1
|
Yadav PK, Pandey AN, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Follicular oocyte as a potential target for severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2024; 34:e2568. [PMID: 38937111 DOI: 10.1002/rmv.2568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in December 2019 and rapidly became a pandemic as coronavirus disease 2019 (COVID-19). Apart from other organs, presence of specific receptor angiotensin-converting enzyme (ACE2) and corresponding proteases such as transmembrane serine protease 2, basigin and cysteine protease cathepsin L make follicular somatic cells as well as oocyte as potential targets for SARS-CoV-2 infection. The SARS-CoV-2 causes inflammation and hypoxia that generate reactive oxygen species (ROS) in critically ill patients. In addition, a large number of casualties and insecurity of life due to repeated waves of SARS-CoV-2 infection generate psychological stress and cortisol resulting in the further generation of ROS. The excess levels of ROS under physiological range cause meiotic instability, while high levels result in oxidative stress that trigger various death pathways and affect number as well as quality of follicular oocytes. Although, emerging evidence suggests that the SARS-CoV-2 utilises cellular machinery of ovarian follicular cells, generates ROS and impairs quality of follicular oocytes, the underlying mechanism of viral entry into host cell and its negative impact on the follicular oocyte remains poorly understood. Therefore, this review summarises emerging evidence on the presence of cellular machinery for SARS-CoV-2 in ovarian follicles and the potential negative impact of viral infection on the follicular oocytes that affect ovarian functions in critically ill and stressed women.
Collapse
Affiliation(s)
- Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Ding J, Zhang Q, Jiang J, Zhou N, Yu Z, Wang Z, Meng X, Daggumati L, Liu T, Wang F, Lu Z, Yang X, Yang Z, Zhang H, Thorek DLJ, Du P, Zhu H. Preclinical Evaluation and Pilot Clinical Study of 18F-Labeled Inhibitor Peptide for Noninvasive Positron Emission Tomography Mapping of Angiotensin Converting Enzyme 2. ACS Pharmacol Transl Sci 2024; 7:1758-1769. [PMID: 38898955 PMCID: PMC11184604 DOI: 10.1021/acsptsci.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the main molecular target for coronavirus SARS-CoV-2 to enter cells. Molecularly specific tracers that bind to ACE2 with high affinity can be used to determine the tissue distribution of this important receptor, noninvasively. A novel targeting PET imaging probe, [18F]AlF-DX600-BCH, was developed to detect the in vivo expression of ACE2 and monitor response to therapy. Preclinical experiments, including biodistribution, PET imaging, and tissue section analysis, were conducted after tests of in vitro and in vivo stability and pharmacokinetics. The agent was advanced to clinical evaluation in 10 volunteers who received [18F]AlF-DX600-BCH PET/CT at 1 and 2 h after injection (NCT04542863). Preclinical results of both biodistribution and PET demonstrated [18F]AlF-DX600-BCH accumulation in rat kidney (standardized uptake value; SUVkidney/normal > 50), along with specific uptake in testes (SUVtestis/normal > 10) tissues. Kidney, gastrointestinal, and bronchial cell labeling were correlated to ACE2 positive by immunohistochemistry (IHC) staining. In clinical imaging, significant tracer accumulation was predominantly observed in the urinary and reproductive system (SUVrenal cortex = 32.00, SUVtestis = 4.56), and the conjunctiva and nasal mucosa saw elevated uptake in several cases. This work is the first report of a radioisotope probe, [18F]AlF-DX600-BCH, targeting ACE2 with promising preliminary preclinical and translational outlook, thereby demonstrating the potential of noninvasive mapping of ACE2.
Collapse
Affiliation(s)
- Jin Ding
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Qian Zhang
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
- Guizhou
University School of Medicine, Guiyang, 550025 Guizhou, China
| | - Jinquan Jiang
- Department
of Radiology, People’s Hospital of
Deyang City, Deyang, 618000 Sichuan, China
| | - Nina Zhou
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Ziyu Yu
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, 100142 Beijing, China
| | - Zilei Wang
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Xiangxi Meng
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Lasya Daggumati
- Department
of Radiology, Washington University in St.
Louis School of Medicine, St. Louis, Missouri 63110, United States
| | - Teli Liu
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Feng Wang
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Zhihao Lu
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), Department of Gastro-intestinal oncology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, 100142 Beijing, China
| | - Xing Yang
- Department
of Nuclear Medicine, Peking University First
Hospital, No. 8 Xishiku Street, 100034 Beijing, China
| | - Zhi Yang
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Hanwen Zhang
- Department
of Radiology, Washington University in St.
Louis School of Medicine, St. Louis, Missouri 63110, United States
| | - Daniel L. J. Thorek
- Department
of Radiology, Washington University in St.
Louis School of Medicine, St. Louis, Missouri 63110, United States
| | - Peng Du
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, 100142 Beijing, China
| | - Hua Zhu
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| |
Collapse
|
3
|
Bhattacharyya S, Tobacman JK. SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK. Signal Transduct Target Ther 2024; 9:39. [PMID: 38355690 PMCID: PMC10866996 DOI: 10.1038/s41392-024-01741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joanne K Tobacman
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Ali GK, Algethami FK, Omer KM. Gold single atom-based aptananozyme as an ultrasensitive and selective colorimetric probe for detection of thrombin and C-reactive protein. Mikrochim Acta 2023; 191:59. [PMID: 38153560 DOI: 10.1007/s00604-023-06147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
An ultra-efficient biocatalytic peroxidase-like Au-based single-atom nanozyme (Au-SAzymes) has been synthesized from isolated Au atoms on black nitrogen doped carbon (Au-N-C) using a simple complexation-adsorption-pyrolysis method. The atomic structure of AuN4 centers in black carbon was revealed by combined high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy. The Au-SAzymes showed a remarkable peroxidase activity with 1.7 nM as Michaelis-Menten constant, higher than most previously reported SAzyme activity. Density functional theory and Monte Carlo calculations revealed the adsorption of H2O2 on AuN4 with formation of OH* and O*. Molecular recognition was greatly enhanced via label-free integration of thiol-terminal aptamers on the surface of single Au atoms (Aptamer/Au-SAzyme) to design off-on ultrasensitive aptananozyme-based sensor for detecting thrombin and CRP with 550 pM and 500 pg mL-1 limits of detection, respectively. The Aptamer/Au-SAzyme showed satisfactory accuracy and precision when applied to the serum and plasma of COVID-19 patients. Due to the maximum Au atom utilization, approximately 3636 samples can be run per 1 mg of gold, highlighting the commercialization potential of the developed Aptamer/Au-SAzyme approach.
