1
|
Yan Q, Liu M, Mao J, Zhao Z, Wang B. Extracellular Vesicles in Acute Kidney Injury: Mechanisms, Biomarkers, and Therapeutic Potential. Int J Nanomedicine 2025; 20:6271-6288. [PMID: 40400780 PMCID: PMC12094478 DOI: 10.2147/ijn.s519345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/10/2025] [Indexed: 05/23/2025] Open
Abstract
Acute kidney injury (AKI) has a high morbidity and mortality rate but can only be treated with supportive therapy in most cases. The diagnosis of AKI is mainly based on serum creatinine level and urine volume, which cannot detect kidney injury sensitive and timely. Therefore, new diagnostic and therapeutic molecules of AKI are being actively explored. Extracellular vesicles (EVs), secreted by almost all cells, can originate from different parts of the kidney and mediate intercellular communication between various cell types of nephrons. At present, numerous successful EV-based biomarker discoveries and treatments for AKI have been made, such as the confirmed diagnostic role of urine-derived EVs in AKI and the established therapeutic role of mesenchymal stem cell-derived EVs in AKI have been confirmed; however, these related studies lack a full discussion. In this review, we summarize the latest progression in the profound understanding of the functional role of EVs in AKI caused by various etiologies in recent years and provide new insights into EVs as viable biomarkers and therapeutic molecules for AKI patients. Furthermore, the current challenges and prospects of this research area are briefly discussed, presenting a comprehensive overview of the growing foregrounds of EVs in AKI.
Collapse
Affiliation(s)
- Qianqian Yan
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Mengyuan Liu
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, People’s Republic of China
| | - Jinyan Mao
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, People’s Republic of China
| | - Zihao Zhao
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Bo Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
2
|
Yuan Y, Cao K, Gao P, Wang Y, An W, Dong Y. Extracellular vesicles and bioactive peptides for regenerative medicine in cosmetology. Ageing Res Rev 2025; 107:102712. [PMID: 40032214 DOI: 10.1016/j.arr.2025.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
As life quality improves and the life pressure increases, people's awareness of maintaining healthy skin and hair grows. However, the use of bioactive peptides in regenerative medical aesthetics is often constrained by the high molecular weight, which impedes skin penetration. In contrast, extracellular vesicles not only possess regenerative properties but also serve as effective carriers for bioactive peptides. Given their anti-inflammatory and bactericidal properties, capacity to promote angiogenesis, optimize collagen alignment, facilitate re-epithelialization and stimulate hair growth, extracellular vesicles become an emerging and promising solution for skin regeneration treatments. The combination of peptides and extracellular vesicles enhances therapeutic efficacy and improves the bioavailability of bioactive peptides. In this review, we summarize the functions of bioactive peptides and plant- and animal-derived extracellular vesicles in regenerative medicine with cosmetology, along with examples of their combined applications. Additionally, we provide an overview of peptides and extracellular vesicles currently available on the market and in clinical practice, discussing the challenges and solutions associated with their use.
Collapse
Affiliation(s)
- Yize Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kailu Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peifen Gao
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China
| | - Yinan Wang
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China
| | - Wenlin An
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China.
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Feng P, Zhang X, Gao J, Jiang L, Li Y. The Roles of Exosomes in Anti-Cancer Drugs. Cancer Med 2025; 14:e70897. [PMID: 40298189 PMCID: PMC12038748 DOI: 10.1002/cam4.70897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Cancer is an escalating global health issue, with rising incidence rates annually. Chemotherapy, a primary cancer treatment, often exhibits low tumor-targeting efficiency and severe side effects, limiting its effectiveness. Recent research indicates that exosomes, due to their immunogenicity and molecular delivery capabilities, hold significant potential as drug carriers for tumor treatment. METHODS This review summarizes the current status, powerful therapeutic potential, and challenges of using exosomes for the treatment of tumors. RESULTS Exosomes are crucial in tumor diagnosis, onset, and progression. To improve the efficacy of exosome-based treatments, researchers are exploring various biological, physical, and chemical approaches to engineer exosomes as a new nanomedicine translational therapy platform with broad and alterable therapeutic capabilities. Numerous clinical trials are currently underway investigating the safety and tolerability of exosomes carrying drugs to specific sites for the treatment of tumors. CONCLUSIONS Exosomes can be engineered as carriers to deliver therapeutic molecules to specific cells and tissues, offering a novel approach for disease treatment.
Collapse
Affiliation(s)
- Panpan Feng
- Department of RadiotherapyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xiaodong Zhang
- Department of General SurgeryBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jian Gao
- Science Experiment Center of China Medical UniversityShenyangChina
| | - Lei Jiang
- Department of General SurgeryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Yan Li
- Department of RadiotherapyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
- Liaoning Provincial Key Laboratory of Clinical Oncology MetabonomicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
4
|
Ene J, Muok L, Gonzalez V, Sanchez N, Nathani A, Syed F, Liu ZL, Singh M, Driscoll T, Li Y. Biomanufacturing and Curcumin-Loading of Human Choroid Plexus Organoid-Derived Extracellular Vesicles from a Vertical-Wheel Bioreactor to Alleviate Neuro-Inflammation. Biomedicines 2025; 13:1069. [PMID: 40426897 PMCID: PMC12109122 DOI: 10.3390/biomedicines13051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Choroid plexus is a complex structure in the human brain that is responsible for the secretion of extracellular vesicles (EVs) in cerebrospinal fluid. Few studies to date have generated choroid plexus (ChP) organoids differentiated from human induced pluripotent stem cells (hiPSCs) and analyzed their secreted EVs. The scalable Vertical-Wheel bioreactors (VWBRs) provide low shear stress and a controlled environment. Methods: This study utilized VWBRs for the differentiation of hiPSCs into ChP organoids and generation of the secreted EVs compared to a static culture. Additionally, this study loaded curcumin into ChP organoid-derived EVs, performed EV lyophilization, and determined the ability of the re-hydrated EVs to alleviate neuro-inflammation. Results: The results demonstrated that the VWBR culture exhibited more aerobic metabolism and active glucose and glutamine consumption than the static control. Consequently, the ChP markers and Endosomal Sorting Complexes Required for Transport-dependent and -independent EV biogenesis genes were significantly upregulated (2-3-fold) in the VWBR, producing four-fold-higher EVs per mL media than the static control. The EVs retained similar size and zeta potential after lyophilization and re-hydration. The cells exposed to amyloid beta 42 oligomers and treated with the curcumin-loaded re-hydrated EVs showed high viability and the reduced inflammatory response determined by TNF-α and IL-6 expression. Conclusions: This study demonstrates a scalable bioreactor system to promote ChP organoid differentiation and generation of EV-based cell-free therapeutics to treat neural inflammation in various neurological disorders.
Collapse
Affiliation(s)
- Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (J.E.); (L.M.); (V.G.); (N.S.); (F.S.); (Z.L.L.); (T.D.)
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (J.E.); (L.M.); (V.G.); (N.S.); (F.S.); (Z.L.L.); (T.D.)
| | - Vanessa Gonzalez
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (J.E.); (L.M.); (V.G.); (N.S.); (F.S.); (Z.L.L.); (T.D.)
| | - Nicolas Sanchez
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (J.E.); (L.M.); (V.G.); (N.S.); (F.S.); (Z.L.L.); (T.D.)
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32310, USA; (A.N.); (M.S.)
| | - Falak Syed
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (J.E.); (L.M.); (V.G.); (N.S.); (F.S.); (Z.L.L.); (T.D.)
| | - Zixiang Leonardo Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (J.E.); (L.M.); (V.G.); (N.S.); (F.S.); (Z.L.L.); (T.D.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32310, USA; (A.N.); (M.S.)
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (J.E.); (L.M.); (V.G.); (N.S.); (F.S.); (Z.L.L.); (T.D.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (J.E.); (L.M.); (V.G.); (N.S.); (F.S.); (Z.L.L.); (T.D.)
| |
Collapse
|
5
|
Zhu Y, Yang H, Xue Z, Tang H, Chen X, Liao Y. Mesenchymal stem cells-derived small extracellular vesicles and apoptotic extracellular vesicles for wound healing and skin regeneration: a systematic review and meta-analysis of preclinical studies. J Transl Med 2025; 23:364. [PMID: 40128791 PMCID: PMC11934660 DOI: 10.1186/s12967-024-05744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/07/2024] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Studies examining the therapeutic potential of Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) in wound healing and skin regeneration have progressed rapidly. Prior to considering clinical translation, a systematic and comprehensive understanding of these experimental details and the overall impact of MSC-EVs on skin regeneration is necessary. METHODS 83 studies were identified in Web of Science, Embase, and PubMed that satisfied a set of prespecified inclusion criteria. A random effects meta-analysis was conducted for wound closure rate, scar width, blood vessel density and collagen deposition. CONCLUSIONS Our findings demonstrate clear potential of MSC-EVs to be developed as therapy for wound healing and skin regeneration both in diabetic and non-diabetic animal models. Moreover, subgroup analyses demonstrated that apoptotic small extracellular vesicles (ApoSEVs) showed better efficacy than apoptotic bodies (ApoBDs) and small extracellular vesicles (sEVs) in wound closure outcome and collagen deposition, while sEVs displayed better than ApoEVs in revascularization. Among frequently used routes of administration, subcutaneous injection displayed a greater improvement to wound closure, collagen deposition and revascularization as compared to dressing/covering. Among easier-access source of MSCs, ADSCs demonstrated the best effect in wound closure rate and collagen deposition, as compared, BMMSCs displayed better in revascularization. Additionally, high heterogeneity observed in collection conditions, separation methods, storage methods, modifications, treatment dose, administration route, and frequency of MSC-EVs underscores the urgent need for standardization in these areas, prior to clinical translation. PROTOCOL REGISTRATION PROSPERO CRD42024499172.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Han Yang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhixin Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Haojing Tang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China.
