1
|
Samanta PN, Majumdar D, Leszczynski J. Revealing thermophysical and mechanical responses of graphene-reinforced polyvinyl alcohol nanocomposites using molecular dynamics simulations. Phys Chem Chem Phys 2025. [PMID: 40261099 DOI: 10.1039/d4cp04706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The effects of graphene (G) nanofiller content on enhancing the mechanical and thermal resistance of the polyvinyl alcohol (PVA) matrix are disentangled by performing all-atom classical molecular dynamics (MD) simulations. The crux of the computational work is to assess several key performance-limiting factors of the functional hybrid material, including the strain rate, temperature, and the size and distribution of the graphene nanofiller. Adding graphene nanofiller to the polymer results in more compact polymer chains, with the most significant impact observed in the 2% graphene composite. Uniaxial compression MD simulations revealed that the yield strength of the material is impacted by the proportion of nanofiller present. Specifically, the calculated stress-strain responses at a strain rate of 1.5 × 108 s-1 show that incorporating 2% graphene nanofiller remarkably enhances the yield strength. Conversely, increasing the graphene content to 5-10% led to a reduction in yield stress, which is primarily attributed to the disruption of hydrogen bond networks and destabilization of non-covalent interactions. Further analysis shows that increasing the strain rate led to higher yield stress in the G-PVA composite, while elevated temperatures caused its yield stress to decrease. Additionally, the glass transition temperature of the PVA composite rises with the graphene content and strongly correlates with the polymer chain mobility. The proposed theoretical approach may serve as a quantitative framework for elucidating the crucial role of interfacial interaction between polymers and nanomaterials in modulating the conformational, thermodynamic, and macroscopic properties of the hybrid materials.
Collapse
Affiliation(s)
- Pabitra Narayan Samanta
- Center for Computational Chemistry, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA.
| | - Devashis Majumdar
- Center for Computational Chemistry, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA.
| | - Jerzy Leszczynski
- Center for Computational Chemistry, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
2
|
Ozbey S, Keles G, Kurbanoglu S. Innovations in graphene-based electrochemical biosensors in healthcare applications. Mikrochim Acta 2025; 192:290. [PMID: 40205234 PMCID: PMC11982133 DOI: 10.1007/s00604-025-07141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The isolation of a single atomic layer of graphite, known as graphene, marked a fundamental moment that transformed the field of materials science. Graphene-based nanomaterials are recognized for their superior biocompatibility compared with many other types of nanomaterials. Moreover, one of the main reasons for the growing interest in graphene is its potential applications in emerging technologies. Its key characteristics, including high electrical conductivity, excellent intrinsic charge carrier mobility, optical transparency, substantial specific surface area, and remarkable mechanical flexibility, position it as an ideal candidate for applications in solar cells and touch screens. Its durability further establishes graphene as a strong contender for developing robust materials. To date, a variety of methods, such as traditional spectroscopic techniques and chromatographic approaches, have been developed for detecting biomolecules, drugs, and heavy metals. Electrochemical methods, known for their portability, selectivity, and impressive sensitivity, offer considerable convenience for both patients and professionals in point-of-care diagnostics. Recent advancements have significantly improved the capacity for rapid and accurate detection of analytes in trace amounts, providing substantial benefits in biosensor technology. Additionally, the integration of nanotechnology has markedly enhanced the sensitivity and selectivity of electrochemical sensors, yielding significantly improved results. Innovations such as point-of-care, lab-on-a-chip, implantable devices, and wearable sensors are discussed in this review.
Collapse
Affiliation(s)
- Sudenur Ozbey
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye
| | - Gulsu Keles
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye
- The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Türkiye
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye.
| |
Collapse
|
3
|
Yang Y, Gao Q, Liang W, Zhang X, Qian L, Li Z, Chen X. Enhanced Stretchable 2D Metal-Graphene Membranes with Superior Mechanical Properties for Sieving Lithium from Brine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409950. [PMID: 39587005 DOI: 10.1002/smll.202409950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Designing mechanically robust, 2D membranes with elastic properties is crucial for advancing separation technologies, particularly in demanding environments such as saline lakes. Here, an innovative approach, the synthesis of silver nanosheets within graphene oxide (GO) membranes to form a 2D silver-graphene heterojunction, is introduced. This membrane exhibits exceptional mechanical strength (stress tolerance of 4.26 MPa and strain capacity of 123.03%), attributed to the reinforcing effect and ductility of silver nanosheets interacting synergistically with GO layers. Notably, the membrane demonstrates high selectivity for lithium ions in Salt Lake brine (Li⁺/Mg2⁺ ≈ 29.0, Na⁺/Mg2⁺ ≈ 183.3). Through dynamic stretching, the membrane enables precise modulation of ion permeability and selectivity, highlighting its versatility and practicality in complex separation processes. This study marks a significant advancement in membrane design, underscoring its potential in addressing challenges posed by diverse industrial applications, particularly in saline environments.
Collapse
Affiliation(s)
- Yunchao Yang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Qifeng Gao
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Wenbin Liang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Xin Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Lijuan Qian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, No. 3, Bayi Middle Road, Xining, 810007, China
| | - Ximeng Chen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| |
Collapse
|
4
|
Musa AA, Bello A, Adams SM, Onwualu AP, Anye VC, Bello KA, Obianyo II. Nano-Enhanced Polymer Composite Materials: A Review of Current Advancements and Challenges. Polymers (Basel) 2025; 17:893. [PMID: 40219283 PMCID: PMC11991163 DOI: 10.3390/polym17070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 04/14/2025] Open
Abstract
Nanomaterials have demonstrated significant potential in enhancing the performance and functionality of composite materials across various industrial applications. This review delves into the unique properties of nanomaterials, with a particular focus on carbon-based nanomaterials, and presents key findings on their effectiveness in improving composite performance. The study emphasizes specific nano-based composite materials, highlighting their substantial promise in advancing the field of nanocomposites. Additionally, it addresses the challenges associated with the production and utilization of nanocomposite materials and discusses potential solutions to overcome these obstacles. The review concludes with recommendations for further research and innovation in nanocomposites to fully harness the advantages of these advanced materials for broader future applications.
Collapse
Affiliation(s)
- Abdulrahman Adeiza Musa
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Abdulhakeem Bello
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Sani Mohammed Adams
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka 410105, Nigeria
| | - Azikiwe Peter Onwualu
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Vitalis Chioh Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Kamilu Adeyemi Bello
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
| | | |
Collapse
|
5
|
Moradi S, Nargesi Azam F, Abdollahi H, Rajabifar N, Rostami A, Guzman P, Zarrintaj P, Davachi SM. Graphene-Based Polymeric Microneedles for Biomedical Applications: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2025; 8:1835-1861. [PMID: 39927634 PMCID: PMC11921037 DOI: 10.1021/acsabm.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Transdermal drug delivery presents a promising noninvasive approach, bypassing first-pass metabolism and gastrointestinal degradation. However, the stratum corneum (SC) barrier limits drug absorption, necessitating the development of effective delivery systems. Microneedles, particularly polymer-based ones, offer a solution by penetrating the SC while avoiding critical nerves and capillaries. These microneedles are biodegradable, nontoxic, and easily manufacturable, making them a highly attractive platform for transdermal drug delivery. However, their clinical application remains limited due to suboptimal therapeutic efficacy and slow drug release rates. Recent advancements have introduced the incorporation of nanodrugs, such as nanoparticles and encapsulated drugs, into microneedles to enhance drug delivery efficiency. Among the materials explored, graphene and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), have garnered significant attention. Their exceptional mechanical strength, electrical conductivity, and antibacterial properties not only improve the mechanical performance of microneedles but also enhance drug release rates and biocompatibility. This review synthesizes the current state of microneedle technologies, focusing on the materials, fabrication techniques, and performance challenges. It particularly examines the potential of graphene-based microneedles, comparing them to traditional polymer-based microneedles in terms of drug release efficiency and stability. The review highlights key challenges, such as scalability, biocompatibility, and fabrication complexity, and suggests future research directions to address these issues. The incorporation of graphene quantum dots (GQDs) is identified as a promising avenue for improving drug release profiles, stability, and real-time tracking of drug diffusion. Finally, the review outlines emerging applications, including smart drug delivery systems, biosensing, and real-time monitoring, urging further exploration to unlock the full potential of graphene-enhanced microneedles in clinical settings.
