [PMID: 38339154 PMCID: PMC10855584 DOI: 10.3390/ijms25031876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Increasingly globally prevalent obesity and related metabolic disorders have underscored the demand for safe and natural therapeutic approaches, given the limitations of weight loss drugs and surgeries. This study compared the phytochemical composition and antioxidant activity of five different varieties of citrus physiological premature fruit drop (CPFD). Untargeted metabolomics was employed to identify variations in metabolites among different CPFDs, and their antilipidemic effects in vitro were assessed. The results showed that Citrus aurantium L. 'Daidai' physiological premature fruit drop (DDPD) and Citrus aurantium 'Changshan-huyou' physiological premature fruit drop (HYPD) exhibited higher levels of phytochemicals and stronger antioxidant activity. There were 97 differential metabolites identified in DDPD and HYPD, including phenylpropanoids, flavonoids, alkaloids, organic acids, terpenes, and lipids. Additionally, DDPD and HYPD demonstrated potential antilipidemic effects against oleic acid (OA)-induced steatosis in HepG2 hepatocytes and 3T3-L1 adipocytes. In conclusion, our findings reveal the outstanding antioxidant activity and antilipidemic effects of CPFD, indicating its potential use as a natural antioxidant and health supplement and promoting the high-value utilization of this resource.
Collapse
Affiliation(s)
- Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Qi Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lvhong Huang
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Provincial Key Laboratory of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
5
|
Kaya H, Tokgöz HB, Unal R, Altan F. The effects of the Rheum ribes plant extract on inflammation, extracellular matrix remodeling, and obesity suggest a therapeutic potential. Mol Biol Rep 2023; 50:5223-5232. [PMID: 37126207 DOI: 10.1007/s11033-023-08478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND The prevalence of obesity is increasing in the world, and the Type II diabetes associated with obesity led researchers to seek alternative methods to treat these two chronic diseases. In the case of obesity and diabetes, changes occur in the levels of inflammatory mediators. A study was conducted to investigate the molecular mechanism of the Rheum ribes L. plant regarding obesity and inflammation. METHODS AND RESULTS Differentiated 3T3-L1 mouse cell lines were used as an experimental model. A dose-response relationship was established to determine at what dose and time of treatment the R. ribes L. plant extract would act effectively. To assess expression on the transcriptional level, q-PCR analyses were performed. The primers to evaluate the expression levels of genes such as Dgat1, Lpl, Fasn, ColV, Il-6, and Mcp1, which are known to be associated with obesity and insulin resistance, inflammation, and cell skeletal restructuring was designed using NCBI sequences. 18S was chosen as the housekeeping gene for normalization. CONCLUSION It was found that applying 50 µg/mL and 100 µg/mL of R. ribes root extract to 3T3-L1 adipocyte cells for 24 and 48 h resulted in anti- obesity and anti-inflammatory effects on the genes examined at the transcriptional level. It is an effective study to understand the molecular mechanisms by which R. ribes, which is known to have anti-diabetic, anti-obesity and anti- inflammatory activities, and to establish a link between these activities.
Collapse
Affiliation(s)
- Hasret Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Kötekli, Turkey
| | - Hilal Büşra Tokgöz
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Kötekli, Turkey
- Denizli Vocational School of Health Services, Medical Services and Techniques Department, Pamukkale University, 20160, Denizli, Kınıklı, Turkey
| | - Resat Unal
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Kötekli, Turkey
| | - Filiz Altan
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Kötekli, Turkey.
| |
Collapse
|
6
|
Bati B, Celik I, Turan A, Eray N, Alkan EE, Zirek AK. Effect of isgin ( Rheum ribes L.) on biochemical parameters, antioxidant activity and DNA damage in rats with obesity induced with high-calorie diet. Arch Physiol Biochem 2023; 129:298-306. [PMID: 32924615 DOI: 10.1080/13813455.2020.1819338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the effects of Rheum ribes L. plant root extracts on DNA damage, biochemical and antioxidant parameters in rats with experimental obesity induced with a high-calorie diet. The study groups were divided as "normal control(NC)", "obese control(OC)", "obese + Rheum ribes(OR1)(200 mg/kg)" and "obese + Rheum ribes (OR2)(400 mg/kg)". At the end of the application, rats were sacrificed and blood and tissue samples were obtained. According to the results obtained, the marker of DNA damage in tissues of 8-OHdG was determined to be significantly reduced in brain tissue of the OR1 and OR2 groups compared to the NC group. However, fluctuations were identified in the MDA activity, antioxidant defense system elements and serum biomarkers in tissues. In conclusion, Rheum ribes plant root extract ensured improvements in DNA damage in brain tissues and MDA levels and showed positive effects on antioxidant parameter activities in different tissues.