Collapse
Affiliation(s)
- Gona K Ali
- Department of Chemistry, College of Science, University of Sulaimani, Slemani City, 46002, Kurdistan Region, Iraq
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Slemani City, 46002, Kurdistan Region, Iraq.
| |
Collapse
|
5
|
Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, AlShehail BM, Al-Adsani W, Alghadeer A, Abduljabbar WA, Alotaibi N, Alsalman J, Gorab AH, Almaghrabi RS, Zaidan AA, Aldossary S, Alissa M, Alburaiky LM, Alsalim FM, Thakur N, Verma G, Dhawan M. Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:507. [PMID: 36984508 PMCID: PMC10051174 DOI: 10.3390/medicina59030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The immune response elicited by the current COVID-19 vaccinations declines with time, especially among the immunocompromised population. Furthermore, the emergence of novel SARS-CoV-2 variants, particularly the Omicron variant, has raised serious concerns about the efficacy of currently available vaccines in protecting the most vulnerable people. Several studies have reported that vaccinated people get breakthrough infections amid COVID-19 cases. So far, five variants of concern (VOCs) have been reported, resulting in successive waves of infection. These variants have shown a variable amount of resistance towards the neutralising antibodies (nAbs) elicited either through natural infection or the vaccination. The spike (S) protein, membrane (M) protein, and envelope (E) protein on the viral surface envelope and the N-nucleocapsid protein in the core of the ribonucleoprotein are the major structural vaccine target proteins against COVID-19. Among these targets, S Protein has been extensively exploited to generate effective vaccines against COVID-19. Hence, amid the emergence of novel variants of SARS-CoV-2, we have discussed their impact on currently available vaccines. We have also discussed the potential roles of S Protein in the development of novel vaccination approaches to contain the negative consequences of the variants' emergence and acquisition of mutations in the S Protein of SARS-CoV-2. Moreover, the implications of SARS-CoV-2's structural proteins were also discussed in terms of their variable potential to elicit an effective amount of immune response.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Ali Alghadeer
- Department of Anesthesia, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Nouf Alotaibi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Ali H. Gorab
- Al Kuzama Primary Health Care Center, Al Khobar Health Network, Eastern Health Cluster, Al Khobar 34446, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ali A. Zaidan
- Gastroenterology Department, King Fahad Armed Forces Hospital, Jeddah 23831, Saudi Arabia
| | - Sahar Aldossary
- Pediatric Infectious Diseases, Women and Children’s Health Institute, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Lamees M. Alburaiky
- Pediatric Department, Safwa General Hospital, Eastern Health Cluster, Safwa 31921, Saudi Arabia
| | - Fatimah Mustafa Alsalim
- Department of Family Medicine, Primary Health Care, Qatif Health Cluster, Qatif 32434, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| |
Collapse
|
6
|
Tan HW, Xu YM, Liang ZL, Cai NL, Wu YY, Lau ATY. Single-gene knockout-coupled omics analysis identifies C9orf85 and CXorf38 as two uncharacterized human proteins associated with ZIP8 malfunction. Front Mol Biosci 2022; 9:991308. [PMID: 36330220 PMCID: PMC9623088 DOI: 10.3389/fmolb.2022.991308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023] Open
Abstract
Human transmembrane protein metal cation symporter ZIP8 (SLC39A8) is a member of the solute carrier gene family responsible for intracellular transportation of essential micronutrients, including manganese, selenium, and zinc. Previously, we established a ZIP8-knockout (KO) human cell model using the CRISPR/Cas9 system and explored how the expression of ZIP8 could possibly contribute to a wide range of human diseases. To further assess the biophysiological role of ZIP8, in the current study, we employed isobaric tags for relative and absolute quantitation (iTRAQ) and detected the changes of the proteome in ZIP8-KO cells (proteomic data are available via ProteomeXchange with identifier PXD036680). A total of 286 differentially expressed proteins (206 downregulated and 80 upregulated proteins) were detected in the ZIP8-KO cell model, and subsequent bioinformatics analyses (GO, KEGG, KOG, and PPI) were performed on these proteins. Interestingly, four "uncharacterized" proteins (proteins with unknown biological function) were identified in the differentially expressed proteins: C1orf198, C9orf85, C17orf75, and CXorf38-all of which were under-expressed in the ZIP8-KO cells. Notably, C9orf85 and CXorf38 were amongst the top-10 most downregulated proteins, and their expressions could be selectively induced by essential micronutrients. Furthermore, clinical-based bioinformatic analysis indicated that positive correlations between the gene expressions of ZIP8 and C9orf85 or CXorf38 were observed in multiple cancer types. Overall, this study reveals the proteomic landscape of cells with impaired ZIP8 and uncovers the potential relationships between essential micronutrients and uncharacterized proteins C9orf85 and CXorf38. The differentially expressed proteins identified in ZIP8-KO cells could be the potential targets for diagnosing and/or treating human ZIP8-associated diseases, including but not limited to malnutrition, viral infection, and cancers.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
7
|
Epigenetic mechanisms and host factors impact ACE2 gene expression: Implications in COVID-19 susceptibility. INFECTION, GENETICS AND EVOLUTION 2022; 104:105357. [PMID: 36038007 PMCID: PMC9420046 DOI: 10.1016/j.meegid.2022.105357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Background The ACE2 protein acts as a gateway for SARS-CoV-2 in the host cell, playing an essential role in susceptibility to infection by this virus. Genetics and epigenetic mechanisms related to the ACE2 gene are associated with changes in its expression and, therefore, linked to increased susceptibility to infection. Although some variables such as sex, age, and obesity have been described as risk factors for COVID-19, the molecular causes involved in the disease susceptibility are still unknown. Aim To evaluate the ACE2 gene expression profiles and their association with epigenetic mechanisms and demographic or clinical variables. Methods In 500 adult volunteers, the mRNA expression levels of the ACE2 gene in nasopharyngeal swab samples and its methylation status in peripheral blood samples were quantified by RT-qPCR and qMSP, respectively. The existence of significant differences in the ACE2 gene expression and its determinants were evaluated in different study groups according to several demographic or clinical variables such as sex, age, body mass index (BMI), smoking, SARS-CoV-2 infection, and presence of underlying diseases such as type II diabetes mellitus (DM2), asthma and arterial hypertension (AHT). Results Our results show that ACE2 gene overexpression, directly involved in susceptibility to SARS-CoV-2 infection, depends on multiple host factors such as male sex, age over 30 years, smoking, the presence of obesity, and DM2. Likewise, it was determined that the ACE2 gene expression is regulated by changes in the DNA methylation patterns in its promoter region. Conclusions The ACE2 gene expression is highly variable, and this variability is related to habits such as smoking and demographic or clinical variables, which details the impact of environmental and host factors on our epigenome and, therefore, in susceptibility to SARS-CoV-2 infection.
