1
|
Bouafir Y, Bouhenna MM, Nebbak A, Belfarhi L, Aouzal B, Boufahja F, Bendif H, Bruno M. Algal bioactive compounds: A review on their characteristics and medicinal properties. Fitoterapia 2025; 183:106591. [PMID: 40339617 DOI: 10.1016/j.fitote.2025.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Bioactive compounds derived from marine algae drawn increasing interest in pharmaceuticals, nutraceuticals, and cosmetics due to their wide range of therapeutic properties. These natural molecules, which include polysaccharides, polyphenols, phlorotannins, carotenoids, and pigments, exhibit potent antioxidant, antimicrobial, anti-inflammatory, antiviral, and antitumor activities. Algal bioactives are safer and more sustainable options for drug discovery since they often have less negative effects than synthesized compounds. This review highlights the structural diversity of algal biomolecules and their mechanisms of action, with emphasis on validated bioactivities supported by recent studies. It also critically examines challenges such as the low bioavailability of high-molecular-weight compounds like fucoidans, variability in metabolite production linked to environmental factors, and limitations in scalable extraction processes. Recent advances in nano-encapsulation, metabolic engineering, and eco-friendly extraction methods are explored as promising strategies to enhance bioavailability and industrial applicability. By integrating traditional knowledge with biotechnological innovations, this review underscores the underexploited potential of macroalgae in addressing chronic diseases and the urgent need for standardized protocols to facilitate the clinical translation of algal-derived bioactives.
Collapse
Affiliation(s)
- Yesmine Bouafir
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP384, Bou-Ismail 42004, Tipaza, Algeria
| | - Mustapha Mounir Bouhenna
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP384, Bou-Ismail 42004, Tipaza, Algeria
| | - Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP384, Bou-Ismail 42004, Tipaza, Algeria
| | - Leila Belfarhi
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP384, Bou-Ismail 42004, Tipaza, Algeria
| | - Badis Aouzal
- Research Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology (LIBEB), Department of Nature and Life Sciences, Faculty of Sciences, University 20 August 1955 Skikda, Skikda 21000, Algeria
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hamdi Bendif
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Uni-versità degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| |
Collapse
|
2
|
Kravchenko A, Krylova N, Iunikhina O, Anastyuk S, Isakov V, Glazunov V, Volod'ko A, Kitan' S, Shchelkanov M, Yermak I. Structure and properties of polysaccharides from tetrasporophytes of Mazzaella parksii. Int J Biol Macromol 2025; 300:140178. [PMID: 39848375 DOI: 10.1016/j.ijbiomac.2025.140178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The structure and anti-SARS-CoV-2 activity of sulfated polysaccharides (Mzpt) obtained in high yield (60 %) from tetrasporophytes of Mazzaella parksii were studied. Stepwise fractionation with KCl showed that Mzpt consisted of eight (MzptF1-MzptF8) carrageenans fractions, differing in structure and molecular weight. The yield of non-gelling MzptF8 was 58.1 % of the original Mzpt. According to IR and NMR spectroscopies, gelling MzptF1 and MzptF2 were mainly kappa/iota/nu-carrageenans. MzptF7 included mainly lambda-carrageenan and in smaller quantities kappa-, iota-, mu- and nu-carrageenans. MzptF8 had a complex composition and included gamma-carrageenan, unsulfated carrageenan, probably, delta-carrageenan and also structural elements of xi-, psi- and omicron-carrageenans. According to atomic force microscopy data, MzptF8 involved several polymer chains associated with each other in a disordered structure, in contrast to MzptF2, which formed three-dimensional networks. Unlike ribavirin and remdesivir, Mzpt was not cytotoxic to Vero E6 cells at concentrations >2000 μg mL-1. Mzpt was shown to inhibit SARS-CoV-2 replication in a dose-dependent manner in CPE inhibition and RT-PCR assays. IC50 was 92.0 μg mL-1, SI - 22. At concentration 250 μg mL-1, Mzpt caused the highest reduction in viral RNA levels with an inhibition coefficient of 31.1 % and exhibited significant inhibition of the early stages of virus-cell interaction.
