1
|
Daenen LGM, van der Wagen LE, Bonneville EF, López-Corral L, Bukauskas A, Bornhäuser M, Beguin Y, Itäla-Remes M, Hoogenboom JD, de Wreede LC, Malard F, Chabannon C, Dazzi F, Ruggeri A, Kuball J. The use of MSCs in steroid-refractory acute GvHD in Europe: a survey from the EBMT cellular therapy & immunobiology working party. Bone Marrow Transplant 2025; 60:708-714. [PMID: 39979522 DOI: 10.1038/s41409-025-02531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Acute graft-versus-host disease (aGvHD) remains a significant complication of allogeneic hematopoietic cell transplantation, with 40% of patients failing to respond to high-dose steroids. Ruxolitinib has become the standard treatment for steroid-refractory aGvHD (SR-GvHD), but its failure in approximately one-third of cases highlights the need for alternative therapies. Mesenchymal stromal cells (MSCs), known for their immunomodulatory properties, are suggested as a treatment option, but their role in SR-GvHD remains unclear. To better understand MSC therapy outcomes, the EBMT Cellular Therapy & Immunobiology Working Party conducted a survey of centers treating >20 SR-GvHD patients with MSCs between 2007 and 2020. Data from 313 patients were analyzed, revealing a 44.5% overall response rate at day 28. Responders at day 7 had a higher likelihood of maintaining responses by day 28. Using a landmark analysis, the overall survival at 12 months, conditional on being alive at day 28, was 39.2%. Survival at 12 months was 48.6% for responders, compared to 24.4% for non-responders. Despite manufacturing variabilities, MSCs produced by academic pharma appear effective in SR-GvHD, offering a viable treatment alternative for heavily pretreated patients. These findings support further investigation of MSCs to establish standardized protocols and validate their efficacy as third-line therapy for SR-GvHD.
Collapse
Affiliation(s)
- L G M Daenen
- Department of Hematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - L E van der Wagen
- Department of Hematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E F Bonneville
- EBMT Study Unit, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - L López-Corral
- Hematology Department. Hospital Universitario de Salamanca (Spain), IBSAL, CIBERONC. Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - A Bukauskas
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - M Bornhäuser
- University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Y Beguin
- CHU of Liege and University of Liege, Liege, Belgium
| | | | | | - L C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - F Malard
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), INSERM, Paris, France
| | - C Chabannon
- Institut Paoli-Calmettes, Centre de Lutte Contre le Cancer; Centre d'Investigations Cliniques en Biothérapies, Université d'Aix-Marseille, Inserm, CBT 1409, Marseille, France
| | - F Dazzi
- Comprehensive Cancer Centre, King's College London, London, UK
| | - A Ruggeri
- San Raffaele Scientific Institute, Hematology and Bone marrow Transplantation Unit, Milan, Italy
| | - J Kuball
- Department of Hematology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Llorca T, Ruiz-Magaña MJ, Abadía AC, Ruiz-Ruiz C, Olivares EG. Decidual stromal cells: fibroblasts specialized in immunoregulation during pregnancy. Trends Immunol 2025; 46:138-152. [PMID: 39947975 DOI: 10.1016/j.it.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
Decidual stromal cells (DSCs) are involved in immunoregulatory mechanisms that prevent fetal rejection by the mammalian maternal immune system. Recent studies using single-cell RNA sequencing demonstrated the existence of different types of human and mouse DSCs, highlighting corresponding differentiation (decidualization) pathways, and suggesting their involvement in the immune response during normal and pathological pregnancy. DSCs may be considered tissue-specialized fibroblasts because both DSCs and fibroblasts share phenotypic and functional similarities in immunologically challenged tissues, especially in terms of their immune functions. Indeed, fibroblasts can setup, support, and suppress immune responses and these functions are also performed by DSCs. Moreover, fibroblasts and DSCs can induce ectopic foci as tertiary lymphoid structures (TLSs), and endometriosis, respectively. Thus, understanding DSC immunoregulatory functions is of timely relevance.
Collapse
Affiliation(s)
- Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - María José Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Biología Celular, Universidad de Granada, Granada, Spain.
| | - Ana C Abadía
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain.
| |
Collapse
|
3
|
Jiang E, Qian K, Wang L, Yang D, Shao Y, Hu L, Li Y, Yao C, Han M, Hou X, Liu D. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells versus placebo added to second-line therapy in patients with steroid-refractory acute graft-versus-host disease: a multicentre, randomized, double-blind, phase 2 trial. BMC Med 2024; 22:555. [PMID: 39587570 PMCID: PMC11590523 DOI: 10.1186/s12916-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Failure of systemic corticosteroid therapy is common in patients with newly diagnosed acute graft-versus-host disease (aGVHD) above grade II. Mesenchymal stem cells (MSCs) have been used as a tolerable and potentially effective second-line therapy for steroid-refractory aGVHD (SR-aGVHD); however, well-designed, prospective, controlled studies are lacking. METHODS This multicentre, randomized, double-blind, placebo-controlled, exploratory phase 2 study enrolled patients with SR-aGVHD above grade II from 7 centres. Patients were randomized 1:1 to receive umbilical cord-derived MSCs or placebo added to one centre's choice of second-line agents (except for ruxolitinib). The agents were infused twice weekly. Patients with complete response (CR), no response (NR), or progression of disease (PD) at d28 received 8 infusions, and those with partial response (PR) received the above infusions for another 4 weeks. The per-protocol population consisted of patients who received ≥ 8 infusions. The primary endpoint was the overall response rate (ORR, CR + PR) at d28, analyzed in the per-protocol and intention-to-treat populations. RESULTS Seventy-eight patients (median age 38, range 13-62) were enrolled: 40 in the MSC group and 38 in the control. Patients in the MSC group received a median of 8 doses, with a median response time of 14 days. In intention-to-treat analysis, ORR at d28 was 60% for MSC group and 50% for control group (p = 0.375). The 2-year cumulative incidence of moderate to severe cGVHD was marginally lower in the MSC group than in the control (13.8% vs. 39.8%, p = 0.067). The 2-year failure-free survival was similar between the MSC and control groups (52.5% vs. 44.4%, p = 0.43). In per-protocol analysis (n = 62), ORR at d28 was significantly greater in the MSC group than in the control group (71.9% vs. 46.7%, p = 0.043). Among patients with gut involvement, ORR at d28 was significantly greater in the MSC group than in the control (66.7% vs. 33.3%, p = 0.031). The adverse events incidences were similar between groups. CONCLUSIONS In this exploratory study, there was no superior ORR at d28 demonstrated in the MSC group compared with the control. However, MSCs showed a gradual treatment effect at a median of 2 weeks. Patients who completed 8 infusions may benefit from adding MSCs to one conventional second-line agent, especially those with gut involvement. MSCs was well tolerated in patients with SR-aGVHD. TRIAL REGISTRATION chictr.org.cn ChiCTR2000035740.
Collapse
Affiliation(s)
- Erlie Jiang
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300041, China
| | - Kun Qian
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Lu Wang
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300041, China
| | - Yangliu Shao
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Liangding Hu
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Yuhang Li
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Chen Yao
- Peking University Clinical Research Institute, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300041, China.
| | - Xiaoqiang Hou
- Platinumlife Biotechnology (Beijing) Co., Ltd, Beijing Economic-Technological Development Area, 8 Ruihe Road, Beijing, 100176, China.
| | - Daihong Liu
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China.
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China.
| |
Collapse
|
4
|
Yu W, Lv Y, Xuan R, Han P, Xu H, Ma X. Human placental mesenchymal stem cells transplantation repairs the alveolar epithelial barrier to alleviate lipopolysaccharides-induced acute lung injury. Biochem Pharmacol 2024; 229:116547. [PMID: 39306309 DOI: 10.1016/j.bcp.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are accompanied by high mortality rates and few effective treatments. Transplantation of human placental mesenchymal stem cells (hPMSCs) may attenuate ALI and the mechanism is still unclear. Our study aimed to elucidate the potential protective effect and therapeutic mechanism of hPMSCs against lipopolysaccharide (LPS)-induced ALI, An ALI model was induced by tracheal instillation of LPS into wild-type (WT) and angiotensin-converting enzyme 2 (ACE2) knockout (KO) male mice, followed by injection of hPMSCs by tail vein. Treatment with hPMSCs improved pulmonary histopathological injury, reduced pulmonary injury scores, decreased leukocyte count and protein levels in bronchoalveolar lavage fluid(BALF), protected the damaged alveolar epithelial barrier, and reversed LPS-induced upregulation of pro-inflammatory factors Interleukin-6 (IL-6) and Tumor necrosis factor-α(TNF-α) and downregulation of anti-inflammatory factor Interleukin-6(IL-10) in BALF. Moreover, administration of hPMSCs inhibited Angiotensin (Ang)II activation and promoted the expression levels of ACE2 and Ang (1-7) in ALI mice. Pathological damage, inflammation levels, and disruption of alveolar epithelial barrier in ALI mice were elevated after the deletion of ACE2 gene, and the Renin angiotensin system (RAS) imbalance was exacerbated. The therapeutic effect of hPMSCs was significantly reduced in ACE2 KO mice. Our findings suggest that ACE2 plays a key role in hPMSCs repairing the alveolar epithelial barrier to protect against ALI, laying a new foundation for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Wenqin Yu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Yuzhen Lv
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Ruirui Xuan
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Peipei Han
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Haihuan Xu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Xiaowei Ma
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China.
| |
Collapse
|
5
|
Pharoun J, Berro J, Sobh J, Abou-Younes MM, Nasr L, Majed A, Khalil A, Joseph, Stephan, Faour WH. Mesenchymal stem cells biological and biotechnological advances: Implications for clinical applications. Eur J Pharmacol 2024; 977:176719. [PMID: 38849038 DOI: 10.1016/j.ejphar.2024.176719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into multiple lineages including bone, cartilage, muscle and fat. They hold immunomodulatory properties and therapeutic ability to treat multiple diseases, including autoimmune and chronic degenerative diseases. In this article, we reviewed the different biological properties, applications and clinical trials of MSCs. Also, we discussed the basics of manufacturing conditions, quality control, and challenges facing MSCs in the clinical setting. METHODS Extensive review of the literature was conducted through the databases PubMed, Google Scholar, and Cochrane. Papers published since 2015 and covering the clinical applications and research of MSC therapy were considered. Furthermore, older papers were considered when referring to pioneering studies in the field. RESULTS The most widely studied stem cells in cell therapy and tissue repair are bone marrow-derived mesenchymal stem cells. Adipose tissue-derived stem cells became more common and to a lesser extent other stem cell sources e.g., foreskin derived MSCs. MSCs therapy were also studied in the setting of COVID-19 infections, ischemic strokes, autoimmune diseases, tumor development and graft rejection. Multiple obstacles, still face the standardization and optimization of MSC therapy such as the survival and the immunophenotype and the efficiency of transplanted cells. MSCs used in clinical settings displayed heterogeneity in their function despite their extraction from healthy donors and expression of similar surface markers. CONCLUSION Mesenchymal stem cells offer a rising therapeutic promise in various diseases. However, their potential use in clinical applications requires further investigation.