Collapse
Affiliation(s)
- Bedia Bati
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ismail Celik
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Abdullah Turan
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Nese Eray
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Elif Ebru Alkan
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ali Kemal Zirek
- Institute of Sciences, Medical Services and Techniques, Hakkari University, Hakkari, Turkey
| |
Collapse
|
7
|
Pharmacological Treatments and Natural Biocompounds in Weight Management. Pharmaceuticals (Basel) 2023; 16:ph16020212. [PMID: 37139804 PMCID: PMC9962258 DOI: 10.3390/ph16020212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The obesity pandemic is one of society’s most urgent public health concerns. One-third of the global adult population may fall under obese or overweight by 2025, suggesting a rising demand for medical care and an exorbitant cost of healthcare expenditure in the coming years. Generally, the treatment strategy for obese patients is largely patient-centric and needs dietary, behavioral, pharmacological, and sometimes even surgical interventions. Given that obesity cases are rising in adults and children and lifestyle modifications have failed to produce the desired results, the need for medical therapy adjunct to lifestyle modifications is vital for better managing obesity. Most existing or past drugs for obesity treatment target satiety or monoamine pathways and induce a feeling of fullness in patients, while drugs such as orlistat are targeted against intestinal lipases. However, many medications targeted against neurotransmitters showed adverse events in patients, thus being withdrawn from the market. Alternatively, the combination of some drugs has been successfully tested in obesity management. However, the demand for novel, safer, and more efficacious pharmaceutical medicines for weight management does exist. The present review elucidates the current understanding of the available anti-obesity medicines of synthetic and natural origin, their main mechanisms of action, and the shortcomings associated with current weight management drugs.
Collapse
|
8
|
Guardiola-Márquez CE, Jacobo-Velázquez DA. Potential of enhancing anti-obesogenic agriceuticals by applying sustainable fertilizers during plant cultivation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1034521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Overweight and obesity are two of the world's biggest health problems. They are associated with excessive fat accumulation resulting from an imbalance between energy consumed and energy expended. Conventional therapies for obesity commonly include synthetic drugs and surgical procedures that can lead to serious side effects. Therefore, developing effective, safe, and readily available new treatments to prevent and treat obesity is highly relevant. Many plant extracts have shown anti-obesogenic potential. These plant extracts are composed of different agriceuticals such as fibers, phenolic acids, flavonoids, anthocyanins, alkaloids, lignans, and proteins that can manage obesity by suppressing appetite, inhibiting digestive enzymes, reducing adipogenesis and lipogenesis, promoting lipolysis and thermogenesis, modulating gut microbiota and suppressing obesity-induced inflammation. These anti-obesogenic agriceuticals can be enhanced in plants during their cultivation by applying sustainable fertilization strategies, improving their capacity to fight the obesity pandemic. Biofertilization and nanofertilization are considered efficient, eco-friendly, and cost-effective strategies to enhance plant growth and development and increase the content of nutrients and bioactive compounds, representing an alternative to overproducing the anti-obesogenic agriceuticals of interest. However, further research is required to study the impact of anti-obesogenic plant species grown using these agricultural practices. This review presents the current scenario of overweight and obesity; recent research work describing different plant species with significant effects against obesity; and several reports exhibiting the potential of the biofertilization and nanofertilization practices to enhance the concentrations of bioactive molecules of anti-obesogenic plant species.