Collapse
Affiliation(s)
- Somayeh Moradi
- Department
of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia 57561-51818, Iran
| | - Faezeh Nargesi Azam
- Polymer
Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-114, Iran
| | - Hossein Abdollahi
- Department
of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia 57561-51818, Iran
| | - Nariman Rajabifar
- Department
of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Amir Rostami
- Department
of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical
Engineering, Persian Gulf University, Bushehr 75169-13817, Iran
| | - Pablo Guzman
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| | - Payam Zarrintaj
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| | - Seyed Mohammad Davachi
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| |
Collapse
|
6
|
Bian Z, Gomez E, Gruebele M, Levine BG, Link S, Mehmood A, Nie S. Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure. Chem Sci 2025:d4sc05843g. [PMID: 39958645 PMCID: PMC11826916 DOI: 10.1039/d4sc05843g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
The physico-chemical properties of 'bottom-up' carbon dots synthesized from small molecules feature both generalities, such as sp2-networked carbon and core-surface energy transfer, and heterogeneities, due to the unpredictable location of heteroatoms and often non-crystalline structure. Here we focus our review on three aspects of these systems: (1) coupling characterization with bottom-up synthesis to identify and remove confounding byproducts such as small molecules or hydrogen-rich polymers; (2) single-particle characterization to obtain unambiguous information on carbon dots and highlight the distribution of properties around the ensemble average; (3) electronic structure of carbon dots and how it can help elucidate the origin of important properties such as optical absorption and fluorescence from a heterogeneous ensemble of carbon dots.
Collapse
Affiliation(s)
- Zhengyi Bian
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana IL 61801 USA
| | - Eric Gomez
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana IL 61801 USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana IL 61801 USA
- Department of Physics, University of Illinois Urbana-Champaign Urbana IL 61801 USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign Urbana IL 61801 USA
- Carle-Illinois College of Medicine University of Illinois Urbana-Champaign Urbana IL 61801 USA
| | - Benjamin G Levine
- Department of Chemistry, Institute for Advanced Computational Science, Stony Brook University Stony Brook NY 11794 USA
| | - Stephan Link
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana IL 61801 USA
| | - Arshad Mehmood
- Department of Chemistry, Institute for Advanced Computational Science, Stony Brook University Stony Brook NY 11794 USA
| | - Shuming Nie
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana IL 61801 USA
- Department of Bioengineering, University of Illinois Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
7
|
Soares Vanny A, da Silva Gonçalves A. Quantum chemical studies of carbon-based graphene-like nanostructures: from benzene to coronene. J Mol Model 2025; 31:70. [PMID: 39883270 DOI: 10.1007/s00894-025-06285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
CONTEXT This study presents quantum chemical analysis of 14 distinct carbon-based nanostructures (CBN), ranging from simple molecules, like benzene, to more complex structures, such as coronene, which serves as an exemplary graphene-like model. The investigation focuses on elucidating the relationships between molecular orbital (MO) energies, the energy band gaps, electron occupation numbers (eON), electronic conduction, and the compound topologies, seeking to find the one that approaches most of a graphene-like structure for in silico studies. Through detailed examination of molecular properties including chemical hardness and chemical potential, we demonstrate that the electronic exchange between orbitals is directly influenced by the structural topology of the carbon-based nanostructures, as the electron occupation numbers and the molecular orbital energies. Raman theoretical analysis was performed, ensuring the approximation to a graphene structure by its experimental fingerprint comparison. The correlations presented here offer an approach for anticipating electronic conductivity in graphene-like materials, as well as the confirmation of coronene as a graphene nanostructure for theoretical analyses. METHOD The models were designed at Ghemical software optimized at Tripos5.2 force field and properly protonated on the peripheral carbons. The models were then optimized by PM7 semiempirical method using MOPAC2016 to minimize the gradient energy before applying the DFT calculations. After that, the model's geometry was finally optimized at ab initio B3LYP hybrid functional and 6-31 G* basis, using ORCA5.0.4. The eON, the MO energies and the Raman spectrum were obtained with the same methods, making possible the spectrum extraction without the interference of H atoms, approaching the analyses to graphene-like topologies.
Collapse
Affiliation(s)
- Alberto Soares Vanny
- Department of Chemistry, Federal University of Espírito Santo, Av. Fernando Ferrari, Vitória, 29075-910, Espírito Santo, Brazil
| | - Arlan da Silva Gonçalves
- Department of Chemistry, Federal Institute of Education, Science and Technology of Espírito Santo, Av. Min. Salgado Filho, Vila Velha, 29106-010, Espírito Santo, Brazil.
| |
Collapse
|
8
|
Da Silva GR, Cerqueira Felix JP, Rêgo CRC, Dias AC, de O Bastos CM, Piotrowski MJ, Guedes-Sobrinho D. Workflow-driven catalytic modulation from single-atom catalysts to Au-alloy clusters on graphene. Sci Rep 2025; 15:1939. [PMID: 39809888 PMCID: PMC11733030 DOI: 10.1038/s41598-025-85891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr. We find that M atoms act as "anchors," enhancing binding to Gr and modulating catalytic efficiency. Notably, [Formula: see text]/Gr shows improved stability, with segregation tendencies mitigated upon adsorption on Gr. The d-band center ([Formula: see text]) model indicates catalytic potential, correlating an optimal [Formula: see text] range of [Formula: see text] eV for HER and OER catalysts. Incorporating Au into [Formula: see text] adjusts [Formula: see text] closer to the Fermi level, especially for Group-10 alloys, offering designs with improved stability and efficiency comparable to pure Au nanocatalysts. Our methodology leveraged SimStack, a workflow framework enabling modeling and analysis, enhancing reproducibility, and accelerating discovery. This work demonstrates SimStack's pivotal role in advancing the understanding of composition-dependent stability and catalytic properties of Au-alloy clusters, providing a systematic approach to optimize metal-support interactions in catalytic applications.
Collapse
Affiliation(s)
| | | | - Celso R C Rêgo
- Karlsruhe Institute of Technology, Institute of Nanotechnology Hermann-von-Helmholtz-latz, 76021, Karlsruhe, Germany.
| | - Alexandre C Dias
- Institute of Physics and International Center of Physics, University of Brasília, Brasília, 70919-970, Brazil
| | - Carlos Maciel de O Bastos
- Institute of Physics and International Center of Physics, University of Brasília, Brasília, 70919-970, Brazil
| | | | | |
Collapse
|
9
|
Gara R, Morales‐García Á, Arfaoui Y, Illas F. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) Studies of Porphyrin Adsorption on Graphene: Insights on the Effect of Substituents and Central Metal on Adsorption Energies. J Comput Chem 2025; 46:e27526. [PMID: 39636095 PMCID: PMC11619565 DOI: 10.1002/jcc.27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024]
Abstract
Combining metalloporphyrins (MPr) and graphene constitutes key composites in the development of photovoltaic devices. Here, we focus on the analysis of the properties of metalloporphyrins/graphene systems by means of the density functional theory (DFT) and its time-dependent (TDDFT) version, focusing on the ground and singlet excited states. Our benchmark analysis concludes that ωB97XD density functional combined with 6-31G(d)/Def2-TZVP basis set is a better-suited method for simulating accurate MPr adsorption on graphene. It is shown that a reduced atomic model where the external organic shell of the structure is removed provides the same resulting optoelectronic properties of the original model, constituting an important speed-up of the calculations when studying porphyrins-derived molecules. We observe that ZnPr provides the highest light harvesting efficiency (LHE) value. In addition, we find out that the adsorption energy increases monotonically with the size of the graphene flake and the highest stability involves the use of graphene comprising above 500 atoms. Besides, CdPr and HgPr keep their properties as photosensitizers when they are bonded to graphene and show promising values in terms of LHE emerging as suitable solar energy harvesters.
Collapse
Affiliation(s)
- Rayene Gara
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Ángel Morales‐García
- Departament de Química Física and Institut de Química Teorica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Francesc Illas
- Departament de Química Física and Institut de Química Teorica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
10
|
Dhankhar S, Garg N, Chauhan S, Saini M. A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery. CURRENT NANOSCIENCE 2025; 21:470-480. [DOI: 10.2174/0115734137299120240312044808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2025]
Abstract
The remarkable physicochemical properties of Graphene oxide (GO), a graphene
derivative, have made it a material with intriguing medical administration potential. Its 2D allotropic
nature is the source of its biological flexibility. The transportation of genes and small
molecules are just two of the many biomedical applications of graphene and its composite. Antibacterial
use in tooth and bone grafts, biofunctionalization of proteins, and treatment of cancer
are among other potential uses. The biocompatibility of the freshly synthesized nanomaterials
opens up a world of potential biological and medicinal uses. Furthermore, GO's versatility
makes it an ideal component for usage in other drug delivery systems, such as hydrogels, nanoparticles,
and micelles. This review aims to compile the existing body of knowledge regarding
the use of GO in drug delivery by delving into its many potential uses, obstacles, and future
developments.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Monika Saini
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133-207, Ambala, Haryana, India
| |
Collapse
|
11
|
Abd El-Raheem H, Helim R, Hassan RY, Youssef AF, Korri-Youssoufi H, Kraiya C. Electrochemical methods for the detection of heavy metal ions: From sensors to biosensors. Microchem J 2024; 207:112086. [DOI: 10.1016/j.microc.2024.112086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
13
|
Arapakis V, Stavrou M, Skentzos G, Maity D, Narayanan TN, Couris S. Excitonic Effects on the Ultrafast Nonlinear Optical Response of MoS 2 and Fluorinated Graphene/MoS 2 Heterostructure Films for Photonic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63951-63963. [PMID: 39513357 PMCID: PMC11583122 DOI: 10.1021/acsami.4c16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
In the present work, the ultrafast nonlinear optical (NLO) response of some molybdenum disulfide (MoS2), fluorinated graphene (FG), and FG/MoS2 heterostructure thin films was studied using the Z-scan and optical Kerr effect techniques employing femtosecond laser pulses at different excitation wavelengths (i.e., 400, 570, 610, 660, 800, and 1200 nm). The experiments have shown that the NLO response of the MoS2 and MoS2/FG films was significantly enhanced when the films were excited with 400, 610, and 660 nm laser pulses due to resonance effects with the close-lying excitons in these nanostructures. For a better evaluation of the resonant enhancement of the NLO response, measurements were also carried out at off-resonant wavelengths, i.e., at 570, 800, and 1200 nm. The presence of excitons in the MoS2 and MoS2/FG films resulted in strong saturable absorption and self-defocusing, with exceptionally large values of third-order susceptibilities χ(3) ranging from 10-12 to 10-13 esu. In addition, the NLO response of the MoS2/FG heterostructure was found to be stronger than that of the individual MoS2 and FG films, most probably attributed to interlayer carrier transfer. The determined NLO parameters of the studied nanostructures were found to be comparable to, and in some cases exceeded, those of other reported 2D materials known to exhibit a strong NLO response as well. These findings not only advance the fundamental understanding of the contributions of excitons on the NLO response/properties of transition metal dichalcogenide-based ultrathin films but also highlight the importance of excitons for tailoring their NLO response in view of various applications in advanced optoelectronics and photonic devices.