Collapse
|
8
|
de Erausquin GA, Snyder H, Brugha TS, Seshadri S, Carrillo M, Sagar R, Huang Y, Newton C, Tartaglia C, Teunissen C, Håkanson K, Akinyemi R, Prasad K, D'Avossa G, Gonzalez‐Aleman G, Hosseini A, Vavougios GD, Sachdev P, Bankart J, Mors NPO, Lipton R, Katz M, Fox PT, Katshu MZ, Iyengar MS, Weinstein G, Sohrabi HR, Jenkins R, Stein DJ, Hugon J, Mavreas V, Blangero J, Cruchaga C, Krishna M, Wadoo O, Becerra R, Zwir I, Longstreth WT, Kroenenberg G, Edison P, Mukaetova‐Ladinska E, Staufenberg E, Figueredo‐Aguiar M, Yécora A, Vaca F, Zamponi HP, Re VL, Majid A, Sundarakumar J, Gonzalez HM, Geerlings MI, Skoog I, Salmoiraghi A, Boneschi FM, Patel VN, Santos JM, Arroyo GR, Moreno AC, Felix P, Gallo C, Arai H, Yamada M, Iwatsubo T, Sharma M, Chakraborty N, Ferreccio C, Akena D, Brayne C, Maestre G, Blangero SW, Brusco LI, Siddarth P, Hughes TM, Zuñiga AR, Kambeitz J, Laza AR, Allen N, Panos S, Merrill D, Ibáñez A, Tsuang D, Valishvili N, Shrestha S, Wang S, Padma V, Anstey KJ, Ravindrdanath V, Blennow K, Mullins P, Łojek E, Pria A, Mosley TH, Gowland P, Girard TD, Bowtell R, Vahidy FS. Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12348. [PMID: 36185993 PMCID: PMC9494609 DOI: 10.1002/trc2.12348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Introduction Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term. Methods This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions. Results Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe. Discussion The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection. Key Points The following review describes what is known so far in terms of molecular and epidemiological links among COVID-19, the brain, neurological symptoms, and AD and related dementias (ADRD)The primary objective of this large-scale collaboration is to clarify the pathogenesis of ADRD and to advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive decline and other CNS sequelae. No available evidence supports the notion that cognitive impairment after SARS-CoV-2 infection is a form of dementia (ADRD or otherwise). The longitudinal methodologies espoused by the consortium are intended to provide data to answer this question as clearly as possible controlling for possible confounders. Our specific hypothesis is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory cortical network (EOCN) in older individuals with specific genetic susceptibility.The proposed harmonization strategies and flexible study designs offer the possibility to include large samples of under-represented racial and ethnic groups, creating a rich set of harmonized cohorts for future studies of the pathophysiology, determinants, long-term consequences, and trends in cognitive aging, ADRD, and vascular disease.We provide a framework for current and future studies to be carried out within the Consortium. and offers a "green paper" to the research community with a very broad, global base of support, on tools suitable for low- and middle-income countries aimed to compare and combine future longitudinal data on the topic.The Consortium proposes a combination of design and statistical methods as a means of approaching causal inference of the COVID-19 neuropsychiatric sequelae. We expect that deep phenotyping of neuropsychiatric sequelae may provide a series of candidate syndromes with phenomenological and biological characterization that can be further explored. By generating high-quality harmonized data across sites we aim to capture both descriptive and, where possible, causal associations.
Collapse
|
9
|
The Multifaceted Manifestations of Multisystem Inflammatory Syndrome during the SARS-CoV-2 Pandemic. Pathogens 2022; 11:pathogens11050556. [PMID: 35631077 PMCID: PMC9143280 DOI: 10.3390/pathogens11050556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The novel coronavirus SARS-CoV-2, which has similarities to the 2002–2003 severe acute respiratory syndrome coronavirus known as SARS-CoV-1, causes the infectious disease designated COVID-19 by the World Health Organization (Coronavirus Disease 2019). Although the first reports indicated that activity of the virus is centered in the lungs, it was soon acknowledged that SARS-CoV-2 causes a multisystem disease. Indeed, this new pathogen causes a variety of syndromes, including asymptomatic disease; mild disease; moderate disease; a severe form that requires hospitalization, intensive care, and mechanical ventilation; multisystem inflammatory disease; and a condition called long COVID or postacute sequelae of SARS-CoV-2 infection. Some of these syndromes resemble previously described disorders, including those with no confirmed etiology, such as Kawasaki disease. After recognition of a distinct multisystem inflammatory syndrome in children, followed by a similar syndrome in adults, various multisystem syndromes occurring during the pandemic associated or related to SARS-CoV-2 began to be identified. A typical pattern of cytokine and chemokine dysregulation occurs in these complex syndromes; however, the disorders have distinct immunological determinants that may help to differentiate them. This review discusses the origins of the different trajectories of the inflammatory syndromes related to SARS-CoV-2 infection.
Collapse
|
10
|
Abstract
Cardiometabolic disease describes a combination of metabolic abnormalities that increases the risk of type 2 diabetes and cardiovascular diseases, including pathological changes such as insulin resistance, hyperglycemia, dyslipidemia, abdominal obesity, and hypertension, and environmental risk factors such as smoking, sedentary lifestyle, poor diet, and poverty. As the number of coronavirus disease 2019 (COVID-19) patients continues to rise, type 2 diabetes, cardiovascular disease, hypertension, and obesity, all components of, or sequelae of cardiometabolic disease, were identified among others as key risk factors associated with increased mortality in these patients. Numerous studies have been done to further elucidate this relationship between COVID-19 and cardiometabolic disease. Cardiometabolic disease is associated with both increased susceptibility to COVID-19 and worse outcomes of COVID-19, including intensive care, mechanical ventilation, and death. The proinflammatory state of cardiometabolic disease specifically obesity, has been associated with a worse prognosis in COVID-19 patients. There has been no evidence to suggest that antihypertensives and antidiabetic medications should be discontinued in COVID-19 patients but these patients should be closely monitored to ensure that their blood pressure and blood glucose levels are stable. Assessment of vaccination efficacy in cardiometabolic disease patients is also discussed.