Collapse
Affiliation(s)
- Anna Kravchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation.
| | - Natalia Krylova
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, Selskaya St., 1, 690087 Vladivostok, Russian Federation
| | - Olga Iunikhina
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, Selskaya St., 1, 690087 Vladivostok, Russian Federation
| | - Stanislav Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Vladimir Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Valery Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Alexandra Volod'ko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Sergey Kitan'
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Radio St., 5, 690041 Vladivostok, Russian Federation
| | - Mikhail Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, Selskaya St., 1, 690087 Vladivostok, Russian Federation
| | - Irina Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| |
Collapse
|
3
|
Niu Q, Zhou H, Ma X, Jiang Y, Liu C, Wang W, Yu G, Li G. Anti-enterovirus 71 activity of native fucosylated chondroitin sulfates and their derivatives. Carbohydr Polym 2024; 346:122657. [PMID: 39245513 DOI: 10.1016/j.carbpol.2024.122657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Enterovirus 71 (EV71) is recognized as a major causative agent of hand, foot, and mouth disease (HFMD), posing a significant global public health concern due to its widespread impact and resulting in a major public health issue worldwide. Despite its prevalence, current clinical therapy lacks effective antiviral agents. Fucosylated chondroitin sulfates (FCS) derived from sea cucumber exhibits a range of biological activities including potent antiviral effects. This study provides compelling evidence of the potent antiviral efficacy of FCS against EV71. To further elucidate the impact of structural variations on the anti-EV71 activity, native FCSs with diverse sulfation patterns and a varity of FCS derivatives were prepared and analyzed. Notably, this study presents the detailed structural characterization of FCSs from the sea cucumbers Holothuria scabra Jaege and Holothuria fuscopunctata. Analysis of the structure-activity relationships revealed that molecular weight, sulfated fucose branches, and sulfation pattern were all crucial factors contributing to the potent inhibitory effects of FCS against EV71. Interestingly, molecular weight emerged as the most significant structural determinant of the antiviral potency. These findings suggest the promising potential of utilizing FCS as an innovative EV71 entry inhibitor for the treatment of HFMD.
Collapse
Affiliation(s)
- Qingfeng Niu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Han Zhou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Xiaoyao Ma
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Yuanyuan Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chanjuan Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
4
|
Lalhmangaihzuala S, Vanlaldinpuia K, Khiangte V, Laldinpuii Z, Liana T, Lalhriatpuia C, Pachuau Z. Therapeutic applications of carbohydrate-based compounds: a sweet solution for medical advancement. Mol Divers 2024; 28:4553-4579. [PMID: 38554170 DOI: 10.1007/s11030-024-10810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 04/01/2024]
Abstract
Carbohydrates, one of the most abundant biomolecules found in nature, have been seen traditionally as a dietary component of foods. Recent findings, however, have unveiled their medicinal potential in the form of carbohydrates-derived drugs. Their remarkable structural diversity, high optical purity, bioavailability, low toxicity and the presence of multiple functional groups have positioned them as a valuable scaffold and an exciting frontier in contemporary therapeutics. At present, more than 170 carbohydrates-based therapeutics have been granted approval by varying regulatory agencies such as United States Food and Drug Administration (FDA), Japan Pharmaceuticals and Medical Devices Agency (PMDA), Chinese National Medical Products Administration (NMPA), and the European Medicines Agency (EMA). This article explores an overview of the fascinating potential and impact of carbohydrate-derived compounds as pharmacological agents and drug delivery vehicles.
Collapse
Affiliation(s)
- Samson Lalhmangaihzuala
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India.
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Zathang Laldinpuii
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Thanhming Liana
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| |
Collapse
|
5
|
Mukherjee S, Chemen ME, Pal S, Piccini LE, Jana S, Damonte EB, Ray B, Garcia CC, Ray S. Sulfated xylogalactofucans from Spatoglossum asperum: Production, structural features and antiviral activity. Carbohydr Res 2024; 545:109286. [PMID: 39405814 DOI: 10.1016/j.carres.2024.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/18/2024]
Abstract
In cultured cells, herpes simplex virus (HSV) infectivity is successfully inhibited by sulfated polysaccharides. Herein, we utilized an amalgamated extraction-sulfation procedure to produce two xylogalactofucan sulfates (S203 and S204) from Spatoglossum asperum using ClSO3H.Pyr/DMF and SO3.Pyr/DMF reagents, respectively. Among these xylogalactofucans, the 17 ± 12 kDa polymer (S203) with 14 % sulfate exhibited activity on several HSV variants, including an acyclovir-resistant HSV-1 strain. This is the first report of the anti-HSV activity of a sulfated xylogalactofucan of S. asperum. The effective concentration 50 % (EC50) value of S203 against HSV-1 strain F was 0.6 μg/mL with a selectivity index of 833. The backbone of this polymer (S203) is made up mostly of (1 → 4)-linked-α-l-Fucp units having sulfate groups typically at O-3 and sometimes at O-2 positions. Oligosaccharides containing Xyl, Gal and Fuc units confirms that they are an integral part of a single polymer, another novelty of this study. The EC50 values of the native xylogalactofucan (S202) and the SO3.Pyr/DMF modified polymer (S204), containing 2 % and 6 % sulfates, were >100 and 3.3 μg/mL, respectively. Introduction of sulfate groups enhanced their capability to inhibit the infection of cells by HSV-1. These findings suggest feasibility of inhibiting HSV attachment to cells by blocking viral entry with polysaccharide having specific structure.