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China.
| |
Collapse
|
6
|
Guan A, Alibrandi L, Verma E, Sareen N, Guan Q, Lionetti V, Dhingra S. Clinical translation of mesenchymal stem cells in ischemic heart failure: Challenges and future perspectives. Vascul Pharmacol 2025; 159:107491. [PMID: 40112941 DOI: 10.1016/j.vph.2025.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Myocardial infarction (MI) with resulting congestive heart failure is one of the leading causes of death worldwide. Current therapies for treating MI, such as devices, traditional medicine, and surgeries, come with many limitations as patients in their final stages of heart failure have little chances of experiencing any reversible changes. In recent decades, Mesenchymal stem cell (MSC) based therapy has become one of the most popular and rapidly developing fields in treating MI. Their supremacy for clinical applications is partially due to their unique properties and encouraging pre-clinical outcomes in various animal disease models. However, the majority of clinical trials registered for MSC therapy for diverse human diseases, including MI, have fallen short of expectations. This review intends to discuss the recent advances in the clinical application of using MSCs for cardiac repair and discuss challenges facing the clinical translation of MSCs for cardiac regeneration such as restoration of endothelial-cardiomyocyte crosstalk, immunomodulation and immune rejection, poor homing and migration, as well as low retention and survival. Furthermore, we will discuss recent strategies being investigated to help overcome some of these challenges.
Collapse
Affiliation(s)
- Anqi Guan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Lisa Alibrandi
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Qingdong Guan
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba; Department of Immunology and Internal Medicina, University of Manitoba, Winnipeg, Canada
| | - Vincenzo Lionetti
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy.; UOSVD Anesthesiology and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada.
| |
Collapse
|
7
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Quan J, Liu Q, Li P, Yang Z, Zhang Y, Zhao F, Zhu G. Mesenchymal stem cell exosome therapy: current research status in the treatment of neurodegenerative diseases and the possibility of reversing normal brain aging. Stem Cell Res Ther 2025; 16:76. [PMID: 39985030 PMCID: PMC11846194 DOI: 10.1186/s13287-025-04160-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025] Open
Abstract
With the exacerbation of the aging population trend, a series of neurodegenerative diseases caused by brain aging have become increasingly common, significantly impacting the daily lives of the elderly and imposing heavier burdens on nations and societies. Brain aging is a complex process involving multiple mechanisms, including oxidative stress, apoptosis of damaged neuronal cells, chronic inflammation, and mitochondrial dysfunction, and research into new therapeutic strategies to delay brain aging has gradually become a research focus in recent years. Mesenchymal stem cells (MSCs) have been widely used in cell therapy due to their functions such as antioxidative stress, anti-inflammation, and tissue regeneration. However, accompanying safety issues such as immune rejection, tumor development, and pulmonary embolism cannot be avoided. Studies have shown that using exosome derived from mesenchymal stem cells (MSC-Exo) for the treatment of neurodegenerative diseases is a safe and effective method. It not only has the therapeutic effects of stem cells but also avoids the risks associated with cell therapy. Therefore, exploring new therapeutic strategies to delay normal brain aging from the mechanism of MSC-Exo in the treatment of neurodegenerative diseases is feasible. This review summarizes the characteristics of MSC-Exo and their clinical progress in the treatment of neurodegenerative diseases, aiming to explore the possibility and potential mechanisms of MSC-Exo in reversing brain aging.
Collapse
Affiliation(s)
- Jinglan Quan
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Qing Liu
- Department of Library, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Pinghui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Zhiyu Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Yaohui Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Fuxing Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Gaohong Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
9
|
Krishnan I, Ng CY, Kee LT, Ng MH, Law JX, Thangarajah T, Zainuddin AA, Mahmood Z, Rajamanickam S, Subramani B, Lokanathan Y. Quality Control of Fetal Wharton's Jelly Mesenchymal Stem Cells-Derived Small Extracellular Vesicles. Int J Nanomedicine 2025; 20:1807-1820. [PMID: 39963415 PMCID: PMC11830757 DOI: 10.2147/ijn.s497586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Background Quality control (QC) is an important element in ensuring drug substances' safety, efficacy, and quality. The dosing regimen for sEVs can be in the form of protein concentration or the number of particles based on the results of a series of quality controls applied as in-process control. Methods Wharton's Jelly Mesenchymal Stem Cells (WJMSCs) were isolated from four independent umbilical cord samples and were characterized following the International Society for Cellular Therapy (ISCT) guidelines. Small extracellular vesicles (sEVs) were isolated separately from these four WJMSCs samples using the Tangential Flow Filtration (TFF) method and were characterized per Minimal Information for Studies of Extracellular Vesicles (MISEV2018) guidelines. Each isolated and concentrated sEV preparation was standardized and its purity was determined by the ratio of the number of particles to protein concentration. Results All the WJMSCs samples passed the Mesenchymal Stem Cells (MSCs) characterization QC tests. Qualitatively, EVs-positive markers (CD63 and TSG101) and intact bilipid membrane vesicles were detected in all the sEV preparations. Quantitatively, the protein and particle concentrations revealed that all the sEV preparations were "impure" with < 1.5 × 109 particles/µg protein. Albumin was co-isolated in all the sEV preparations. Conclusion In short, all characterized and standardized individual and pooled sEV preparations were deemed "impure" due to albumin co-isolation using the TFF method. For therapeutic development, it is essential to report protein and particle concentrations in EV preparations based on these QC results.
Collapse
Affiliation(s)
- Illayaraja Krishnan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Chiew Yong Ng
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Li Ting Kee
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Thavachelvi Thangarajah
- Department of Obstetrics and Gynaecology, Hospital Angkatan Tentera (HAT) Tuanku Mizan, Kuala Lumpur, Malaysia
| | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Zalina Mahmood
- Production and Blood Supply Management Division, National Blood Centre, Kuala Lumpur, Malaysia
| | | | | | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
10
|
Sun H, Xia T, Ma S, Lv T, Li Y. Intercellular communication is crucial in the regulation of healthy aging via exosomes. Pharmacol Res 2025; 212:107591. [PMID: 39800177 DOI: 10.1016/j.phrs.2025.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The hallmarks of aging encompass a variety of molecular categories (genomic, telomeric, and epigenetic), organelles (proteostasis, autophagy, and mitochondria), cellular components (including stem cells), systems (such as intercellular communication and chronic inflammation), and environmental factors (dysbiosis and nutrient sensing). These hallmarks play a crucial role in the aging process. Despite their intricate interconnections, the relationships among the hallmarks of aging remain unclear. Although the boundaries between these hallmarks may be indistinct, they exhibit interdependence, with the influence of one hallmark extending to others. Building on this foundation, we investigated the interrelations among the various hallmarks of aging and provided a systematic overview of their logical relationships, proposing that cellular communication plays a crucial role in the aging process. Exosomes function as a primary mode of cellular communication and significantly impact the aging process. Therefore, we propose utilizing exosomes as valuable tools for understanding the mechanisms of aging and addressing age-related concerns. Exosomes may represent a novel approach for the treatment and diagnosis of aging-related conditions in animals. Furthermore, our research reveals that exocytosis in young nematodes slows the aging process, while exocytosis in aged nematodes has the opposite effect, accelerating aging. In conclusion, exosomes act as intercellular messengers that influence the maintenance of a healthy aging process and link the hallmarks of aging with indicators of well-being.
Collapse
Affiliation(s)
- Huifang Sun
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tengyuan Xia
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Shuting Ma
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tao Lv
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| | - Yuhong Li
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| |
Collapse
|
11
|
Dai K, Liao B, Huang X, Liu Q. Consistency in bacterial extracellular vesicle production: key to their application in human health. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:1-20. [PMID: 40206807 PMCID: PMC11977363 DOI: 10.20517/evcna.2024.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 04/11/2025]
Abstract
Bacterial extracellular vesicles (BEVs) are naturally occurring functional structures that play critical roles in bacterial life processes. These vesicles, commonly known as outer membrane vesicles (OMVs), were first found to be released by Gram-negative bacteria; however, it has since been confirmed that Gram-positive bacteria also secrete BEVs. As research advances, BEVs are increasingly utilized in diverse applications, including vaccine development and drug delivery. Nevertheless, the effective employment of BEVs in these contexts requires the acquisition of vesicles with consistent properties and functions through appropriate culture, isolation, and purification methods. This review examines the advantages and disadvantages of various purification techniques alongside the heterogeneity they may introduce. We utilize the heterogeneity of BEVs as a framework to critically analyze the barriers to their application and the factors influencing their characteristics. Additionally, we constructively propose solutions to enhance the consistency of BEVs, thereby facilitating their further development and application.
Collapse
Affiliation(s)
- Ke Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Authors contributed equally
| | - Bo Liao
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Authors contributed equally
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
12
|
Carney RP, Mizenko RR, Bozkurt BT, Lowe N, Henson T, Arizzi A, Wang A, Tan C, George SC. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. NATURE NANOTECHNOLOGY 2025; 20:14-25. [PMID: 39468355 PMCID: PMC11781840 DOI: 10.1038/s41565-024-01774-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/11/2024] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation-hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases.