Collapse
Affiliation(s)
- Vasileios Arapakis
- Department of Physics, University of Patras, Patras 26504, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Patras 26504, Patras, Greece
| | - Michalis Stavrou
- Department of Physics, University of Patras, Patras 26504, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Patras 26504, Patras, Greece
| | - Georgios Skentzos
- Department of Physics, University of Patras, Patras 26504, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Patras 26504, Patras, Greece
| | - Dipak Maity
- Materials & Interface Engineering Laboratory, Tata Institute of Fundamental Research Hyderabad, Serilingampally Mandal, Hyderabad 500046, India
| | - Tharangattu N Narayanan
- Materials & Interface Engineering Laboratory, Tata Institute of Fundamental Research Hyderabad, Serilingampally Mandal, Hyderabad 500046, India
| | - Stelios Couris
- Department of Physics, University of Patras, Patras 26504, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Patras 26504, Patras, Greece
| |
Collapse
|
14
|
Luo Y, Qian Z, Cui J, Bi R, Zhang L. Highly Conductive Two-Dimensional FeTHBQ/Graphene Nanocomposite as the Cathode Material for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59056-59065. [PMID: 39432832 DOI: 10.1021/acsami.4c12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Constructing high-performance coordination polymer (CP) cathodes for lithium-ion batteries based on the redox reactions of both high-potential transition metal ions and high-capacity organic ligands has attracted extensive attention. However, CP cathodes suffer from structural degradation, low electrical conductivity, and sluggish diffusion kinetics, resulting in poor cycling stability and inferior rate capability. Herein, the ultrafine FeTHBQ (THBQ = tetrahydroxy-1,4-benzoquinone) CP nanoparticles in situ grew on both sides of graphene nanosheets to form the uniform two-dimensional (2D) FeTHBQ/Graphene nanocomposite with a sandwich structure via a one-pot solvothermal method. The highly conductive graphene skeleton promotes the electronic conduction and structural stability for the 2D FeTHBQ/Graphene nanocomposite. Besides, compared with bulk FeTHBQ, the primary FeTHBQ nanoparticles in the FeTHBQ/Graphene nanocomposite have smaller particle sizes with larger specific surface areas. This not only shortens the Li+ diffusion distance in the FeTHBQ crystal but also benefits Li+ transfer between the electrolyte and the electrode. In the FeTHBQ/Graphene nanocomposite, the active material of FeTHBQ manifested multiple redox centers of transition metal ions (Fe3+/Fe2+) and carbonyls (C═O/C-O-) in THBQ ligands. Owing to the enhancements of structural stability, electronic conduction, and Li+ diffusion kinetics, the 2D FeTHBQ/Graphene nanocomposite presented a high lithium-ion storage capacity of 217.2 mA h g-1 at 50 mA g-1, a fast rate capability of 79.1 mA h g-1 at 5000 mA g-1, and a stable cycling performance of 87.2 mA h g-1 at 500 mA g-1 after 100 cycles. This work sheds light on the great opportunity for optimizing the electrochemical performances of CP-based functional electrode materials by combining with conductive substrates.
Collapse
Affiliation(s)
- Yuwen Luo
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhiping Qian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jie Cui
- Analytical and Testing Centre, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ran Bi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
15
|
Nemati S, Hosseinpour Y, Alavi A, Nojavan S. Maltodextrin-modified graphene oxide composite membrane applied to the enantioseparation of amino acids. J Chromatogr A 2024; 1732:465217. [PMID: 39106666 DOI: 10.1016/j.chroma.2024.465217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
The separation of enantiomers using chiral membranes has garnered much research interest. In this study, the enantioseparation of amino acids using chiral membranes, namely graphene oxide-ethylenediamine-maltodextrin (GO-EDA-MD) and GO-EDA-hydroxypropyl-MD (GO-EDA-HP-MD), was evaluated. HP-MD and MD were investigated as chiral selectors due to their inherent chirality. Various characterization techniques, including atomic force microscopy, Fourier transform infrared spectrometry, field emission scanning electron microscopy, water contact angle analysis, tensile properties, and thermal gravimetric analysis were employed to analyze the membrane structures. The evaluation of enantioseparation performance was conducted by employing tryptophan, phenylalanine, and tyrosine enantiomers. Optimal conditions for enantiomer separation were achived using a GO-EDA-HP-MD chiral composite (1.75 wt%), a feed concentration of 10 mg/L for each enantiomer, a separation time of 15 min, and a membrane effective surface area of 1.0 cm2. Also, the bovine serum albumin rejection was 90.0 %, and the water flux reached 37.1 L m-2 h-1. The highest enantiomeric excess (ee.%) values were 46.33 %, 76.97 %, and 73.04 % for tryptophan, phenylalanine, and tyrosine, respectively. The impact of voltage on ee.% and substance flux was also explored. This membrane was able to separate enantiomers successfully.
Collapse
Affiliation(s)
- Sara Nemati
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Yasaman Hosseinpour
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Ali Alavi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
16
|
Arrieta A, Nuñez de la Rosa YE, Pestana S. Cashew Nut Shell Waste Derived Graphene Oxide. Molecules 2024; 29:4168. [PMID: 39275016 PMCID: PMC11397352 DOI: 10.3390/molecules29174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
The particular properties of graphene oxide (GO) make it a material with great technological potential, so it is of great interest to find renewable and eco-friendly sources to satisfy its future demand sustainably. Recently, agricultural waste has been identified as a potential raw material source for producing carbonaceous materials. This study explores the potential of cashew nut shell (CNS), a typically discarded by-product, as a renewable source for graphene oxide synthesis. Initially, deoiled cashew nut shells (DCNS) were submitted to pyrolysis to produce a carbonaceous material (Py-DCNS), with process optimization conducted through response surface methodology. Optimal conditions were identified as a pyrolysis temperature of 950 °C and a time of 1.8 h, yielding 29.09% Py-DCNS with an estimated purity of 82.55%, which increased to 91.9% post-washing. Using a modified Hummers method, the Py-DCNS was subsequently transformed into graphene oxide (GO-DCNS). Structural and functional analyses were carried out using FTIR spectroscopy, revealing the successful generation of GO-DCNS with characteristic oxygen-containing functional groups. Raman spectroscopy confirmed the formation of defects and layer separations in GO-DCNS compared to Py-DCNS, indicative of effective oxidation. The thermogravimetric analysis demonstrated distinct thermal decomposition stages for GO-DCNS, aligning with the expected behavior for graphene oxide. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) further corroborated the morphological and compositional transformation from DCNS to GO-DCNS, showcasing reduced particle size, increased porosity, and significant oxygen functional groups. The results underscore the viability of cashew nut shells as a sustainable precursor for graphene oxide production, offering an environmentally friendly alternative to conventional methods. This innovative approach addresses the waste management issue associated with cashew nut shells and contributes to developing high-value carbon materials with broad technological applications.