Collapse
Affiliation(s)
- Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Mathias E Chemen
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Luana E Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Elsa B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Cybele C Garcia
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
6
|
Wang Q, Wang X, Ding J, Huang L, Wang Z. Structural insight of cell surface sugars in viral infection and human milk glycans as natural antiviral substance. Int J Biol Macromol 2024; 277:133867. [PMID: 39009265 DOI: 10.1016/j.ijbiomac.2024.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Viral infections are caused by the adhesion of viruses to host cell receptors, including sialylated glycans, glycosaminoglycans, and human blood group antigens (HBGAs). Atomic-level structural information on the interactions between viral particles or proteins with glycans can be determined to provide precise targets for designing antiviral drugs. Milk glycans, existing as free oligosaccharides or glycoconjugates, have attracted increasing attention; milk glycans protect infants against infectious diseases, particularly poorly manageable viral infections. Furthermore, several glycans containing structurally distinct sialic acid/fucose/sulfate modifications in human milk acting as a "receptor decoy" and serving as the natural antiviral library, could interrupt virus-receptor interaction in the first line of defense for viral infection. This review highlights the basis of virus-glycan interactions, presents specific glycan receptor binding by gastroenterovirus viruses, including norovirus, enteroviruses, and the breakthroughs in the studies on the antiviral properties of human milk glycans, and also elucidates the role of glycans in respiratory viruses infection. In addition, recent advances in methods for performing virus/viral protein-glycan interactions were reported. Finally, we discuss the prospects and challenges of the studies on the clinical application of human milk glycan for viral interventions.
Collapse
Affiliation(s)
- Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
7
|
Jana S, Dyna AL, Pal S, Mukherjee S, Bissochi IMT, Yamada-Ogatta SF, Darido MLG, Oliveira DBL, Durigon EL, Ray B, Faccin-Galhardi LC, Ray S. Anti-respiratory syncytial virus and anti-herpes simplex virus activity of chemically engineered sulfated fucans from Cystoseira indica. Carbohydr Polym 2024; 337:122157. [PMID: 38710573 DOI: 10.1016/j.carbpol.2024.122157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 μg/mL and low cytotoxicity at concentrations up to 500 μg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | - Andre Luiz Dyna
- Department of Microbiology, State University of Londrina, 86057-970 Londrina, PR, Brazil
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | | | | | | | - Danielle Bruna Leal Oliveira
- Laboratory of Clinical and Molecular Virology, University of São Paulo, 05508-000 São Paulo, SP, Brazil.; Albert Einstein Hospital, 05652-900 São Paulo, SP, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | | | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India.
| |
Collapse
|
8
|
Ali I, Chemen ME, Piccini LE, Mukherjee S, Jana S, Damonte EB, Ray B, Garcia CC, Ray S. Chemically modified galactans of Grateloupia indica: From production to in vitro antiviral activity. Int J Biol Macromol 2024; 258:128824. [PMID: 38103665 DOI: 10.1016/j.ijbiomac.2023.128824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Herpes simplex viruses (HSVs) have an affinity for heparan sulfate proteoglycans on cell surfaces, which is a determinant for virus entry. Herein, several sulfated galactans that mimic the active domain of the entry receptor were employed to prevent HSV infection. They were produced from Grateloupia indica using chlorosulfonic acid-pyridine (ClSO3H.Py)/N,N-dimethylformamide reagent (fraction G-402), SO3.Py/DMF reagent (G-403), or by aqueous extraction (G-401). These galactans contained varied molecular masses (33-55 kDa), and sulfate contents (12-20 %), and have different antiviral activities. Especially, the galactan (G-402) generated by using ClSO3H.Py/DMF, a novel reagent, exhibited the highest level of antiviral activity (EC50 = 0.36 μg/mL) compared to G-403 (EC50 = 15.6 μg/mL) and G-401 (EC50 = 17.9 μg/mL). This most active sulfated galactan possessed a linear chain containing β-(1 → 3)- and α-(1 → 4)-linked Galp units with sulfate group at the O-2/4/6 and O-2/3/6 positions, respectively. The HSV-1 and HSV-2 strains were specifically inhibited by this novel 33 ± 15 kDa galactan, which also blocked the virus from entering the host cell. These results highlight the significant potential of this sulfated galactan for antiviral research and drug development. Additionally, the reagent used for the effective conversion of galactan hydroxy groups to sulfate during extraction may also be useful for the chemical transformation of other natural products.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Mathias E Chemen