Collapse
Affiliation(s)
- Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Batuhan T Bozkurt
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Neona Lowe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Tanner Henson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Alessandra Arizzi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
13
|
Buitrago JC, Cruz-Barrera M, Dorsant-Ardón V, Medina C, Hernández-Mejía DG, Beltrán K, Flórez N, Camacho B, Gruber J, Salguero G. Large and small extracellular vesicles from Wharton's jelly MSCs: Biophysics, function, and strategies to improve immunomodulation. Mol Ther Methods Clin Dev 2024; 32:101353. [PMID: 39512906 PMCID: PMC11541841 DOI: 10.1016/j.omtm.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Extracellular vesicles (EVs) have emerged as mediators of immunosuppression and pro-regenerative processes, particularly through mesenchymal stromal cells (MSCs) across various disease models. Despite significant progress, there is still a need for a deeper understanding of EV content and functionality to fully harness their biomedical potential. Moreover, strategies to enhance EV production for clinical scalability are still under development. This study aimed to characterize two distinct types of EV-large EV (lgEV) and small EV (smEV)-secreted by Wharton's jelly MSCs (WJ-MSCs). Strategies were explored to augment both EV production and their immunoregulatory effects. Both lgEV and smEV displayed typical EV markers and demonstrated inhibition of human lymphocyte proliferation. Furthermore, analysis of IsomiR content revealed a pronounced immunomodulating signature within MSC-derived EVs, validated by a dual-fluorescence reporter system. MSC primed with pro-inflammatory cytokines yielded increased production of lgEV and smEV, enhancing their immunomodulatory potency. Finally, genetically engineering WJ-MSC to express CD9 resulted in lgEV and smEV with heightened efficacy in suppressing lymphocyte proliferation. This study successfully isolated, characterized, and demonstrated the potent immunosuppressive effect of WJ-MSC-derived lgEV and smEV. We propose cytokine preconditioning and genetic manipulation as viable strategies to enhance the therapeutic potential of WJ-MSC-derived EV in inflammatory conditions.
Collapse
Affiliation(s)
- July Constanza Buitrago
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
- Curexsys GmbH, Göttingen, Germany
- PhD Biomedical and Biological Sciences Program, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mónica Cruz-Barrera
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Valerie Dorsant-Ardón
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Carlos Medina
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - David G. Hernández-Mejía
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Karl Beltrán
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Natalia Flórez
- Faculty of Medicine, Universidad EAN, Medellín, Colombia
| | - Bernardo Camacho
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | | | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| |
Collapse
|
14
|
Thakur A, Rai D. Global requirements for manufacturing and validation of clinical grade extracellular vesicles. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100278. [PMID: 40027307 PMCID: PMC11863704 DOI: 10.1016/j.jlb.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 03/05/2025]
Abstract
Extracellular vesicles (EVs) are nanovesicles released from different cell types from biofluids such as blood, urine, and cerebrospinal fluid. They vary in size and biomarkers, and their biogenesis pathways allow them to be divided into three major types: exosomes, micro-vesicles, and apoptotic bodies. EVs have been studied in the context of diagnosis and therapeutic intervention of various pathological conditions such as cancer, neurodegenerative diseases, and pulmonary diseases. However, the production of EV-based therapeutics can be affected by the source, heterogeneity, or disease, raising questions about the manufacturing and validation of EVs of clinical grade and their scope regarding good manufacturing practice (GMP) in the industry. To address this, we have discussed the state-of-the-art requirements for EV production that must occur in a GMP-compliant environment with a reliable and traceable source. Additionally, EVs' homogeneity and the therapeutics' purity and stability must be analyzed and validated. Quality control measures must also be established to ensure the safety and efficacy of EVs. In conclusion, these considerations must be weighed carefully when manufacturing and validating EVs of clinical grade to ensure their safety and efficacy for therapeutic use.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Deepika Rai
- Smidt Heart Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, United States
| |
Collapse
|
15
|
An J, Park H, Ju M, Woo Y, Seo Y, Min J, Lee T. An updated review on the development of a nanomaterial-based field-effect transistor-type biosensors to detect exosomes for cancer diagnosis. Talanta 2024; 279:126604. [PMID: 39068827 DOI: 10.1016/j.talanta.2024.126604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Cancer, a life-threatening genetic disease caused by abnormalities in normal cell growth regulatory functions, poses a significant challenge that current medical technologies cannot fully overcome. The current desired breakthrough is to diagnose cancer as early as possible and increase survival rates through treatments tailored to the prognosis and appropriate follow-up. From a perspective that reflects this contemporary paradigm of cancer diagnostics, exosomes are emerging as promising biomarkers. Exosomes, serving as mobile biological information repositories of cancer cells, have been known to create a microtumor environment in surrounding cells, and significant insight into the clinical significance of cancer diagnosis targeting them has been reported. Therefore, there are growing interests in constructing a system that enables continuous screening with a focus on patient-friendly and flexible diagnosis, aiming to improve cancer screening rates through exosome detection. This review focuses on a proposed exosome-embedded biological information-detecting platform employing a field-effect transistor (FET)-based biosensor that leverages portability, cost-effectiveness, and rapidity to minimize the stages of sacrifice attributable to cancer. The FET-applied biosensing technique, stemming from variations in an electric field, is considered an early detection system, offering high sensitivity and a prompt response frequency for the qualitative and quantitative analysis of biomolecules. Hence, an in-depth discussion was conducted on the understanding of various exosome-based cancer biomarkers and the clinical significance of recent studies on FET-based biosensors applying them.
Collapse
Affiliation(s)
- Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Minyoung Ju
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yoshep Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
16
|
Wang W, Hou Y, Zhang J, Sun Z, Sun H. Improved Isolation Optimizes Downstream Application of Extracellular Vesicles Derived from Mycobacterium tuberculosis. Microorganisms 2024; 12:2129. [PMID: 39597520 PMCID: PMC11596817 DOI: 10.3390/microorganisms12112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, secretes extracellular vesicles (EVs), which may play an important role in mediating interactions between bacteria and host cells. Mtb EVs can be isolated by means of various techniques, which differ in terms of their effectiveness. In the present study, we found that an exosome isolation kit (EI) yielded higher numbers of EVs than either differential centrifugation (DC) or exosome detection via an ultrafast-isolation system (EXODUS). We also found that the EXODUS method revealed a greater abundance of H37Rv components within EVs, compared with the DC and EI methods. Analysis of the downstream application of H37Rv EVs revealed their internalization by RAW264.7 macrophages, peaking at 6 h, with subsequent activation of the TLR2 signaling pathway leading to the expression of inflammatory cytokines including IL-6 and TNF-α. It was also found that H37Rv EVs could cross the blood-brain barrier (BBB) and enter the brain, peaking at 12 h post-injection, eliciting an inflammatory response in the cerebral parenchyma, cerebellum, and hippocampus that persisted for up to 6 days. These findings offer novel insights into the pathogenesis of Mtb-induced diseases and may guide the development of therapeutic strategies.
Collapse
Affiliation(s)
- Wenjing Wang
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
| | - Yue Hou
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
| | - Jingfang Zhang
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 100000, China
| | - Zhaogang Sun
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 100000, China
| | - Hong Sun
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 100000, China
| |
Collapse
|
17
|
Al-Ani SA, Lee QY, Maheswaran D, Sin YM, Loh JS, Foo JB, Hamzah S, Ng JF, Tan LKS. Potential of Exosomes as Multifunctional Nanocarriers for Targeted Drug Delivery. Mol Biotechnol 2024:10.1007/s12033-024-01268-6. [PMID: 39269575 DOI: 10.1007/s12033-024-01268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Exosomes are small vesicles that form when multivesicular bodies fuse with the plasma membrane and are released into body fluids. They play a vital role in facilitating communication between cells by transferring different biomolecules, including DNA, RNA, proteins, and lipids, over both short and long distances. They also function as vital mediators in both states of health and disease, exerting an impact on several physiological processes. Exosomes have been modified to overcome the limitations of natural exosomes to enhance their potential as carriers for drug delivery systems, and these modifications aim to improve the drug delivery efficiency, enhance tissue and organ targeting, and prolong the circulating half-life of exosomes. This review discussed recent advancements in exosome nanotechnology, as well as the progression and use of exosomes for drug delivery. The potential commercialisation and challenges associated with the use of exosome-based drug delivery systems were also discussed, aiming to motivate the development of exosome-based theranostic nanoplatforms and nanotechnology for improved healthcare treatments.