Collapse
Affiliation(s)
- Alvaro Arrieta
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| | - Yamid E Nuñez de la Rosa
- Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 111221, Colombia
| | - Samuel Pestana
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| |
Collapse
|
17
|
Hammad EN, Eltaweil AS, Abouelenein SA, El-Subruiti G. Enhanced Cr(VI) removal via CPBr-modified MIL-88A@amine-functionalized GO: synthesis, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47851-47865. [PMID: 39009817 DOI: 10.1007/s11356-024-33859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024]
Abstract
Water contamination by heavy metals, especially chromium (VI), poses a critical environmental issue due to its carcinogenic nature and persistence in the environment. Addressing this, the current study develops an efficient adsorbent, CPBr-MIL-88A@AmGO, which utilizes the synergistic capabilities of Cetylpyridinium bromide-modified MIL-88A and amine-functionalized graphene oxide to enhance Cr(VI) removal from aqueous solutions. The obtained results indicate that CPBr-MIL-88A@AmGO achieves its highest removal efficacy at pH 2, where the interaction of CPBr and AmGO's positively charged centers significantly contributes to the adsorption processes. According to the Langmuir isotherm model, the composite's adsorption capacity reached a maximum of 306.75 mg/g. The adsorption kinetics adhered to a pseudo-second-order model along with the endothermic nature of the process. Although the presence of SO42- ions significantly reduces adsorption capacity, other interfering ions including Na+, K+, Ca2+, Cl-, and NO3- only slightly affect it. Remarkably, the composite maintains high removal efficiency, over 82%, even after 7 recycling tests, underscoring its potential for practical applications in water treatment systems. The proposed mechanism involves the contribution of electrostatic attractions, ion exchange, complexation, and the reduction of Cr(VI) to Cr(III) in the removal process. This study not only offers a potent solution for Cr(VI) remediation but also contributes to sustainable water resource management.
Collapse
Affiliation(s)
- Eman N Hammad
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Abdelazeem S Eltaweil
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Sultanate of Oman, Ibra, Oman.
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Saeyda A Abouelenein
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Gehan El-Subruiti
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Tavakkoli Z, Valizadeh Maleki PM, Azamat J, Zaminpayma E, Erfan-Niya H. Atomistic understanding of Ti 3C 2 MXene membrane performance for separation of nitrate ions from aqueous solutions. J Mol Graph Model 2024; 130:108781. [PMID: 38678644 DOI: 10.1016/j.jmgm.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/14/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Water desalination, which is a reliable method for providing drinking water and a suitable solution, as well as the membrane filtration method in wastewater treatment, has increased significantly in recent years. In this research, the separation of nitrite and nitrate ions from aqueous solutions was done using the MXene membrane of the Ti3C2 type using molecular dynamics simulation. In this study, various parameters, such as pore size MXene structure, characteristics of cavities, applied pressure, and flux were investigated. To investigate the removal of toxic pollutants from water, water flux, potential mean force, distribution of water molecules, and density were investigated. The results showed that the amount of penetration through the membrane increased with the increase in pressure. It was observed that by applying pressure to the system, the number of water molecules accumulated in front of the membrane decreases because they quickly pass through the membrane, which indicates the positive effect of increasing pressure on the separation rate of molecules. The permeability of this membrane was several times higher than the existing membranes in the industry. So that Mexene membranes, which consist of at least two layers, can repel ions with 100 % success.
Collapse
Affiliation(s)
- Zahra Tavakkoli
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | | | - Jafar Azamat
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
| | - Esmaeil Zaminpayma
- Department of Physics, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
19
|
Dilenko H, Bartoň Tománková K, Válková L, Hošíková B, Kolaříková M, Malina L, Bajgar R, Kolářová H. Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review. Int J Nanomedicine 2024; 19:5637-5680. [PMID: 38882538 PMCID: PMC11179671 DOI: 10.2147/ijn.s461300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.
Collapse
Affiliation(s)
- Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Bartoň Tománková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hošíková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Markéta Kolaříková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
20
|
Mishra Y, Chattaraj A, Aljabali AAA, El-Tanani M, Tambuwala MM, Mishra V. Graphene oxide–lithium-ion batteries: inauguration of an era in energy storage technology. CLEAN ENERGY 2024; 8:194-205. [DOI: 10.1093/ce/zkad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Abstract
A significant driving force behind the brisk research on rechargeable batteries, particularly lithium-ion batteries (LiBs) in high-performance applications, is the development of portable devices and electric vehicles. Carbon-based materials, which have finite specific capacity, make up the anodes of LiBs. Many attempts are being made to produce novel nanostructured composite anode materials for LiBs that display cycle stability that is superior to that of graphite using graphene oxide. Therefore, using significant amounts of waste graphene oxide from used LiBs represents a fantastic opportunity to engage in waste management and circular economy. This review outlines recent studies, developments and the current advancement of graphene oxide-based LiBs, including preparation of graphene oxide and utilization in LiBs, particularly from the perspective of energy storage technology, which has drawn more and more attention to creating high-performance electrode systems.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| | - Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University , Irbid , Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University , UAE
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln , Brayford Pool Campus, Lincoln LN6 7TS, England , UK
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| |
Collapse
|
21
|
Yakout AA, Alshutairi AM, Albishri HM, Alshitari WH, Basha MT. Cu-nanoparticles@ graphene nanocomposite: A robust and efficient nanocomposite for micro-solid phase extraction of trace aflatoxins in different foodstuffs. Food Chem 2024; 440:138239. [PMID: 38154278 DOI: 10.1016/j.foodchem.2023.138239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Cu-nanoparticles-immobilized graphene (Cu@G) nanocomposite was fabricated in this study by reducing Cu(II) ions in the presence of graphene oxide using a simple chemical reduction step. Cu@G nanocomposite was applied as a sorbent for the SPE of four aflatoxins (AFs). A reusable syringe was filled with the fabricated nanocomposite and used as a sorbent for the micro-solid phase extraction of four AFs (AFB1, AFB2, AFG1, AFG2). The impact of different analytical factors was fully investigated and optimized. Excellent recoveries, ranging from 92.0 to 108.5 %, were detected when evaluating target AFs in samples of rice, maize, and pistachio. The LOD, LOQ, and linear ranges were attained under optimal circumstances in the ranges of 0.0062 µg kg-1, 0.0192 µg kg-1, and 0.0-20 µg kg-1, respectively. The discovered approach provided the dual benefits of a high enrichment capability of Cu-nanoparticles via AFs complexation and a huge porosity of graphene sheets.
Collapse
Affiliation(s)
- Amr A Yakout
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Adel M Alshutairi
- Saudi Food and Drug Authority, Saudi Arabia; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan M Albishri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wael H Alshitari
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia
| | - Maram T Basha
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Mughal ZUN, Aylaz G, Shaikh H, Memon S, Andac M. Development of a molecularly imprinted polymer on silanized graphene oxide for the detection of 17-estradiol in wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11006. [PMID: 38444299 DOI: 10.1002/wer.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
This research article demonstrates the synthesis, characterization, and electrochemical evaluation of a molecularly imprinted polymer (MIP) on the surface of silanized graphene oxide (silanized GO), which is nanostructured and used to quantify 17-estradiol (E2) in wastewater. As characterization methods, X-ray diffraction (XRD), Raman spectroscopy, dynamic scattering light (DSL), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) were utilized to examine the synthesized GO, silanized GO, MIP-GO composite, and non-imprinted polymer (NIP)-GO (NIP-GO) composite. FTIR results confirmed the successful synthesis of GO composites. Raman study confirmed the synthesis of monolayer silanized GO, MIP-GO composite, and NIP-GO composite. Surface morphology revealed that after polymerization, the surface of silanized GO sheet-like morphology is covered with nanoparticles. Adsorption kinetics studies revealed that adsorption follows the pseudo-second-order kinetics. Further, we studied the performance of a MIP-GO-based sensor by optimizing the effects of pH, scan rate, and incubation period. The linear calibration was achieved between the oxidation peak current and E2 concentration from 0.1 to 0.81 ppm, with a detection limit of 0.037 ppm. The selectivity of the MIP-GO composite was also checked by using other estrogens, and it was found that E2 is 3.3, 0.5, and 1.4 times more selective than equilin, estriol, and estrone, respectively. The composite was successfully applied to the wastewater samples for the detection of E2, and a good percentage of recoveries were achieved. It suggests that the reported composite can be applied to real samples. PRACTITIONER POINTS: An innovative electrochemical sensor was developed for selective detection of 17-estradiol through molecularly imprinted polymer fabricated on the surface of silanized GO (MIP-GO composite). The developed method was comprehensively validated and found to be linear in the range of 0.1 to 0.8 ppm of 17-estradiol, with 0.037 ppm of limit of detection and 0.1 ppm of limit of quantification, respectively. The developed MIP-GO-composite-based electrochemical sensor was found 3.3, 0.5, and 1.4 times more selective for 17-estradiol than equiline, estriol, and estrone, respectively. The applicability of a developed sensor was also checked on wastewater samples, and a good percent recovery was obtained.
