1
|
Zhong C, Deng K, Lang X, Shan D, Xie Y, Pan W, Yu J. Therapeutic potential of natural flavonoids in atherosclerosis through endothelium-protective mechanisms: An update. Pharmacol Ther 2025; 271:108864. [PMID: 40274196 DOI: 10.1016/j.pharmthera.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Atherosclerosis and its associated cardiovascular complications remain significant global public health challenges, underscoring the urgent need for effective therapeutic strategies. Endothelial cells are critical for maintaining vascular health and homeostasis, and their dysfunction is a key contributor to the initiation and progression of atherosclerosis. Targeting endothelial dysfunction has, therefore, emerged as a promising approach for the prevention and management of atherosclerosis. Among natural products, flavonoids, a diverse class of plant-derived phenolic compounds, have garnered significant attention for their anti-atherosclerotic properties. A growing body of evidence demonstrates that flavonoids can mitigate endothelial dysfunction, highlighting their potential as endothelial dysfunction-targeted therapeutics for atherosclerosis. In this review, we summarize current knowledge on the roles of natural flavonoids in modulating various aspects of endothelial dysfunction and their therapeutic effects on atherosclerosis, focusing on the underlying molecular mechanisms. We also discuss the challenges and future prospects of translating natural flavonoids into clinical applications for cardiovascular medicine. This review aims to provide critical insights to advance the development of novel endothelium-protective pharmacotherapies for atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Dan Shan
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yanfei Xie
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Altammar KA. Unveiling Therapeutic Powers of Indigenous Flora: Antimicrobial, Antioxidant, and Anticancer Properties of Horwoodia dicksoniae. Pharmaceuticals (Basel) 2025; 18:765. [PMID: 40430580 PMCID: PMC12114875 DOI: 10.3390/ph18050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Background:Horwoodia dicksoniae Turrill. (Brassicaceae) and Stipa capensis Thunb. (Poaceae) are commonly grown in the eastern region of Saudi Arabia. Methods: This study evaluated the antibacterial and antifungal potential of these plants. H. dicksoniae extract was further subjected to antioxidant, anticancer, GC-MS, LC-MS/MS, and in silico analyses. Results: H. dicksoniae extract presented a higher antimicrobial efficiency than S. capensis extract by effectively inhibiting the growth of Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Bacillus subtilis, and Candida albicans. H. dicksoniae ethanolic extract also demonstrated promising antioxidant and anticancer properties against the human colon cancer cell line HCT-116. GC-MS analysis revealed the presence of 12 natural compounds in the H. dicksoniae extract, whereas LC-MS/MS analysis revealed 19 different compounds in negative ion mode and 25 in positive ion mode. Furthermore, the presence of bioactive compounds in the H. dicksoniae extract, such as flavonoids (acacetin and hesperetin) and caffeic acid, confirmed the observed antibacterial, antifungal, antioxidant, and anticancer activities. Molecular docking revealed promising interactions between various bioactive compounds and target proteins associated with antimicrobial, antioxidant, and anticancer activities. Conclusions: This study is the first to report GC-MS and LC-MS/MS analyses of H. dicksoniae ethanolic extract. The findings provide valuable insights into the potential mechanisms and therapeutic applications of the identified bioactive compounds. Thus, the present work can serve as a platform for the isolation of natural compounds from H. dicksoniae extract, which may play a significant role in the discovery and design of new drugs for the treatment of human diseases.