Collapse
|
9
|
Iftikhar N, Hussain AI, Kamal GM, Manzoor S, Fatima T, Alswailmi FK, Ahmad A, Alsuwayt B, Abdullah Alnasser SM. Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise ( Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model. Antioxidants (Basel) 2022; 11:2240. [PMID: 36421427 PMCID: PMC9686881 DOI: 10.3390/antiox11112240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Star anise (Illicium verum Hook. fil.) is commonly utilized as a culinary and medicinal fruit and is most famous in indigenous systems of medicine. The present research work aims to appraise and validate the potential of polyphenol-rich star anise tea (SAT) on oxidative stress, obesity and related biochemical parameters in high-fat-sugar-diet (HFSD)-induced obesity model in rats. SAT was prepared using the traditional method in warm water. The Reverse Phase High Pressure Liquid Chromatography (RP-HPLC) analysis was performed for the simultaneous determination of phenolic acids and flavonoids in SAT. Two doses (250 and 500 mg/kg body weight) were selected to investigate the anti-obesity potential of SAT using HFSD-induced obese rat model. Major (>5 mg/100 mL) phenolic acids in SAT were p-coumeric acid, gallic aid, cinamic acid, chlorogenic acid and ferulic acid while catechin and rutin were the major flavonoids detected in the SAT. SAT exhibited 51.3% DPPH radical scavenging activity. In vivo study showed that higher doses of SAT (500 mg/kg body weight) significantly reduced the body weight increase (74.82%) and BMI (0.64 g/cm2). Moreover, significant reductions in the levels of serum total cholesterol, triglyceride, LDL and VLDL were recorded in all the treatment groups in comparison to the HFSDC group. Furthermore, SAT reduced the alterations in MDA, SOD and GSH levels of experimental groups thus showing the potential against oxidative stress. The SAT-500 group showed a significant decrease in the elevated kidney and liver weights and atherogenic index in comparison to the HFSDC group. The present study proved that SAT exhibited strong protective effects against obesity and oxidative stress, especially at higher doses.
Collapse
Affiliation(s)
- Neelam Iftikhar
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abdullah Ijaz Hussain
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Central Hi-Tech Lab, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Mustafa Kamal
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sidra Manzoor
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tabinda Fatima
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Farhan Khashim Alswailmi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | | |
Collapse
|
10
|
Yang XD, Ge XC, Jiang SY, Yang YY. Potential lipolytic regulators derived from natural products as effective approaches to treat obesity. Front Endocrinol (Lausanne) 2022; 13:1000739. [PMID: 36176469 PMCID: PMC9513423 DOI: 10.3389/fendo.2022.1000739] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemic obesity is contributing to increases in the prevalence of obesity-related metabolic diseases and has, therefore, become an important public health problem. Adipose tissue is a vital energy storage organ that regulates whole-body energy metabolism. Triglyceride degradation in adipocytes is called lipolysis. It is closely tied to obesity and the metabolic disorders associated with it. Various natural products such as flavonoids, alkaloids, and terpenoids regulate lipolysis and can promote weight loss or improve obesity-related metabolic conditions. It is important to identify the specific secondary metabolites that are most effective at reducing weight and the health risks associated with obesity and lipolysis regulation. The aims of this review were to identify, categorize, and clarify the modes of action of a wide diversity of plant secondary metabolites that have demonstrated prophylactic and therapeutic efficacy against obesity by regulating lipolysis. The present review explores the regulatory mechanisms of lipolysis and summarizes the effects and modes of action of various natural products on this process. We propose that the discovery and development of natural product-based lipolysis regulators could diminish the risks associated with obesity and certain metabolic conditions.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, Second Xiangya Hospital of Central South University, Changsha, China
- Phase I Clinical Trial Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xing-Cheng Ge
- Xiangxing College, Hunan University of Chinese Medicine, Changsha, China
| | - Si-Yi Jiang
- Department of Pharmacy, Medical College, Yueyang Vocational Technical College, YueYang, China
| | - Yong-Yu Yang
- Department of Pharmacy, Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Recent Advances on Biological Activities and Structural Modifications of Dehydroabietic Acid. Toxins (Basel) 2022; 14:toxins14090632. [PMID: 36136570 PMCID: PMC9501862 DOI: 10.3390/toxins14090632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dehydroabietic acid is a tricyclic diterpenoid resin acid isolated from rosin. Dehydroabietic acid and its derivatives showed lots of medical and agricultural bioactivities, such as anticancer, antibacterial, antiviral, antiulcer, insecticidal, and herbicidal activities. This review summarized the research advances on the structural modification and total synthesis of dehydroabietic acid and its derivatives from 2015 to 2021, and analyzed the biotransformation and structure-activity relationships in order to provide a reference for the development and utilization of dehydroabietic acid and its derivatives as drugs and pesticides.