Collapse
Affiliation(s)
- Chan W. Kim
- From the Cardiology Division, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S. Aronow
- From the Cardiology Division, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - William H. Frishman
- From the Cardiology Division, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
11
|
The Impact of COVID-19 on the Food Supply Chain and the Role of E-Commerce for Food Purchasing. SUSTAINABILITY 2022. [DOI: 10.3390/su14053074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The world has been plagued by an unforeseen threat to public health by the appearance of COVID-19, which has impacted the world’s economy and the worldwide supply chain. The unexpected pandemic (COVID-19) quickly spread across the world, leaving not a single country unaffected by the worldwide pandemic. At the start of COVID-19, several countries adopted social distancing and lockdowns due to the virus. The existing pandemic’s discriminatory aspect has a negative influence on human health and the standard of living, as well as worldwide trade, supply chains, and major economies. COVID-19 has been shown to have an effect throughout the broader food supply chain, one of the largest significant sectors of any country, from the field to the consumers. There are currently substantial concerns regarding food production, manufacturing, delivery, and consumption in light of emerging issues within the food supply chain. Limitations on the mobility of workers, variations in consumer demands, the shutdown of food manufacturing industries, limited food trading regulations, and financial stress throughout the food supply chain are all results of the COVID-19 pandemic. The pandemic (COVID-19) has changed consumer behavior and affected the business and economic sector. The purpose of this study was to explore the application of the Q-technique in the investigation of online consumer and manufacturer behavior in relation to end-user food purchases via digital marketing skills, supply chain possibilities, food purchaser and consumer happiness, and e-commerce infrastructure efficiency under the influence of COVID-19. The results show that in the crisis of supply chain management, clarifying the import food industry e-commerce supply chain crisis items, and determining their priority and strength can help enterprises make emergency decisions regarding supply chain operation; they can also be used as a reference for enterprises to use in responding to the crisis.
Collapse
|
12
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
13
|
Marçalo R, Neto S, Pinheiro M, Rodrigues AJ, Sousa N, Santos MAS, Simão P, Valente C, Andrade L, Marques A, Moura GR. Evaluation of the genetic risk for COVID-19 outcomes in COPD and differences among worldwide populations. PLoS One 2022; 17:e0264009. [PMID: 35196333 PMCID: PMC8865687 DOI: 10.1371/journal.pone.0264009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Populations seem to respond differently to the global pandemic of severe acute respiratory syndrome coronavirus 2. Recent studies show individual variability in both susceptibility and clinical response to COVID-19 infection. People with chronic obstructive pulmonary disease (COPD) constitute one of COVID-19 risk groups, being already associated with a poor prognosis upon infection. This study aims contributing to unveil the underlying reasons for such prognosis in people with COPD and the variability in the response observed across worldwide populations, by looking at the genetic background as a possible answer to COVID-19 infection response heterogeneity. METHODS SNPs already associated with susceptibility to COVID-19 infection (rs286914 and rs12329760) and severe COVID-19 with respiratory failure (rs657152 and rs11385942) were assessed and their allelic frequencies used to calculate the probability of having multiple risk alleles. This was performed on a Portuguese case-control COPD cohort, previously clinically characterized and genotyped from saliva samples, and also on worldwide populations (European, Spanish, Italian, African, American and Asian), using publicly available frequencies data. A polygenic risk analysis was also conducted on the Portuguese COPD cohort for the two mentioned phenotypes, and also for hospitalization and survival to COVID-19 infection. FINDINGS No differences in genetic risk for COVID-19 susceptibility, hospitalization, severity or survival were found between people with COPD and the control group (all p-values > 0.01), either considering risk alleles individually, allelic combinations or polygenic risk scores. All populations, even those with European ancestry (Portuguese, Spanish and Italian), showed significant differences from the European population in genetic risk for both COVID-19 susceptibility and severity (all p-values < 0.0001). CONCLUSION Our results indicate a low genetic contribution for COVID-19 infection predisposition or worse outcomes observed in people with COPD. Also, our study unveiled a high genetic heterogeneity across major world populations for the same alleles, even within European sub-populations, demonstrating the need to build a higher resolution European genetic map, so that differences in the distribution of relevant alleles can be easily accessed and used to better manage diseases, ultimately, safeguarding populations with higher genetic predisposition to such diseases.
Collapse
Affiliation(s)
- Rui Marçalo
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
- Lab3R-Respiratory Research and Rehabilitation, School for Health Sciences (ESSUA) and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Sonya Neto
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
| | - Miguel Pinheiro
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho–Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho–Braga, Portugal
| | - Manuel A. S. Santos
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
| | - Paula Simão
- Pulmonology Department, Unidade Local de Saúde de Matosinhos—Porto, Porto, Portugal
| | - Carla Valente
- Pulmonology Department, Centro Hospitalar do Baixo Vouga–Aveiro, Aveiro, Portugal
| | - Lília Andrade
- Pulmonology Department, Centro Hospitalar do Baixo Vouga–Aveiro, Aveiro, Portugal
| | - Alda Marques
- Lab3R-Respiratory Research and Rehabilitation, School for Health Sciences (ESSUA) and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Gabriela R. Moura
- Department of Medical Sciences, Genome Medicine Laboratory, Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
14
|
Guarnieri T. Hypothesis: Emerging Roles for Aryl Hydrocarbon Receptor in Orchestrating CoV-2-Related Inflammation. Cells 2022; 11:cells11040648. [PMID: 35203299 PMCID: PMC8869960 DOI: 10.3390/cells11040648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the pathogenic agent of Coronavirus-Induced Disease-2019 (COVID-19), a multi-organ syndrome which primarily targets the respiratory system. In this review, considering the large amount of data pointing out the role of the Aryl hydrocarbon Receptor (AhR) in the inflammatory response and in the modulation of innate and adaptive immunity, we describe some mechanisms that strongly suggest its involvement in the management of COVID-19′s inflammatory framework. It regulates both the expression of Angiotensin Converting Enzyme-2 (ACE-2) and its stabilizing partner, the Broad neutral Amino acid Transporter 1 (B0AT1). It induces Indolamine 2,3 dioxygenase (IDO-1), the enzyme which, starting from Tryptophan (Trp), produces Kynurenine (Kyn, Beta-Anthraniloyl-L-Alanine). The accumulation of Kyn and the depletion of Trp arrest T cell growth and induce apoptosis, setting up an immune-tolerant condition, whereas AhR and interferon type I (IFN-I) build a mutual inhibitory loop that also involves NF-kB and limits the innate response. AhR/Kyn binding boosts the production of Interleukin-6 (IL-6), thus reinforcing the inflammatory state and counteracting the IDO-dependent immune tolerance in the later stage of COVID-19. Taken together, these data depict a framework where sufficient clues suggest the possible participation of AhR in the management of COVID-19 inflammation, thus indicating an additional therapeutic target for this disease.