Collapse
Affiliation(s)
- Zaib Un Nisa Mughal
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Gulgun Aylaz
- Nanotechnology Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Shahabuddin Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Muge Andac
- Faculty of Engineering, Environmental Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
24
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
25
|
Yang P, Hou X, Gao X, Peng Y, Li Q, Niu Q, Liu Q. Recent Trends in Self-Powered Photoelectrochemical Sensors: From the Perspective of Signal Output. ACS Sens 2024; 9:577-588. [PMID: 38254273 DOI: 10.1021/acssensors.3c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Revolutionary developments in analytical chemistry have led to the rapid development of self-powered photoelectrochemical (PEC) sensors. Different from conventional PEC sensors, self-powered PEC sensors do not require an external power source or complex devices for the sensitive detection of targets. As a result, these sensors have enormous application potential for the development of novel portable sensors. An increasing body of work is making excellent progress toward the implementation of self-powered PEC sensors for detection, but there have been no reviews to date. The present review first introduces the state of the art in the development of self-powered PEC sensors. Then, different types of self-powered PEC sensors are summarized and discussed in detail, including their current, power, and potential. Additionally, single- and dual-photoelectrode systems are classified and systematically compared. Finally, the current developments and major challenges that need to be addressed are also summarized. This review provides valuable insights into the current state of self-powered PEC sensors to promote further progress in this field.
Collapse
Affiliation(s)
- Peilin Yang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiuli Hou
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Gao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuxin Peng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qingfeng Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
26
|
Hu J, Dong M. Recent advances in two-dimensional nanomaterials for sustainable wearable electronic devices. J Nanobiotechnology 2024; 22:63. [PMID: 38360734 PMCID: PMC10870598 DOI: 10.1186/s12951-023-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 02/17/2024] Open
Abstract
The widespread adoption of smart terminals has significantly boosted the market potential for wearable electronic devices. Two-dimensional (2D) nanomaterials show great promise for flexible, wearable electronics of next-generation electronic materials and have potential in energy, optoelectronics, and electronics. First, this review focuses on the importance of functionalization/defects in 2D nanomaterials, a discussion of different kinds of 2D materials for wearable devices, and the overall structure-property relationship of 2D materials. Then, in this comprehensive review, we delve into the burgeoning realm of emerging applications for 2D nanomaterial-based flexible wearable electronics, spanning diverse domains such as energy, medical health, and displays. A meticulous exploration is presented, elucidating the intricate processes involved in tailoring material properties for specific applications. Each research direction is dissected, offering insightful perspectives and dialectical evaluations that illuminate future trajectories and inspire fruitful investigations in this rapidly evolving field.
Collapse
Affiliation(s)
- Jing Hu
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
27
|
Xin Z, Zhang Y, Hou D, Sun H, Ding Z, Wang P, Wang M, Wang X, Xu Q, Guan J, Yang J, Liu Y, Zhang L. Atomic Insights into the Relationship between Molecular Structure and Dispersion Performance of Phenyl Polymer on Graphene Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:413-425. [PMID: 38133590 DOI: 10.1021/acs.langmuir.3c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The adsorption of organic polymers onto the surface of graphene oxide is known to improve its dispersibility in cement-based materials. However, the mechanism of this improvement at the atomic level is not yet fully understood. In this study, we employ a combination of DFT static calculation and umbrella sampling to explore the reactivity of polymers and investigate the effects of varying amounts of phenyl groups on their adsorption capacity on the surface of graphene oxide. Quantitative analysis is utilized to study the structural reconstruction and charge transfer caused by polymers from multiple perspectives. The interfacial reaction between the polymer and graphene oxide surface is further clarified, indicating that the adsorption process is promoted by hydrogen bond interactions and π-π stacking effects. This study sheds light on the adsorption mechanism of polymer-graphene oxide systems and has important implications for the design of more effective graphene oxide dispersants at the atomic level.
Collapse
Affiliation(s)
- Zhaorui Xin
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yue Zhang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Dongshuai Hou
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Huiwen Sun
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Zhiheng Ding
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Pan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Xinpeng Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Qingqing Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiayi Yang
- College of Materials Design and Engineering, Beijing Institute of Fashion and Technology, Beijing 100029, China
| | - Yingchun Liu
- College of Materials Design and Engineering, Beijing Institute of Fashion and Technology, Beijing 100029, China
| | - Liran Zhang
- College of Materials Design and Engineering, Beijing Institute of Fashion and Technology, Beijing 100029, China
- Department of Chemical Engineering, China University of Mining & Technology, Beijing 100083, China
| |
Collapse
|
28
|
Silva FALS, Timochenco L, Costa-Almeida R, Fernandes JR, Santos SG, Magalhães FD, Pinto AM. UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy. Colloids Surf B Biointerfaces 2024; 233:113594. [PMID: 37979484 DOI: 10.1016/j.colsurfb.2023.113594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/20/2023]
Abstract
The main challenges associated to the application of graphene-based materials (GBM) in phototherapy are obtaining particles with lateral nanoscale dimensions and water stability that present high near-infrared (NIR) absorption. Nanosized graphene oxide (GOn) is stable in aqueous dispersion, due to the oxygen functionalities on its surface, but possesses low photothermal efficiency in NIR region. GOn total reduction originates reduced nanographene oxide (rGOn) that presents high NIR absorption, but poor water stability. In this work, we produced a partially reduced nanographene oxide (p-rGOn) by GOn photoreduction using ultraviolet radiation (UV-C), yielding nanometric particles that preserve the original water stability, but acquire high light-to-heat conversion efficiency. GOn and p-rGOn presented mean particle sizes of 170 ± 81 nm and 188 ± 99 nm, respectively. 8 h of UV-C irradiation allowed to obtain a p-rGOn stable for up 6 months in water, with a zeta potential of -32.3 ± 1.3 mV. p-rGOn water dispersions have shown to absorb NIR radiation, reaching 52.7 °C (250 µg mL-1) after 30 min NIR irradiation. Chemical characterization of p-rGOn showed a decrease in the number of characteristic oxygen functional groups, confirming GOn partial reduction. Furthermore, p-rGOn (250 µg mL-1) didn't cause any cytotoxicity (ISO10993-5:2009(E)) towards human skin fibroblasts (HFF-1) and human skin keratinocytes (HaCat), after 24 and 48 h incubation. An innovative custom-built NIR LED-system has been developed and validated for p-rGOn photothermal effect evaluation. Finally, exposure to p-rGOn+NIR-LEDs has caused no cytotoxicity towards HFF-1 or HaCat cells, revealing its potential to be used as a safe therapy.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Licínia Timochenco
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Raquel Costa-Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - José Ramiro Fernandes
- CQVR - Centro de Química Vila Real, Universidade de Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal.
| |
Collapse
|
29
|
Quan C, Quan L, Wen Q, Yang M, Li T. Alanine aminotransferase electrochemical sensor based on graphene@MXene composite nanomaterials. Mikrochim Acta 2023; 191:45. [PMID: 38114837 DOI: 10.1007/s00604-023-06131-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Graphene@MXene composite nanomaterials were utilized to construct an electrochemical sensor for alanine aminotransferase (ALT) detection. The combination of graphene nanosheets with MXene avoids the self-stacking of MXene and graphene, and broadens the charge transfer channel. In addition, the composite nanomaterial provides increased loading sites for pyruvate oxidase. The principle of ALT detection is a two-step enzymatic reaction. L-Alanine was initially transferred to pyruvate catalyzed by ALT. The formed pyruvate was then oxidized by pyruvate oxidase, generating H2O2. Through the detection of the generated H2O2, ALT activity was measured. The linear range of the sensor to ALT was from 5 to 400 U·L-1 with a detection limit of 0.16 U·L-1 (S/N = 3). For real sample analysis, the spiked recovery test results of ALT in serum samples were between 96.89 and 103.93% with RSD < 5%, confirming the reliability of the sensor testing results and potential clinical application of the sensor.
Collapse
Affiliation(s)
- Changyun Quan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Cofoe Medical Technology Co., Ltd, No.816 Zhenghua Road, Changsha, 410000, China
| | | | - Qinying Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Ting Li
- Department of Liver Transplantation, The Second Xiang-Ya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
30
|
Uddin MM, Kabir MH, Ali MA, Hossain MM, Khandaker MU, Mandal S, Arifutzzaman A, Jana D. Graphene-like emerging 2D materials: recent progress, challenges and future outlook. RSC Adv 2023; 13:33336-33375. [PMID: 37964903 PMCID: PMC10641765 DOI: 10.1039/d3ra04456d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Owing to the unique physical and chemical properties of 2D materials and the great success of graphene in various applications, the scientific community has been influenced to explore a new class of graphene-like 2D materials for next-generation technological applications. Consequently, many alternative layered and non-layered 2D materials, including h-BN, TMDs, and MXenes, have been synthesized recently for applications related to the 4th industrial revolution. In this review, recent progress in state-of-the-art research on 2D materials, including their synthesis routes, characterization and application-oriented properties, has been highlighted. The evolving applications of 2D materials in the areas of electronics, optoelectronics, spintronic devices, sensors, high-performance and transparent electrodes, energy conversion and storage, electromagnetic interference shielding, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nanocomposites are discussed. In particular, the state-of-the-art applications, challenges, and outlook of every class of 2D material are also presented as concluding remarks to guide this fast-progressing class of 2D materials beyond graphene for scientific research into next-generation materials.