Collapse
Affiliation(s)
- Khadijah A Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Saudi Arabia
| |
Collapse
|
3
|
Pan Y, Xia M, Luo J, Lu S. Resveratrol Promotes Wound Healing by Enhancing Angiogenesis via Inhibition of Ferroptosis. Food Sci Nutr 2025; 13:e70254. [PMID: 40330211 PMCID: PMC12053223 DOI: 10.1002/fsn3.70254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Diabetic wound healing critically depends on functional endothelial cells for angiogenesis, yet the hyperglycemic microenvironment induces endothelial dysfunction through oxidative stress, inflammation, and senescence. Although ferroptosis has been recognized as a critical pathological factor contributing to impaired diabetic wound healing, the therapeutic potential of resveratrol (Res), a natural polyphenol with well-documented antioxidant and anti-ferroptotic properties, remains underexplored in this context. This study aimed to investigate the protective effects of Res on endothelial cells and elucidate its underlying mechanisms in diabetic wound healing. In vitro experiments systematically evaluated Res's impact on cellular inflammatory responses, senescence levels, and angiogenic capacity. Subsequent in vivo studies assessed Res's therapeutic potential by monitoring diabetic wound healing progression and analyzing associated histological changes. To clarify the mechanisms underlying Res's promotion of diabetic wound healing, we conducted comprehensive analyses measuring intracellular reactive oxygen species, lipid peroxidation levels, mitochondrial membrane potential and morphology, ferroptosis-related marker expression, and upstream signaling pathway regulation. Res significantly reduced HG-induced inflammatory responses and cellular senescence in human umbilical vein endothelial cells while enhancing their angiogenic potential in vitro. In vivo results showed that Res not only markedly accelerated diabetic wound healing but also demonstrated multiple beneficial effects, including effective suppression of cellular senescence, decreased ferroptosis levels, and significantly promoted angiogenesis. Mechanistic investigations confirmed that Res achieves these effects by inhibiting ferroptosis through activation of the PI3K-AKT-Nrf2 signaling axis. Our results demonstrate that Res protects endothelial cells from HG-induced ferroptosis by activating PI3K-AKT-Nrf2 signaling, thereby promoting angiogenesis and diabetic wound healing. These findings highlight Res as a promising therapeutic candidate for impaired diabetic wound repair and justify further clinical investigation.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Traumatic OrthopedicsThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangGuizhouChina
| | - Mingyan Xia
- Department of AnatomySchool of Basic Medicine Science, Guizhou Medical UniversityGuiyangChina
| | - Jin Luo
- Department of Traumatic OrthopedicsThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Shuai Lu
- Department of BiologySchool of Basic Medical Science, Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
4
|
Russo A, Putaggio S, Tellone E, Calderaro A, Cirmi S, Laganà G, Ficarra S, Barreca D, Patanè GT. Emerging Ferroptosis Involvement in Amyotrophic Lateral Sclerosis Pathogenesis: Neuroprotective Activity of Polyphenols. Molecules 2025; 30:1211. [PMID: 40141987 PMCID: PMC11944684 DOI: 10.3390/molecules30061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Neurodegenerative diseases are a group of diseases that share common features, such as the generation of misfolded protein deposits and increased oxidative stress. Among them, amyotrophic lateral sclerosis (ALS), whose pathogenesis is still not entirely clear, is a complex neurodegenerative disease linked both to gene mutations affecting different proteins, such as superoxide dismutase 1, Tar DNA binding protein 43, Chromosome 9 open frame 72, and Fused in Sarcoma, and to altered iron homeostasis, mitochondrial dysfunction, oxidative stress, and impaired glutamate metabolism. The purpose of this review is to highlight the molecular targets common to ALS and ferroptosis. Indeed, many pathways implicated in the disease are hallmarks of ferroptosis, a recently discovered type of iron-dependent programmed cell death characterized by increased reactive oxygen species (ROS) and lipid peroxidation. Iron accumulation results in mitochondrial dysfunction and increased levels of ROS, lipid peroxidation, and ferroptosis triggers; in addition, the inhibition of the Xc- system results in reduced cystine levels and glutamate accumulation, leading to excitotoxicity and the inhibition of GPx4 synthesis. These results highlight the potential involvement of ferroptosis in ALS, providing new molecular and biochemical targets that could be exploited in the treatment of the disease using polyphenols.