Collapse
Affiliation(s)
- Safa Ali Al-Ani
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Qiao Ying Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Danesha Maheswaran
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Yuh Miin Sin
- Faculty of Medicine, AIMST University, Jalan Bedong, 08100, Semeling, Kedah Darulaman, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor campus, 42300 Puncak Alam, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Jeck Fei Ng
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
18
|
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024; 44:1923-1966. [PMID: 38500405 DOI: 10.1002/med.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bram Van den Broek
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaya Aseervatham
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Jefferson Stem Cell and Regenerative Neuroscience Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Amit K Srivastava
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Zhang X, Greve PF, Minh TTN, Wubbolts R, Demir AY, Zaal EA, Berkers CR, Boes M, Stoorvogel W. Extracellular vesicles from seminal plasma interact with T cells in vitro and drive their differentiation into regulatory T-cells. J Extracell Vesicles 2024; 13:e12457. [PMID: 39007430 PMCID: PMC11247398 DOI: 10.1002/jev2.12457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 07/16/2024] Open
Abstract
Seminal plasma induces immune tolerance towards paternal allogenic antigens within the female reproductive tract and during foetal development. Recent evidence suggests a role for extracellular vesicles in seminal plasma (spEVs). We isolated spEVs from seminal plasma that was donated by vasectomized men, thereby excluding any contributions from the testis or epididymis. Previous analysis demonstrated that such isolated spEVs originate mainly from the prostate. Here we observed that when isolated fluorescently labelled spEVs were mixed with peripheral blood mononuclear cells, they were endocytosed predominantly by monocytes, and to a lesser extent also by T-cells. In a mixed lymphocyte reaction, T-cell proliferation was inhibited by spEVs. A direct effect of spEVs on T-cells was demonstrated when isolated T cells were activated by anti-CD3/CD28 coated beads. Again, spEVs interfered with T cell proliferation, as well as with the expression of CD25 and the release of IFN-γ, TNF, and IL-2. Moreover, spEVs stimulated the expression of Foxp3 and IL-10 by CD4+CD25+CD127- T cells, indicating differentiation into regulatory T-cells (Tregs). Prior treatment of spEVs with proteinase K revoked their effects on T-cells, indicating a requirement for surface-exposed spEV proteins. The adenosine A2A receptor-specific antagonist CPI-444 also reduced effects of spEVs on T-cells, consistent with the notion that the development of Tregs and their immune suppressive functions are under the influence of adenosine-A2A receptor signalling. We found that adenosine is highly enriched in spEVs and propose that spEVs are targeted to and endocytosed by T-cells, after which they may release their adenosine content into the lumen of endosomes, thus allowing endosome-localized A2A receptor signalling in spEVs targeted T-cells. Collectively, these data support the idea that spEVs can prime T cells directly for differentiation into Tregs.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Biomolecular Health SciencesFaculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Patrick F. Greve
- Department of Pediatrics and Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Thi Tran Ngoc Minh
- Department of Biomolecular Health SciencesFaculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Richard Wubbolts
- Department of Biomolecular Health SciencesFaculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Ayşe Y. Demir
- Department of Clinical Chemistry and HematologyMeander Medical CentreAmersfoortThe Netherlands
| | - Esther A. Zaal
- Department of Biomolecular Health SciencesFaculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Celia R. Berkers
- Department of Biomolecular Health SciencesFaculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Marianne Boes
- Department of Pediatrics and Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Willem Stoorvogel
- Department of Biomolecular Health SciencesFaculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
20
|
St‐Denis‐Bissonnette F, Qiu S, Cummings SE, Kirkby M, Haile Y, Wassmer S, Muradia G, Mehic J, Stalker A, Shrestha A, Ardolino M, Lee S, Burger D, Wang L, Lavoie JR. Evaluation of resazurin phenoxazine dye as a highly sensitive cell viability potency assay for natural killer cell-derived extracellular vesicle-based cancer biotherapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e166. [PMID: 39022723 PMCID: PMC11253028 DOI: 10.1002/jex2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Natural killer cell-derived extracellular vesicles (NK-EVs) are candidate biotherapeutics against various cancers. However, standardised potency assays are necessary for a reliable assessment of NK-EVs' cytotoxicity. This study aims to thoroughly evaluate a highly sensitive resazurin phenoxazine-based cell viability potency assay (measurement of the cellular redox metabolism) for quantifying the cytotoxicity of NK-EVs against leukaemia K562 cells (suspension model) and breast cancer MDA-MB-231 cells (adherent model) in vitro. The assay was evaluated based on common analytical parameters setforth by regulatory guidelines, including specificity, selectivity,accuracy, precision, linearity, range and stability. Our results revealed that this resazurin-based cell viability potency assay reliably and reproducibly measured a dose-response of NK-EVs' cytotoxic activity against both cancer models. The assay showed precision with 5% and 20% variation for intra-run and inter-run variability. The assay signal showed specificity and selectivity of NK-EVs against cancer target cells, as evidenced by the diminished viability of cancer cells following a 5-hour treatment with NK-EVs, without any detectable interference or background. The linearity analysis of target cancer cells revealed strong linearity for densities of 5000 K562 and 1000 MDA-MB-231 cells per test with a consistent range. Importantly, NK-EVs' dose-response for cytotoxicity showed a strong correlation (|ρ| ∼ 0.8) with the levels of known cytotoxic factors associated with the NK-EVs' corona (FasL, GNLY, GzmB, PFN and IFN-γ), thereby validating the accuracy of the assay. The assay also distinguished cytotoxicity changes in degraded NK-EVs, indicating the ability of the assay to detect the potential loss of sample integrity. Compared to other commonly reported bioassays (i.e., flow cytometry, cell counting, lactate dehydrogenase release assay, DNA-binding reporter assay and confluence assay), our results support this highly sensitive resazurin-based viability potency assay as a high-throughput and quantitative method for assessing NK-EVs' cytotoxicity against both suspension and adherent cancer models for evaluating NK-EVs' biotherapeutics.
Collapse
Affiliation(s)
- Frederic St‐Denis‐Bissonnette
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Shirley Qiu
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Sarah E. Cummings
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Melanie Kirkby
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Yohannes Haile
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
- Department of NeuroscienceCarleton UniversityOttawaCanada
| | - Sarah Wassmer
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Gauri Muradia
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Jelica Mehic
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Andrew Stalker
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
| | - Amit Shrestha
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Michele Ardolino
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaCanada
- Cancer Therapeutics ProgramOttawa Hospital Research InstituteOttawaCanada
| | - Seung‐Hwan Lee
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaCanada
| | - Dylan Burger
- Kidney Research CentreOttawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaCanada
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaCanada
| | - Jessie R. Lavoie
- Biologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| |
Collapse
|
21
|
Mao L, Liu S, Chen Y, Huang H, Ding F, Deng L. Engineered exosomes: a potential therapeutic strategy for septic cardiomyopathy. Front Cardiovasc Med 2024; 11:1399738. [PMID: 39006168 PMCID: PMC11239395 DOI: 10.3389/fcvm.2024.1399738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Septic cardiomyopathy, a life-threatening complication of sepsis, can cause acute heart failure and carry a high mortality risk. Current treatments have limitations. Fortunately, engineered exosomes, created through bioengineering technology, may represent a potential new treatment method. These exosomes can both diagnose and treat septic cardiomyopathy, playing a crucial role in its development and progression. This article examines the strategies for using engineered exosomes to protect cardiac function and treat septic cardiomyopathy. It covers three innovative aspects: exosome surface modification technology, the use of exosomes as a multifunctional drug delivery platform, and plant exosome-like nanoparticle carriers. The article highlights the ability of exosomes to deliver small molecules, proteins, and drugs, summarizing several RNA molecules, proteins, and drugs beneficial for treating septic cardiomyopathy. Although engineered exosomes are a promising biotherapeutic carrier, they face challenges in clinical application, such as understanding the interaction mechanism with host cells, distribution within the body, metabolism, and long-term safety. Further research is essential, but engineered exosomes hold promise as an effective treatment for septic cardiomyopathy.
Collapse
Affiliation(s)
- Lixia Mao
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Songtao Liu
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxia Chen
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Huang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fenghua Ding
- Outpatient Appointment Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
22
|
Rezaei S, Nilforoushzadeh MA, Amirkhani MA, Moghadasali R, Taghiabadi E, Nasrabadi D. Preclinical and Clinical Studies on the Use of Extracellular Vesicles Derived from Mesenchymal Stem Cells in the Treatment of Chronic Wounds. Mol Pharm 2024; 21:2637-2658. [PMID: 38728585 DOI: 10.1021/acs.molpharmaceut.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
To date, the widespread implementation of therapeutic strategies for the treatment of chronic wounds, including debridement, infection control, and the use of grafts and various dressings, has been time-consuming and accompanied by many challenges, with definite success not yet achieved. Extensive studies on mesenchymal stem cells (MSCs) have led to suggestions for their use in treating various diseases. Given the existing barriers to utilizing such cells and numerous pieces of evidence indicating the crucial role of the paracrine signaling system in treatments involving MSCs, extracellular vesicles (EVs) derived from these cells have garnered significant attention in treating chronic wounds in recent years. This review begins with a general overview of current methods for chronic wound treatment, followed by an exploration of EV structure, biogenesis, extraction methods, and characterization. Subsequently, utilizing databases such as Google Scholar, PubMed, and ScienceDirect, we have explored the latest findings regarding the role of EVs in the healing of chronic wounds, particularly diabetic and burn wounds. In this context, the role and mode of action of these nanoparticles in healing chronic wounds through mechanisms such as oxygen level elevation, oxidative stress damage reduction, angiogenesis promotion, macrophage polarization assistance, etc., as well as the use of EVs as carriers for engineered nucleic acids, have been investigated. The upcoming challenges in translating EV-based treatments for healing chronic wounds, along with possible approaches to address these challenges, are discussed. Additionally, clinical trial studies in this field are also covered.