Collapse
Affiliation(s)
- Md Mohi Uddin
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Mohammad Humaun Kabir
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Md Ashraf Ali
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Md Mukter Hossain
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Mayeen Uddin Khandaker
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka 1216 Bangladesh
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
| | - Sumit Mandal
- Vidyasagar College 39, Sankar Ghosh Lane Kolkata 700006 West Bengal India
| | - A Arifutzzaman
- Tyndall National Institute, University College Cork Lee Maltings Cork T12 R5CP Ireland
| | - Debnarayan Jana
- Department of Physics, University of Calcutta 92 A P C Road Kolkata 700009 West Bengal India
| |
Collapse
|
31
|
Dadvar F, Elhamifar D. Magnetic silica/graphene oxide nanocomposite supported ionic liquid-manganese complex as a powerful catalyst for the synthesis of tetrahydrobenzopyrans. Sci Rep 2023; 13:19354. [PMID: 37935907 PMCID: PMC10630333 DOI: 10.1038/s41598-023-46629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
A novel magnetic silica/graphene oxide nanocomposite supported ionic liquid/manganese complex (Fe3O4@SiO2-NH2/GO/IL-Mn) is prepared, characterized and its catalytic application is investigated. The Fe3O4@SiO2-NH2/GO/IL-Mn catalyst was synthesized via chemical immobilization of graphene oxide on Fe3O4@SiO2 nanoparticles followed by modification with ionic liquid/Mn complex. This nanocomposite was characterized by using SEM, TGA, FT-IR, PXRD, EDX, TEM, nitrogen adsorption-desorption, and VSM analyses. The catalytic application of Fe3O4@SiO2-NH2/GO/IL-Mn was studied in the synthesis of tetrahydrobenzo[b]pyrans (THBPs) in water solvent at RT. This nanocatalyst was successfully recovered and reused at least eight times without a significant decrease in its activity.
Collapse
Affiliation(s)
- Farkhondeh Dadvar
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| |
Collapse
|
32
|
Liu T, Zhang X, Liang J, Liang W, Qi W, Tian L, Qian L, Li Z, Chen X. Ultraflat Graphene Oxide Membranes with Newton-Ring Prepared by Vortex Shear Field for Ion Sieving. NANO LETTERS 2023; 23:9641-9650. [PMID: 37615333 DOI: 10.1021/acs.nanolett.3c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The wrinkles on graphene oxide (GO) membranes have unique properties; however, they interfere with the mass transfer of interlayer channels, posing a major challenge in the development of wrinkle-free GO membranes with smooth channels. In this study, the wrinkles on GO were flattened using vortex shear to tightly stack them into ultraflat GO membranes with Newton's ring interference pattern, causing hydrolysis of the lipid bonds in the wrinkles and an increase in the number of oxygen-containing groups. With increasing flatness, the interlayer spacing of the GO membranes decreased, improving the stability of the interlayer structure, the flow resistance of water through the ultraflat interlayer decreased, and the water flux increased 3-fold. Importantly, the selectivity for K+/Mg2+ reached approximately 379.17 in a real salt lake. A novel concept is proposed for the development of new membrane preparation methods. Our findings provide insights into the use of vortex shearing to flatten GO.
Collapse
Affiliation(s)
- Tianqi Liu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Xin Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Jing Liang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Wenbin Liang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Wei Qi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Lijuan Qian
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Ximeng Chen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Kumar Shukla M, Parihar A, Karthikeyan C, Kumar D, Khan R. Multifunctional GQDs for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. NANOSCALE 2023; 15:14698-14716. [PMID: 37655476 DOI: 10.1039/d3nr03161f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. The current studies emphasized the ability of GQDs to selectively target pancreatic cancer cells by overexpressing binding receptors on the cell surface. Additionally, this review discussed the uses of GQDs as drug delivery vehicles for the controlled and targeted release of therapeutics for pancreatic cancer cells. Finally, the potential of GQDs as imaging agents for pancreatic cancer detection and monitoring has been discussed. Overall, multifunctional GQDs showed great promise as a versatile platform for the diagnosis and treatment of pancreatic cancer. Further investigation of multifunctional GQDs in terms of their potential and optimization in the context of pancreatic cancer therapy is needed.
Collapse
Affiliation(s)
- Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
| | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Fu L, Zheng Y, Li X, Liu X, Lin CT, Karimi-Maleh H. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules 2023; 28:6719. [PMID: 37764496 PMCID: PMC10536827 DOI: 10.3390/molecules28186719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene is an emerging nanomaterial increasingly being used in electrochemical biosensing applications owing to its high surface area, excellent conductivity, ease of functionalization, and superior electrocatalytic properties compared to other carbon-based electrodes and nanomaterials, enabling faster electron transfer kinetics and higher sensitivity. Graphene electrochemical biosensors may have the potential to enable the rapid, sensitive, and low-cost detection of cancer biomarkers. This paper reviews early-stage research and proof-of-concept studies on the development of graphene electrochemical biosensors for potential future cancer diagnostic applications. Various graphene synthesis methods are outlined along with common functionalization approaches using polymers, biomolecules, nanomaterials, and synthetic chemistry to facilitate the immobilization of recognition elements and improve performance. Major sensor configurations including graphene field-effect transistors, graphene modified electrodes and nanocomposites, and 3D graphene networks are highlighted along with their principles of operation, advantages, and biosensing capabilities. Strategies for the immobilization of biorecognition elements like antibodies, aptamers, peptides, and DNA/RNA probes onto graphene platforms to impart target specificity are summarized. The use of nanomaterial labels, hybrid nanocomposites with graphene, and chemical modification for signal enhancement are also discussed. Examples are provided to illustrate applications for the sensitive electrochemical detection of a broad range of cancer biomarkers including proteins, circulating tumor cells, DNA mutations, non-coding RNAs like miRNA, metabolites, and glycoproteins. Current challenges and future opportunities are elucidated to guide ongoing efforts towards transitioning graphene biosensors from promising research lab tools into mainstream clinical practice. Continued research addressing issues with reproducibility, stability, selectivity, integration, clinical validation, and regulatory approval could enable wider adoption. Overall, graphene electrochemical biosensors present powerful and versatile platforms for cancer diagnosis at the point of care.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Yuhong Zheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xingxing Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Xiaozhu Liu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100054, China;
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China;
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| |
Collapse
|
35
|
Odutola J, Szalad H, Albero J, García H, Tkachenko NV. Long-Lived Photo-Response of Multi-Layer N-Doped Graphene-Based Films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:17896-17905. [PMID: 37736291 PMCID: PMC10510389 DOI: 10.1021/acs.jpcc.3c04670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Indexed: 09/23/2023]
Abstract
New insights into the mechanism of the improved photo(electro)catalytic activity of graphene by heteroatom doping were explored by transient transmittance and reflectance spectroscopy of multi-layer N-doped graphene-based samples on a quartz substrate prepared by chitosan pyrolysis in the temperature range 900-1200 °C compared to an undoped graphene control. All samples had an expected photo-response: fast relaxation (within 1 ps) due to decreased plasmon damping and increased conductivity. However, the N-doped graphenes had an additional transient absorption signal of roughly 10 times lower intensity, with 10-50 ps formation time and the lifetime extending into the nanosecond domain. These photo-induced responses were recalculated as (complex) dielectric function changes and decomposed into Drude-Lorentz parameters to derive the origin of the opto(electronic) responses. Consequently, the long-lived responses were revealed to have different dielectric function spectra from those of the short-lived responses, which was ultimately attributed to electron trapping at doping centers. These trapped electrons are presumed to be responsible for the improved catalytic activity of multi-layer N-doped graphene-based films compared to that of multi-layer undoped graphene-based films.
Collapse
Affiliation(s)
- Jokotadeola
A. Odutola
- Photonics
Compound and Nanomaterials (Chemistry and Advanced Materials Group),
Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI-33720 Tampere, Finland
| | - Horatiu Szalad
- Instituto
Universitario de Tecnología Química, Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Josep Albero
- Instituto
Universitario de Tecnología Química, Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Hermenegildo García
- Instituto
Universitario de Tecnología Química, Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Nikolai V. Tkachenko
- Photonics
Compound and Nanomaterials (Chemistry and Advanced Materials Group),
Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI-33720 Tampere, Finland
| |
Collapse
|
36
|
Saqib M, Solomonenko AN, Barek J, Dorozhko EV, Korotkova EI, Aljasar SA. Graphene derivatives-based electrodes for the electrochemical determination of carbamate pesticides in food products: A review. Anal Chim Acta 2023; 1272:341449. [PMID: 37355324 DOI: 10.1016/j.aca.2023.341449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Graphene (GR) composites have great potential for the determination of carbamates pesticides (CPs) by electrochemical methods. Since the beginning of the 20th century, GR has shown remarkable promise as electrode material for various sensors. The contamination of food products with harmful CPs is a major problem as they do not always damage human health immediately, but can be harmful after prolonged exposure. A range of advantages can be gained from their electrochemical determination, such as high sensitivity, reasonably selectivity, rapid detection, low limit of detection, and easy electrode fabrication. Furthermore, these electrochemical techniques are robust, reproducible, user-friendly, and conform to both "green" and "white" analytical chemistry. This review is focused on results published in the last ten years in the field of electrochemical determination of CPs in food products using GR and its derivatives.