Collapse
Affiliation(s)
- Tiziana Guarnieri
- Cell Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy;
- Interuniversity Consortium “Istituto Nazionale Biostrutture e Biosistemi” (INBB–Biostructures and Biosystems National Institute), 00136 Rome, Italy
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
15
|
Zinatizadeh MR, Zarandi PK, Zinatizadeh M, Yousefi MH, Amani J, Rezaei N. Efficacy of mRNA, adenoviral vector, and perfusion protein COVID-19 vaccines. Biomed Pharmacother 2022; 146:112527. [PMID: 34906769 PMCID: PMC8660177 DOI: 10.1016/j.biopha.2021.112527] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has a devastating impact on global populations triggered by a highly infectious viral sickness, produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The third major cause of mortality in the United States, following heart disease and cancer in 2020, was undoubtedly COVID-19. The centers for disease control and prevention (CDC) and the world health organization (WHO) separately developed a categorization system for differentiating new strains of SARS-CoV-2 into variants of concern (VoCs) and variants of interest (VoIs) with the continuing development of various strains SARS-CoV-2. By December 2021, five of the SARS-CoV-2 VoCs were discovered from the onset of the pandemic depending on the latest epidemiologic report by the WHO: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529). Mutations in the receptor-binding domain (RBD) and n-terminal domain (NTD) have been found throughout all five identified VoCs. All strains other than the delta mutant are often found with the N501Y mutation situated on the RBD, resulting in higher binding between the spike protein and angiotensin-converting enzyme 2 (ACE2) receptors, enhanced viral adhesion, and following the entrance to host cells. The introduction of these new strains of SRAS-CoV-2 is likely to overcome the remarkable achievements gained in restricting this viral disease to the point where it is presented with remarkable vaccine developments against COVID-19 and strong worldwide mass immunization initiatives. Throughout this literature review, the effectiveness of current COVID-19 vaccines for managing and prohibiting SARS-CoV-2 strains is thoroughly described.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Zinatizadeh
- Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hadi Yousefi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Jaffar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
16
|
Kim CW, Aronow WS. COVID-19, cardiovascular diseases and cardiac troponins. Future Cardiol 2022; 18:135-142. [PMID: 34476978 PMCID: PMC8438926 DOI: 10.2217/fca-2021-0054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
There has been strong evidence of myocardial injury in COVID-19 patients with significantly elevated serum cardiac troponin (cTn). While the exact mechanism of injury is unclear, possible suggested pathological mechanisms of injury are discussed. These include increased susceptibility of the myocardium and endothelium to viral invasion, underlying hyperinflammatory state and subsequent cytokine storm, a hypercoagulable and prothrombotic state, and indirect myocardial injury due to hypoxemia. As a result of these pathological mechanisms in COVID-19 patients, cTn may be elevated largely due to myocarditis, microangiopathy or myocardial infarction. The utility of cTn as a biomarker for measuring myocardial injury in these patients and assessing its ability as a prognostic factor for clinical outcome is also discussed.
Collapse
Affiliation(s)
- Chan W Kim
- Cardiology Department, & The Department of Medicine, Westchester Medical Center & New York Medical College, Valhalla, NY 10595, USA
| | - Wilbert S Aronow
- Cardiology Department, & The Department of Medicine, Westchester Medical Center & New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
17
|
Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Rev Rep 2021; 17:2107-2119. [PMID: 34365591 PMCID: PMC8349465 DOI: 10.1007/s12015-021-10229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The virus responsible for coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over 190 million people to date, causing a global pandemic. SARS-CoV-2 relies on binding of its spike glycoprotein to angiotensin-converting enzyme 2 (ACE2) for infection. In addition to fever, cough, and shortness of breath, severe cases of SARS-CoV-2 infection may result in the rapid overproduction of pro-inflammatory cytokines. This overactive immune response is known as a cytokine storm, which leads to several serious clinical manifestations such as acute respiratory distress syndrome and myocardial injury. Cardiovascular disorders such as acute coronary syndrome (ACS) and heart failure not only enhance disease progression at the onset of infection, but also arise in hospitalized patients with COVID-19. Tissue-specific differentiated cells and organoids derived from human pluripotent stem cells (hPSCs) serve as an excellent model to address how SARS-CoV-2 damages the lungs and the heart. In this review, we summarize the molecular basis of SARS-CoV-2 infection and the current clinical perspectives of the bidirectional relationship between the cardiovascular system and viral progression. Furthermore, we also address the utility of hPSCs as a dynamic model for SARS-CoV-2 research and clinical translation.
Collapse
Affiliation(s)
- Kyle Ernzen
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark E Peeples
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Vaccine and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
18
|
Tzankov A, Bhattacharyya S, Kotlo K, Tobacman JK. Increase in Chondroitin Sulfate and Decline in Arylsulfatase B May Contribute to Pathophysiology of COVID-19 Respiratory Failure. Pathobiology 2021; 89:81-91. [PMID: 34788765 DOI: 10.1159/000519542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The potential role of accumulation of chondroitin sulfates (CSs) in the pathobiology of COVID-19 has not been examined. Accumulation may occur by increased synthesis or by decline in activity of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) which requires oxygen for activity. METHODS Immunostaining of lung tissue from 28 patients who died due to COVID-19 infection was performed for CS, ARSB, and carbohydrate sulfotransferase (CHST)15. Measurements of mRNA expression of CHST15 and CHST11, sulfotransferase activity, and total sulfated glycosaminoglycans (GAGs) were determined in human vascular smooth muscle cells following angiotensin (Ang) II treatment. RESULTS CS immunostaining showed increase in intensity and distribution, and immunostaining of ARSB was diminished in COVID-19 compared to normal lung tissue. CHST15 immunostaining was prominent in vascular smooth muscle cells associated with diffuse alveolar damage due to COVID-19 or other causes. Expression of CHST15 and CHST11 which are required for synthesis of CSE and chondroitin 4-sulfate, total sulfated GAGs, and sulfotransferase activity was significantly increased following AngII exposure in vascular smooth muscle cells. Expression of Interleukin-6 (IL-6), a mediator of cytokine storm in COVID-19, was inversely associated with ARSB expression. DISCUSSION/CONCLUSION Decline in ARSB and resulting increases in CS may contribute to the pathobiology of COVID-19, as IL-6 does. Increased expression of CHSTs following activation of Ang-converting enzyme 2 may lead to buildup of CSs.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Pathology, University Hospital Basel, Institute of Medical Genetics and Pathology, University of Basel, Basel, Switzerland
| | - Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Kumar Kotlo
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
19
|
Tan HW, Xu YM, Lau ATY. Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Rev Proteomics 2021; 18:925-938. [PMID: 34812694 DOI: 10.1080/14789450.2021.2010549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The outbreak of the newly discovered human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has disrupted the normal life of almost every civilization worldwide. Studies have shown that the coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 can affect multiple human organs and physiological systems, but the respiratory system remains the primary location for viral infection. AREAS COVERED We summarize how omics technologies are used in SARS-CoV-2 research and specifically review the current knowledge of COVID-19 from the aspect of human bronchial-pulmonary proteomics. Also, knowledge gaps in COVID-19 that can be fulfilled by proteomics are discussed. EXPERT OPINION Overall, human bronchial-pulmonary proteomics plays an important role in revealing the dynamics, functions, tropism, and pathogenicity of SARS-CoV-2, which is crucial for COVID-19 biomarker and therapeutic target discoveries. To more fully understand the impact of COVID-19, research from various angles using multi-omics approaches should also be conducted on the lungs as well as other organs.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
20
|
Bouayad A. Features of HLA class I expression and its clinical relevance in SARS-CoV-2: What do we know so far? Rev Med Virol 2021; 31:e2236. [PMID: 33793006 PMCID: PMC8250062 DOI: 10.1002/rmv.2236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Modifications in HLA-I expression are found in many viral diseases. They represent one of the immune evasion strategies most widely used by viruses to block antigen presentation and NK cell response, and SARS-CoV-2 is no exception. These alterations result from a combination of virus-specific factors, genetically encoded mechanisms, and the status of host defences and range from loss or upregulation of HLA-I molecules to selective increases of HLA-I alleles. In this review, I will first analyse characteristic features of altered HLA-I expression found in SARS-CoV-2. I will then discuss the potential factors underlying these defects, focussing on HLA-E and class-I-related (like) molecules and their receptors, the most documented HLA-I alterations. I will also draw attention to potential differences between cells transfected to express viral proteins and those presented as part of authentic infection. Consideration of these factors and others affecting HLA-I expression may provide us with improved possibilities for research into cellular immunity against viral variants.