Collapse
|
12
|
Alipour R, Marzabadi LR, Arjmand B, Ayati MH, Namazi N. The effects of medicinal herbs on gut microbiota and metabolic factors in obesity models: A systematic review. Diabetes Metab Syndr 2022; 16:102586. [PMID: 35961277 DOI: 10.1016/j.dsx.2022.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS This systematic review of animal studies aimed to identify anti-obesity medicinal herbs with prebiotic properties, and investigate their effects on gut microbiota and metabolic disorders. METHODS To obtain the relevant publications, four electronic databases were systematically searched up to June 2019. RESULTS Out of 1949 publications, 20 articles met the inclusion criteria in this study. Apart from body weight, some cases (n = 11) had reported the effects of medicinal herbs on metabolic parameters, including lipid profile (n = 7) and glycemic status (n = 4). CONCLUSION Although some medicinal herbs could be effective in modulating metabolic status and body weight, through making changes in the gut flora, further studies are needed to confirm the efficacy of such herbs in clinical trials.
Collapse
Affiliation(s)
- Reihane Alipour
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Rasi Marzabadi
- Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Cellular and Molecular Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Iran
| | - Mohammad Hossein Ayati
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Delving the Role of Caralluma fimbriata: An Edible Wild Plant to Mitigate the Biomarkers of Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5720372. [PMID: 35770046 PMCID: PMC9236770 DOI: 10.1155/2022/5720372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MS), commonly known as syndrome X or insulin resistance syndrome, is a collection of risk factors for cardiovascular diseases and type II diabetes. MS is believed to impact over a billion individuals worldwide. It is a medical condition defined by visceral obesity, insulin resistance, high blood pressure, and abnormal cholesterol levels, according to the World Health Organization. The current dietary trends are more focused on the use of functional foods and nutraceuticals that are well known for their preventive and curative role against such pathological disorders. Caralluma fimbriata is one such medicinal plant that is gaining popularity. It is a wild, edible, succulent roadside shrub with cactus-like leaves. Besides its main nutrient contents, various bioactive constituents have been identified and linked with positive health outcomes of appetite-suppressing, hypolipidemic, antioxidant, hepatoprotective, and anticancer potentials. Hence, such properties make C. fimbriata an invaluable plant against MS. The current review compiles recent available literature on C. fimbriata's nutritional composition, safety parameters, and therapeutic potential for MS. Summarized data in this review reveals that C. fimbriata remains a neglected plant with limited food and therapeutic applications. Yet various studies explored here do prove its positive health-ameliorating outcomes.
Collapse
|
14
|
Zhang W, Lin H, Cheng W, Huang Z, Zhang W. Protective Effect and Mechanism of Plant-Based Monoterpenoids in Non-alcoholic Fatty Liver Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4839-4859. [PMID: 35436113 DOI: 10.1021/acs.jafc.2c00744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protective effect of plant active ingredients against non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prominent, and the terpenoids have always been the main active compounds in Chinese herbal medicine exerting hepatoprotective effects. However, the related pharmacological effects, especially for monoterpenoids or iridoid glycosides, which have obvious effects on improvement of NAFLD, have not been systematically analyzed. The objective of this review is to systematically examine the molecular mechanisms of monoterpenoids in NAFLD. The signaling pathways of peroxisome proliferator-activated receptor, insulin, nuclear factor κB, toll-like receptor, adipocytokine, RAC-α serine/threonine protein kinase, mammalian target of rapamycin, 5'-AMP-activated protein kinase, and autophagy have been proven to mediate this protective effect. We further compared the experimental data from animal models, including the dosage of these monoterpenoids in detail, and demonstrated that they are effective and safe candidate drugs for NAFLD. This review provides a reference for the development of NAFLD drugs as well as a research guideline for the potential uses of plant monoterpenoids.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
15
|
Ishii M, Ikeda N, Miyata H, Takahashi M, Nishimura M. Purple sweet potato leaf extracts suppress adipogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Food Biochem 2022; 46:e14057. [PMID: 35034358 DOI: 10.1111/jfbc.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 11/27/2022]
Abstract