Collapse
Affiliation(s)
- Muhammad Saqib
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia; Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic
| | - Anna N Solomonenko
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Jiří Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic.
| | - Elena V Dorozhko
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Elena I Korotkova
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Shojaa A Aljasar
- Physics and Engineering Department, National Research Tomsk State University, Lenin Ave. 36, 634045, Tomsk, Russia
| |
Collapse
|
37
|
Mombeshora ET, Muchuweni E. Dynamics of reduced graphene oxide: synthesis and structural models. RSC Adv 2023; 13:17633-17655. [PMID: 37312999 PMCID: PMC10258683 DOI: 10.1039/d3ra02098c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Technological advancements are leading to an upsurge in demand for functional materials that satisfy several of humankind's needs. In addition to this, the current global drive is to develop materials with high efficacy in intended applications whilst practising green chemistry principles to ensure sustainability. Carbon-based materials, such as reduced graphene oxide (RGO), in particular, can possibly meet this criterion because they can be derived from waste biomass (a renewable material), possibly synthesised at low temperatures without the use of hazardous chemicals, and are biodegradable (owing to their organic nature), among other characteristics. Additionally, RGO as a carbon-based material is gaining momentum in several applications due to its lightweight, nontoxicity, excellent flexibility, tuneable band gap (from reduction), higher electrical conductivity (relative to graphene oxide, GO), low cost (owing to the natural abundance of carbon), and potentially facile and scalable synthesis protocols. Despite these attributes, the possible structures of RGO are still numerous with notable critical variations and the synthesis procedures have been dynamic. Herein, we summarize the highlights from the historical breakthroughs in understanding the structure of RGO (from the perspective of GO) and the recent state-of-the-art synthesis protocols, covering the period from 2020 to 2023. These are key aspects in the realisation of the full potential of RGO materials through the tailoring of physicochemical properties and reproducibility. The reviewed work highlights the merits and prospects of the physicochemical properties of RGO toward achieving sustainable, environmentally friendly, low-cost, and high-performing materials at a large scale for use in functional devices/processes to pave the way for commercialisation. This can drive the sustainability and commercial viability aspects of RGO as a material.
Collapse
Affiliation(s)
- Edwin T Mombeshora
- Department of Chemistry and Earth Sciences, University of Zimbabwe Mount Pleasant Harare MP167 Zimbabwe
| | - Edigar Muchuweni
- Department of Engineering and Physics, Bindura University of Science Education Bindura Zimbabwe
| |
Collapse
|
38
|
Taşdemir Ş, Morçimen ZG, Doğan AA, Görgün C, Şendemir A. Surface Area of Graphene Governs Its Neurotoxicity. ACS Biomater Sci Eng 2023. [PMID: 37201186 DOI: 10.1021/acsbiomaterials.3c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Due to their unique physicochemical properties, graphene and its derivatives are widely exploited for biomedical applications. It has been shown that graphene may exert different degrees of toxicity in in vivo or in vitro models when administered via different routes and penetrated through physiological barriers, subsequently being distributed within tissues or located within cells. In this study, in vitro neurotoxicity of graphene with different surface areas (150 and 750 m2/g) was examined on dopaminergic neuron model cells. SH-SY5Y cells were treated with graphene possessing two different surface areas (150 and 750 m2/g) in different concentrations between 400 and 3.125 μg/mL, and the cytotoxic and genotoxic effects were investigated. Both sizes of graphene have shown increased cell viability in decreasing concentrations. Cell damage increased with higher surface area. Lactate dehydrogenase (LDH) results have concluded that the viability loss of the cells is not through membrane damage. Neither of the two graphene types showed damage through lipid peroxidation (MDA) oxidative stress pathway. Glutathione (GSH) values increased within the first 24 and 48 h for both types of graphene. This increase suggests that graphene has an antioxidant effect on the SH-SY5Y model neurons. Comet analysis shows that graphene does not show genotoxicity on either surface area. Although there are many studies on graphene and its derivatives on their use with different cells in the literature, there are conflicting results in these studies, and most of the literature is focused on graphene oxide. Among these studies, no study examining the effect of graphene surface areas on the cell was found. Our study contributes to the literature in terms of examining the cytotoxic and genotoxic behavior of graphene with different surface areas.
Collapse
Affiliation(s)
- Şeyma Taşdemir
- Bioengineering Department, Celal Bayar University, Manisa 45140, Turkey
| | | | | | - Cansu Görgün
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16126, Italy
| | - Aylin Şendemir
- Department of Bioengineering, Ege University, Izmir 35040, Turkey
- Department of Biomedical Technologies, Ege University, Izmir 35040, Turkey
| |
Collapse
|
39
|
Costa TLG, Vieira MA, Gonçalves GR, Cipriano DF, Lacerda V, Gonçalves AS, Scopel WL, de Siervo A, Freitas JCC. Combined computational and experimental study about the incorporation of phosphorus into the structure of graphene oxide. Phys Chem Chem Phys 2023; 25:6927-6943. [PMID: 36805087 DOI: 10.1039/d2cp03666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Phosphorus-containing graphene-based hybrids are materials with outstanding properties for diverse applications. In this work, an easy route to produce phosphorus-graphene oxide hybrid materials is described, involving the use of variable amounts of H3PO4 and H2SO4 during the reaction of oxidation of a graphitic precursor. The physical and chemical features of the hybrids change significantly with the variation in the acid amounts used in the syntheses. XPS and solid-state 13C and 31P NMR results show that the hybrids contain large amounts of oxygen functional groups, with the phosphorus incorporation proceeding mostly through the formation of phosphate-like linkages and other functions with C-O-P bonds. The experimental findings are supported by DFT calculations, which allow the assessment of the energetics and the geometry of the interaction between phosphate groups and graphene-based models; these calculations are also used to predict the chemical shifts in the 31P and 13C NMR spectra of the models, which show good agreement with the experimentally observed solid-state NMR spectra.
Collapse
Affiliation(s)
- Tainara L G Costa
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, ES, Brazil.
| | - Mariana A Vieira
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, ES, Brazil. .,Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Gustavo R Gonçalves
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, ES, Brazil.
| | - Daniel F Cipriano
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, ES, Brazil.
| | - Valdemar Lacerda
- Federal Institute of Education, Science and Technology of Espírito Santo (IFES), Av. Min. Salgado Filho, 1000, 29106-010, Vila Velha, ES, Brazil
| | - Arlan S Gonçalves
- Laboratory of Organic Chemistry, Department of Chemistry, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, ES, Brazil
| | - Wanderlã L Scopel
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, ES, Brazil.
| | - Abner de Siervo
- Institute of Physics Gleb Wataghin - State University of Campinas (UNICAMP), Rua Sergio Buarque de Holanda 777, 13083-859, Campinas, SP, Brazil
| | - Jair C C Freitas
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, ES, Brazil.