Collapse
Affiliation(s)
- Soheila Rezaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3514799422, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422Iran
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Mohammad Amir Amirkhani
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Davood Nasrabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3514799422, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422Iran
| |
Collapse
|
23
|
Zhou W, Wang X, Dong Y, Gao P, Zhao X, Wang M, Wu X, Shen J, Zhang X, Lu Z, An W. Stem cell-derived extracellular vesicles in the therapeutic intervention of Alzheimer's Disease, Parkinson's Disease, and stroke. Theranostics 2024; 14:3358-3384. [PMID: 38855176 PMCID: PMC11155406 DOI: 10.7150/thno.95953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues. Consequently, scientists have started to shift their attention from stem cells to extracellular vesicles due to their similar structures and properties. Beyond these parallels, extracellular vesicles can enhance biocompatibility, facilitate easy traversal of barriers, and minimize side effects. Furthermore, stem cell-derived extracellular vesicles can be engineered to load drugs and modify surfaces to enhance treatment outcomes. In this review, we summarize the functions of native stem cell-derived extracellular vesicles, subsequently review the strategies for the engineering of stem cell-derived extracellular vesicles and their applications in Alzheimer's disease, Parkinson's disease, and stroke, and discuss the challenges and solutions associated with the clinical translation of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Wantong Zhou
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Yumeng Dong
- Capital Medical University, 10 Xitoutiao, Youanmenwai Street, Beijing 100069, China
| | - Peifen Gao
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Mengxia Wang
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlin An
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
24
|
Romanò S, Nele V, Campani V, De Rosa G, Cinti S. A comprehensive guide to extract information from extracellular vesicles: a tutorial review towards novel analytical developments. Anal Chim Acta 2024; 1302:342473. [PMID: 38580402 DOI: 10.1016/j.aca.2024.342473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.
Collapse
Affiliation(s)
- Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Italy.
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Italy
| | | | | | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
25
|
Ahmed SH, AlMoslemany MA, Witwer KW, Tehamy AG, El-Badri N. Stem Cell Extracellular Vesicles as Anti-SARS-CoV-2 Immunomodulatory Therapeutics: A Systematic Review of Clinical and Preclinical Studies. Stem Cell Rev Rep 2024; 20:900-930. [PMID: 38393666 PMCID: PMC11087360 DOI: 10.1007/s12015-023-10675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND COVID-19 rapidly escalated into a worldwide pandemic with elevated infectivity even from asymptomatic patients. Complications can lead to severe pneumonia and acute respiratory distress syndrome (ARDS), which are the main contributors to death. Because of their regenerative and immunomodulatory capacities, stem cells and their derived extracellular vesicles (EVs) are perceived as promising therapies against severe pulmonary conditions, including those associated with COVID-19. Herein, we evaluate the safety and efficacy of stem cell EVs in treating COVID-19 and complicating pneumonia, acute lung injury, and ARDS. We also cover relevant preclinical studies to recapitulate the current progress in stem cell EV-based therapy. METHODS Using PubMed, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science, we searched for all English-language published studies (2000-2023) that used stem cell EVs as a therapy for COVID-19, ARDS, or pneumonia. The risk of bias (ROB) was assessed for all studies. RESULTS Forty-eight studies met our inclusion criteria. Various-sized EVs derived from different types of stem cells were reported as a potentially safe and effective therapy to attenuate the cytokine storm induced by COVID-19. EVs alleviated inflammation and regenerated the alveolar epithelium by decreasing apoptosis, proinflammatory cytokines, neutrophil infiltration, and M2 macrophage polarization. They also prevented fibrin production and promoted the production of anti-inflammatory cytokines and endothelial cell junction proteins. CONCLUSION Similar to their parental cells, stem cell EVs mediate lung tissue regeneration by targeting multiple pathways and thus hold promise in promoting the recovery of COVID-19 patients and improving the survival rate of severely affected patients.
Collapse
Affiliation(s)
- Sarah Hamdy Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed Atef AlMoslemany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
| | - Kenneth Whitaker Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmed Gamal Tehamy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt.
| |
Collapse
|
26
|
Jiang S, Tian S, Wang P, Liu J, Sun K, Zhou X, Han Y, Shang Y. Native and engineered extracellular vesicles: novel tools for treating liver disease. J Mater Chem B 2024; 12:3840-3856. [PMID: 38532706 DOI: 10.1039/d3tb01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Liver diseases are classified as acute liver damage and chronic liver disease, with recurring liver damage causing liver fibrosis and progression to cirrhosis and hepatoma. Liver transplantation is the only effective treatment for end-stage liver diseases; therefore, novel therapies are required. Extracellular vesicles (EVs) are endogenous nanocarriers involved in cell-to-cell communication that play important roles in immune regulation, tissue repair and regeneration. Native EVs can potentially be used for various liver diseases owing to their high biocompatibility, low immunogenicity and tissue permeability and engineered EVs with surface modification or cargo loading could further optimize therapeutic effects. In this review, we firstly introduced the mechanisms and effects of native EVs derived from different cells and tissues to treat liver diseases of different etiologies. Additionally, we summarized the possible methods to facilitate liver targeting and improve cargo-loading efficiency. In the treatment of liver disease, the detailed engineered methods and the latest delivery strategies were also discussed. Finally, we pointed out the limitations and challenges of EVs for future development and applications. We hope that this review could provide a useful reference for the development of EVs and promote the clinical translation.
Collapse
Affiliation(s)
- Shuangshuang Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Punan Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Keshuai Sun
- Department of Gastroenterology, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, Jiangsu, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
27
|
Salehi M, Negahdari B, Mehryab F, Shekari F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8304-8331. [PMID: 38587896 DOI: 10.1021/acs.jafc.3c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Extracellular vesicles (EVs) are nano to-micrometer-sized sacs that are released by almost all animal and plant cells and act as intercellular communicators by transferring their cargos between the source and target cells. As a safe and scalable alternative to conditioned medium-derived EVs, milk-derived EVs (miEVs) have recently gained a great deal of popularity. Numerous studies have shown that miEVs have intrinsic therapeutic actions that can treat diseases and enhance human health. Additionally, they can be used as natural drug carriers and novel classes of biomarkers. However, due to the complexity of the milk, the successful translation of miEVs from benchtop to bedside still faces several unfilled gaps, especially a lack of standardized protocols for the isolation of high-purity miEVs. In this work, by comprehensively reviewing the bovine miEVs studies, we provide an overview of current knowledge and research on miEVs while highlighting their challenges and enormous promise as a novel class of theranostics. It is hoped that this study will pave the way for clinical applications of miEVs by addressing their challenges and opportunities.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mehryab
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
28
|
Weber L, Torres A, Realini O, Bendek MJ, Mizgier ML, Brizuela C, Herrera D, González FE, Chaparro A. Proteomic Analysis of Salivary Extracellular Vesicles from COVID-19 Patients Reveals a Specific Anti-COVID-19 Response Protein Signature. Int J Mol Sci 2024; 25:3704. [PMID: 38612515 PMCID: PMC11011897 DOI: 10.3390/ijms25073704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Despite the understanding of the coronavirus disease-19 (COVID-19), the role of salivary extracellular vesicles (sEVs) in COVID-19 remains unclear. Exploring the proteomic cargo of sEVs could prove valuable for diagnostic and prognostic purposes in assessing COVID-19. The proteomic cargo of sEVs from COVID-19(+) subjects and their healthy close contacts (HCC) was explored. sEVs were isolated by ultracentrifugation from unstimulated saliva samples, and subsequently characterized through nanoparticle tracking, transmission electron microscopy, and Western blot analyses. The proteomic cargo of sEVs was processed by LC-MS/MS. sEVs were morphologically compatible with EVs, with the presence of Syntenin-1 and CD81 EV markers. The sEV pellet showed 1417 proteins: 1288 in COVID-19(+) cases and 1382 in HCC. In total, 124 proteins were differentially expressed in sEVs from COVID-19(+) subjects. "Coronavirus-disease response", "complement and coagulation cascades", and "PMN extracellular trap formation" were the most enriched KEGG pathways in COVID-19(+) cases. The most represented biological processes were "Hemoglobin and haptoglobin binding" and "oxygen carrier activity", and the best-denoted molecular functions were "regulated exocytosis and secretion" and "leucocyte and PMN mediated immunity". sEV proteomic cargo in COVID-19(+) suggests activity related to immune response processes, oxygen transport, and antioxidant mechanisms. In contrast, in HCC, sEV signature profiles are mainly associated with epithelial homeostasis.
Collapse
Affiliation(s)
- Laura Weber
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
| | - Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Ornella Realini
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - María José Bendek
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - María Luisa Mizgier
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| | - Claudia Brizuela
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
| | - David Herrera
- Department of Periodontology, Faculty of Dentistry, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Alejandra Chaparro
- Department of Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de los Andes, Santiago 7620060, Chile; (L.W.); (M.J.B.); (M.L.M.); (C.B.)