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Luana E Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Elsa B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Cybele C Garcia
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
9
|
Hao C, Xu Z, Xu C, Yao R. Anti-herpes simplex virus activities and mechanisms of marine derived compounds. Front Cell Infect Microbiol 2024; 13:1302096. [PMID: 38259968 PMCID: PMC10800978 DOI: 10.3389/fcimb.2023.1302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpes simplex virus (HSV) is the most widely prevalent herpes virus worldwide, and the herpetic encephalitis and genital herpes caused by HSV infection have caused serious harm to human health all over the world. Although many anti-HSV drugs such as nucleoside analogues have been ap-proved for clinical use during the past few decades, important issues, such as drug resistance, toxicity, and high cost of drugs, remain unresolved. Recently, the studies on the anti-HSV activities of marine natural products, such as marine polysaccharides, marine peptides and microbial secondary metabolites are attracting more and more attention all over the world. This review discusses the recent progress in research on the anti-HSV activities of these natural compounds obtained from marine organisms, relating to their structural features and the structure-activity relationships. In addition, the recent findings on the different anti-HSV mechanisms and molecular targets of marine compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongqiu Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Can Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Landim MG, Carneiro MLB, Joanitti GA, Anflor CTM, Marinho DD, Rodrigues JFB, de Sousa WJB, Fernandes DDO, Souza BF, Ombredane AS, do Nascimento JCF, Felice GDJ, Kubota AMA, Barbosa JSC, Ohno JH, Amoah SKS, Pena LJ, Luz GVDS, de Andrade LR, Pinheiro WO, Ribeiro BM, Formiga FR, Fook MVL, Rosa MFF, Peixoto HM, Luiz Carregaro R, Rosa SDSRF. A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations. DISCOVER NANO 2023; 18:118. [PMID: 37733165 PMCID: PMC10514013 DOI: 10.1186/s11671-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - José Filipe Bacalhau Rodrigues
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | | | | | - John Hideki Ohno
- MCI Ultrasonica LTDA, Av. Campinas, 367 - Arraial Paulista, Taboão da Serra, São Paulo, Brazil
| | - Solomon Kweku Sagoe Amoah
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Lia Fook
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | |
Collapse
|
11
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
12
|
Sharma P, Dwivedi R, Ray P, Shukla J, Pomin VH, Tandon R. Inhibition of Cytomegalovirus by Pentacta pygmaea Fucosylated Chondroitin Sulfate Depends on Its Molecular Weight. Viruses 2023; 15:v15040859. [PMID: 37112839 PMCID: PMC10142442 DOI: 10.3390/v15040859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Many viruses attach to host cells by first interacting with cell surface proteoglycans containing heparan sulfate (HS) glycosaminoglycan chains and then by engaging with specific receptor, resulting in virus entry. In this project, HS–virus interactions were targeted by a new fucosylated chondroitin sulfate from the sea cucumber Pentacta pygmaea (PpFucCS) in order to block human cytomegalovirus (HCMV) entry into cells. Human foreskin fibroblasts were infected with HCMV in the presence of PpFucCS and its low molecular weight (LMW) fractions and the virus yield at five days post-infection was assessed. The virus attachment and entry into the cells were visualized by labeling the purified virus particles with a self-quenching fluorophore octadecyl rhodamine B (R18). The native PpFucCS exhibited potent inhibitory activity against HCMV specifically blocking virus entry into the cell and the inhibitory activities of the LMW PpFucCS derivatives were proportional to their chain lengths. PpFucCS and the derived oligosaccharides did not exhibit any significant cytotoxicity; moreover, they protected the infected cells from virus-induced lytic cell death. In conclusion, PpFucCS inhibits the entry of HCMV into cells and the high MW of this carbohydrate is a key structural element to achieve the maximal anti-viral effect. This new marine sulfated glycan can be developed into a potential prophylactic and therapeutic antiviral agent against HCMV infection.