Collapse
Affiliation(s)
- Jana Pharoun
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jana Berro
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jeanine Sobh
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | | | - Leah Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Ali Majed
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Joseph
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Stephan
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
6
|
Ringdén O, Svahn BM, Moll G, Sadeghi B. Better clinical outcomes and lower triggering of inflammatory cytokines for allogeneic hematopoietic cell transplant recipients treated in home care versus hospital isolation - the Karolinska experience. Front Immunol 2024; 15:1384137. [PMID: 39170616 PMCID: PMC11335608 DOI: 10.3389/fimmu.2024.1384137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
After allogeneic hematopoietic cell transplantation (Allo-HCT) and conditioning, patients are typically placed in isolated hospital rooms to prevent neutropenic infections. Since 1998, we've offered an alternative: home care for patients living within a one to two-hour drive of the hospital. In Sweden this approach includes daily visits by an experienced nurse and daily phone consultations with a unit physician. When necessary, patients receive transfusions, intravenous antibiotics, and total parenteral nutrition at home. Our initial study report compared 36 home care patients with 54 hospital-treated controls. Multivariate analysis found that home care patients were discharged earlier to outpatient clinics, required fewer days of total parenteral nutrition, had less acute graft-versus-host disease (GVHD) grade II-IV, and lower transplantation-related mortality (TRM) and lower costs. Long-term follow-up showed similar chronic GVHD and relapse rates in both groups, with improved survival rates in the home care group. A subsequent comparison of 146 home care patients with hospital-treated controls indicated that home care and longer home stays were associated with lower grades of acute GVHD. Home care was found to be safe and beneficial for children and adolescents. Over two decades, 252 patients received home care post-Allo-HCT without any fatalities at-home. Ten-year outcomes showed a 14% TRM and a 59% survival rate. In 2020, an independent center confirmed the reduced risk of acute GVHD grades II-IV for patients treated in home care. Here, we report for the first time that home care patients also demonstrate a less inflammatory systemic cytokine profile. We found higher levels of IFN-γ, IL-2, IL-5, IL-13, GM-CSF, and G-CSF, but lower VEGF in hospital-treated patients, which may contribute to acute GVHD grades II-IV. In conclusion, home-based treatment following Allo-HCT yields multiple promising clinical outcomes and improved systemic inflammatory markers, which may contribute to less development of life-threatening GVHD.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research, Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Svahn
- Translational Cell Therapy Research, Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Behnam Sadeghi
- Translational Cell Therapy Research, Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Xiong Y, Wang F, Mu H, Zhang A, Zhao Y, Han K, Zhang J, Zhang H, Wang Z, Ma J, Wei R, Luan X. hPMSCs prevent erythrocytes dysfunction caused by graft versus host disease via promoting GSH synthesis. Int Immunopharmacol 2024; 139:112689. [PMID: 39029234 DOI: 10.1016/j.intimp.2024.112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Oxidative stress is increased in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients and leads to the development of graft versus host disease (GVHD). Mesenchymal stromal cells (MSCs) can ameliorate GVHD by regulating the function of T cells. However, whether MSCs can modulate erythrocyte antioxidant metabolism and thus reduce GVHD is not known. METHODS Forty female BALB/c mice were randomly assigned to four groups: the control, GVHDhigh, hPMSC, and PBS groups. A hypoxanthine/xanthine oxidase system was used to steadily and gradually produce superoxide in an in vitro experiment. A scanning microscope was used to examine the ultrastructure of erythrocytes. Laser diffraction analyses were used to analyze erythrocyte deformability. Western blotting was used to measure the expression of the erythrocyte membrane skeleton proteins Band 3 and β-Spectrin. Corresponding kits were used to assess the levels of oxidative damage and the activity of antioxidant enzymes. RESULTS Morphological and deformability defects were significantly increased in erythrocytes from GVHD patients. Band 3 and β-Spectrin expression was also reduced in GVHD patients and model mice. Furthermore, we observed significantly increased oxidative stress-induce injury and decreased antioxidant capability in erythrocytes from both GVHD patients and model mice. Subsequent research showed that human placenta-derived MSC (hPMSC) therapy decreased the GVHD-induced redox imbalance in erythrocytes. Furthermore, our findings suggested that upregulating glucose metabolism promoted both the de novo synthesis and recycling of GSH, which is the primary mechanism by which hPMSCs mediate the increase in antioxidant capacity in erythrocytes. CONCLUSION Together, our findings suggest that hPMSCs can increase antioxidant capacity by increasing erythrocyte GSH production and thus ameliorate GVHD.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Feifei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Huanmei Mu
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Aiping Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zhuoya Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China
| | - Rongxia Wei
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China.
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
8
|
Na H, Im KI, Kim N, Lee J, Gil S, Min GJ, Cho SG. The IL-6 signaling pathway contributes critically to the immunomodulatory mechanism of human decidua-derived mesenchymal stromal cells. iScience 2024; 27:109783. [PMID: 38726369 PMCID: PMC11079465 DOI: 10.1016/j.isci.2024.109783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been proposed as a treatment for graft-versus-host disease (GVHD), which is a major complication following allogeneic hematopoietic cell transplantation. However, clinical trials have not yielded good results, and human decidua-derived mesenchymal stromal cells (DSCs) have been proposed as an alternative. In addition, the mechanism by which DSCs exert their immunomodulatory effects is still unknown. We found that knockdown of IL-6 in DSCs reduced the expression of PD-L1 and PD-L2, which are known as classical immune checkpoint inhibitors. Expression of PD-L1 and PD-L2 was restored by adding recombinant IL-6 to the DSCs. When DSCs and IL-6-knockdown DSCs were administered as treatment in a murine GVHD model, the group receiving IL-6-knockdown DSCs had significantly higher mortality and clinical scores compared to the group receiving DSCs. Taken together, these data suggest that the IL-6 signaling pathway is a crucial contributor to the immunosuppressive capacity of DSCs.
Collapse
Affiliation(s)
- Hyemin Na
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseok Lee
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sojin Gil
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Granton J, Novitzky-Basso IN, Binnie A, Mattsson J. Decidual stromal cells for the treatment of severe COVID-19 ARDS. Intensive Care Med 2023; 49:1552-1554. [PMID: 37968285 DOI: 10.1007/s00134-023-07262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Affiliation(s)
- John Granton
- Department of Medicine, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Canada.
- Toronto General Hospital, Toronto, Canada.
| | - Igor N Novitzky-Basso
- Department of Medicine, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Canada
- Hans Messner Blood and Marrow Allogeneic Stem Cell Transplant Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Jonas Mattsson
- Department of Medicine, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Canada
- Hans Messner Blood and Marrow Allogeneic Stem Cell Transplant Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Gloria and Seymour Epstein Chair in Cellular, Therapy University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Bonig H, Verbeek M, Herhaus P, Braitsch K, Beutel G, Schmid C, Müller N, Bug G, Döring M, von Stackelberg A, Tischer J, Ayuk F, Wulf G, Holtick U, Pfeffermann LM, Jahrsdörfer B, Schrezenmeier H, Kuci S, Kuci Z, Zens A, Tribanek M, Zeiser R, Huenecke S, Bader P. Real-world data suggest effectiveness of the allogeneic mesenchymal stromal cells preparation MSC-FFM in ruxolitinib-refractory acute graft-versus-host disease. J Transl Med 2023; 21:837. [PMID: 37990219 PMCID: PMC10664468 DOI: 10.1186/s12967-023-04731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Patients with steroid-refractory acute graft-versus-host disease (aGvHD) not tolerating/responding to ruxolitinib (RR-aGvHD) have a dismal prognosis. METHODS We retrospectively assessed real-world outcomes of RR-aGvHD treated with the random-donor allogeneic MSC preparation MSC-FFM, available via Hospital Exemption in Germany. MSC-FFM is provided as frozen cell dispersion for administration as i.v. infusion immediately after thawing, at a recommended dose of 1-2 million MSCs/kg body weight in 4 once-weekly doses. 156 patients, 33 thereof children, received MSC-FFM; 5% had Grade II, 40% had Grade III, and 54% had Grade IV aGvHD. Median (range) number of prior therapies was 4 (1-10) in adults and 7 (2-11) in children. RESULTS The safety profile of MSC-FFM was consistent with previous reports for MSC therapies in general and MSC-FFM specifically. The overall response rate at Day 28 was 46% (95% confidence interval [CI] 36-55%) in adults and 64% (45-80%) in children; most responses were durable. Probability of overall survival at 6, 12 and 24 months was 47% (38-56%), 35% (27-44%) and 30% (22-39%) for adults, and 59% (40-74%), 42% (24-58%) and 35% (19-53%) for children, respectively (whole cohort: median OS 5.8 months). CONCLUSION A recent real-world analysis of outcomes for 64 adult RR-aGvHD patients not treated with MSCs reports survival of 20%, 16% and 10% beyond 6, 12 and 24 months, respectively (median 28 days). Our data thus suggest effectiveness of MSC-FFM in RR-aGvHD.