Collapse
Affiliation(s)
- Abdellatif Bouayad
- Faculty of Medicine and PharmacyMohammed First UniversityOujdaMorocco
- Laboratory of ImmunologyMohammed VI HospitalOujdaMorocco
| |
Collapse
|
21
|
Yousefi Dehbidi M, Goodarzi N, Azhdari MH, Doroudian M. Mesenchymal stem cells and their derived exosomes to combat Covid-19. Rev Med Virol 2021; 32:e2281. [PMID: 34363275 PMCID: PMC8420536 DOI: 10.1002/rmv.2281] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is causing an ongoing pandemic of coronavirus disease 2019 (Covid‐19). Effective therapies are required for the treatment of patients with severe stages of the disease. Mesenchymal stem cells (MSCs) have been evaluated in numerous clinical trials, but present challenges, such as carcinogenic risk and special storage conditions, coupled with insufficient data about their mechanism of action. The majority of unique properties of MSCs are related to their paracrine activity and especially to their exosomes. The impact of MSCs‐derived exosomes (MSC‐Es) on complications of Covid‐19 has been investigated in several studies. MSC‐Es may improve some complications of Covid‐19 such as cytokine storm, acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). Additionally, these exosomes can be evaluated as an applicable nano‐size carrier for antiviral therapeutic agents. Herein, we consider several potential applications of MSCs and their derived exosomes in the treatment of Covid‐19.
Collapse
Affiliation(s)
- Maryam Yousefi Dehbidi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad H Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
22
|
Zhu H, Zhang H, Zhou N, Ding J, Jiang J, Liu T, Liu Z, Wang F, Zhang Q, Zhang Z, Yan S, Li L, Benabdallah N, Jin H, Liu Z, Cai L, Thorek DLJ, Yang X, Yang Z. Molecular PET/CT Profiling of ACE2 Expression In Vivo: Implications for Infection and Outcome from SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100965. [PMID: 34174177 PMCID: PMC8373167 DOI: 10.1002/advs.202100965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Indexed: 06/07/2023]
Abstract
Rapid progress has been made to identify and study the causative agent leading to coronavirus disease 2019 (COVID-19) but many questions including who is most susceptible and what determines severity remain unanswered. Angiotensin-converting enzyme 2 (ACE2) is a key factor in the infection process of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In this study, molecularly specific positron emission tomography imaging agents for targeting ACE2 are first developed, and these novel agents are evaluated in vitro, in preclinical model systems, and in a first-in-human translational ACE2 imaging of healthy volunteers and a SARS-CoV-2 recovered patient (NCT04422457). ACE2 expression levels in different organs in live subjects are quantitatively delineated and observable differences are measured in the patient recovered from COVID-19. Surprising sites of uptake in the breast, reproductive system and very low uptake in pulmonary tissues are reported. This novel method can add a unique tool to facilitate SARS-CoV-2 related research and improve understanding of this enigmatic disease. Molecular imaging provides quantitative annotation of ACE2, the SARS-CoV-2 entry receptor, to noninvasively monitor organs impacted by the COVID-19.
Collapse
Affiliation(s)
- Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
| | - Hanwen Zhang
- Department of RadiologyWashington University in St. Louis School of MedicineSt. LouisMO63110USA
- Program in Quantitative Molecular TherapeuticsWashington University in St. Louis School of MedicineSt. LouisMO63110USA
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
| | - Jinquan Jiang
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
| | - Ziyu Liu
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
- Department of Nuclear MedicineThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhot010050China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
| | - Qian Zhang
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
| | - Zhuochen Zhang
- Department of Nuclear MedicinePeking University First HospitalBeijing100034China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Department of Thoracic Surgery IIPeking University Cancer Hospital and InstituteBeijing100142China
| | - Lei Li
- Beijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology and Visual Scientific Key LabBeijing100730China
| | - Nadia Benabdallah
- Department of RadiologyWashington University in St. Louis School of MedicineSt. LouisMO63110USA
- Program in Quantitative Molecular TherapeuticsWashington University in St. Louis School of MedicineSt. LouisMO63110USA
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical ImagingFifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiGuangdong Province519000China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation MedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Lisheng Cai
- Molecular Imaging BranchNational Institute of Mental HealthNational Institutes of HealthBethesdaMD20892USA
| | - Daniel L. J. Thorek
- Department of RadiologyWashington University in St. Louis School of MedicineSt. LouisMO63110USA
- Program in Quantitative Molecular TherapeuticsWashington University in St. Louis School of MedicineSt. LouisMO63110USA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMO63110USA
| | - Xing Yang
- Department of Nuclear MedicinePeking University First HospitalBeijing100034China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research Evaluation of Radiopharmaceuticals (Ministry of Education/Beijing)Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijing100142China
| |
Collapse
|
23
|
Ramirez-Hinojosa JP, Rodriguez-Sanchez Y, Romero-Gonzalez AK, Chavez-Gutierrez M, Gonzalez-Arenas NR, Ibarra-Arce A, Arroyo-Escalante S, Zavaleta-Villa B, Leon-Juarez M, Cruz-Holguin VJ, Espinosa de Los Monteros-Perez LE, Olivo-Diaz A, Hernandez-Castro R, Suarez-Roa L, Prado-Calleros H, Sierra-Martinez O, Avila-Ramirez G, Flisser A, Maravilla P, Romero-Valdovinos M. Association between cycle threshold (C t ) values and clinical and laboratory data in inpatients with COVID-19 and asymptomatic health workers. J Med Virol 2021; 93:5969-5976. [PMID: 34196423 PMCID: PMC8427125 DOI: 10.1002/jmv.27170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
In‐house assays for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) by quantitative reverse‐transcription polymerase chain reaction (qRT‐PCR), are feasible alternatives, particularly in developing countries. Cycle threshold (Ct) values obtained by qRT‐PCR were compared with clinical and laboratory data from saliva of inpatients with COVID‐19 and asymptomatic health workers (AHW) were studied. Saliva specimens from 58 inpatients confirmed by qRT‐PCR for SARS‐CoV‐2 using nasopharyngeal specimens, and 105 AHW were studied by qRT‐PCR using three sets of primers for the N (N1, N2, and N3) gene of SARS‐CoV‐2, according to the CDC Diagnostic Panel protocol, showing a positivity of 88% for inpatients and 8% for AHW. Bivariate analysis revealed an association between Ct < 38.0 values for N2 and mechanical ventilation assistance among patients (p = .013). In addition, values of aspartate‐transaminase, lactate dehydrogenase, and ferritin showed significant correlations with Ct values of N1 and N3 genes in inpatients. Therefore, our results show that Ct values correlate with some relevant clinical data for inpatients with COVID‐19.