| |
Collapse
|
40
|
Zhou X, Cao W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:316. [PMID: 36678069 PMCID: PMC9864711 DOI: 10.3390/nano13020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the emergence of low-dimensional carbon-based materials, such as carbon dots, carbon nanotubes, and graphene, together with the advances in materials science, have greatly enriched the variety of flexible and stretchable electronic devices. Compared with conventional rigid devices, these soft robotic sensors and actuators exhibit remarkable advantages in terms of their biocompatibility, portability, power efficiency, and wearability, thus creating myriad possibilities of novel wearable and implantable tactile sensors, as well as micro-/nano-soft actuation systems. Interestingly, not only are carbon-based materials ideal constituents for photodetectors, gas, thermal, triboelectric sensors due to their geometry and extraordinary sensitivity to various external stimuli, but they also provide significantly more precise manipulation of the actuators than conventional centimeter-scale pneumatic and hydraulic robotic actuators, at a molecular level. In this review, we summarize recent progress on state-of-the-art flexible and stretchable carbon-based sensors and actuators that have creatively added to the development of biomedicine, nanoscience, materials science, as well as soft robotics. In the end, we propose the future potential of carbon-based materials for biomedical and soft robotic applications.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhan Cao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
| |
Collapse
|
41
|
Al-Arjan WS. Self-Assembled Nanofibrous Membranes by Electrospinning as Efficient Dye Photocatalysts for Wastewater Treatment. Polymers (Basel) 2023; 15:polym15020340. [PMID: 36679221 PMCID: PMC9864269 DOI: 10.3390/polym15020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water pollution has become a leading problem due to industrial development and the resulting waste, which causes water contamination. Different materials and techniques have been developed to treat wastewater. Due to their self-assembly and photocatalytic behavior, membranes based on graphene oxide (GO) are ideal composite materials for wastewater treatment. We fabricated composite membranes from polylactic acid (PLA) and carboxylic methyl cellulose (CMC)/carboxyl-functionalized graphene oxide (GO-f-COOH) using the electrospinning technique and the thermal method. Then, a nanofibrous membrane (PLA/CMC/GO-f-COOH@Ag) was produced by loading with silver nanoparticles (Ag-NPs) to study its photocatalytic behavior. These membranes were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) in order to investigate the behavior of the fabricated membranes. The degradation kinetics studies were conducted using mathematical models, such as the pseudo first- and second-order models, by calculating their regression coefficients (R2). These membranes exhibited exceptional dye degradation kinetics. The R2 values for pseudo first order were PCGC = 0.983581, PCGC@Ag = 0.992917, and the R2 values for pseudo second order were PCGC = 0.978329, PCGC@Ag = 0.989839 for methylene blue. The degradation kinetics of Rh-B showed R2 values of PCGC = 0.973594, PCGC@Ag = 0.989832 for pseudo first order and R2 values of PCGC = 0.994392, PCGC@Ag = 0.998738 for pseudo second order. The fabricated nanofibrous membranes exhibited a strong π-π electrostatic interaction, thus providing a large surface area, and demonstrated efficient photocatalytic behavior for treating organic dyes present in wastewater. The fabricated PLA/CMC/GO-f-COOH@Ag membrane presents exceptional photocatalytic properties for the catalytic degradation of methylene blue (MB) dye. Hence, the fabricated nanofibrous membrane would be an eco-friendly system for wastewater treatment under catalytic reaction.
Collapse
Affiliation(s)
- Wafa Shamsan Al-Arjan
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Hufof 31982, Al-Ahsa, Saudi Arabia
| |
Collapse
|
42
|
Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine 2023; 18:1695-1708. [PMID: 37020689 PMCID: PMC10069520 DOI: 10.2147/ijn.s402954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Graphene-family nanomaterials (GFNs) possess mechanical stiffness, optical properties, and biocompatibility making them promising materials for biomedical applications. However, to realize the potential of graphene in biomedicine, it must overcome several challenges that arise when it enters the body's circulatory system. Current research focuses on the development of tumor-targeting devices using graphene, but GFNs accumulated in different tissues and cells through different pathways, which can cause toxic reactions leading to cell apoptosis and body dysfunction when the accumulated amount exceeds a certain limit. In addition, as a foreign substance, graphene can induce complex inflammatory reactions with immune cells and inflammatory factors, potentially enhancing or impairing the body's immune function. This review discusses the biomedical applications of graphene, the effects of graphene materials on human immune function, and the biotoxicity of graphene materials.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Correspondence: Ge Ban, Email
| | - Yingze Hou
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Department of Biomedical Research, Research and Innovation Center, Xinjiang Institute of Technology, Xinjiang, 843100, People’s Republic of China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Lei Chai
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chongyang Ma
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| |
Collapse
|
43
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
44
|
Zhao Y, Ji H, Lu M, Tao J, Ou Y, Wang Y, Chen Y, Huang Y, Wang J, Mao Y. Thermochromic Smart Windows Assisted by Photothermal Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3865. [PMID: 36364641 PMCID: PMC9657717 DOI: 10.3390/nano12213865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Thermochromic smart windows are optical devices that can regulate their optical properties actively in response to external temperature changes. Due to their simple structures and as they do not require other additional energy supply devices, they have great potential in building energy-saving. However, conventional thermochromic smart windows generally have problems with high response temperatures and low response rates. Owing to their great effect in photothermal conversion, photothermal materials are often used in smart windows to assist phase transition so that they can quickly achieve the dual regulation of light and heat at room temperature. Based on this, research progress on the phase transition of photothermal material-assisted thermochromic smart windows is summarized. In this paper, the phase transition mechanisms of several thermochromic materials (VO2, liquid crystals, and hydrogels) commonly used in the field of smart windows are introduced. Additionally, the applications of carbon-based nanomaterials, noble metal nanoparticles, and semiconductor (metal oxygen/sulfide) nanomaterials in thermochromic smart windows are summarized. The current challenges and solutions are further indicated and future research directions are also proposed.
Collapse
|
45
|
Novel insights into Graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Thomas DT, Baby A, Raman V, Balakrishnan SP. Carbon‐Based Nanomaterials for Cancer Treatment and Diagnosis: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Anjana Baby
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India– 560029
| | - Vidya Raman
- Department of Chemistry T. M. Jacob Memorial Government College, Manimalakkunu Koothattukulam Kerala India 686662
| | | |
Collapse
|
47
|
Pérez‐Ramírez EE, Ramos‐Galicia L, de la Luz‐Asunción M, Saucedo‐Rivalcoba V, Martínez‐Hernández AL, Rubio‐Rosas E, Velasco‐Santos C. A Green and Easy Large Scale Method for Obtaining Graphene Nanoplatelets by Steam Explosion and Ultrasonic Exfoliation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eduardo E. Pérez‐Ramírez
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Lourdes Ramos‐Galicia
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Miguel de la Luz‐Asunción
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Verónica Saucedo‐Rivalcoba
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México – Instituto Tecnológico Superior de Tierra Blanca Av. Veracruz s/n Esq. Calle Héroes de Puebla 95180 Tierra Blanca Veracruz México
| | - Ana L. Martínez‐Hernández
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Efraín Rubio‐Rosas
- Centro Universitario de Vinculación y Transferencia de Tecnología Benemérita Universidad Autónoma de Puebla Prolongación 24 sur S/N CU San Manuel, C.P. 72570 Puebla México
| | - Carlos Velasco‐Santos
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| |
Collapse
|
48
|
Liu Z, Tian Y, Wang P, Zhang G. Applications of graphene-based composites in the anode of lithium-ion batteries. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.952200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Limited by the disadvantages of low theoretical capacity, sluggish lithium ion deintercalation kinetics as well as inferior energy density, traditional graphite anode material has failed to meet the ever-increasing specific energy demand for lithium-ion battery technologies. Therefore, constructing high-efficiency and stable anodes is of great significance for the practical application of lithium-ion batteries. In response, graphene-based composite anodes have recently achieved much-enhanced electrochemical performance due to their unique two-dimensional cellular lattice structure, excellent electrical conductivity, high specific surface area and superior physicochemical stability. In this review, we start with the geometric and electronic properties of graphene, and then summarize the recent progresses of graphene preparation in terms of both methods and characteristics. Subsequently, we focus on the applications of various graphene based lithium-ion battery anodes and their inherent structure-activity relationships. Finally, the challenges and advisory guidelines for graphene composites are discussed. This review aims to provide a fresh perspective on structure optimization and performance modulation of graphene-based composites as lithium-ion battery anodes.
Collapse
|
49
|
Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
50
|
Bantun F, Singh R, Alkhanani MF, Almalki AH, Alshammary F, Khan S, Haque S, Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154789. [PMID: 35341865 DOI: 10.1016/j.scitotenv.2022.154789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Rapid growth of nanotechnology has accelerated immense possibility of engineered nanomaterials (ENMs) exposure by human and living organisms. In this context, wide range applications of graphene based nanomaterials (GBNMs) may inevitably cause their release into the environment. Consequently, potential risks to the ecological system and human health is consistently increasing due to the probable ingestion of GBNMs by mean of contaminated water or food sources. Further, gut microbiome is known to play a profound impact on the health status of human being and has been recognized as the most exciting advancement in the biomedical science. Recent studies has shown vital role of ENMs to alter gut microbiome and thereby changed pathological status of organisms. Therefore, in this review results of numerous studies dedicated to explore the impact of GBNMs on gut microbiome and thereby various pathological status have been summarized. Dietary exposure of different types of GBNMs [e.g. graphene, graphene oxide (GO), partially reduced graphene oxide (PRGO), graphene quantum dots (GQDs)] have been evaluated on the gut microbiome through numerous in vitro and in vivo models. Moreover, emphasis has been made to evaluate different physiological responses with the short/long-term exposure of GBNMs, particularly in gastrointestinal tract (GIT) and its correlation with gut microbiome and the health status. It is reviewed that exposure of GBNMs can exert significant impact which alter the composition, diversity and function of gut microbiome. This may further appear in terms of enteric disorder along with numerous pathological changes e.g. IEC (intestinal epithelial cells) colitis, lysosomal dysfunction, inflammation, shortened colon, resorbed embryo, retardation in skeletal development, low weight of fetus, early or late dead of fetus and IBD (inflammatory bowel disease) like symptoms. Finally, potential health risks due to the exposure of GBNMs have been discussed with future perspective.
Collapse
Affiliation(s)
- Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah - 24382, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India.
| | - Mustfa F Alkhanani
- Emergency Medical Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Bursa, Turkey
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|