Collapse
|
13
|
Zoepfl M, Dwivedi R, Kim SB, McVoy MA, Pomin VH. Antiviral activity of marine sulfated glycans against pathogenic human coronaviruses. Sci Rep 2023; 13:4804. [PMID: 36959228 PMCID: PMC10035982 DOI: 10.1038/s41598-023-31722-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Great interest exists towards the discovery and development of broad-spectrum antivirals. This occurs due to the frequent emergence of new viruses which can also eventually lead to pandemics. A reasonable and efficient strategy to develop new broad-spectrum antivirals relies on targeting a common molecular player of various viruses. Heparan sulfate is a sulfated glycosaminoglycan present on the surface of cells which plays a key role as co-receptor in many virus infections. In previous work, marine sulfated glycans (MSGs) were identified as having antiviral activities. Their mechanism of action relies primarily on competitive inhibition of virion binding to heparan sulfate, preventing virus attachment to the cell surface prior to entry. In the current work we used pseudotyped lentivirus particles to investigate in a comparative fashion the inhibitory properties of five structurally defined MSGs against SARS-CoV-1, SARS-CoV-2, MERS-CoV, and influenza A virus (IAV). MSGs include the disaccharide-repeating sulfated galactan from the red alga Botryocladia occidentalis, the tetrasaccharide-repeating sulfated fucans from the sea urchin Lytechinus variegatus and from the sea cucumber Isostichopus badionotus, and the two marine fucosylated chondroitin sulfates from the sea cucumbers I. badionotus and Pentacta pygmaea. Results indicate specificity of action against SARS-CoV-1 and SARS-CoV-2. Curiously, the MSGs showed decreased inhibitory potencies against MERS-CoV and negligible action against IAV. Among the five MSGs, the two sulfated fucans here studied deserve further attention since they have the lowest anticoagulant effects but still present potent and selective antiviral properties.
Collapse
Affiliation(s)
- Mary Zoepfl
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Seon Beom Kim
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
- Department of Food Science and Technology, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
14
|
Nieri P, Carpi S, Esposito R, Costantini M, Zupo V. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients 2023; 15:464. [PMID: 36678334 PMCID: PMC9861441 DOI: 10.3390/nu15020464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.
Collapse
Affiliation(s)
- Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Center of Marine Pharmacology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sara Carpi
- National Enterprise for NanoScience and Nanotechnology (NEST), Piazza San Silvestro, 56127 Pisa, Italy
| | - Roberta Esposito
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Valerio Zupo
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077 Ischia, Italy
| |
Collapse
|
15
|
Geng L, Zhang Q, Suo Q, Wang J, Wang Y, Wang C, Wu N. Inhibitory activity of a sulfated oligo-porphyran from Pyropia yezoensis against SARS-CoV-2. Carbohydr Polym 2023; 299:120173. [PMID: 36876788 PMCID: PMC9523908 DOI: 10.1016/j.carbpol.2022.120173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
COVID-19 caused by SARS-CoV-2 has spread around the world at an unprecedented rate. A more homogeneous oligo-porphyran with mean molecular weight of 2.1 kD, named OP145, was separated from Pyropia yezoensis. NMR analysis showed OP145 was mainly composed of →3)-β-d-Gal-(1 → 4)-α-l-Gal (6S) repeating units with few replacement of 3,6-anhydride, and the molar ratio was 1:0.85:0.11. MALDI-TOF MS revealed OP145 contained mainly tetrasulfate-oligogalactan with Dp range from 4 to 10 and with no more than two 3,6-anhydro-α-l-Gal replacement. The inhibitory activity of OP145 against SARS-CoV-2 was investigated in vitro and in silico. OP145 could bind to Spike glycoprotein (S-protein) through SPR result, and pseudovirus tests confirmed that OP145 could inhibite the infection with an EC50 of 37.52 μg/mL. Molecular docking simulated the interaction between the main component of OP145 and S-protein. All the results indicated that OP145 had the potency to treat and prevent COVID-19.
Collapse
Affiliation(s)
- Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qishan Suo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yingxia Wang
- Public Technology Service Center, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Cong Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Nantong Zhongke Marine Science and Technology Research and Development Center, Nantong, China.