- Centre for Biomedical Research and Innovation (CIIB), Periodontal Research Laboratory, Universidad de los Andes, Santiago 7620060, Chile;
| |
Collapse
|
29
|
Li S, Rong Q, Zhou Y, Che Y, Ye Z, Liu J, Wang J, Zhou M. Osteogenically committed hUCMSCs-derived exosomes promote the recovery of critical-sized bone defects with enhanced osteogenic properties. APL Bioeng 2024; 8:016107. [PMID: 38327715 PMCID: PMC10849773 DOI: 10.1063/5.0159740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Low viability of seed cells and the concern about biosafety restrict the application of cell-based tissue-engineered bone (TEB). Exosomes that bear similar bioactivities to donor cells display strong stability and low immunogenicity. Human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSCs-Exos) show therapeutic efficacy in various diseases. However, little is known whether hUCMSCs-Exos can be used to construct TEB to repair bone defects. Herein, PM-Exos and OM-Exos were separately harvested from hUCMSCs which were cultured in proliferation medium (PM) or osteogenic induction medium (OM). A series of in-vitro studies were performed to evaluate the bioactivities of human bone marrow mesenchymal stem cells (hBMSCs) when co-cultured with PM-Exos or OM-Exos. Differential microRNAs (miRNAs) between PM-Exos and OM-Exos were sequenced and analyzed. Furthermore, PM-Exos and OM-Exos were incorporated in 3D printed tricalcium phosphate scaffolds to build TEBs for the repair of critical-sized calvarial bone defects in rats. Results showed that PM-Exos and OM-Exos bore similar morphology and size. They expressed representative surface markers of exosomes and could be internalized by hBMSCs to promote cellular migration and proliferation. OM-Exos outweighed PM-Exos in accelerating the osteogenic differentiation of hBMSCs, which might be attributed to the differentially expressed miRNAs. Furthermore, OM-Exos sustainably released from the scaffolds, and the resultant TEB showed a better reparative outcome than that of the PM-Exos group. Our study found that exosomes isolated from osteogenically committed hUCMSCs prominently facilitated the osteogenic differentiation of hBMSCs. TEB grafts functionalized by OM-Exos bear a promising application potential for the repair of large bone defects.
Collapse
Affiliation(s)
| | | | | | - Yuejuan Che
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ziming Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Junfang Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Jinheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Miao Zhou
- Author to whom correspondence should be addressed:. Tel/Fax: +86 020 33976070
| |
Collapse
|
30
|
Arya R, Jit BP, Kumar V, Kim JJ. Exploring the Potential of Exosomes as Biomarkers in Tuberculosis and Other Diseases. Int J Mol Sci 2024; 25:2885. [PMID: 38474139 DOI: 10.3390/ijms25052885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Tuberculosis (TB) is a major cause of morbidity and mortality and remains an important public health issue in developing countries worldwide. The existing methods and techniques available for the diagnosis of TB are based on combinations of laboratory (chemical and biological), radiological, and clinical tests. These methods are sophisticated and laborious and have limitations in terms of sensitivity, specificity, and accuracy. Clinical settings need improved diagnostic biomarkers to accurately detect biological changes due to pathogen invasion and pharmacological responses. Exosomes are membrane-bound vesicles and mediators of intercellular signaling processes that play a significant role in the pathogenesis of various diseases, such as tuberculosis, and can act as promising biomarkers for the monitoring of TB infection. Compared to conventional biomarkers, exosome-derived biomarkers are advantageous because they are easier to detect in different biofluids, are more sensitive and specific, and may be useful in tracking patients' reactions to therapy. This review provides insights into the types of biomarkers, methods of exosome isolation, and roles of the cargo (proteins) present in exosomes isolated from patients through omics studies, such as proteomics. These findings will aid in developing new prognostic and diagnostic biomarkers and could lead to the identification of new therapeutic targets in the clinical setting.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
31
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
32
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
33
|
Allahham N, Colic I, Rayner MLD, Gurnani P, Phillips JB, Rahim AA, Williams GR. Advanced Formulation Approaches for Emerging Therapeutic Technologies. Handb Exp Pharmacol 2024; 284:343-365. [PMID: 37733107 DOI: 10.1007/164_2023_695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In addition to proteins, discussed in the Chapter "Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules", there are a wide range of alternatives to small molecule active ingredients. Cells, extracellular vesicles, and nucleic acids in particular have attracted increasing research attention in recent years. There are now a number of products on the market based on these emerging technologies, the most famous of which are the mRNA-based vaccines against SARS-COV-2. These advanced therapeutic moieties are challenging to formulate however, and there remain significant challenges for their more widespread use. In this chapter, we consider the potential and bottlenecks for developing further medical products based on these systems. Cells, extracellular vesicles, and nucleic acids will be discussed in terms of their mechanism of action, the key requirements for translation, and how advanced formulation approaches can aid their future development. These points will be presented with selected examples from the literature, and with a focus on the formulations which have made the transition to clinical trials and clinical products.
Collapse
Affiliation(s)
- Nour Allahham
- UCL School of Pharmacy, University College London, London, UK
| | - Ines Colic
- UCL School of Pharmacy, University College London, London, UK
| | | | - Pratik Gurnani
- UCL School of Pharmacy, University College London, London, UK
| | | | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | | |
Collapse
|
34
|
Koprivec S, Majdič G. Extracellular Vesicles in Domestic Animals: Cellular Communication in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:39-57. [PMID: 37421538 DOI: 10.1007/5584_2023_779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Apoptotic and healthy cells of domestic animals release membrane-enclosed particles from their plasma membrane. These special structures, called extracellular vesicles, play an important role in intercellular communication. In the past, it was believed that their function was mainly to dispose unwanted cell contents and to help maintain cell homeostasis. However, we now know that they have important roles in health and disease and have diagnostic value as well as great potential for therapy in veterinary medicine. Extracellular vesicles facilitate cellular exchanges by delivering functional cargo molecules to nearby or distant tissues. They are produced by various cell types and are found in all body fluids. Their cargo reflects the state of the releasing parent cell, and despite their small size, this cargo is extraordinarily complex. Numerous different types of molecules contained in vesicles make them an extremely promising tool in the field of regenerative veterinary medicine. To further increase research interest and discover their full potential, some of the basic biological mechanisms behind their function need to be better understood. Only then will we be able to maximize the clinical relevance for targeted diagnostic and therapeutic purposes in various domestic animal species.
Collapse
Affiliation(s)
- Saša Koprivec
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Zhang F, Zhang L, Yu H. Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes. Curr Stem Cell Res Ther 2024; 19:1195-1209. [PMID: 38523514 DOI: 10.2174/011574888x311270240319084835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.
Collapse
Affiliation(s)
- Fan Zhang
- Faculty of Life Sciences and Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Leisheng Zhang
- Science and Technology Innovation Center, The Fourth People's Hospital of Jinan (The Third Affiliated Hospital of Shandong First Medical University), Jinan, 250031, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hao Yu
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
36
|
Sarcinella A, Femminò S, Brizzi MF. Extracellular Vesicles: Emergent and Multiple Sources in Wound Healing Treatment. Int J Mol Sci 2023; 24:15709. [PMID: 37958693 PMCID: PMC10650196 DOI: 10.3390/ijms242115709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Non-healing wound- and tissue-injury are commonly experienced worldwide by the aging population. The persistence of disease commonly leads to tissue infection, resulting in severe clinical complications. In the last decade, extracellular vesicles (EVs) have been considered promising and emergent therapeutic tools to improve the healing processes. Therefore, efforts have been directed to develop a cell-free therapeutic platform based on EV administration to orchestrate tissue repair. EVs derived from different cell types, including fibroblast, epithelial, and immune cells are recruited to the injured sites and in turn take part in scar formation. EVs are nano-sized particles containing a heterogeneous cargo consisting of lipids, proteins, and nucleic acids protected from degradation by their lipid bilayer. Noteworthy, since EVs have natural biocompatibility and low immunogenicity, they represent the ideal therapeutic candidates for regenerative purposes. Indeed, EVs are released by several cell types, and even if they possess unique biological properties, their functional capability can be further improved by engineering their content and functionalizing their surface, allowing a specific cell cargo delivery. Herein, we provide an overview of preclinical data supporting the contribution of EVs in the repair and regenerative processes, focusing on different naïve EV sources, as well as on their engineering, to offer a scalable and low-cost therapeutic option for tissue repair.
Collapse
Affiliation(s)
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.S.); (S.F.)
| |
Collapse
|
37
|
Sharma M, Sheth M, Poling HM, Kuhnell D, Langevin SM, Esfandiari L. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device. Sci Rep 2023; 13:18293. [PMID: 37880299 PMCID: PMC10600140 DOI: 10.1038/s41598-023-45409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Nano-scale extracellular vesicles are lipid-bilayer delimited particles that are naturally secreted by all cells and have emerged as valuable biomarkers for a wide range of diseases. Efficient isolation of small extracellular vesicles while maintaining yield and purity is crucial to harvest their potential in diagnostic, prognostic, and therapeutic applications. Most conventional methods of isolation suffer from significant shortcomings, including low purity or yield, long duration, need for large sample volumes, specialized equipment, trained personnel, and high costs. To address some of these challenges, our group has reported a novel insulator-based dielectrophoretic device for rapid isolation of small extracellular vesicles from biofluids and cell culture media based on their size and dielectric properties. In this study, we report a comprehensive characterization of small extracellular vesicles isolated from cancer-patients' biofluids at a twofold enrichment using the device. The three-fold characterization that was performed using conventional flow cytometry, advanced imaging flow cytometry, and microRNA sequencing indicated high yield and purity of the isolated small extracellular vesicles. The device thus offers an efficient platform for rapid isolation while maintaining biomolecular integrity.