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Li F, Ye H, Li L, Chen Q, Lan X, Wu L, Li B, Li L, Guo C, Ashrafizadeh M, Sethi G, Guo J, Wu L. Histone lysine crotonylation accelerates ACSL4-mediated ferroptosis of keratinocytes via modulating autophagy in diabetic wound healing. Pharmacol Res 2025; 213:107632. [PMID: 39892437 DOI: 10.1016/j.phrs.2025.107632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Dysfunction of keratinocytes affects diabetic wound healing, but underlying mechanisms have not been understood. This study examines crotonylation's role in ferroptosis and autophagy in keratinocytes, particularly regarding ACSL4, using STZ-induced diabetic rats and high glucose-exposed keratinocytes to assess these processes. The ACSL4 knockdown was achieved using adenovirus in wounds to examine the impact of ferroptosis modulation on healing diabetic wounds. MB-3 was utilized to block the H3K27 crotonylation (H3K27cr) in order to clarify the regulatory function of crotonylation in both autophagy and ferroptosis. In STZ-induced diabetic skin and high glucose-exposed keratinocytes, ferroptosis mediated by ACSL4 and suppression of autophagic flux were demonstrated. Moreover, the downregulation of ACSL4 triggered ferroptosis in adjacent wounds of diabetic rats and improved wound healing. The degradation of ACSL4 may be observed via the autophagy-lysosome pathway in keratinocytes. Downregulation of SQSTM1 in diabetic keratinocytes leads to autophagy inhibition and modulates the protein level of ACSL4. Mechanistically, total crotonylation levels and H3K27cr were remarkably elevated in the skin and keratinocytes of diabetic rats; blocking high glucose-induced H3K27cr with MB-3 can enhance SQSTM1 transcription and expression while promoting autophagy and reducing ACSL4-induced ferroptosis in keratinocytes. Therefore, H3K27cr influences autophagy by adjusting SQSTM1 to facilitate ACSL4-triggered ferroptosis in diabetic keratinocytes. This study clarifies the relationships between acylation modifications, autophagy, and ferroptosis, while also offering mechanistic insights and potential therapeutic targets for issues associated with diabetic wound healing.
Collapse
Affiliation(s)
- Fengjuan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Haowen Ye
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lanlan Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingling Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xianwu Lan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Liangxiu Wu
- Department of Gastroenterology, The People's Hospital of Hezhou, Hezhou 542899, China
| | - Bin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lishan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chuxian Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
6
|
Kacemi R, Campos MG. Bee Pollen Potential to Modulate Ferroptosis: Phytochemical Insights for Age-Related Diseases. Antioxidants (Basel) 2025; 14:265. [PMID: 40227202 PMCID: PMC11939620 DOI: 10.3390/antiox14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Bee pollen (BP) is one of the richest known natural resources of micronutrients and bioactive phytochemicals. Some captivating bioactivities of BP compounds, although being largely investigated for the latter as individual molecules, remain very scarcely investigated or completely uninvestigated in bee pollen as a whole product. Among the most intriguing of these bioactivities, we identified ferroptosis as a major one. Ferroptosis, a recently discovered form of cell death (connecting oxidative stress and inflammation), is a complex pathophysiological process and one of the most crucial and perplexing events in current challenging human diseases such as cancer, neurodegeneration, and general aging diseases. Many BP compounds were found to intricately modulate ferroptosis depending on the cellular context by inducing this cell death mechanism in malignant cells and preventing it in non-malignant cells. Since research in both fields, i.e., BP and ferroptosis, is still recent, we deemed it necessary to undertake this review to figure out the extent of BP potential in modulating ferroptosis mechanisms. Our research proved that a wide range of BP compounds (polyphenols, phenolamides, carotenoids, vitamins, minerals, and others) substantially modulate diverse ferroptosis mechanisms. Accordingly, these phytochemicals and nutrients showed interesting potential in preclinical studies to lead to ferroptosis-mediated outcomes in important pathophysiological processes, including many aging-related disorders. One of the most paramount challenges that remain to be resolved is to determine how different BP compounds act on ferroptosis in different biological and pathophysiological contexts, either through synergistic or antagonistic behaviors. We hope that our current work constitutes a valuable incentive for future investigations in this promising and very relevant research avenue.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
An J, Zhou Q, Guo X, Xu C, Jia X, Cao Z, Lu Q. From Pathophysiology to Treatment: The Role of Ferroptosis in PCOS. FRONT BIOSCI-LANDMRK 2025; 30:25586. [PMID: 40018919 DOI: 10.31083/fbl25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 03/01/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological endocrine and metabolic disorder in women, with an incidence rate of 10-13%. The etiology of PCOS is multifaceted, involving genetic predisposition, environmental influences, lifestyle factors, and endocrine metabolic dysregulation. Iron, a critical mineral, not only plays a role in regulating female physiological functions and the progression of PCOS but also requires careful management to avoid deficiency. However, excess iron can trigger ferroptosis, a form of nonapoptotic cell death characterized by the accumulation of lipid peroxides. While numerous studies have explored ferroptosis in patients with PCOS and animal models, the precise mechanisms and therapeutic implications remain inadequately understood. This review seeks to elucidate the pathophysiology of PCOS and the contributory factors of ferroptosis. Additionally, we examine the diverse manifestations of ferroptosis in PCOS and evaluate its role. Furthermore, we introduce ferroptosis-related traditional Chinese medicines that may enhance the understanding of PCOS pathogenesis and aid in the development of targeted therapies for ferroptosis in PCOS.