Collapse
Affiliation(s)
- Halvard Bonig
- Faculty of Medicine, Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
- German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Mareike Verbeek
- School of Medicine, Technical University Munich, Klinikum Rechts Der Isar, Clinic and Policlinic for Internal Medicine III, Munich, Germany
| | - Peter Herhaus
- School of Medicine, Technical University Munich, Klinikum Rechts Der Isar, Clinic and Policlinic for Internal Medicine III, Munich, Germany
| | - Krischan Braitsch
- School of Medicine, Technical University Munich, Klinikum Rechts Der Isar, Clinic and Policlinic for Internal Medicine III, Munich, Germany
| | - Gernot Beutel
- Hannover Medical School, Department of Hematology, and Stem Cell Transplantation, HemostasisHannover, Oncology, Germany
| | - Christoph Schmid
- Augsburg University Hospital and Medical Faculty, Augsburg, Germany
| | | | - Gesine Bug
- Department of Medicine 2, University Hospital, Goethe University, Frankfurt, Germany
| | - Michaela Döring
- Universitätsklinik Für Kinder Und Jugendmedizin, Tübingen, Germany
| | | | - Johanna Tischer
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Francis Ayuk
- Klinik Für Stammzelltransplantation, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gerald Wulf
- Hämatologie Und Medizinische Onkologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | | | | | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics, University of Ulm, Ulm, Germany
| | - Selim Kuci
- Department of Pediatrics, Division for Stem Cell Transplantation and Immunology, Goethe University, Frankfurt, Germany
| | - Zyrafete Kuci
- Department of Pediatrics, Division for Stem Cell Transplantation and Immunology, Goethe University, Frankfurt, Germany
| | - Anke Zens
- Medac Gesellschaft Für Klinische Spezialpräparate mbH, Wedel, Germany
| | - Michael Tribanek
- Medac Gesellschaft Für Klinische Spezialpräparate mbH, Wedel, Germany
| | - Robert Zeiser
- Department Innere Medizin, Klinik Für Innere Medizin I, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Sabine Huenecke
- Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Peter Bader
- Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Zeiser R, Ringden O, Sadeghi B, Gonen-Yaacovi G, Segurado OG. Novel therapies for graft versus host disease with a focus on cell therapies. Front Immunol 2023; 14:1241068. [PMID: 37868964 PMCID: PMC10585098 DOI: 10.3389/fimmu.2023.1241068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Graft versus host disease (GVHD) can occur at any period post allogeneic hematopoietic stem cell transplantation as a common clinical complication contributing to significant morbidity and mortality. Acute GVHD develops in approximately 30-50% of patients receiving transplants from matched related donors. High doses of steroids are used as first-line treatment, but are unsuccessful in around 40% of patients, resulting in the diagnosis of steroid-refractory acute GVHD. Consensus has yet to develop for the management of steroid-refractory acute GVHD, and prognosis at six months has been estimated at around 50%. Thus, it is critical to find effective treatments that increase survival of steroid-refractory acute GVHD. This article describes the currently known characteristics, pathophysiology, and treatments for GVHD, with a special focus on recent advances in cell therapies. In particular, a novel cell therapy using decidua stromal cells (DSCs) was recently shown to have promising results for acute GVHD, with improved effectiveness over previous treatments including mesenchymal stromal cells. At the Karolinska Institute, severe acute GVHD patients treated with placenta-derived DSCs supplemented with either 5% albumin or 10% AB plasma displayed a one-year survival rate of 76% and 47% respectively. Furthermore, patients with steroid-refractory acute GVHD, displayed survival rates of 73% with albumin and 31% with AB plasma-supplemented DSCs, compared to the 20% survival rate in the mesenchymal stromal cell control group. Adverse events and deaths were found to be attributed only to complications of hematopoietic stem cell transplant and GVHD, not to the study intervention. ASC Therapeutics, Inc, in collaboration with the Karolinska Institute, will soon initiate a phase 2 multicenter, open-label study to further assess the efficacy and safety of intravenous DSC treatment in sixty patients with Grade II-IV steroid-refractory acute GVHD. This novel cell therapy represents a promising treatment to combat the poor prognosis that steroid-refractory acute GVHD patients currently face.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine at the University of Freiburg, Freiburg, Germany
| | - Olle Ringden
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Behnam Sadeghi
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Mendiratta M, Mendiratta M, Mohanty S, Sahoo RK, Prakash H. Breaking the graft-versus-host-disease barrier: Mesenchymal stromal/stem cells as precision healers. Int Rev Immunol 2023; 43:95-112. [PMID: 37639700 DOI: 10.1080/08830185.2023.2252007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are multipotent, non-hematopoietic progenitor cells with a wide range of immune modulation and regenerative potential which qualify them as a potential component of cell-based therapy for various autoimmune/chronic inflammatory ailments. Their immunomodulatory properties include the secretion of immunosuppressive cytokines, the ability to suppress T-cell activation and differentiation, and the induction of regulatory T-cells. Considering this and our interest, we here discuss the significance of MSC for the management of Graft-versus-Host-Disease (GvHD), one of the autoimmune manifestations in human. In pre-clinical models, MSCs have been shown to reduce the severity of GvHD symptoms, including skin and gut damage, which are the most common and debilitating manifestations of this disease. While initial clinical studies of MSCs in GvHD cases were promising, the results were variable in randomized studies. So, further studies are warranted to fully understand their potential benefits, safety profile, and optimal dosing regimens. Owing to these inevitable issues, here we discuss various mechanisms, and how MSCs can be employed in managing GvHD, as a cellular therapeutic approach for this disease.
Collapse
Affiliation(s)
- Mohini Mendiratta
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Noida, India
| |
Collapse
|
13
|
Lin T, Yang Y, Chen X. A review of the application of mesenchymal stem cells in the field of hematopoietic stem cell transplantation. Eur J Med Res 2023; 28:268. [PMID: 37550742 PMCID: PMC10405442 DOI: 10.1186/s40001-023-01244-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment for many malignant hematological diseases. Mesenchymal stem cells (MSCs) are nonhematopoietic stem cells with strong self-renewal ability and multidirectional differentiation potential. They have the characteristics of hematopoietic support, immune regulation, tissue repair and regeneration, and homing. Recent studies have shown that HSCT combined with MSC infusion can promote the implantation of hematopoietic stem cells and enhance the reconstruction of hematopoietic function. Researchers have also found that MSCs have good preventive and therapeutic effects on acute and chronic graft-versus-host disease (GVHD), but there is still a lack of validation in large-sample randomized controlled trials. When using MSCs clinically, it is necessary to consider their dose, source, application time, application frequency and other relevant factors, but the specific impact of the above factors on the efficacy of MSCs still needs further clinical trial research. This review introduces the clinical roles of MSCs and summarizes the most recent progress concerning the use of MSCs in the field of HSCT, providing references for the later application of the combination of MSCs and HSCT in hematological diseases.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yunfan Yang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xinchuan Chen
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Wu SCM, Zhu M, Chik SCC, Kwok M, Javed A, Law L, Chan S, Boheler KR, Liu YP, Chan GCF, Poon ENY. Adipose tissue-derived human mesenchymal stromal cells can better suppress complement lysis, engraft and inhibit acute graft-versus-host disease in mice. Stem Cell Res Ther 2023; 14:167. [PMID: 37357314 DOI: 10.1186/s13287-023-03380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Transplantation of immunosuppressive human mesenchymal stromal cells (hMSCs) can protect against aGvHD post-HSCT; however, their efficacy is limited by poor engraftment and survival. Moreover, infused MSCs can be damaged by activated complement, yet strategies to minimise complement injury of hMSCs and improve their survival are limited. METHODS Human MSCs were derived from bone marrow (BM), adipose tissue (AT) and umbilical cord (UC). In vitro immunomodulatory potential was determined by co-culture experiments between hMSCs and immune cells implicated in aGvHD disease progression. BM-, AT- and UC-hMSCs were tested for their abilities to protect aGvHD in a mouse model of this disease. Survival and clinical symptoms were monitored, and target tissues of aGvHD were examined by histopathology and qPCR. Transplanted cell survival was evaluated by cell tracing and by qPCR. The transcriptome of BM-, AT- and UC-hMSCs was profiled by RNA-sequencing. Focused experiments were performed to compare the expression of complement inhibitors and the abilities of hMSCs to resist complement lysis. RESULTS Human MSCs derived from three tissues divergently protected against aGvHD in vivo. AT-hMSCs preferentially suppressed complement in vitro and in vivo, resisted complement lysis and survived better after transplantation when compared to BM- and UC-hMSCs. AT-hMSCs also prolonged survival and improved the symptoms and pathological features of aGvHD. We found that complement-decay accelerating factor (CD55), an inhibitor of complement, is elevated in AT-hMSCs and contributed to reduced complement activation. We further report that atorvastatin and erlotinib could upregulate CD55 and suppress complement in all three types of hMSCs. CONCLUSION CD55, by suppressing complement, contributes to the improved protection of AT-hMSCs against aGvHD. The use of AT-hMSCs or the upregulation of CD55 by small molecules thus represents promising new strategies to promote hMSC survival to improve the efficacy of transplantation therapy. As complement injury is a barrier to all types of hMSC therapy, our findings are of broad significance to enhance the use of hMSCs for the treatment of a wide range of disorders.
Collapse
Affiliation(s)
- Stanley Chun Ming Wu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Manyu Zhu
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stanley C C Chik
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maxwell Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Laalaa Law
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth R Boheler
- Division of Cardiology, Department of Medicine and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yin Ping Liu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- , Doctors' Office, 9/F, Tower B, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Hong Kong SAR, China.
| | - Ellen Ngar-Yun Poon
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China.
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Rm 226A, 2/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, China.
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
15
|
Keklik M, Deveci B, Celik S, Deniz K, Gonen ZB, Zararsiz G, Saba R, Akyol G, Ozkul Y, Kaynar L, Keklik E, Unal A, Cetin M, Jones OY. Safety and efficacy of mesenchymal stromal cell therapy for multi-drug-resistant acute and late-acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Ann Hematol 2023; 102:1537-1547. [PMID: 37067556 DOI: 10.1007/s00277-023-05216-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Graft versus host disease (GvHD) remains a significant risk for mortality and morbidity following allogeneic hematopoietic stem cell transplantation (HSCT). A growing literature supports successful applications of mesenchymal stromal cells (MSCs) for the treatment of steroid-refractory acute GvHD (aGvHD). However, there is limited knowledge about the effects of MSC treatment on late-acute GvHD (late aGvHD). In this article, we present our multicenter study on the safety and efficacy of MSC therapy for patients with steroid-refractory late aGvHD in comparison to those with aGvHD. The outcome measures include non-relapse mortality (NRM) and survival probability over a 2-year follow-up. The study includes a total of 76 patients with grades III-IV aGvHD (n = 46) or late aGvHD (n = 30), who had been treated with at least two lines of steroid-containing immunosuppressive therapy. Patients received weekly adipose or umbilical cord-derived MSC infusions at a dose of median 1.55 (ranging from 0.84 to 2.56) × 106/kg in the aGvHD group, and 1.64 (ranging from 0.85 to 2.58) × 106/kg in the late aGvHD group. This was an add-on treatment to ongoing conventional pharmaceutical management. In the aGvHD group, 23 patients received one or two infusions, 20 patients had 3-4, and three had ≥ 5. Likewise, in the late aGvHD group, 20 patients received one or two infusions, nine patients had 3-4, and one had ≥ 5. MSC was safe without acute or late adverse effects in 76 patients receiving over 190 infusions. In aGvHD group, 10.9% of the patients had a complete response (CR), 23.9% had a partial response (PR), and 65.2% had no response (NR). On the other hand, in the late aGvHD group, 23.3% of the patients had CR, 36.7% had PR, and the remaining 40% had NR. These findings were statistically significant (p = 0.031). Also, at the 2-year follow-up, the cumulative incidence of NRM was significantly lower in patients with late aGvHD than in patients with aGvHD at 40% (95% CI, 25-62%) versus 71% (95% CI, 59-86%), respectively (p = 0.032). In addition, the probability of survival at 2 years was significantly higher in patients with late aGvHD than in the aGvHD group at 59% (95% CI, 37-74%) versus 28% (95% CI, 13-40%), respectively (p = 0.002). To our knowledge, our study is the first to compare the safety and efficacy of MSC infusion(s) for the treatment of steroid-resistant late aGVHD and aGVHD. There were no infusion-related adverse effects in either group. The response rate to MSC therapy was significantly higher in the late aGvHD group than in the aGvHD group. In addition, at the 2-year follow-up, the survival and NRM rates were more favorable in patients with late aGVHD than in those with aGVHD. Thus, the results are encouraging and warrant further studies to optimize MSC-based treatment for late aGVHD.