Collapse
Affiliation(s)
- Manju Sharma
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Maulee Sheth
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Holly M Poling
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Damaris Kuhnell
- Department of Environmental and Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Scott M Langevin
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Leyla Esfandiari
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
- Department of Environmental and Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
| |
Collapse
|
38
|
Liguori GL, Kralj-Iglič V. Pathological and Therapeutic Significance of Tumor-Derived Extracellular Vesicles in Cancer Cell Migration and Metastasis. Cancers (Basel) 2023; 15:4425. [PMID: 37760395 PMCID: PMC10648223 DOI: 10.3390/cancers15184425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The infiltration of primary tumors and metastasis formation at distant sites strongly impact the prognosis and the quality of life of cancer patients. Current therapies including surgery, radiotherapy, and chemotherapy are limited in targeting the complex cell migration mechanisms responsible for cancer cell invasiveness and metastasis. A better understanding of these mechanisms and the development of new therapies are urgently needed. Extracellular vesicles (EVs) are lipid-enveloped particles involved in inter-tissue and inter-cell communication. This review article focuses on the impact of EVs released by tumor cells, specifically on cancer cell migration and metastasis. We first introduce cell migration processes and EV subtypes, and we give an overview of how tumor-derived EVs (TDEVs) may impact cancer cell migration. Then, we discuss ongoing EV-based cancer therapeutic approaches, including the inhibition of general EV-related mechanisms as well as the use of EVs for anti-cancer drug delivery, focusing on the harnessing of TDEVs. We propose a protein-EV shuttle as a route alternative to secretion or cell membrane binding, influencing downstream signaling and the final effect on target cells, with strong implications in tumorigenesis. Finally, we highlight the pitfalls and limitations of therapeutic EV exploitation that must be overcome to realize the promise of EVs for cancer therapy.
Collapse
Affiliation(s)
- Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
39
|
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother 2023; 165:115087. [PMID: 37392659 DOI: 10.1016/j.biopha.2023.115087] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Pollachi Road, Eachanari, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
40
|
Costa MHG, Costa MS, Painho B, Sousa CD, Carrondo I, Oltra E, Pelacho B, Prosper F, Isidro IA, Alves P, Serra M. Enhanced bioprocess control to advance the manufacture of mesenchymal stromal cell-derived extracellular vesicles in stirred-tank bioreactors. Biotechnol Bioeng 2023; 120:2725-2741. [PMID: 36919232 DOI: 10.1002/bit.28378] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) act as signaling mediators of cellular responses. However, despite representing a promising alternative to cell-based therapies, clinical translation of EVs is currently limited by their lack of scalability and standardized bioprocessing. Herein, we integrated scalable downstream processing protocols with standardized expansion of large numbers of viable cells in stirred-tank bioreactors to improve EV production. Higher EV yields were linked to EV isolation by tangential flow filtration followed by size exclusion chromatography, rendering 5 times higher number of EVs comparatively to density gradient ultracentrifugation protocols. Additionally, when compared to static culture, EV manufacture in bioreactors resulted in 2.2 higher yields. Highlighting the role of operating under optimal cell culture conditions to maximize the number of EVs secreted per cell, MSCs cultured at lower glucose concentration favored EV secretion. While offline measurements of metabolites concentration can be performed, in this work, Raman spectroscopy was also applied to continuously track glucose levels in stirred-tank bioreactors, contributing to streamline the selection of optimal EV collection timepoints. Importantly, MSC-derived EVs retained their quality attributes and were able to stimulate angiogenesis in vitro, therefore highlighting their promising therapeutic potential.
Collapse
Affiliation(s)
- Marta H G Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Margarida S Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Beatriz Painho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Carolina D Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Inês Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Enrique Oltra
- Department of Regenerative Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Beatriz Pelacho
- Department of Regenerative Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Felipe Prosper
- Department of Regenerative Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Inês A Isidro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Paula Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
41
|
Madel RJ, Börger V, Dittrich R, Bremer M, Tertel T, Phuong NNT, Baba HA, Kordelas L, Staubach S, Stein F, Haberkant P, Hackl M, Grillari R, Grillari J, Buer J, Horn PA, Westendorf AM, Brandau S, Kirschning CJ, Giebel B. Independent human mesenchymal stromal cell-derived extracellular vesicle preparations differentially attenuate symptoms in an advanced murine graft-versus-host disease model. Cytotherapy 2023; 25:821-836. [PMID: 37055321 DOI: 10.1016/j.jcyt.2023.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND AIMS Extracellular vesicles (EVs) harvested from conditioned media of human mesenchymal stromal cells (MSCs) suppress acute inflammation in various disease models and promote regeneration of damaged tissues. After successful treatment of a patient with acute steroid-refractory graft-versus-host disease (GVHD) using EVs prepared from conditioned media of human bone marrow-derived MSCs, this study focused on improving the MSC-EV production for clinical application. METHODS Independent MSC-EV preparations all produced according to a standardized procedure revealed broad immunomodulatory differences. Only a proportion of the MSC-EV products applied effectively modulated immune responses in a multi-donor mixed lymphocyte reaction (mdMLR) assay. To explore the relevance of such differences in vivo, at first a mouse GVHD model was optimized. RESULTS The functional testing of selected MSC-EV preparations demonstrated that MSC-EV preparations revealing immunomodulatory capabilities in the mdMLR assay also effectively suppress GVHD symptoms in this model. In contrast, MSC-EV preparations, lacking such in vitro activities, also failed to modulate GVHD symptoms in vivo. Searching for differences of the active and inactive MSC-EV preparations, no concrete proteins or miRNAs were identified that could serve as surrogate markers. CONCLUSIONS Standardized MSC-EV production strategies may not be sufficient to warrant manufacturing of MSC-EV products with reproducible qualities. Consequently, given this functional heterogeneity, every individual MSC-EV preparation considered for the clinical application should be evaluated for its therapeutic potency before administration to patients. Here, upon comparing immunomodulating capabilities of independent MSC-EV preparations in vivo and in vitro, we found that the mdMLR assay was qualified for such analyses.
Collapse
Affiliation(s)
- Rabea J Madel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Infectious Diseases, West German Centre for Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robin Dittrich
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nhi Ngo Thi Phuong
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lambros Kordelas
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simon Staubach
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | | | - Johannes Grillari
- Evercyte GmbH, Vienna, Austria; University of Natural Resources and Life Science, Vienna, Austria
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carsten J Kirschning
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
42
|
Teo KYW, Tan R, Wong KL, Hey DHW, Hui JHP, Toh WS. Small extracellular vesicles from mesenchymal stromal cells: the next therapeutic paradigm for musculoskeletal disorders. Cytotherapy 2023; 25:837-846. [PMID: 37191613 DOI: 10.1016/j.jcyt.2023.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Musculoskeletal disorders are one of the biggest contributors to morbidity and place an enormous burden on the health care system in an aging population. Owing to their immunomodulatory and regenerative properties, mesenchymal stromal/stem cells (MSCs) have demonstrated therapeutic efficacy for treatment of a wide variety of conditions, including musculoskeletal disorders. Although MSCs were originally thought to differentiate and replace injured/diseased tissues, it is now accepted that MSCs mediate tissue repair through secretion of trophic factors, particularly extracellular vesicles (EVs). Endowed with a diverse cargo of bioactive lipids, proteins, nucleic acids and metabolites, MSC-EVs have been shown to elicit diverse cellular responses and interact with many cell types needed in tissue repair. The present review aims to summarize the latest advances in the use of native MSC-EVs for musculoskeletal regeneration, examine the cargo molecules and mechanisms underlying their therapeutic effects, and discuss the progress and challenges in their translation to the clinic.
Collapse
Affiliation(s)
- Kristeen Ye Wen Teo
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore
| | - Rachel Tan
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Keng Lin Wong
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Department of Orthopedic Surgery, Sengkang General Hospital, Singapore Health Services, Singapore, Republic of Singapore
| | - Dennis Hwee Weng Hey
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - James Hoi Po Hui
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Wei Seong Toh
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Republic of Singapore; Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
43
|
Pincela Lins PM, Pirlet E, Szymonik M, Bronckaers A, Nelissen I. Manufacture of extracellular vesicles derived from mesenchymal stromal cells. Trends Biotechnol 2023; 41:965-981. [PMID: 36750391 DOI: 10.1016/j.tibtech.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) are a promising therapy for various diseases ranging from ischemic stroke to wound healing and cancer. Their therapeutic effects are mainly mediated by secretome-derived paracrine factors, with extracellular vesicles (EVs) proven to play a key role. This has led to promising research on the potential of MSC-EVs as regenerative, off-the-shelf therapeutic agents. However, the translation of MSC-EVs into the clinic is hampered by the poor scalability of their production. Recently, new advanced methods have been developed to upscale MSC cultivation and EV production yields, ranging from new cell culture devices to priming procedures. This review gives an overview of these innovative strategies for manufacturing MSC-EVs.
Collapse
Affiliation(s)
- Paula M Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium
| | - Elke Pirlet
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Michal Szymonik
- Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium
| | - Annelies Bronckaers
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium.
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium.
| |
Collapse
|
44
|
Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev 2023:114974. [PMID: 37356623 DOI: 10.1016/j.addr.2023.114974] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Extracellular Vesicles (EVs), particularly exosomes, recently exploded into nanomedicine as an emerging drug delivery approach due to their superior biocompatibility, circulating stability, and bioavailability in vivo. However, EV heterogeneity makes molecular targeting precision a critical challenge. Deciphering key molecular drivers for controlling EV tissue targeting specificity is in great need. Artificial intelligence (AI) brings powerful prediction ability for guiding the rational design of engineered EVs in precision control for drug delivery. This review focuses on cutting-edge nano-delivery via integrating large-scale EV data with AI to develop AI-directed EV therapies and illuminate the clinical translation potential. We briefly review the current status of EVs in drug delivery, including the current frontier, limitations, and considerations to advance the field. Subsequently, we detail the future of AI in drug delivery and its impact on precision EV delivery. Our review discusses the current universal challenge of standardization and critical considerations when using AI combined with EVs for precision drug delivery. Finally, we will conclude this review with a perspective on future clinical translation led by a combined effort of AI and EV research.