Collapse
Affiliation(s)
- Jie An
- Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Qin Zhou
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Xiaojing Guo
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Congya Xu
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - XiaoFang Jia
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Zhenzhen Cao
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Qibin Lu
- Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
- Department of Gynecology of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Liu C, Pan J, Bao Q. Ferroptosis in senescence and age-related diseases: pathogenic mechanisms and potential intervention targets. Mol Biol Rep 2025; 52:238. [PMID: 39960579 DOI: 10.1007/s11033-025-10338-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/04/2025] [Indexed: 05/09/2025]
Abstract
As the global population continues to age, the prevalence of age-related diseases is increasing, significantly influencing social and economic development, the stability of social security systems, and progress in medical technology. Ferroptosis, a recently discovered form of programmed cell death driven by iron-dependent lipid peroxidation, has emerged as a key area of research. Studies have revealed a strong association between ferroptosis and senescence. In this article, we systematically summarize the molecular mechanisms and associated signaling pathways underlying ferroptosis, emphasizing its pivotal role in the onset and progression of age-related diseases. By providing new perspectives, we aim to advance understanding of the pathogenesis of age-related diseases and guide the development of effective intervention strategies.
Collapse
Affiliation(s)
- Chang Liu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Pan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qi Bao
- Zhejiang University School of Medicine, Hangzhou, China.
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
9
|
Tian M, Huang W, Chen J, Liu X, Wang H, Pan X, Wang L, Li Q, Gao L, Ye Y. The extract from Quzhou Aurantii Fructus attenuates cough variant asthma through inhibiting the TRPV1/Ca 2+/NFAT/TSLP pathway and ferroptosis via TRPV1 mediation in ovalbumin-induced mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119038. [PMID: 39510426 DOI: 10.1016/j.jep.2024.119038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cough variant asthma (CVA), a prevalent chronic inflammatory disease, is the most common cause of chronic cough. Over the years, the aqueous extract of Quzhou Aurantii Fructus (QAFA) has been widely used to treat respiratory diseases, particularly cough. AIM OF THE STUDY This study aimed to elucidate the therapeutic effect of QAFA on allergen-induced CVA, providing deep insights into the underlying mechanisms. MATERIALS AND METHODS Ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was employed to characterize the compositions, while UPLC was used to quantify the contents of its major components in QAFA. CVA model was established via sensitization and atomization with ovalbumin (OVA), and received 600 and 1200 mg/kg of QAFA via intragastric gavage. Cough response was assessed by stimulation with capsaicin (CAP). Then, airway hyperresponsiveness (AHR), ELISA, western blotting, RT-qPCR, and histological analyses, were applied to assess pulmonary function, pathological changes, and investigate mechanisms in CVA mice following QAFA treatment through the TRPV1/Ca2+-dependent NFAT-induced expression of TSLP and ferroptosis. Additionally, the effects and mechanisms of QAFA were validated using IL-4, CAP for stimulation, capsazepine (CPZ) for inhibition, and TRPV1 siRNA transfection in cells. RESULTS Chemical analysis revealed that QAFA primarily contained sixteen compounds, with four main components including narirutin, naringin, hesperidin, and neohesperidin. In vivo, QAFA treatment alleviated cough and AHR, while concurrently reducing airway inflammation and mucus secretion in CVA mice. These effects were achieved by suppressing the TRPV1/NFAT/TSLP pathway and modulating the expression of ferroptosis-related proteins. In vitro, siTRPV1-transfected BEAS-2B cells demonstrated the involvement of the TRPV1 channel in IL-4-mediated Ca2+ influxes, ferroptosis, and regulation of TSLP production. QAFA and CPZ suppressed IL-4-induced TSLP production via the TRPV1/NFAT pathway and regulated the levels of ferroptosis-related proteins, while CAP counteracted the effect of QAFA on TSLP production in BEAS-2B cells. Furthermore, QAFA reduced IL-4 or CAP induced Ca2+ influx and IL-4 induced ferroptosis through TRPV1 mediation. CONCLUSIONS This study demonstrated that QAFA improved pulmonary function and alleviated asthmatic inflammatory response in treating CVA probably through suppressing the TRPV1/Ca2+/NFAT/TSLP pathway and ferroptosis via TRPV1 mediation.