Collapse
Affiliation(s)
| | | | | | | | | | - Aurora Ibarra-Arce
- División de Parasitología, Hospital General "Dr. Manuel Gea Gonzalez", Mexico City, Mexico
| | - Sara Arroyo-Escalante
- División de Parasitología, Hospital General "Dr. Manuel Gea Gonzalez", Mexico City, Mexico
| | - Beatriz Zavaleta-Villa
- División de Parasitología, Hospital General "Dr. Manuel Gea Gonzalez", Mexico City, Mexico
| | - Moises Leon-Juarez
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | | | | | - Angelica Olivo-Diaz
- División de Parasitología, Hospital General "Dr. Manuel Gea Gonzalez", Mexico City, Mexico
| | | | - Lourdes Suarez-Roa
- División de Parasitología, Hospital General "Dr. Manuel Gea Gonzalez", Mexico City, Mexico
| | - Hector Prado-Calleros
- División de Parasitología, Hospital General "Dr. Manuel Gea Gonzalez", Mexico City, Mexico
| | | | - Guillermina Avila-Ramirez
- Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Pablo Maravilla
- División de Parasitología, Hospital General "Dr. Manuel Gea Gonzalez", Mexico City, Mexico
| | | |
Collapse
|
24
|
Yue J, Jin W, Yang H, Faulkner J, Song X, Qiu H, Teng M, Azadi P, Zhang F, Linhardt RJ, Wang L. Heparan Sulfate Facilitates Spike Protein-Mediated SARS-CoV-2 Host Cell Invasion and Contributes to Increased Infection of SARS-CoV-2 G614 Mutant and in Lung Cancer. Front Mol Biosci 2021; 8:649575. [PMID: 34179075 PMCID: PMC8231436 DOI: 10.3389/fmolb.2021.649575] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.
Collapse
Affiliation(s)
- Jingwen Yue
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Weihua Jin
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - John Faulkner
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Hong Qiu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Michael Teng
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| |
Collapse
|
25
|
Cao C, Lakshminarayanan R, McCracken J, Lai J. Ampullitis Superimposed Obstructive Jaundice in a Patient With COVID-19. Gastroenterology Res 2021; 14:41-44. [PMID: 33737998 PMCID: PMC7935611 DOI: 10.14740/gr1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 11/11/2022] Open
Abstract
While coronavirus disease 2019 (COVID-19) is well known to cause significant lower respiratory symptoms, recent literature has documented numerous cases of multi-systemic involvement that can present with atypical symptoms. We report a case of an 83-year-old man, recovering from abdominal aortic aneurysm repair complicated by colonic injury requiring colostomy rendering him dependent on gastrostomy tube feedings for 3 years, who was transferred from a nursing care facility to the emergency department with altered mental status, fever and jaundice. Abdominal imaging and biopsy studies eventually identified duodenitis and ampullitis complicated by a suspected Klatskin tumor leading to biliary obstruction, sepsis and hepatoencephalopathy. Polymerase chain reaction (PCR) for COVID-19 was positive. Despite the severity of the initial presentation, the patient had no respiratory symptoms or abnormal chest X-ray findings on admission and developed hypoxia late into the disease course. Thus, this case is a report of an abnormal initial COVID-19 presentation with gastrointestinal and hepatobiliary involvement leading to hepatoencephalopathy but no lung findings, highlighting the importance of investigating extrapulmonary processes in COVID-19-positive patients regardless of pulmonary symptoms.
Collapse
Affiliation(s)
- Can Cao
- The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Renuka Lakshminarayanan
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, USA
| | - John McCracken
- Division of Gastroenterology, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, USA
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, USA
| |
Collapse
|
26
|
Design of Multi-Epitope Vaccine against SARS-CoV-2. CYBERNETICS AND INFORMATION TECHNOLOGIES 2020. [DOI: 10.2478/cait-2020-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The ongoing COVID-19 pandemic requires urgently specific therapeutics and approved vaccines. Here, the four structural proteins of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COVID-19, are screened by in-house immunoinformatic tools to identify peptides acting as potential T-cell epitopes. In order to act as an epitope, the peptide should be processed in the host cell and presented on the cell surface in a complex with the Human Leukocyte Antigen (HLA). The aim of the study is to predict the binding affinities of all peptides originating from the structural proteins of SARS-CoV-2 to 30 most frequent in the human population HLA proteins of class I and class II and to select the high binders (IC50 < 50 nM). The predicted high binders are compared to known high binders from SARS-CoV conserved in CoV-2 and 77% of them coincided. The high binders will be uploaded onto lipid nanoparticles and the multi-epitope vaccine prototype will be tested for ability to provoke T-cell mediated immunity and protection against SARS-CoV-2.
Collapse
|
27
|
Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci 2020; 10:148. [PMID: 33380340 PMCID: PMC7772801 DOI: 10.1186/s13578-020-00519-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is the host functional receptor for the new virus SARS-CoV-2 causing Coronavirus Disease 2019. ACE2 is expressed in 72 different cell types. Some factors that can affect the expression of the ACE2 are: sex, environment, comorbidities, medications (e.g. anti-hypertensives) and its interaction with other genes of the renin-angiotensin system and other pathways. Different factors can affect the risk of infection of SARS-CoV-2 and determine the severity of the symptoms. The ACE2 enzyme is a negative regulator of RAS expressed in various organ systems. It is with immunity, inflammation, increased coagulopathy, and cardiovascular disease. In this review, we describe the genetic and molecular functions of the ACE2 receptor and its relation with the physiological and pathological conditions to better understand how this receptor is involved in the pathogenesis of COVID-19. In addition, it reviews the different comorbidities that interact with SARS-CoV-2 in which also ACE2 plays an important role. It also describes the different factors that interact with the virus that have an influence in the expression and functional activities of the receptor. The goal is to provide the reader with an understanding of the complexity and importance of this receptor.