Collapse
Affiliation(s)
- Muzaffer Keklik
- Department of Hematology, Erciyes University, Kayseri, Turkey.
| | - Burak Deveci
- Hematology and Stem Cell Transplantation Unit, Medstar Antalya Hospital, Antalya, Turkey
| | - Serhat Celik
- Department of Hematology, Kirikkale University, Kirikkale, Turkey
| | - Kemal Deniz
- Department of Pathology, Erciyes University, Kayseri, Turkey
| | - Zeynep Burcin Gonen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry and Genome - Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Faculty of Medicine, Erciyes University and Turcosa Analytics Solutions Ltd. Co, Erciyes Teknopark, Kayseri, Turkey
| | - Rabin Saba
- Infectious Disease Unit, Medstar Antalya Hospital, Antalya, Turkey
| | - Gulsah Akyol
- Department of Hematology, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Medical School, Erciyes University, Kayseri, Turkey
| | - Leylagul Kaynar
- Department of Hematology, Erciyes University, Kayseri, Turkey
- Department of Internal Medicine, Division of Hematology, Medipol University, Istanbul, Turkey
| | - Ertugrul Keklik
- Department of Physiology, Kayseri City Hospital, Kayseri, Turkey
| | - Ali Unal
- Department of Hematology, Erciyes University, Kayseri, Turkey
| | - Mustafa Cetin
- Hematology and Stem Cell Transplantation Unit, Medstar Antalya Hospital, Antalya, Turkey
| | - Olcay Y Jones
- Division of Rheumatology, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
16
|
Jaing TH, Chang TY, Chiu CC. Harnessing and honing mesenchymal stem/stromal cells for the amelioration of graft-versus-host disease. World J Stem Cells 2023; 15:221-234. [PMID: 37180998 PMCID: PMC10173808 DOI: 10.4252/wjsc.v15.i4.221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency. Despite its increased use, the mortality rate for patients undergoing this procedure remains high, mainly due to the perceived risk of exacerbating graft-versus-host disease (GVHD). However, even with immunosuppressive agents, some patients still develop GVHD. Advanced mesenchymal stem/stromal cell (MSC) strategies have been proposed to achieve better therapeutic outcomes, given their immunosuppressive potential. However, the efficacy and trial designs have varied among the studies, and some research findings appear contradictory due to the challenges in characterizing the in vivo effects of MSCs. This review aims to provide real insights into this clinical entity, emphasizing diagnostic, and therapeutic considerations and generating pathophysiology hypotheses to identify research avenues. The indications and timing for the clinical application of MSCs are still subject to debate.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology, Oncology, Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsung-Yen Chang
- Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
17
|
Khandelwal V, Sharma T, Gupta S, Singh S, Sharma MK, Parashar D, Kashyap VK. Stem cell therapy: a novel approach against emerging and re-emerging viral infections with special reference to SARS-CoV-2. Mol Biol Rep 2023; 50:2663-2683. [PMID: 36536185 PMCID: PMC9762873 DOI: 10.1007/s11033-022-07957-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/17/2022] [Indexed: 12/23/2022]
Abstract
The past several decades have witnessed the emergence and re-emergence of many infectious viral agents, flaviviruses, influenza, filoviruses, alphaviruses, and coronaviruses since the advent of human deficiency virus (HIV). Some of them even become serious threats to public health and have raised major global health concerns. Several different medicinal compounds such as anti-viral, anti-malarial, and anti-inflammatory agents, are under investigation for the treatment of these viral diseases. These therapies are effective improving recovery rates and overall survival of patients but are unable to heal lung damage caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, there is a critical need to identify effective treatments to combat this unmet clinical need. Due to its antioxidant and immunomodulatory properties, stem cell therapy is considered a novel approach to regenerate damaged lungs and reduce inflammation. Stem cell therapy uses a heterogeneous subset of regenerative cells that can be harvested from various adult tissue types and is gaining popularity due to its prodigious regenerative potential as well as immunomodulatory and anti-inflammatory properties. These cells retain expression of cluster of differentiation markers (CD markers), interferon-stimulated gene (ISG), reduce expression of pro-inflammatory cytokines and, show a rapid proliferation rate, which makes them an attractive tool for cellular therapies and to treat various inflammatory and viral-induced injuries. By examining various clinical studies, this review demonstrates positive considerations for the implications of stem cell therapy and presents a necessary approach for treating virally induced infections in patients.
Collapse
Affiliation(s)
- Vishal Khandelwal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Tarubala Sharma
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Shoorvir Singh
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Manish Kumar Sharma
- Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, 224001, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA. .,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
18
|
Infusion of Some but Not All Types of Human Perinatal Stromal Cells Prevent Organ Fibrosis in a Humanized Graft versus Host Disease Murine Model. Biomedicines 2023; 11:biomedicines11020415. [PMID: 36830951 PMCID: PMC9953740 DOI: 10.3390/biomedicines11020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Allogeneic transplant rejection represents a medical complication that leads to high morbidity and mortality rates. There are no treatments to effectively prevent fibrosis; however, there is great interest in evaluating the use of perinatal mesenchymal stromal cells (MSCs) and other MSCs to prevent fibrosis associated with chronic rejection. In this study, we isolated human perinatal stromal cells (PSCs) from amnion (AM-PSC), placental villi (PV-PSC), and umbilical cord (UC-PSC) tissues, demonstrating the phenotypic characteristics of MSCs as well as a >70% expression of the immunomodulatory markers CD273 and CD210. The administration of a single dose (250,000 cells) of each type of PSC in a humanized graft versus host disease (hGvHD) NSG® murine model delayed the progression of the disease as displayed by weight loss and GvHD scores ranging at various levels without affecting the hCD3+ population. However, only PV-PSCs demonstrated an increased survival rate of 50% at the end of the study. Furthermore, a histopathological evaluation showed that only PV-PSC cells could reduce human CD45+ cell infiltration and the fibrosis of the lungs and liver. These findings indicate that not all PSCs have similar therapeutic potential, and that PV-PSC as a cell therapeutic may have an advantage for targeting fibrosis related to allograft rejection.
Collapse
|
19
|
Cord Blood Plasma and Placental Mesenchymal Stem Cells-Derived Exosomes Increase Ex Vivo Expansion of Human Cord Blood Hematopoietic Stem Cells While Maintaining Their Stemness. Cells 2023; 12:cells12020250. [PMID: 36672185 PMCID: PMC9857343 DOI: 10.3390/cells12020250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been used for ex vivo expansion of umbilical cord blood (UCB) hematopoietic stem cells (HSCs) to maintain their primitive characters and long-term reconstitution abilities during transplantation. Therapeutic effects of MSCs mainly rely on paracrine mechanisms, including secretion of exosomes (Exos). The objective of this study was to examine the effect of cord blood plasma (CBP)-derived Exos (CBP Exos) and Placental MSCs-derived Exos (MSCs Exos) on the expansion of UCB HSCs to increase their numbers and keep their primitive characteristics. METHODS CD34+ cells were isolated from UCB, cultured for 10 days, and the expanded HSCs were sub-cultured in semisolid methylcellulose media for primitive colony forming units (CFUs) assay. MSCs were cultured from placental chorionic plates. RESULTS CBP Exos and MSCs Exos compared with the control group significantly increased the number of total nucleated cells (TNCs), invitro expansion of CD34+ cells, primitive subpopulations of CD34+38+ and CD34+38-Lin- cells (p < 0.001). The expanded cells showed a significantly higher number of total CFUs in the Exos groups (p < 0.01). CONCLUSION CBP- and placental-derived exosomes are associated with significant ex vivo expansion of UCB HSCs, while maintaining their primitive characters and may eliminate the need for transplantation of an additional unit of UCB.
Collapse
|
20
|
Sadeghi B, Witkamp M, Schefberger D, Arbman A, Ringdén O. Immunomodulation by placenta-derived decidua stromal cells. Role of histocompatibility, accessory cells and freeze-thawing. Cytotherapy 2023; 25:68-75. [PMID: 36333233 DOI: 10.1016/j.jcyt.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Human placenta-derived decidua stromal cells (DSCs) are newly introduced stromal cells that have successfully been used in several clinical trials for the treatment of acute inflammatory diseases. Despite published data about DSCs, deeper exploration of mechanisms of action and crosstalk with other immune cells need to be explored. METHODS In mixed lymphocyte culture (MLC), the splenocytes from Balb/c or B6 mice were stimulated using mitogen (concanavalin A), allogeneic (B6 or Balb/c splenocytes) or xenogeneic activation with human peripheral blood mononuclear cells. RESULTS When 10% of the mouse bone marrow-derived-MSC, being autologous, allogeneic or haploidentical (from F1), was added, >95% inhibition was seen. Using human (h)-DSCs, the inhibitory capacity was a median 68% as a xenogeneic immunomodulatory cell when used in mitogen and allogeneic setting in mice MLC. However, when human peripheral blood mononuclear cells were used as stimulator for mouse splenocyte (xenogeneic MLC), hDSC showed a median inhibition of 88%. We explored the presence and function of monocytes in the immunomodulatory function of stromal cells. CD14+ monocyte cells reduced the immunosuppressive effect by hDSC. hDSCs did not show any inhibitory effect on natural killer cell activation and proliferation by interleukin-2. In contrast DSCs increased natural killer proliferation by a median of 58%. Fresh or frozen-thawed hDSCs had similar inhibitory effects on human T-cell proliferation (both allo-stimulation and mitogen stimulation) in vitro. Cell viability at room temperature during 24 h was similar using fresh or freeze-thawed DSCs. CONCLUSIONS To conclude, histocompatibility and CD14+ monocyte cells had an impact on hDSC immunomodulation but frozen-thawed or freshly prepared cells did not.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden.
| | - Myrèse Witkamp
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Dominik Schefberger
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Anna Arbman
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
21
|
Roshandel E, Mehravar M, Nikoonezhad M, Alizadeh AM, Majidi M, Salimi M, Hajifathali A. Cell-Based Therapy Approaches in Treatment of Non-obstructive Azoospermia. Reprod Sci 2022; 30:1482-1494. [PMID: 36380137 PMCID: PMC9666961 DOI: 10.1007/s43032-022-01115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The rate of infertility has globally increased in recent years for a variety of reasons. One of the main causes of infertility in men is azoospermia that is defined by the absence of sperm in the ejaculate and classified into two categories: obstructive azoospermia and non-obstructive azoospermia. In non-obstructive azoospermia, genital ducts are not obstructed, but the testicles do not produce sperm at all, due to various reasons. Non-obstructive azoospermia in most cases has no therapeutic options other than assisted reproductive techniques, which in most cases require sperm donors. Here we discuss cell-based therapy approaches to restore fertility in men with non-obstructive azoospermia including cell-based therapies of non-obstructive azoospermia using regenerative medicine and cell-based therapies of non-obstructive azoospermia by paracrine and anti-inflammatory pathway, technical and ethical challenges for using different cell sources and alternative options will be described, and then the more effectual approaches will be mentioned as future trends.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Mehravar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Afshin Mohammad Alizadeh
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| |
Collapse
|
22
|
Sadeghi B, Ringdén O, Gustafsson B, Castegren M. Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Front Immunol 2022; 13:963445. [PMID: 36426365 PMCID: PMC9680556 DOI: 10.3389/fimmu.2022.963445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It may occur during the pancytopenia phase following allogeneic hematopoietic cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal cells (MSCs) have strong anti-inflammatory effect and first home to the lung following intravenous infusion. MSCs are safe to infuse and have almost no side effects. During the Covid-19 pandemic many patients died from ARDS. Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS. We report three patients, who were treated with MSCs for ARDS following HCT. Two were treated with MSCs derived from the bone marrow (BM). The third patient was treated with MSCs obtained from the placenta, so-called decidua stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after infusion of BM-MSCs, but he died from multiorgan failure. The second patient treated with BM-MSCs died of aspergillus infection. The patient treated with DSCs had a dramatic response and survived. He is alive after 7 years with a Karnofsky score of 100%. We also reviewed experimental and clinical studies using MSCs or DSCs for ARDS. Several positive reports are using MSCs for sepsis and ARDS in experimental animals. In man, two prospective randomized placebo-controlled studies used adipose and BM-MSCs, respectively. No difference in outcome was seen compared to placebo. Some pilot studies used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical cord and DSCs however, optimal source of MSCs remains to be elucidated using randomized trials.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Behnam Sadeghi,
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Markus Castegren
- Center for Clinical Research, Sörmland, Uppsala University, Uppsala, Sweden
- Department of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Section of Infectious Diseases, Department of Medical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
24
|
Ruiz-Magaña MJ, Llorca T, Martinez-Aguilar R, Abadia-Molina AC, Ruiz-Ruiz C, Olivares EG. Stromal cells of the endometrium and decidua: in search of a name and an identity. Biol Reprod 2022; 107:1166-1176. [PMID: 35947987 DOI: 10.1093/biolre/ioac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Human endometrial and decidual stromal cells are the same cells in different environments (non-pregnancy and pregnancy, respectively). Although some authors consider decidual stromal cells to arise solely from the differentiation of endometrial stromal cells, this is a debatable issue given that decidualization processes do not end with the formation of the decidua, as shown by the presence of stromal cells from both the endometrium and decidua in both undifferentiated (non-decidualized) and decidualized states. Furthermore, recent functional and transcriptomic results have shown that there are differences in the decidualization process of endometrial and decidual stromal cells, with the latter having a greater decidualization capacity than the former. These differences suggest that in the terminology and study of their characteristics, endometrial and decidual stromal cells should be clearly distinguished, as should their undifferentiated or decidualized status. There is, however, considerable confusion in the designation and identification of uterine stromal cells. This confusion may impede a judicious understanding of the functional processes in normal and pathological situations. In the present article we analyse the different terms used in the literature for different types of uterine stromal cells, and propose that a combination of differentiation status (undifferentiated, decidualized) and localization (endometrium, decidua) criteria should be used to arrive at a set of accurate, unambiguous terms. The cell identity of uterine stromal cells is also a debatable issue: phenotypic, functional and transcriptomic studies in recent decades have related these cells to different established cells. We discuss the relevance of these associations in normal and pathological situations.