Collapse
Affiliation(s)
- Meizi Tian
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
| | - Wenkang Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
| | - Jiahui Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
| | - Xiaotong Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
| | - Haiou Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
| | - Xiaoya Pan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
| | - Lixia Wang
- Changshan Characteristic Industry Development Center, Quzhou, Zhejiang, 324000, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
10
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
11
|
Song B, Hao M, Zhang S, Niu W, Li Y, Chen Q, Li S, Tong C. Comprehensive review of Hesperetin: Advancements in pharmacokinetics, pharmacological effects, and novel formulations. Fitoterapia 2024; 179:106206. [PMID: 39255908 DOI: 10.1016/j.fitote.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Hesperetin is a flavonoid compound naturally occurring in the peel of Citrus fruits from the Rutaceae family. Previous studies have demonstrated that hesperetin exhibits various pharmacological effects, such as anti-inflammatory, anti-tumor, antioxidative, anti-aging, and neuroprotective properties. In recent years, with the increasing prevalence of diseases and the rising awareness of traditional Chinese medicine, hesperetin has garnered growing attention for its wide-ranging pharmacological effects. To substantiate its health benefits and elucidate potential mechanisms, knowledge of pharmacokinetics is crucial. However, the limited solubility of hesperetin restricts its bioavailability, thereby diminishing its efficacy as a beneficial health agent. To enhance the bioavailability of hesperetin, various novel formulations have been developed, including nanoparticles, liposomes, and cyclodextrin inclusion complexes. This article reviews recent advances in the pharmacokinetics of hesperetin and methods to improve its bioavailability, as well as its pharmacological effects and mechanisms, aiming to provide a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Bocui Song
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Meihan Hao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Administration Committee of Jilin Yongji Economic Development Zone, Jilin, Jilin, China
| | - Wenqi Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuqi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qian Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| |
Collapse
|
12
|
Jiang MZ, Li C, Mao CM, Yu H, Zhou YC, Pu SQ, Li RZ, Liao YJ, Zhang DY, Yang P, Li MH, Li M. The MAPK/ERK signaling pathway involved in Raddeanin A induces apoptosis via the mitochondrial pathway and G2 phase arrest in multiple myeloma. Sci Rep 2024; 14:29061. [PMID: 39580496 PMCID: PMC11585587 DOI: 10.1038/s41598-024-76465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the unrestricted proliferation of plasma cells that secrete immunoglobulin in the bone marrow. Extracted primarily from Anemone raddeana regel, Raddeanin A (RA) is a natural triterpenoid saponin compound with anti-inflammatory and anti-tumor activities. However, most research on the anti-tumor effects of RA has concentrated on solid tumors, with little exploration into non-solid tumors like MM. Furthermore, there is a dearth of research investigating the interplay between RA and MM, encompassing their interaction targets and mechanisms. This study aims to delve into the biological activity and molecular mechanism of RA's anti-MM properties through the lens of network pharmacology and experimental validation. The findings from GO enrichment analysis, KEGG