Collapse
Affiliation(s)
- Zachary F Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Kiley S Graim
- Department of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
45
|
Son JP, Kim EH, Shin EK, Kim DH, Sung JH, Oh MJ, Cha JM, Chopp M, Bang OY. Mesenchymal Stem Cell-Extracellular Vesicle Therapy for Stroke: Scalable Production and Imaging Biomarker Studies. Stem Cells Transl Med 2023:szad034. [PMID: 37311045 DOI: 10.1093/stcltm/szad034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/15/2023] [Indexed: 06/15/2023] Open
Abstract
A major clinical hurdle to translate MSC-derived extracellular vesicles (EVs) is the lack of a method to scale-up the production of EVs with customized therapeutic properties. In this study, we tested whether EV production by a scalable 3D-bioprocessing method is feasible and improves neuroplasticity in animal models of stroke using MRI study. MSCs were cultured in a 3D-spheroid using a micro-patterned well. The EVs were isolated with filter and tangential flow filtration and characterized using electron microscopy, nanoparticle tracking analysis, and small RNA sequencing. Compared to conventional 2D culture, the production-reproduction of EVs (the number/size of particles and EV purity) obtained from 3D platform were more consistent among different lots from the same donor and among different donors. Several microRNAs with molecular functions associated with neurogenesis were upregulated in EVs obtained from 3D platform. EVs induced both neurogenesis and neuritogenesis via microRNAs (especially, miR-27a-3p and miR-132-3p)-mediated actions. EV therapy improved functional recovery on behavioral tests and reduced infarct volume on MRI in stroke models. The dose of MSC-EVs of 1/30 cell dose had similar therapeutic effects. In addition, the EV group had better anatomical and functional connectivity on diffusion tensor imaging and resting-state functional MRI in a mouse stroke model. This study shows that clinical-scale MSC-EV therapeutics are feasible, cost-effective, and improve functional recovery following experimental stroke, with a likely contribution from enhanced neurogenesis and neuroplasticity.
Collapse
Affiliation(s)
- Jeong Pyo Son
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, South Korea
| | - Eun Hee Kim
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Eun Kyoung Shin
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Dong Hee Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Ji Hee Sung
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Mi Jeong Oh
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Jae Min Cha
- 3D Stem Cell Bioprocessing Laboratory, Department of Mechatronics, Incheon National University, Incheon, South Korea
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Oh Young Bang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, South Korea
| |
Collapse
|
46
|
Garima, Sharma D, Kumar A, Mostafavi E. Extracellular vesicle-based biovectors in chronic wound healing: Biogenesis and delivery approaches. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:822-840. [PMID: 37273778 PMCID: PMC10238601 DOI: 10.1016/j.omtn.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Chronic wounds remain an unresolved medical issue because of major social and therapeutic repercussions that require extensive focus. Recent related theragnostic focuses only on wound management and is not effectively promoting chronic wound healing. The rising number of patients with either under-healing or over-healing wounds highlights the ineffectiveness of current wound-healing treatments, and thus, there is an unmet need to focus on alternative treatments. To cover this gap, extracellular vesicles (EVs), for targeted delivery of therapeutics, are emerging as a potential therapy to treat both acute and persistent wounds. To address these issues, we explore the core biology of EVs, associated pharmacology, comprehension of immunogenic outcomes, and potential for long-term wound treatment with improved effectiveness and their nonacceptable side effects. Additionally, the therapeutic role of EVs in severe wound infections through biogenetic moderation, in combination with biomaterials (functional in nature), as well as drug carriers that can offer opportunities for the development of new treatments for this long-term condition, are also carefully elaborated, with an emphasis on biomaterial-based drug delivery systems. It is observed that exploring difficulties and potential outcomes of clinical translation of EV-based therapeutics for wound management has the potential to be adopted as a future therapy.
Collapse
Affiliation(s)
- Garima
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Deepika Sharma
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya 824209, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Bosholm CC, Zhu H, Yu P, Cheng K, Murphy SV, McNutt PM, Zhang Y. Therapeutic Benefits of Stem Cells and Exosomes for Sulfur-Mustard-Induced Tissue Damage. Int J Mol Sci 2023; 24:9947. [PMID: 37373093 PMCID: PMC10298660 DOI: 10.3390/ijms24129947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sulfur mustard (SM) is a highly toxic chemical agent that causes severe tissue damage, particularly to the eyes, lungs, and skin. Despite advances in treatment, there is a need for more effective therapies for SM-induced tissue injury. Stem cell and exosome therapies are emerging as promising approaches for tissue repair and regeneration. Stem cells can differentiate into multiple cell types and promote tissue regeneration, while exosomes are small vesicles that can deliver therapeutic cargo to target cells. Several preclinical studies demonstrated the potential of stem cell, exosome, or combination therapy for various tissue injury, showing improvements in tissue repairing, inflammation, and fibrosis. However, there are also challenges associated with these therapies, such as the requirement for standardized methods for exosome isolation and characterization, the long-term safety and efficacy and reduced SM-induced tissue injury of these therapies. Stem cell or exosome therapy was used for SM-induced eye and lung injury. Despite the limited data on the use for SM-induced skin injury, this therapy is a promising area of research and may offer new treatment options in the future. In this review, we focused on optimizing these therapies, evaluating their safety and efficacy, and comparing their efficacy to other emerging therapeutic approaches potentially for SM-induced tissue injury in the eye, lung, and skin.
Collapse
Affiliation(s)
- Carol Christine Bosholm
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Hainan Zhu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Pengfei Yu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA;
| | - Sean Vincent Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Patrick Michael McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| |
Collapse
|
48
|
Li J, Huang Y, Sun H, Yang L. Mechanism of mesenchymal stem cells and exosomes in the treatment of age-related diseases. Front Immunol 2023; 14:1181308. [PMID: 37275920 PMCID: PMC10232739 DOI: 10.3389/fimmu.2023.1181308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) from multiple tissues have the capability of multidirectional differentiation and self-renewal. Many reports indicated that MSCs exert curative effects on a variety of age-related diseases through regeneration and repair of aging cells and organs. However, as research has progressed, it has become clear that it is the MSCs derived exosomes (MSC-Exos) that may have a real role to play, and that they can be modified to achieve better therapeutic results, making them even more advantageous than MSCs for treating disease. This review generalizes the biological characteristics of MSCs and exosomes and their mechanisms in treating age-related diseases, for example, MSCs and their exosomes can treat age-related diseases through mechanisms such as oxidative stress (OS), Wnt/β-catenin signaling pathway, mitogen-activated protein kinases (MAPK) signaling pathway, and so on. In addition, current in vivo and in vitro trials are described, and ongoing clinical trials are discussed, as well as the prospects and challenges for the future use of exosomes in disease treatment. This review will provide references for using exosomes to treat age-related diseases.
Collapse
Affiliation(s)
- Jia Li
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yuling Huang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
49
|
Muok L, Liu C, Chen X, Esmonde C, Arthur P, Wang X, Singh M, Driscoll T, Li Y. Inflammatory Response and Exosome Biogenesis of Choroid Plexus Organoids Derived from Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:7660. [PMID: 37108817 PMCID: PMC10146825 DOI: 10.3390/ijms24087660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3β inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06268, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
50
|
Arthur P, Kandoi S, Sun L, Kalvala A, Kutlehria S, Bhattacharya S, Kulkarni T, Nimma R, Li Y, Lamba DA, Singh M. Biophysical, Molecular and Proteomic Profiling of Human Retinal Organoid-Derived Exosomes. Pharm Res 2023; 40:801-816. [PMID: 36002615 PMCID: PMC10576571 DOI: 10.1007/s11095-022-03350-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE There is a growing interest in extracellular vesicles (EVs) for ocular applications as therapeutics, biomarkers, and drug delivery vehicles. EVs secreted from mesenchymal stem cells (MSCs) have shown to provide therapeutic benefits in ocular conditions. However, very little is known about the properties of bioreactor cultured-3D human retinal organoids secreted EVs. This study provides a comprehensive morphological, nanomechanical, molecular, and proteomic characterization of retinal organoid EVs and compares it with human umbilical cord (hUC) MSCs. METHODS The morphology and nanomechanical properties of retinal organoid EVs were assessed using Nanoparticle tracking analysis (NTA) and Atomic force microscopy (AFM). Gene expression analysis of exosome biogenesis of early and late retinal organoids were compared using qPCR. The protein profile of the EVs were analyzed with proteomic tools. RESULTS NTA indicated the average size of EV as 100-250 nm. A high expression of exosome biogenesis genes was observed in late retinal organoids EVs. Immunoblot analysis showed highly expressed exosomal markers in late retinal organoids EVs compared to early retinal organoids EVs. Protein profiling of retinal organoid EVs displayed a higher differential expression of retinal function-related proteins and EV biogenesis proteins than hUCMSC EVs, implicating that the use of retinal organoid EVs may have a superior therapeutic effect on retinal disorders. CONCLUSION This study provides supplementary knowledge on the properties of retinal organoid EVs and suggests their potential use in the diagnostic and therapeutic treatments for ocular diseases.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Anil Kalvala
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Shallu Kutlehria
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Jacksonville, FL, USA
- Department of Physiology and Biomedical Engineering, Mayo College of Medicine and Science, Jacksonville, FL, USA
| | - Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Jacksonville, FL, USA
| | - Ramesh Nimma
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA.
| | - Mandip Singh
- College of Pharmacy and Pharmacological Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|