Collapse
Affiliation(s)
- Maria Jose Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Rocio Martinez-Aguilar
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Ana Clara Abadia-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain.,Unidad de Gestión Clínica Laboratorios, Complejo Hospitalario Universitario de Granada, Granada, Spain
| |
Collapse
|
25
|
Flores AI, Pipino C, Jerman UD, Liarte S, Gindraux F, Kreft ME, Nicolas FJ, Pandolfi A, Tratnjek L, Giebel B, Pozzobon M, Silini AR, Parolini O, Eissner G, Lang-Olip I. Perinatal derivatives: How to best characterize their multimodal functions in vitro. Part C: Inflammation, angiogenesis, and wound healing. Front Bioeng Biotechnol 2022; 10:965006. [PMID: 35992360 PMCID: PMC9386263 DOI: 10.3389/fbioe.2022.965006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Perinatal derivatives (PnD) are birth-associated tissues, such as placenta, umbilical cord, amniotic and chorionic membrane, and thereof-derived cells as well as secretomes. PnD play an increasing therapeutic role with beneficial effects on the treatment of various diseases. The aim of this review is to elucidate the modes of action of non-hematopoietic PnD on inflammation, angiogenesis and wound healing. We describe the source and type of PnD with a special focus on their effects on inflammation and immune response, on vascular function as well as on cutaneous and oral wound healing, which is a complex process that comprises hemostasis, inflammation, proliferation (including epithelialization, angiogenesis), and remodeling. We further evaluate the different in vitro assays currently used for assessing selected functional and therapeutic PnD properties. This review is a joint effort from the COST SPRINT Action (CA17116) with the intention to promote PnD into the clinics. It is part of a quadrinomial series on functional assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer activities, anti-inflammation, wound healing, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Ana I. Flores
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Caterina Pipino
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio Chieti-Pescara, StemTech Group, Chieti, Italy
| | - Urška Dragin Jerman
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Sergio Liarte
- Laboratorio de Regeneración, Oncología Molecular y TGF-β, IMIB-Arrixaca, Murcia, Spain
| | - Florelle Gindraux
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 466, Université Bourgogne Franche-Comté, Besançon, France
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Francisco J. Nicolas
- Laboratorio de Regeneración, Oncología Molecular y TGF-β, IMIB-Arrixaca, Murcia, Spain
| | - Assunta Pandolfi
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio Chieti-Pescara, StemTech Group, Chieti, Italy
| | - Larisa Tratnjek
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy and Foundation Institute of Pediatric Research Fondazione Città Della Speranza, Padova, Italy
| | | | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
Moonshi SS, Adelnia H, Wu Y, Ta HT. Placenta‐Derived Mesenchymal Stem Cells for Treatment of Diseases: A Clinically Relevant Source. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shehzahdi S. Moonshi
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
| | - Hossein Adelnia
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St Lucia Queensland 4072 Australia
| | - Yuao Wu
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
- Bioscience Discipline School of Environment and Science Griffith University Nathan Queensland 4111 Australia
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
27
|
Pirsalehi A, Soleimani M, Hajifathali A, Sadeghi B, Farhadihosseinabadi B, Akhlaghi SS, Roshandel E. Decidual stromal cell therapy for generalized lymphadenopathy as a special clinical manifestation of COVID‐19 infection: A case report. Clin Case Rep 2022; 10:e05851. [PMID: 35600010 PMCID: PMC9109646 DOI: 10.1002/ccr3.5851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
We are going through the greatest global health crisis of the last decades, the coronavirus disease 2019 (COVID‐19) pandemic. It may cause morbidity and mortality in some cases, and there is no therapeutic approach with reproducible and favorable outcomes. As clinical manifestations differ from patient to patient, any report regarding clinical symptoms has been beneficial for early detection and treatment. Due to the immunomodulatory effect of mesenchymal stem cells (MSCs), MSCs‐based therapy has been approved to be one of the therapeutic strategies for COVID‐19 management. For the first time in the literature, we reported generalized lymphadenopathy with fever and no sign of respiratory distress in a 16‐year‐old patient with confirmed COVID‐19 infection as the main clinical signs. We also introduce decidual stromal cells as a potential immunomodulatory treatment for COVID‐19–infected patients.
Collapse
Affiliation(s)
- Ali Pirsalehi
- Department of Internal Medicine School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Masoud Soleimani
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR) Department of Clinical Science, Intervention and Technology CLINTEC Karolinska Instituted Huddinge Sweden
| | | | - Sedigheh Sadat Akhlaghi
- Department of Internal Medicine School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
28
|
Potential and challenges of placenta-derived decidua stromal cell therapy in inflammation-associated disorders. Hum Immunol 2022; 83:580-588. [DOI: 10.1016/j.humimm.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 01/08/2023]
|
29
|
Impact of Cryopreservation and Freeze-Thawing on Therapeutic Properties of Mesenchymal Stromal/Stem Cells and Other Common Cellular Therapeutics. CURRENT STEM CELL REPORTS 2022; 8:72-92. [PMID: 35502223 PMCID: PMC9045030 DOI: 10.1007/s40778-022-00212-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Purpose of Review Cryopreservation and its associated freezing and thawing procedures–short “freeze-thawing”–are among the final steps in economically viable manufacturing and clinical application of diverse cellular therapeutics. Translation from preclinical proof-of-concept studies to larger clinical trials has indicated that these processes may potentially present an Achilles heel to optimal cell product safety and particularly efficacy in clinical trials and routine use. Recent Findings We review the current state of the literature on how cryopreservation of cellular therapies has evolved and how the application of this technique to different cell types is interlinked with their ability to engraft and function upon transfer in vivo, in particular for hematopoietic stem and progenitor cells (HSPCs), their progeny, and therapeutic cell products derived thereof. We also discuss pros and cons how this may differ for non-hematopoietic mesenchymal stromal/stem cell (MSC) therapeutics. We present different avenues that may be crucial for cell therapy optimization, both, for hematopoietic (e.g., effector, regulatory, and chimeric antigen receptor (CAR)-modified T and NK cell based products) and for non-hematopoietic products, such as MSCs and induced pluripotent stem cells (iPSCs), to achieve optimal viability, recovery, effective cell dose, and functionality of the cryorecovered cells. Summary Targeted research into optimizing the cryopreservation and freeze-thawing routines and the adjunct manufacturing process design may provide crucial advantages to increase both the safety and efficacy of cellular therapeutics in clinical use and to enable effective market deployment strategies to become economically viable and sustainable medicines.