| |
Collapse
|
16
|
Konietzny PB, Freytag J, Feldhof MI, Müller JC, Ohl D, Stehle T, Hartmann L. Synthesis of Homo- and Heteromultivalent Fucosylated and Sialylated Oligosaccharide Conjugates via Preactivated N-Methyloxyamine Precision Macromolecules and Their Binding to Polyomavirus Capsid Proteins. Biomacromolecules 2022; 23:5273-5284. [PMID: 36398945 DOI: 10.1021/acs.biomac.2c01092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated via N-methyloxyamine groups. In this study, we introduce such N-methyloxyamine groups into a variety of multivalent scaffolds─from small to oligomeric to polymeric scaffolds─making use of solid-phase polymer synthesis to assemble monodisperse sequence-defined macromolecules. These scaffolds are then successfully functionalized with different types of human milk oligosaccharides deriving a library of homo- and heteromultivalent glycoconjugates. Glycomacromolecules presenting oligosaccharide side chains with either α2,3- or α2,6-linked terminal sialic acid are used in a binding study with two types of polyomavirus capsid proteins showing that the multivalent presentation through the N-methyloxyamine-derived scaffolds increases the number of contacts with the protein. Overall, a straightforward route to derive glycoconjugates from complex oligosaccharides with high variability yet control in the multivalent scaffold is presented, and applicability of the derived structures is demonstrated.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jasmin Freytag
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Melina I Feldhof
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Joshua C Müller
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Daniel Ohl
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
17
|
Liu C, Liu AJ. Structural Characterization of an Alcohol-Soluble Polysaccharide from Bletilla striata and Antitumor Activities in Vivo and in Vitro. Chem Biodivers 2022; 19:e202200635. [PMID: 36282907 DOI: 10.1002/cbdv.202200635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023]
Abstract
In general, Bletilla striata polysaccharides were mostly water-soluble. However, the structural property, immunomodulatory effects and antitumor activities of alcohol-soluble Bletilla striata polysaccharide were rarely reported. In this study, an alcohol-soluble Bletilla striata polysaccharide was firstly extracted, investigated the structural property and evaluated the antitumor activity in vivo and in vitro. Results showed that BSAP was a low molecular weight polysaccharide (2.29×104 Da) and consisted of glucose, xylose and mannose (molar ratio: 2.39 : 1.00 : 0.21). Animal experiments results suggested that BSAP could effectively inhibit the expansion of H22 solid tumors, protect thymus and spleen, improve macrophages, lymphocytes and NK cells activities and enhance lymphocyte subsets proportion, presenting a better immunological enhancement effect in vivo. Additionally, the results of cell experiments showed that BSAP had obvious antitumor effect in vitro, including inhibiting the proliferation of H22 cells and inducing the apoptosis of tumor cells. These results would provide theoretical basis and new ideas for the further development and utilization of BSAP in the biomedical field.
Collapse
Affiliation(s)
- Chao Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, P. R. China
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, P. R. China
| |
Collapse
|
18
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
20
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
21
|
Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [PMCID: PMC7935400 DOI: 10.1016/j.carpta.2021.100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
COVID-19 pandemic is taking a dangerous turn due to unavailability of approved and effective vaccines and therapy. Currently available diagnostic techniques are time-consuming, expensive, and maybe impacted by the mutations produced in the virus. Therefore, investigation of novel, rapid, and economic diagnosis techniques, prophylactic vaccines and targeted efficacious drug delivery systems as treatment strategy is imperative. Carbohydrates are essential biomolecules which also act as markers in the realization of immune systems. Moreover, they exhibit antiviral, antimicrobial, and antifungal properties. Carbohydrate-based vaccines and therapeutics including stimuli sensitive systems can be developed successfully and used effectively to fight COVID-19. Thus, carbohydrate-based diagnostic, prophylactic and therapeutic alternatives could be promising to defeat COVID-19 propitiously. Morphology of SARS-CoV-2 and its relevance in devising combat strategies has been discussed. Carbohydrate-based approaches for tackling infectious diseases and their importance in the design of various diagnostic and treatment modalities have been reviewed.
Collapse
|
22
|
Chemical Reactivity Descriptors and Molecular Docking Studies of Octyl 6-O-hexanoyl-β-D-glucopyranosides. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2021. [DOI: 10.33736/jaspe.3727.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study describes different chemical reactivity predictions of 6-O-hexanoylation of octyl β-D-glucopyranosides prepared from octyl β-D-glucopyranoside (OBG). Also, molecular docking of the OBGs was conducted against SARS-CoV-2 main protease (6LU7), urate oxidase (Aspergillus flavus; 1R51) and glucoamylase (Aspergillus niger; 1KUL). DFT optimization indicated that glucoside 1 and its ester derivatives 2-7 exist in 4C1 conformation with C1 symmetry. Interestingly, the addition of ester group(s) decreased the HOMO-LUMO gap (Δԑ) of glucosides indicating their good chemical reactivities, whereas the other chemical reactivity descriptors indicated their moderate reactive nature. This fact of moderate reactivity was confirmed by their molecular docking with 6LU7, 1R51 and 1KUL. All the esters showed a moderate binding affinity with these three proteins. More importantly, incorporation of the ester group(s) increased binding affinity with 6LU7 and 1R51, whereas decreased with 1KUL as compared to non-ester OBG 1.
Collapse
|
23
|
Álvarez-Viñas M, Souto S, Flórez-Fernández N, Torres MD, Bandín I, Domínguez H. Antiviral Activity of Carrageenans and Processing Implications. Mar Drugs 2021; 19:437. [PMID: 34436276 PMCID: PMC8400836 DOI: 10.3390/md19080437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.