Purple sweet potato (Ipomoea batatas L.) leaf extract (PSPLE) is known to exhibit various biological effects. However, the anti-adipogenic effects of PSPLE on mesenchymal stem cells (MSCs) remain unknown. In the present study, we investigated the effect of PSPLE on the adipogenic differentiation of human bone marrow MSCs. PSPLE treatment significantly reduced lipid accumulation and triglyceride levels during adipogenic differentiation. PSPLE suppressed the expression of PPARγ and C/EBPα, which are the master transcription factors orchestrating adipogenesis; moreover, it inhibited the expression of adiponectin, adipocyte protein 2 (aP2), and lipoprotein lipase (LPL), which are downstream target genes involved in adipogenic differentiation. Furthermore, PSPLE treatment suppressed glucose transporter 4 expression and intracellular glucose uptake and significantly inhibited the adipogenic differentiation induced factor-stimulated Akt signaling activation. These results indicate that PSPLE suppresses the differentiation of undifferentiated MSCs into adipocyte lineages and inhibits the terminal differentiation from preadipocytes into mature adipocytes. PRACTICAL APPLICATION: The increase in the prevalence of obesity worldwide is a problem today. Obesity is induced by an excessive accumulation of adipocytes and causes obesity-related diseases, such as diabetes, hypertension, and hyperlipidemia. Natural compounds derived from plants and fruits have a variety of biological activities and are expected to exert therapeutic effects against various diseases. This study shows that purple sweet potato (Ipomoea batatas L.) leaf extract (PSPLE) suppresses adipogenesis of bone marrow-derived mesenchymal stem cells. Thus, PSPLE may be a novel functional food for controlling obesity.
Collapse
Affiliation(s)
- Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Manami Takahashi
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| |
Collapse
|
16
|
Bati B, Celik I, Vuran NE, Turan A, Alkan EE, Zirek AK. Effects of Gundelia tournefortii L. on biochemical parameters, antioxidant activities and DNA damage in a rat model of experimental obesity. BRAZ J BIOL 2021; 83:e251198. [PMID: 34550296 DOI: 10.1590/1519-6984.251198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to investigate the effects of Gundelia tournefortii L. plant extract on different tissues in terms of DNA damage, biochemical and antioxidant parameter values in rats with high-calorie diets. With this aim, Wistar albino male rats were divided into 4 groups containing 6 rats each and the study was completed over 12 weeks duration. At the end of the implementation process over the 12 weeks, rats were sacrificed and blood and tissue samples were obtained. Analyses were performed on blood and tissue samples. According to results for DNA damage (8-OHdG), in brain tissue the OG2 group was significantly reduced compared to the NC group. For MDA results in liver tissue, OG1 and OG2 groups were determined to increase by a significant degree compared to the control group, while the OG2 group was also increased significantly compared to the obese group. In terms of the other parameters, comparison between the groups linked to consumption of a high calorie diet (HCD) and administration of Gundelia tournefortii L. in terms of antioxidant activities and serum samples obtained statistically significant results. Gundelia tournefortii L. plant extracts had effects that may be counted as positive on antioxidant parameter activity and were especially identified to improve DNA damage and MDA levels in brain tissues. Additionally, consumption of Gundelia tournefortii L. plant extract in the diet may have antiobesity effects; thus, it should be evaluated for use as an effective weight-loss method and as a new therapeutic agent targeting obesity.
Collapse
Affiliation(s)
- B Bati
- Van Yüzüncü Yıl University, Faculty of Education, Department of Mathematics and Science Education, Van, Turkey
| | - I Celik
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - N Eray Vuran
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - A Turan
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - E E Alkan
- Van Yüzüncü Yıl University, Faculty of Education, Department of Mathematics and Science Education, Van, Turkey
| | - A K Zirek
- Hakkari University, Institute of Sciences, Medical Services and Techniques, Hakkari, Turkey
| |
Collapse
|
17
|
Liver fat storage is controlled by HNF4α through induction of lipophagy and is reversed by a potent HNF4α agonist. Cell Death Dis 2021; 12:603. [PMID: 34117215 PMCID: PMC8193211 DOI: 10.1038/s41419-021-03862-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
We report the discovery of strong HNF4α agonists and their use to uncover a previously unknown pathway by which HNF4α controls the level of fat storage in the liver. This involves the induction of lipophagy by dihydroceramides, the synthesis and secretion of which is controlled by genes induced by HNF4α. The HNF4α activators are N-trans caffeoyltyramine (NCT) and N-trans feruloyltyramine (NFT), which are structurally related to the known drugs alverine and benfluorex, which we previously showed to be weak HNF4α activators. In vitro, NCT and NFT induced fat clearance from palmitate-loaded cells. In DIO mice, NCT led to recovery of hepatic HNF4α expression and reduction of steatosis. Mechanistically, increased dihydroceramide production and action downstream of HNF4α occurred through increased expression of HNF4α downstream genes, including SPNS2 and CYP26A1. NCT was completely nontoxic at the highest dose administered and so is a strong candidate for an NAFLD therapeutic.