Collapse
|
30
|
Kusuma GD, Georgiou HM, Perkins AV, Abumaree MH, Brennecke SP, Kalionis B. Mesenchymal Stem/Stromal Cells and Their Role in Oxidative Stress Associated with Preeclampsia. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:115-127. [PMID: 35370491 PMCID: PMC8961706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Preeclampsia (PE) is a serious medically important disorder of human pregnancy, which features de novo pregnancy-induced hypertension and proteinuria. The severe form of PE can progress to eclampsia, a convulsive, life-threatening condition. When placental growth and perfusion are abnormal, the placenta experiences oxidative stress and subsequently secretes abnormal amounts of certain pro-angiogenic factors (eg, PlGF) as well as anti-angiogenic factors (eg, sFlt-1) that enter the maternal circulation. The net effect is damage to the maternal vascular endothelium, which subsequently manifests as the clinical features of PE. Other than delivery of the fetus and placenta, curative treatments for PE have not yet been forthcoming, which reflects the complexity of the clinical syndrome. A major source of reactive oxygen species that contributes to the widespread maternal vascular endothelium damage is the PE-affected decidua. The role of decidua-derived mesenchymal stem/stromal cells (MSC) in normotensive and pathological placenta development is poorly understood. The ability to respond to an environment of oxidative damage is a "universal property" of MSC but the biological mechanisms that MSC employ in response to oxidative stress are compromised in PE. In this review, we discuss how MSC respond to oxidative stress in normotensive and pathological conditions. We also consider the possibility of manipulating the oxidative stress response of abnormal MSC as a therapeutic strategy to treat preeclampsia.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Harry M. Georgiou
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Anthony V. Perkins
- School of Medical Science, Menzies Health Institute
Queensland, Griffith University, Southport, Queensland, Australia
| | - Mohamed H. Abumaree
- Stem Cells and Regenerative Medicine Department, King
Abdullah International Medical Research Center, King Abdulaziz Medical City,
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia,King Saud Bin Abdulaziz University for Health Sciences,
College of Science and Health Professions, King Abdulaziz Medical City, Ministry
of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shaun P. Brennecke
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Bill Kalionis
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia,To whom all correspondence should be addressed:
Dr. Bill Kalionis, Department of Maternal-Fetal Medicine Pregnancy Research
Centre Royal Women’s Hospital, Parkville, Victoria, Australia;
; ORCID iD:
https://orcid.org/0000-0002-0132-9858
| |
Collapse
|
31
|
Ringdén O, Moll G, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Front Immunol 2022; 13:839844. [PMID: 35371003 PMCID: PMC8973075 DOI: 10.3389/fimmu.2022.839844] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) possess profound immunomodulatory and regenerative properties that are of clinical use in numerous clinical indications with unmet medical need. Common sources of MSCs include among others, bone marrow (BM), fat, umbilical cord, and placenta-derived decidua stromal cells (DSCs). We here summarize our more than 20-years of scientific experience in the clinical use of MSCs and DSCs in different clinical settings. BM-MSCs were first explored to enhance the engraftment of autografts in hematopoietic cell transplantation (HCT) and osteogenesis imperfecta around 30 years ago. In 2004, our group reported the first anti-inflammatory use of BM-MSCs in a child with grade IV acute graft-versus-host disease (GvHD). Subsequent studies have shown that MSCs appear to be more effective in acute than chronic GvHD. Today BM-MSC-therapy is registered for acute GvHD in Japan and for GvHD in children in Canada and New Zeeland. MSCs first home to the lung following intravenous injection and exert strong local and systemic immunomodulatory effects on the host immune system. Thus, they were studied for ameliorating the cytokine storm in acute respiratory distress syndrome (ARDS). Both, MSCs and DSCs were used to treat SARS-CoV-2 coronavirus-induced disease 2019 (COVID-19)-induced ARDS. In addition, they were also used for other novel indications, such as pneumomediastinum, colon perforation, and radiculomyelopathy. MSC and DSCs trigger coagulation and were thus explored to stop hemorrhages. DSCs appear to be more effective for acute GvHD, ARDS, and hemorrhages, but randomized studies are needed to prove superiority. Stromal cell infusion is safe, well tolerated, and only gives rise to a slight fever in a limited number of patients, but no major side effects have been reported in multiple safety studies and metaanalysis. In this review we summarize current evidence from in vitro studies, animal models, and importantly our clinical experience, to support stromal cell therapy in multiple clinical indications. This encloses MSC's effects on the immune system, coagulation, and their safety and efficacy, which are discussed in relation to prominent clinical trials within the field.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Guido Moll
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, All Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Li Y, Hao J, Hu Z, Yang YG, Zhou Q, Sun L, Wu J. Current status of clinical trials assessing mesenchymal stem cell therapy for graft versus host disease: a systematic review. Stem Cell Res Ther 2022; 13:93. [PMID: 35246235 PMCID: PMC8895864 DOI: 10.1186/s13287-022-02751-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Background Graft-versus-host disease (GVHD) is a common fatal complication of hematopoietic stem cell transplantation (HSCT), where steroids are used as a treatment option. However, there are currently no second-line treatments for patients that develop steroid-resistance (SR). Mesenchymal stem cells (MSCs) have immunomodulatory functions and can exert immunosuppressive effects on the inflammatory microenvironment. A large number of in vitro experiments have confirmed that MSCs can significantly inhibit the proliferation or activation of innate and adaptive immune cells. In a mouse model of GVHD, MSCs improved weight loss and increased survival rate. Therefore, there is great promise for the clinical translation of MSCs for the prevention or treatment of GVHD, and several clinical trials have already been conducted to date. Main body In this study, we searched multiple databases and found 79 clinical trials involving the use of MSCs to prevent or treat GVHD and summarized the characteristics of these clinical trials, including study design, phase, status, and locations. We analyzed the results of these clinical trials, including the response and survival rates, to enable researchers to obtain a comprehensive understanding of the field’s progress, challenges, limitations, and future development trends. Additionally, factors that might result in inconsistencies in clinical trial results were discussed. Conclusion In this study, we attempted to analyze the clinical trials for MSCs in GVHD, identify the most suitable group of patients for MSC therapy, and provide a new perspective for the design of such trials in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02751-0.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.,Department of Gastroenterology, The First Hospital, Jilin University, Changchun, 130021, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.,International Center of Future Science, Jilin University, Changchun, 130021, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liguang Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China. .,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Aghayan HR, Hosseini MS, Gholami M, Mohamadi-Jahani F, Tayanloo-Beik A, Alavi-Moghadam S, Payab M, Goodarzi P, Abdollahi M, Larijani B, Arjmand B. Mesenchymal stem cells' seeded amniotic membrane as a tissue-engineered dressing for wound healing. Drug Deliv Transl Res 2022; 12:538-549. [PMID: 33677794 DOI: 10.1007/s13346-021-00952-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Different biomaterials have been used as biological dressing for wound regeneration. For many decades, human amniotic membrane graft (AM) has been widely applied for treating acute and chronic wounds. It has minimal toxicity and immunogenicity, supports mesenchymal cell in-growth, improves epidermal cell adherence and proliferation, and finally is inexpensive and readily available. Enrichment of tissue grafts with the stem cells is a new approach to improve their regenerative effects. This animal study aimed at investigating feasibility, safety, and efficacy of tissue-engineered dressings composed of AM and two different types of mesenchymal stem cells (MSCs) in the excisional wound model in rats. Human adipose-derived MSCs (ADMSCs) and placenta-derived MSCs (PLMSCs) were manufactured from the donated adipose and placenta tissues respectively. After cell characterization, MSCs were seeded on acellular AM (AAM) and cultivated for 5 days. Excisional wound model was developed in 24 male Wistar rats that were randomly classified into four groups including control, AAM, ADMSCs + AAM, and PLMSCs + AAM (n = 6 in each group). Tissue-engineered constructs were applied, and photographs were taken on days 0, 7, and 14 for observing the wound healing rates. In days 7 and 14 post-treatment, three rats from each group were euthanized, and wound biopsies were harvested, and histopathologic studies were conducted. The results of wound closure rate, re-epithelialization, angiogenesis, and collagen remodeling demonstrated that in comparison with the control groups, the MSC-seeded AAMs had superior regenerative effects in excisional wound animal model. Between MSCs group, the PLMSCs showed better healing effect. Our data suggested that seeding of MSCs on AAM can boosts its regenerative effects in wound treatment. We also found that PLMSCs had superior regenerative effects to ADMSc in the rat model of excisional wound.
Collapse
Affiliation(s)
- Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Sheikh Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, 1416753955, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Yao X, Ma Y, Zhou W, Liao Y, Jiang Z, Lin J, He Q, Wu H, Wei W, Wang X, Björklund M, Ouyang H. In-cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioeng Transl Med 2022; 7:e10250. [PMID: 35111950 PMCID: PMC8780934 DOI: 10.1002/btm2.10250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022] Open
Abstract
Stem cell therapies are unsatisfactory due to poor cell survival and engraftment. Stem cell used for therapy must be properly "tuned" for a harsh in vivo environment. Herein, we report that transfer of exogenous mitochondria (mito) to adipose-derived mesenchymal stem cells (ADSCs) can effectively boost their energy levels, enabling efficient cell engraftment. Importantly, the entire process of exogeneous mitochondrial endocytosis is captured by high-content live-cell imaging. Mitochondrial transfer leads to acutely enhanced bioenergetics, with nearly 17% of higher adenosine 5'-triphosphate (ATP) levels in ADSCs treated with high mitochondrial dosage and further results in altered secretome profiles of ADSCs. Mitochondrial transfer also induced the expression of 334 mRNAs in ADSCs, which are mainly linked to signaling pathways associated with DNA replication and cell division. We hypothesize that increase in ATP and cyclin-dependent kinase 1 and 2 expression might be responsible for promoting enhanced proliferation, migration, and differentiation of ADSCs in vitro. More importantly, mito-transferred ADSCs display prolonged cell survival, engraftment and horizontal transfer of exogenous mitochondria to surrounding cells in a full-thickness skin defect rat model with improved skin repair compared with nontreated ADSCs. These results demonstrate that intracellular mitochondrial transplantation is a promising strategy to engineer stem cells for tissue regeneration.
Collapse
Affiliation(s)
- Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Zongsheng Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Mikael Björklund
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- Department of Sports MedicineZhejiang University School of MedicineHangzhouChina
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
35
|
Moll G, Ankrum JA, Olson SD, Nolta JA. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:2-13. [PMID: 35641163 PMCID: PMC8895495 DOI: 10.1093/stcltm/szab005] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated “Stem Cell Clinics” offering diverse “Unproven Stem Cell Interventions.” This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.
Collapse
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin Brandenburg School of Regenerative Therapies (BSRT), Berlin Institute of Health (BIH) at the Charité—Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Corresponding author: Guido Moll, PhD, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering and Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Jan A Nolta
- Director of the Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
36
|
Placenta derived Mesenchymal Stem Cells transplantation in Type 1 diabetes: preliminary report of phase 1 clinical trial. J Diabetes Metab Disord 2021; 20:1179-1189. [PMID: 34900770 DOI: 10.1007/s40200-021-00837-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Introduction Type 1 Diabetes Mellitus (T1DM) is an auto immune reaction against insulin secreting beta cells. Exogenous insulin administration is the only standard treatment for T1DM. However, despite tight glycemic control many patients will develop chronic life-threatening complications. Recently, stem cell transplantation has been suggested as a novel treatment for eliminating the beta cell damage and promoting their regeneration by modulating auto-immunity. To our knowledge; this is the first preliminary report of placenta derived MSCs (PLMSCs) transplantation in juvenile T1DM. Method An Open label non-randomized phase 1 clinical trial was designed to evaluate the safety of PLMSCs transplantation in new onset juvenile T1DM (IRCT20171021036903N2). PLMSCs were manufactured in our clean room facility using a Xeno-free/GMP compliant protocol. The first series of patients (n = 4) received one dose of1 × 106 PLMSCs/kg intravenously. Diabetic clinical and laboratory parameters and side effects were evaluated weekly for the first month, monthly for 6 months, and then every 3 month till 1 year. Results Serious adverse events were not seen during 1 year follow-up. Partial remission and hypoglycemic attacks were happened one month after transplantation in two patients. ZnT8-Ab decreased till month 3 and then increased again in all patients. Anti Gad-Ab decreased till month 3 of follow up then increased. Discussion This preliminary report of our phase I clinical trial demonstrated the short term safety of PLMSCs transplantation in juvenile T1DM. To prove the long term safety and probable efficacy of this treatment more investigations are needed. Trial registration Iranian Registry of Clinical Trials: IRCT20171021036903N2.
Collapse
|
37
|
Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, Jaśkowski JM, Bukowska D, Ratajczak K, Zabel M, Mozdziak P, Kempisty B. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells 2021; 10:cells10123278. [PMID: 34943786 PMCID: PMC8699543 DOI: 10.3390/cells10123278] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Correspondence:
| |
Collapse
|
38
|
Kulubya ES, Clark K, Hao D, Lazar S, Ghaffari-Rafi A, Karnati T, Ebinu JO, Zwienenberg M, Farmer DL, Wang A. The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells 2021; 10:2837. [PMID: 34831060 PMCID: PMC8616037 DOI: 10.3390/cells10112837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) is a devasting condition with no reliable treatment. Spina bifida is the most common cause of congenital SCI. Cell-based therapies using mesenchymal stem/stromal cells (MSCS) have been largely utilized in SCI. Several clinical trials for acquired SCI use adult tissue-derived MSC sources, including bone-marrow, adipose, and umbilical cord tissues. The first stem/stromal cell clinical trial for spina bifida is currently underway (NCT04652908). The trial uses early gestational placental-derived mesenchymal stem/stromal cells (PMSCs) during the fetal repair of myelomeningocele. PMSCs have been shown to exhibit unique neuroprotective, angiogenic, and antioxidant properties, all which are promising applications for SCI. This review will summarize the unique properties and current applications of PMSCs and discuss their therapeutic role for acquired SCI.