Collapse
Affiliation(s)
- Milena Álvarez-Viñas
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Sandra Souto
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (I.B.)
| | - Noelia Flórez-Fernández
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Maria Dolores Torres
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Isabel Bandín
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (I.B.)
| | - Herminia Domínguez
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| |
Collapse
|
24
|
Jana S, Mukherjee S, Ribelato EV, Darido ML, Faccin-Galhardi LC, Ray B, Ray S. The heparin-mimicking arabinogalactan sulfates from Anogeissus latifolia gum: Production, structures, and anti-herpes simplex virus activity. Int J Biol Macromol 2021; 183:1419-1426. [PMID: 34022307 DOI: 10.1016/j.ijbiomac.2021.05.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/26/2021] [Accepted: 05/16/2021] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus type 1(HSV-1) attaches to cell surface heparan sulfate aiming to enter into susceptible cells. In this work, we utilized a sulfur trioxide-pyridine in N,N-dimethylformamide (SO3·Pyr/DMF) based amalgamated extraction-sulfation procedure for producing arabinogalactan sulfates from Anogeissus latifolia gum. Chemical, chromatographic, spectroscopic and chemical data revealed that the derived polymers contained varying molecular masses (31-69 kDa) and degrees of sulfation (0.1-0.5), but similar saccharide compositions. The highly active polymer (HSV-1: IC50 and SI, respectively, of 127 μg/mL and 15.7) was a 69 kDa arabinogalactan holding sulfates at O-5 of arabinofuranosyl residues and showed no cytotoxicity as far as 2 mg/mL concentration. This chemically sulfated macromolecule acted by obstructing viral attachment and entry. Thus, SO3·Pyr/DMF is suitable for producing new molecules with varied structures and altered pharmacological activities from plant sources.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Elisa Vicente Ribelato
- Departamento de Microbiologia, CCB, Universidade Estadual de Londrina, Caixa Postal 6001, 86057-970 Londrina, PR, Brazil
| | - Maria Laura Darido
- Departamento de Microbiologia, CCB, Universidade Estadual de Londrina, Caixa Postal 6001, 86057-970 Londrina, PR, Brazil
| | - Ligia Carla Faccin-Galhardi
- Departamento de Microbiologia, CCB, Universidade Estadual de Londrina, Caixa Postal 6001, 86057-970 Londrina, PR, Brazil
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
25
|
Zoepfl M, Dwivedi R, Taylor MC, Pomin VH, McVoy MA. Antiviral activities of four marine sulfated glycans against adenovirus and human cytomegalovirus. Antiviral Res 2021; 190:105077. [PMID: 33864843 DOI: 10.1016/j.antiviral.2021.105077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Broad-spectrum antivirals are more needed than ever to provide treatment options for novel emerging viruses and for viruses that lack therapeutic options or have developed resistance. A large number of viruses rely on charge-dependent non-specific interactions with heparan sulfate (HS), a highly sulfated glycosaminoglycan (GAG), for attachment to cell surfaces to initiate cell entry. As such, inhibitors targeting virion-HS interactions have potential to have broad-spectrum antiviral activity. Previous research has explored organic and inorganic small molecules, peptides, and GAG mimetics to disrupt virion-HS interactions. Here we report antiviral activities against both enveloped (the herpesvirus human cytomegalovirus) and non-enveloped (adenovirus) DNA viruses for four defined marine sulfated glycans: a sulfated galactan from the red alga Botryocladia occidentalis; a sulfated fucan from the sea urchin Lytechinus variegatus, and a sulfated fucan and a fucosylated chondroitin sulfate from the sea cucumber Isostichopus badionotus. As evidenced by gene expression, time of addition, and treatment/removal assays, all four novel glycans inhibited viral attachment and entry, most likely through interactions with virions. The sulfated fucans, which both lack anticoagulant activity, had similar antiviral profiles, suggesting that their activities are not only due to sulfation content or negative charge density but also due to other physicochemical factors such as the potential conformational shapes of these carbohydrates in solution and upon interaction with virion proteins. The structural and chemical properties of these marine sulfated glycans provide unique opportunities to explore relationships between glycan structure and their antiviral activities.
Collapse
Affiliation(s)
- Mary Zoepfl
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, VA, 23284, USA
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA
| | - Maggie C Taylor
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA.
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA, 23298-0163, USA.
| |
Collapse
|
26
|
Chemically sulfated arabinoxylans from Plantago ovata seed husk: Synthesis, characterization and antiviral activity. Carbohydr Polym 2021; 256:117555. [DOI: 10.1016/j.carbpol.2020.117555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
|
27
|
Pan L, Cai C, Liu C, Liu D, Li G, Linhardt RJ, Yu G. Recent progress and advanced technology in carbohydrate-based drug development. Curr Opin Biotechnol 2021; 69:191-198. [PMID: 33530023 DOI: 10.1016/j.copbio.2020.12.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 11/18/2022]
Abstract
Carbohydrates, one of the most abundant and widespread biomolecules in nature, play indispensable roles in diverse biological functions, and represent a treasure trove of untapped potential for pharmaceutical applications. Here, we provide a brief overview of carbohydrate-based drug development (CBDD) over the past two decades. More importantly, advanced techniques and methodologies related to CBDD are emerging, including enzymatic synthesis, metabolic engineering, site-specific glycoconjugation, carbohydrate libraries and microarrays as well as carbohydrate-gut microbiome evaluation. These technologies have dramatically accelerated the speed of CBDD. The recently approved drugs and emerging techniques summarized herein will inspire new sights into potential opportunities to discover novel carbohydrate drugs.