Collapse
|
18
|
Shekhawat RS, Mandal CC. Anti-obesity Medications in Cancer Therapy: A Comprehensive Insight. Curr Cancer Drug Targets 2021; 21:476-494. [PMID: 34225630 DOI: 10.2174/1568009621666210322122829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
Collapse
Affiliation(s)
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, India
| |
Collapse
|
19
|
Wang F, Xue Y, Fu L, Wang Y, He M, Zhao L, Liao X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: a review. Crit Rev Food Sci Nutr 2021; 62:5322-5348. [PMID: 33591238 DOI: 10.1080/10408398.2021.1884840] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a well-known vanilloid, which is the main spicy component in chili peppers, showing several biological activities and the potential applications range from food flavorings to therapeutics. Traditional extraction of capsaicin by organic solvents was time-consuming, some new methods such as aqueous two-phase method and ionic liquid extraction method have been developed. During past few decades, an ample variety of biological effects of capsaicin have been evaluated. Capsaicin can be used in biofilms and antifouling coatings due to its antimicrobial activity, allowing it has a promising application in food packaging, food preservation, marine environment and dental therapy. Capsaicin also play a crucial role in metabolic disorders, including weight loss, pressure lowing and insulin reduction effects. In addition, capsaicin was identified effective on preventing human cancers, such as lung cancer, stomach cancer, colon cancer and breast cancer by inducing apoptosis and inhibiting cell proliferation of tumor cells. Previous research also suggest the positive effects of capsaicin on pain relief and cognitive impairment. Capsaicin, the agonist of transient receptor potential vanilloid type 1 (TRPV1), could selectively activate TRPV1, inducing Ca2+ influx and related signaling pathways. Recently, gut microbiota was also involved in some diseases therapeutics, but its influence on the effects of capsaicin still need to be deeply studied. In this review, different extraction and purification methods of capsaicin, its biological activities and pharmacological effects were systematically summarized, as well as the possible mechanisms were also deeply discussed. This article will give an updated and better understanding of capsaicin-related biological effects and provide theoretical basis for its further research and applications in human health and manufacture development.
Collapse
Affiliation(s)
- Fengzhang Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Yong Xue
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Lin Fu
- ACK Company, Urumqi, Xinjiang, China
| | - Yongtao Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Minxia He
- ACK Company, Urumqi, Xinjiang, China
| | - Liang Zhao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, China
| | - Xiaojun Liao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Ren X, Xu W, Sun J, Dong B, Awala H, Wang L. Current Trends on Repurposing and Pharmacological Enhancement of Andrographolide. Curr Med Chem 2021; 28:2346-2368. [PMID: 32778020 DOI: 10.2174/0929867327666200810135604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Andrographolide, the main bioactive component separated from Andrographis paniculata in 1951, has been scrutinized with a modern drug discovery approach for anti-inflammatory properties since 1984. Identification of new uses of existing drugs can be facilitated by searching for evidence linking them to known or yet undiscovered drug targets and human disease states to develop new therapeutic indications.Furthermore, a wide spectrum of biological properties of andrographolide such as anticancer, antibacterial, antiviral, hepatoprotective, antioxidant, anti-malarial, anti-atherosclerosis are also reported. However, poor water solubility and instability limit its clinical application. It becomes crucial to enhance its pharmacological function and find a new treatment option for more diseases. Therefore, this article reviews the major recent developments in andrographolide, including repurposing applications in different diseases and underlying mechanisms, particularly focusing on pharmacological enhancement of andrographolide such as derivatives, chemical modifications with potent biological activity and drug delivery. The repurposing and pharmacological enhancement of andrographolide would not only have exciting therapeutic potential to different diseases to facilitate drug marketing, but also decrease the economic burden on healthcare worldwide.
Collapse
Affiliation(s)
- Xuan Ren
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Wenzhou Xu
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hussein Awala
- Faculty of Science, Lebanese University, Nabatieh, Lebanon
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|