Collapse
Affiliation(s)
- Edwin S Kulubya
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Kaitlin Clark
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Dake Hao
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Sabrina Lazar
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Arash Ghaffari-Rafi
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Tejas Karnati
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Julius Okudu Ebinu
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Marike Zwienenberg
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Diana L Farmer
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Aijun Wang
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
39
|
Sadeghi B, Roshandel E, Pirsalehi A, Kazemi S, Sankanian G, Majidi M, Salimi M, Aghdami N, Sadrosadat H, Samadi Kochaksaraei S, Alaeddini F, Ringden O, Hajifathali A. Conquering the cytokine storm in COVID-19-induced ARDS using placenta-derived decidua stromal cells. J Cell Mol Med 2021; 25:10554-10564. [PMID: 34632708 PMCID: PMC8581334 DOI: 10.1111/jcmm.16986] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most common cause of death in COVID‐19 patients. The cytokine storm is the main driver of the severity and magnitude of ARDS. Placenta‐derived decidua stromal cells (DSCs) have a stronger immunosuppressive effect than other sources of mesenchymal stromal cells. Safety and efficacy study included 10 patients with a median age of 50 (range 14–68) years with COVID‐19‐induced ARDS. DSCs were administered 1–2 times at a dose of 1 × 106/kg. End points were safety and efficacy by survival, oxygenation and effects on levels of cytokines. Oxygenation levels increased from a median of 80.5% (range 69–88) to 95% (range 78–99) (p = 0.012), and pulmonary infiltrates disappeared in all patients. Levels of IL‐6 decreased from a median of 69.3 (range 35.0–253.4) to 11 (range 4.0–38.3) pg/ml (p = 0.018), and CRP decreased from 69 (range 5–169) to 6 (range 2–31) mg/ml (p = 0.028). Two patients died, one of a myocardial infarction and the other of multiple organ failure, diagnosed before the DSC therapy. The other patients recovered and left the intensive care unit (ICU) within a median of 6 (range 3–12) days. DSC therapy is safe and capable of improving oxygenation, decreasing inflammatory cytokine level and clearing pulmonary infiltrates in patients with COVID‐19.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pirsalehi
- Department of Internal Medicine, School of Medicine, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepide Kazemi
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Huddinge, Sweden.,Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Infectious Diseases and Tropical Medicines, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Sadrosadat
- Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Sarvenaz Samadi Kochaksaraei
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Huddinge, Sweden.,Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Farshid Alaeddini
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Olle Ringden
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Murata M, Terakura S, Wake A, Miyao K, Ikegame K, Uchida N, Kataoka K, Miyamoto T, Onizuka M, Eto T, Doki N, Ota S, Sato M, Hashii Y, Ichinohe T, Fukuda T, Atsuta Y, Okamoto S, Teshima T. Off-the-shelf bone marrow-derived mesenchymal stem cell treatment for acute graft-versus-host disease: real-world evidence. Bone Marrow Transplant 2021; 56:2355-2366. [PMID: 33976381 DOI: 10.1038/s41409-021-01304-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 11/08/2022]
Abstract
Temcell is a cryopreserved, human bone marrow-derived mesenchymal stem cell (MSC) product approved for the treatment of patients of all ages with acute graft-versus-host disease (GVHD). Initial experience with Temcell in a real-world setting from a cellular therapy registry in Japan is presented. A total of 381 consecutive patients were enrolled since its approval in 2016. The median cell number infused was 2.00 × 106/kg. The most common number of infusions was 8 in 100 patients. Of the 306 evaluable patients, the overall response rate (ORR) on day 28 after the start of MSC therapy was 56%. Of the 151 evaluable patients who received it as second-line therapy following first-line steroid therapy for classic acute GVHD, the ORR was 61%. Liver involvement of GVHD and ≥14 days from first-line steroid therapy to second-line MSC therapy was associated with a lower ORR. Day 28 ORR, patient age, GVHD grade, GVHD organ involvement, and a number of GVHD therapies before MSC therapy were associated with nonrelapse mortality. Overall survival at 6 months in 381 patients was 40%. This study suggests that Temcell is one of the treatment options for steroid-refractory acute GVHD until a new treatment with survival benefit is developed.
Collapse
Affiliation(s)
- Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Wake
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Kotaro Miyao
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Miyamoto
- Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Maho Sato
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy/Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medical Science, Sapporo, Japan
| |
Collapse
|
41
|
Murata M, Teshima T. Treatment of Steroid-Refractory Acute Graft- Versus-Host Disease Using Commercial Mesenchymal Stem Cell Products. Front Immunol 2021; 12:724380. [PMID: 34489977 PMCID: PMC8417106 DOI: 10.3389/fimmu.2021.724380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (GVHD) is a life-threatening complication that can develop after allogeneic hematopoietic stem cell transplantation. In particular, the prognosis of patients with steroid-refractory acute GVHD is extremely poor. Ryoncil™ (remestemcel-L), a human bone marrow-derived mesenchymal stem cell (MSC) product, failed to show superiority over placebo in patients with steroid-refractory acute GVHD, but it was approved for use in pediatric patients in Canada and New Zealand based on the results of a subgroup analysis. Temcell®, an equivalent manufactured MSC product to remestemcel-L, was approved in Japan based on small single-arm studies by using a regulation for regenerative medicine in 2016. The efficacy of Temcell was evaluated in 381 consecutive patients treated with Temcell during the initial 3 years after its approval. Interestingly, its real-world efficacy was found to be equivalent to that observed in a prospective study of remestemcel-L with strict eligibility criteria. In this article, the potential of MSC therapy in the treatment of acute GVHD is discussed. A meticulous comparison of studies of remestemcel-L and Temcell, remestemcel-L/Temcell and ruxolitinib, and remestemcel-L/Temcell and thymoglobulin showed that the precise position of remestemcel-L/Temcell therapy in the treatment of acute GVHD remains to be determined.
Collapse
Affiliation(s)
- Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
42
|
Wang R, Wang X, Yang S, Xiao Y, Jia Y, Zhong J, Gao Q, Zhang X. Umbilical cord-derived mesenchymal stem cells promote myeloid-derived suppressor cell enrichment by secreting CXCL1 to prevent graft-versus-host disease after hematopoietic stem cell transplantation. Cytotherapy 2021; 23:996-1006. [PMID: 34465514 DOI: 10.1016/j.jcyt.2021.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Human mesenchymal stem cells (MSCs) from various tissues have emerged as attractive candidates for the prevention and treatment of graft-versus-host disease (GVHD). However, the molecular machinery that defines and channels the behavior of these cells remains poorly understood. METHODS In this study, the authors compared the efficacy of four tissue-derived MSC types in controlling GVHD in a murine model and investigated their immunomodulatory effects. RESULTS Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) effectively decreased the incidence and severity of GVHD, which was mediated by the enrichment of myeloid-derived suppressor cells in GVHD target tissues. RNA sequencing results showed that hUCMSCs highly expressed CXCL1. CONCLUSIONS These results suggest a novel prophylactic application of hUCMSCs for controlling GVHD after allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunshuo Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanhui Jia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiangfan Zhong
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangguo Gao
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
43
|
Mallis P, Michalopoulos E, Chatzistamatiou T, Giokas CS. Interplay between mesenchymal stromal cells and immune system: clinical applications in immune-related diseases. EXPLORATION OF IMMUNOLOGY 2021. [DOI: 10.37349/ei.2021.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2024]
Abstract
Mesenchymal stromal cells (MSCs) are a mesodermal stem cell population, with known self-renewal and multilineage differentiation properties. In the last century, MSCs have been widely used in regenerative medicine and tissue engineering approaches. MSCs initially were isolated from bone marrow aspirates, but currently have been identified in a great number of tissues of the human body. Besides their utilization in regenerative medicine, MSCs possess significant immunoregulatory/immunosuppressive properties, through interaction with the cells of innate and adaptive immunity. MSCs can exert their immunomodulatory properties with either cell-cell contact or via paracrine secretion of molecules, such as cytokines, growth factors and chemokines. Of particular importance, the MSCs’ immunomodulatory properties are explored as promising therapeutic strategies in immune-related disorders, such as autoimmune diseases, graft versus host disease, cancer. MSCs may also have an additional impact on coronavirus disease-19 (COVID-19), by attenuating the severe symptoms of this disorder. Nowadays, a great number of clinical trials, of MSC-mediated therapies are evaluated for their therapeutic potential. In this review, the current knowledge on cellular and molecular mechanisms involved in MSC-mediated immunomodulation were highlighted. Also, the most important aspects, regarding their potential application in immune-related diseases, will be highlighted. The broad application of MSCs has emerged their role as key immunomodulatory players, therefore their utilization in many disease situations is full of possibilities for future clinical treatment.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Theofanis Chatzistamatiou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece 2Histocompatibility & Immunogenetics Lab, Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | | |
Collapse
|
44
|
Sanap A, Joshi K, Shah T, Tillu G, Bhonde R. Pre-conditioning of Mesenchymal Stem Cells with Piper longum L. augments osteogenic differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113999. [PMID: 33705921 DOI: 10.1016/j.jep.2021.113999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/28/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Indian Traditional Medicine, Ayurveda prescribes Piper longum L. popularly known as Long Pepper (Pippali) for the treatment of inflammatory and degenerative diseases. Therapeutic benefits of Piper longum L. are mainly attributed to the anti-inflammatory and arthritic potential. AIM OF THE STUDY This study was aimed to explore the activity of Piper longum L. fruit extract on proliferation and osteogenic differentiation of human Wharton's Jelly Mesenchymal Stem Cells (WJMSCs) to find out it's possible role as anti-osteoporotic agent. MATERIALS AND METHODS Proliferation of WJMSCs treated with Piper longum L. fruit extract was assessed by MTT assay and Cell Cycle Analysis. Effect of Piper longum L. preconditioning on osteogenic differentiation was performed. Ca2+ accumulation and matrix mineralization (Von Kossa and Alizarin Red Staining), alkaline phosphatase (ALP) activity and gene expression of key mRNA (RT PCR) was analyzed. RESULTS Significant increase in the proliferation of WJMSCs was observed upon treatment of Piper longum L. at 5 μg/mL (P < 0.001) which can be attributed to the significant decrease in apoptotic cells (P < 0.05) as evidenced by cell cycle analysis. Preconditioning of Piper longum L. (10-100 μg/mL) enhanced Ca2+ accumulation and matrix mineralization as observed by Von Kossa and Alizarin Red staining where ALP activity was elevated 3.6 folds as compared to untreated WJMSCs (P < 0.001). RT-PCR analysis exhibited up regulation of Runx2, Osterix, ALP and OPN mRNAs. CONCLUSIONS We demonstrate for the first time that Piper longum L. fruit extract enhanced osteogenic differentiation of WJMSCs. This finding can be clinically translated into development of an anti-osteoporotic agent.