Collapse
Affiliation(s)
- Lin Pan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Chanjuan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Di Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
28
|
Itzhaki RF. Antivirals Against SARS-CoV2: Relevance to the Treatment of Alzheimer's Disease. J Alzheimers Dis 2020; 78:905-906. [PMID: 33074241 DOI: 10.3233/jad-200986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A recent study in vitro has shown that a sulphated polysaccharide, a type of fucoidan, has potent antiviral activity against SARS-Cov2. If the antiviral action were successful also for COVID-19 patients, it would be enormously valuable against not only acute disease but also long-term mental effects, which might include Alzheimer's disease (AD). In a trial of AD patients, the apparent success of treatment with a polysaccharide, GV971, was suggested to result from antiviral action against herpes simplex virus type 1 (HSV1) in brain, a pathogen strongly implicated in AD, and that sulphation of GV971, making it fucoidan-like, might increase its putative antiviral action. These data indicate that treatment of AD patients might be very effective using valacyclovir, a conventional antiviral, which inhibits viral replication, together with a fucoidan, which blocks virus entry into cells.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol 2020; 164:331-343. [PMID: 32679328 PMCID: PMC7358770 DOI: 10.1016/j.ijbiomac.2020.07.106] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Since the outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, it has spread rapidly worldwide and poses a great threat to public health. This is the third serious coronavirus outbreak in <20 years, following SARS in 2002-2003 and MERS in 2012. So far, there are almost no specific clinically effective drugs and vaccines available for COVID-19. Polysaccharides with good safety, immune regulation and antiviral activity have broad application prospects in anti-virus, especially in anti-coronavirus applications. Here, we reviewed the antiviral mechanisms of some polysaccharides, such as glycosaminoglycans, marine polysaccharides, traditional Chinese medicine polysaccharides, and their application progress in anti-coronavirus. In particular, the application prospects of polysaccharide-based vaccine adjuvants, nanomaterials and drug delivery systems in the fight against novel coronavirus were also analyzed and summarized. Additionally, we speculate the possible mechanisms of polysaccharides anti-SARS-CoV-2, and propose the strategy of loading S or N protein from coronavirus onto polysaccharide capped gold nanoparticles vaccine for COVID-19 treatment. This review may provide a new approach for the development of COVID-19 therapeutic agents and vaccines.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenwei Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
30
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
31
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
32
|
Sharma S, Shekhar S, Sharma B, Jain P. Decoding glycans: deciphering the sugary secrets to be coherent on the implication. RSC Adv 2020; 10:34099-34113. [PMID: 35519023 PMCID: PMC9056758 DOI: 10.1039/d0ra04471g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022] Open
Abstract
Neoteric techniques, skills, and methodological advances in glycobiology and glycochemistry have been instrumental in pertinent discoveries to pave way for a new era in biomedical sciences. Glycans are sugar-based polymers that coat cells and decorate majority of proteins, forming glycoproteins. They are also found deposited in extracellular spaces between cells, attached to soluble signaling molecules, and are key players in several biological processes including regulation of immune responses and cell–cell interactions. Laboratory manipulations of protein, DNA and other macromolecules celebrate the accelerated research in respective fields, but the same seems unlikely for the complex sugar polymers. The structural complex polymers are neither synthesized using a known template nor are dynamically stable with respect to a cell's metabolic rate. What is more, sugar isomers—structurally distinct molecules with the same chemical formula—can be employed to construct varied glycans, but are almost impossible to tell apart based on molecular weight alone. The apparent lack of a glycan alphabet further reflects on an enduring question: how little do we know about the sugars? Evidently, glycan-based therapeutic potentials and glycomimetics are propitious advances for the future that have not been well exploited, and with a few conspicuous anomalies. Here, we contour the most notable contributions to enhance our ability to utilize the complex glycans as therapeutics. Diagnostic strategies concerning recurrent diseases and headways to address the challenges are also discussed. A glycan toolbox for pathogenic and cancerous interventions. The review article sheds light on the sweet secrets of this complex structure.![]()
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Shashank Shekhar
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Bhasha Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Purnima Jain
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| |
Collapse
|