Collapse
Affiliation(s)
| | - Sandra Lopez-León
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | | | | | - Angelica Cuapio
- Center of Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Talia Wegman-Ostrosky
- Department of Basic Research, Instituto Nacional de Cancerología, 22 San Fernando Avenue, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
28
|
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic spreads, it is becoming increasingly evident that coronavirus disease 2019 (COVID-19) is not limited to the respiratory system, and that other organs can be affected. In particular, virus-related neurological manifestations are being reported more and more frequently in the scientific literature. In this article, we review the literature on the association between COVID-19 and neurological manifestations, present evidence from preclinical research suggesting that SARS-CoV-2 could be responsible for many of these manifestations, and summarize the biological pathways that could underlie each neurological symptom. Understanding the mechanisms that lead to neurological manifestations in patients with COVID-19 and how these manifestations correlate with clinical outcomes will be instrumental in guiding the optimal use of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Pezzini
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy.
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| |
Collapse
|
29
|
Cerullo G, Negro M, Parimbelli M, Pecoraro M, Perna S, Liguori G, Rondanelli M, Cena H, D’Antona G. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front Immunol 2020; 11:574029. [PMID: 33193359 PMCID: PMC7655735 DOI: 10.3389/fimmu.2020.574029] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
From Pauling's theories to the present, considerable understanding has been acquired of both the physiological role of vitamin C and of the impact of vitamin C supplementation on the health. Although it is well known that a balanced diet which satisfies the daily intake of vitamin C positively affects the immune system and reduces susceptibility to infections, available data do not support the theory that oral vitamin C supplements boost immunity. No current clinical recommendations support the possibility of significantly decreasing the risk of respiratory infections by using high-dose supplements of vitamin C in a well-nourished general population. Only in restricted subgroups (e.g., athletes or the military) and in subjects with a low plasma vitamin C concentration a supplementation may be justified. Furthermore, in categories at high risk of infection (i.e., the obese, diabetics, the elderly, etc.), a vitamin C supplementation can modulate inflammation, with potential positive effects on immune response to infections. The impact of an extra oral intake of vitamin C on the duration of a cold and the prevention or treatment of pneumonia is still questioned, while, based on critical illness studies, vitamin C infusion has recently been hypothesized as a treatment for COVID-19 hospitalized patients. In this review, we focused on the effects of vitamin C on immune function, summarizing the most relevant studies from the prevention and treatment of common respiratory diseases to the use of vitamin C in critical illness conditions, with the aim of clarifying its potential application during an acute SARS-CoV2 infection.
Collapse
Affiliation(s)
- Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)—Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Mauro Parimbelli
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)—Sport Medicine Centre, University of Pavia, Voghera, Italy
| | | | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - Giuseppe D’Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)—Sport Medicine Centre, University of Pavia, Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Dan S, Pant M, Upadhyay SK. The Case Fatality Rate in COVID-19 Patients With Cardiovascular Disease: Global Health Challenge and Paradigm in the Current Pandemic. CURRENT PHARMACOLOGY REPORTS 2020; 6:315-324. [PMID: 32953401 PMCID: PMC7490208 DOI: 10.1007/s40495-020-00239-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
Purpose of Review Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is identified from Wuhan, China, and has spread almost worldwide. Recently, the newly identified SARS-CoV-2 has been confirmed to kill millions of people worldwide and is dangerous to society health, survival, and livelihood. The people with cardiovascular problems are noticed as most common patients of coronavirus disease 2019 (COVID-19). There is a greater risk of mortality and morbidity in these patients than other patients of COVID-19. In the heart, expressed angiotensin-converting enzyme 2 (ACE2) and response effect of hyperactivity with angiotensin II associated to the renin-angiotensin mechanism are key factors of hypertension, atherosclerosis, and congestive heart failure. Recent Findings Mortality rates have been observed about 10.5% cases in patients with cardiovascular disease; however, a mortality rate of 52% was recorded in patients with heart failure, while 12% recovered ultimately. The occupancy of intense injury controlled by troponin elevation was a noteworthy factor in relation to mortality. Among 187 patients infected with SARS-CoV-2, about 35% were diagnosed with cardiovascular disease (CVD) history and 28% with raised troponin. Troponin elevation was identified more frequently (55%) in patients with cardiovascular diseases. Mortality rate in patients without cardiovascular diseases and normal troponin was 7.6%, normal troponin and cardiovascular disease with 13.3%, augmented troponin and without cardiovascular disease 37.5%, however 69.4% among cardiovascular disease and advanced troponin. Summary The study reflected a significant association of case fatality rate (CFR) to COVID-19 patients with cardiovascular diseases which supposed to be the most common dangerous risk factor and health challenge during the current pandemic situation.
Collapse
Affiliation(s)
- Siddhartha Dan
- Department of Biotechnology, I.K. Gujral Punjab Technical University Jalandhar, Kapurthala, Punjab India
| | - Mohit Pant
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207 India
| |
Collapse
|
31
|
Tan HW, Xu Y, Lau ATY. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2020; 30:e2122. [PMID: 32602627 PMCID: PMC7361198 DOI: 10.1002/rmv.2122] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/05/2023]
Abstract
Coronavirus (CoV) disease 2019 (COVID-19) is an ongoing pandemic caused by severe acute respiratory syndrome CoV 2 (SARS-CoV-2). The highly contagious SARS-CoV-2 belongs to the genus Betacoronavirus, and it is phylogenetically closely related to SARS-CoV, a human CoV that caused an outbreak back in 2002 to 2003. Both SARS-CoV-2 and SARS-CoV enter human cells via the interactions between viral crown-like spike protein and human angiotensin-converting enzyme 2 (ACE2) receptor. Here, we aim to review the involvement of ACE2 in human CoV infections by discussing the roles of ACE2 in CoV evolution, cross-species transmissibility, and COVID-19 susceptibility. We also provide our perspectives on COVID-19 treatment and prevention.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and GeneticsShantou University Medical CollegeShantouGuangdongPeople's Republic of China
| | - Yan‐Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and GeneticsShantou University Medical CollegeShantouGuangdongPeople's Republic of China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and GeneticsShantou University Medical CollegeShantouGuangdongPeople's Republic of China
| |
Collapse
|