Collapse
Affiliation(s)
- Avinash Sanap
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune, 411041, India; Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pune, 411018, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune, 411041, India.
| | - Tejas Shah
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune, 411041, India
| | - Girish Tillu
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pune, 411018, India
| |
Collapse
|
45
|
Viswanathan S, Ciccocioppo R, Galipeau J, Krampera M, Le Blanc K, Martin I, Moniz K, Nolta J, Phinney DG, Shi Y, Szczepiorkowski ZM, Tarte K, Weiss DJ, Ashford P. Consensus International Council for Commonality in Blood Banking Automation-International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy 2021; 23:1060-1063. [PMID: 34116944 DOI: 10.1016/j.jcyt.2021.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022]
Abstract
The Cellular Therapy Coding and Labeling Advisory Group of the International Council for Commonality in Blood Banking Automation and the International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee are providing specific recommendations on abbreviating tissue sources of culture-adapted MSCs. These recommendations include using abbreviations based on the ISBT 128 terminology model that specifies standard class names to distinguish cell types and tissue sources for culture-adapted MSCs. Thus, MSCs from bone marrow are MSC(M), MSCs from cord blood are MSC(CB), MSCs from adipose tissue are MSC(AT) and MSCs from Wharton's jelly are MSC(WJ). Additional recommendations include using these abbreviations through the full spectrum of pre-clinical, translational and clinical research for the development of culture-adapted MSC products. This does not apply to basic research focused on investigating the developmental origins, identity or functionalities of endogenous progenitor cells in different tissues. These recommendations will serve to harmonize nomenclature in describing research and development surrounding culture-adapted MSCs, many of which are destined for clinical and/or commercial translation. These recommendations will also serve to align research and development efforts on culture-adapted MSCs with other cell therapy products.
Collapse
Affiliation(s)
- Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Canada.
| | - Rachele Ciccocioppo
- Department of Medicine, AOUI Policlinico GB Rossi & University of Verona, Verona, Italy
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Katarina Le Blanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Karen Moniz
- International Council for Commonality in Blood Banking Automation, Redlands, California, USA
| | - Jan Nolta
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, California, USA
| | - Donald G Phinney
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Yufang Shi
- The First Affiliated Hospital, Soochow University Institutes for Translational Medicine, Suzhou, China; Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zbigniew M Szczepiorkowski
- Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA; Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Karin Tarte
- UMR U1236-MICMAC, Immunology and Cell Therapy Lab, Rennes University Hospital, Rennes, France
| | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Paul Ashford
- International Council for Commonality in Blood Banking Automation, Redlands, California, USA.
| |
Collapse
|
46
|
Pethe P, Kale V. Placenta: A gold mine for translational research and regenerative medicine. Reprod Biol 2021; 21:100508. [PMID: 33930790 DOI: 10.1016/j.repbio.2021.100508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023]
Abstract
Stem cell therapy has gained much impetus in regenerative medicine due to some of the encouraging results obtained in the laboratory as well as in translational/clinical studies. Although stem cells are of various types and their therapeutic potential has been documented in several studies, mesenchymal stromal/stem cells (MSCs) have an edge, as in addition to being multipotent, these cells are easy to obtain and expand, pose fewer ethical issues, and possess immense regenerative potential when used in a scientifically correct manner. Currently, MSCs are being sourced from various tissues such as bone marrow, cord, cord blood, adipose tissue, dental tissue, etc., and, quite often, the choice depends on the availability of the source. One such rich source of tissue suitable for obtaining good quality MSCs in large numbers is the placenta obtained in a full-term delivery leading to a healthy child's birth. Several studies have demonstrated the regenerative potential of human placenta-derived MSCs (hPMSC), and most show that these MSCs possess comparable, in some instances, even better, therapeutic potential as that shown by human bone marrow-derived (hBMSC) or human umbilical cord-derived (hUC-MSC) MSCs. The placenta can be easily sourced from the OB/GYN department of any hospital, and if its derivatives such as hPMSC or their EVs are produced under GMP conditions, it could serve as a gold mine for translational/clinical research. Here, we have reviewed recent studies revealing the therapeutic potential of hPMSC and their extracellular vesicles (EVs) published over the past three years.
Collapse
Affiliation(s)
- Prasad Pethe
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, 412115, India.
| |
Collapse
|
47
|
Mesenchymal stromal cells in hematopoietic cell transplantation. Blood Adv 2021; 4:5877-5887. [PMID: 33232479 DOI: 10.1182/bloodadvances.2020002646] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely recognized to possess potent immunomodulatory activity, as well as to stimulate repair and regeneration of diseased or damaged tissue. These fundamental properties suggest important applications in hematopoietic cell transplantation. Although the mechanisms of therapeutic activity in vivo are yet to be fully elucidated, MSCs seem to suppress lymphocytes by paracrine mechanisms, including secreted mediators and metabolic modulators. Most recently, host macrophage engulfment of apoptotic MSCs has emerged as an important contributor to the immune suppressive microenvironment. Although bone marrow-derived MSCs are the most commonly studied, the tissue source of MSCs may be a critical determinant of immunomodulatory function. The key application of MSC therapy in hematopoietic cell transplantation is to prevent or treat graft-versus-host disease (GVHD). The pathogenesis of GVHD reveals multiple potential targets. Moreover, the recently proposed concept of tissue tolerance suggests a new possible mechanism of MSC therapy for GVHD. Beyond GVHD, MSCs may facilitate hematopoietic stem cell engraftment, which could gain greater importance with increasing use of haploidentical transplantation. Despite many challenges and much doubt, commercial MSC products for pediatric steroid-refractory GVHD have been licensed in Japan, conditionally licensed in Canada and New Zealand, and have been recommended for approval by an FDA Advisory Committee in the United States. Here, we review key historical data in the context of the most salient recent findings to present the current state of MSCs as adjunct cell therapy in hematopoietic cell transplantation.
Collapse
|
48
|
Decidual stromal cells support tolerance at the human foetal-maternal interface by inducing regulatory M2 macrophages and regulatory T-cells. J Reprod Immunol 2021; 146:103330. [PMID: 34049032 DOI: 10.1016/j.jri.2021.103330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 05/02/2021] [Indexed: 01/25/2023]
Abstract
During pregnancy, the semi-allogeneic nature of the foetus requires maternal immune adaption and acquisition of tolerance at the foetal-maternal interface. Macrophages with regulatory properties and regulatory T (Treg) cells are central in promoting foetal tolerance and are enriched in the decidua (the uterine endometrium during pregnancy). Although tissue-resident decidual stromal cells (DSC) have been implicated in regulatory functions, it is not known if they are able to induce the regulatory phenotype of macrophages and T-cells. In this study we report that maternally derived DSC are able to induce homeostatic M2 macrophages and Treg cells. CD14+ monocytes and CD4+ T-cells from healthy non-pregnant women were cultured in the presence or absence of conditioned medium (CM) from DSC isolated from 1st trimester and term placentas. DSC-CM alone was able to promote the survival of macrophages and to induce a regulatory CD14brightCD163+CD209+CD86dim phenotype, typical for decidual macrophages and similar to that induced by M-CSF. Interestingly, DSC-CM was also able to overrule the pro-inflammatory effects of GM-CSF by upregulating CD14, CD163 and CD209. Protein-profiling showed that M-CSF was secreted by DSC, and blocking of M-CSF partially reversed the M2 phenotype and reduced viability. DSC-CM also expanded CD25brightFoxp3+ Treg cells, an expansion that was abolished by a SMAD3-inhibitor, indicating the contribution of TGF-β signaling. In conclusion, our findings collectively emphasize the role of tissue-resident stromal cells in shaping the tolerogenic environment at the foetal-maternal interface.
Collapse
|
49
|
Decidualization modulates the mesenchymal stromal/stem cell and pericyte characteristics of human decidual stromal cells. Effects on antigen expression, chemotactic activity on monocytes and antitumoral activity. J Reprod Immunol 2021; 145:103326. [PMID: 33965695 DOI: 10.1016/j.jri.2021.103326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Decidual stromal cells (DSCs) are the most abundant cellular component of human decidua and play a central role in maternal-fetal immune tolerance. Antigen phenotyping and functional studies recently confirmed the relationship of DSCs with mesenchymal stem/stromal cells (MSCs) and pericytes, the latter two cell types being closely related or identical. The present study investigated the effect of decidualization, a process of cell differentiation driven by progesterone (P4) and other pregnancy hormones, on the MSC/pericyte characteristics of DSCs. To this end we isolated undifferentiated DSC (preDSC) lines that were decidualized in vitro (dDSC) by the effect of P4 and cAMP. Using flow cytometry, we found significant downmodulation of the expression of the MSC/pericyte markers α-smooth muscle actin, nestin, CD140b, CD146 and SUSD2 in dDSCs. The dDSCs did not differ, compared to preDSCs, in the expression of angiogenic factors (characteristic of pericytes) HGF, FGF2, ANGPT1 or VEGF according to RT-PCR results, but had significantly increased PGF expression. In migration assays, preDSC-conditioned media had a chemotactic effect on the THP-1 monocytic line (characteristic of pericytes), and this effect was significantly greater in dDSC-conditioned media. Media conditioned with dDSC, but not with preDSC, induced apoptosis in 4 out of 6 different tumor cell lines (characteristic of MSCs) according to propidium iodide staining and flow cytometry results. Our findings show that decidualization induces phenotypic and functional changes in the MSC/pericyte properties of DSCs that may have a role in the normal development of pregnancy.
Collapse
|
50
|
Berishvili E, Kaiser L, Cohen M, Berney T, Scholz H, Floisand Y, Mattsson J. Treatment of COVID-19 Pneumonia: the Case for Placenta-derived Cell Therapy. Stem Cell Rev Rep 2021; 17:63-70. [PMID: 32696426 PMCID: PMC7372209 DOI: 10.1007/s12015-020-10004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly 500'000 fatalities due to COVID-19 have been reported globally and the death toll is still rising. Most deaths are due to acute respiratory distress syndrome (ARDS), as a result of an excessive immune response and a cytokine storm elicited by severe SARS-CoV-2 lung infection, rather than by a direct cytopathic effect of the virus. In the most severe forms of the disease therapies should aim primarily at dampening the uncontrolled inflammatory/immune response responsible for most fatalities. Pharmacological agents - antiviral and anti-inflammatory molecules - have not been able so far to achieve compelling results for the control of severe COVID-19 pneumonia. Cells derived from the placenta and/or fetal membranes, in particular amniotic epithelial cells (AEC) and decidual stromal cells (DSC), have established, well-characterized, potent anti-inflammatory and immune-modulatory properties that make them attractive candidates for a cell-based therapy of COVID19 pneumonia. Placenta-derived cells are easy to procure from a perennial source and pose minimal ethical issues for their utilization. In view of the existing clinical evidence for the innocuousness and efficiency of systemic administration of DSCs or AECs in similar conditions, we advocate for the initiation of clinical trials using this strategy in the treatment of severe COVID-19 disease.
Collapse
Affiliation(s)
- Ekaterine Berishvili
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland.
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.
- Cell Isolation and Transplantation Center, Centre Médical Universitaire, 1, rue Michel-Servet, CH-1211, Geneva 4, Switzerland.
| | - Laurent Kaiser
- Division of Infectious Diseases, Virology Laboratory and Geneva Centre for Emerging Viral Diseases, University of Geneva Hospitals, Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Transplantation, University of Geneva Hospitals, Geneva, Switzerland
| | - Hanne Scholz
- Department of Transplant Medicine, Department of Cellular Therapy, University of Oslo, Oslo, Norway
- Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yngvar Floisand
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jonas Mattsson
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|