enrichment analysis, and molecular docking prediction suggested a potential correlation between the MAPK signaling pathway, including the MAPK1 gene (also known as ERK2), and the impact of RA on MM. Results from the CCK-8 assay revealed a time-dependent and concentration-dependent inhibition of proliferation in MM cell lines treated with RA. Notably, in the cell lines used for the test, the IC50 values for MM.1 S cells were 1.616 µM at 24 H and 1.058 µM at 48 H, for MM.1R cells were 3.905 µM at 24 H and 2.18 µM at 48 H, while for RPMI 8226 cells, they were 6.091 µM at 24 H and 3.438 µM at 48 H. The PI, Annexin V-FITC/PI, and JC-1 staining showed that RA could arrest the cell cycle in the G2 phase, cause apoptosis, and induce the change of mitochondrial membrane potential (MMP) in MM cells. Treated with RA, the Western blot analysis showed that the expression levels of Bim, Cleaved Caspase 3/9, and Cleaved PARP were increased, and the expression level of Mcl-1 was decreased in MM cells. Concurrently, the phosphorylated protein expression levels of p-ERK1/2, p-MSK1, p-P90RSK, and p-MEK1/2 were diminished following RA treatment. These results suggest that RA has the activity of anti-MM, and the MAPK/ERK signaling pathway is involved in the growth inhibition effect of RA on MM cells via cycle arrest and mitochondrial-pathway-dependent apoptosis.
Collapse
Affiliation(s)
- Ming-Zheng Jiang
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Laboratory Medicine, People's Hospital of Xingwen County, Xingwen, 644400, China
| | - Chen Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Chun-Mei Mao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Huan Yu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yi-Chuan Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Shi-Qi Pu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Run-Zi Li
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Yu-Jiao Liao
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Dan-Yin Zhang
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Ping Yang
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Academic Office, Chengdu Medical College, Chengdu, 610500, China.
| | - Min-Hui Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Center of Scientific Research and Experiment, Chengdu Medical College, Chengdu, 610500, China.
| | - Minhui Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
13
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Wang J, Yao Y, Yao T, Shi Q, Zeng Y, Li L. Hesperetin Alleviated Experimental Colitis via Regulating Ferroptosis and Gut Microbiota. Nutrients 2024; 16:2343. [PMID: 39064786 PMCID: PMC11279615 DOI: 10.3390/nu16142343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Hesperetin (HT) is a type of citrus flavonoid with various pharmacological activities, including anti-tumor, anti-inflammation, antioxidant, and neuroprotective properties. However, the role and mechanism of HT in ulcerative colitis (UC) have been rarely studied. Our study aimed to uncover the beneficial effects of HT and its detailed mechanism in UC. Experimental colitis was induced by 2.5% dextran sodium sulfate (DSS) for seven days. HT ameliorated DSS-induced colitis in mice, showing marked improvement in weight loss, colon length, colonic pathological severity, and the levels of TNFα and IL6 in serum. A combination of informatics, network pharmacology, and molecular docking identified eight key targets and multi-pathways influenced by HT in UC. As a highlight, the experimental validation demonstrated that PTGS2, a marker of ferroptosis, along with other indicators of ferroptosis (such as ACSL4, Gpx4, and lipid peroxidation), were regulated by HT in vivo and in vitro. Additionally, the supplement of HT increased the diversity of gut microbiota, decreased the relative abundance of Proteobacteria and Gammaproteobacteria, and restored beneficial bacteria (Lachnospiraceae_NK4A136_group and Prevotellaceae_UCG-001). In conclusion, HT is an effective nutritional supplement against experimental colitis by suppressing ferroptosis and modulating gut microbiota.
Collapse
Affiliation(s)
- Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yuanyuan Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| |
Collapse
|