1
|
Yan H, Cacioppo M, Megahed S, Arcudi F, Đorđević L, Zhu D, Schulz F, Prato M, Parak WJ, Feliu N. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nat Commun 2021; 12:7208. [PMID: 34893594 PMCID: PMC8664908 DOI: 10.1038/s41467-021-27406-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
Carbon nanodots with opposite chirality possess the same major physicochemical properties such as optical features, hydrodynamic diameter, and colloidal stability. Here, a detailed analysis about the comparison of the concentration of both carbon nanodots is carried out, putting a threshold to when differences in biological behavior may be related to chirality and may exclude effects based merely on differences in exposure concentrations due to uncertainties in concentration determination. The present study approaches this comparative analysis evaluating two basic biological phenomena, the protein adsorption and cell internalization. We find how a meticulous concentration error estimation enables the evaluation of the differences in biological effects related to chirality.
Collapse
Affiliation(s)
- Huijie Yan
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
| | - Michele Cacioppo
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Saad Megahed
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Dingcheng Zhu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, PR China
| | - Florian Schulz
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastian, Spain.
- Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain.
| | - Wolfgang J Parak
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastian, Spain.
| | - Neus Feliu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany.
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146, Hamburg, Germany.
| |
Collapse
|
2
|
Lee DY, Lin HY, Ramasamy M, Kuo SC, Lee PC, Hsieh MT. Synthesis and Characterization of the Ethylene-Carbonate-Linked L-Valine Derivatives of 4,4-Dimethylcurcumin with Potential Anticancer Activities. Molecules 2021; 26:molecules26227050. [PMID: 34834146 PMCID: PMC8624457 DOI: 10.3390/molecules26227050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/19/2022] Open
Abstract
Natural phenolic products from herbal medicines and dietary plants constitute the main source of lead compounds for the development of the new drug. 4,4-Dimethylcurcumin (DMCU) is a synthetic curcumin derivative and exhibits anticancer activities against breast, colon, lung, and liver cancers. However, further development of DMCU is limited by unfavorable compound properties such as very low aqueous solubility and moderate stability. To increase its solubility, we installed either or both of the ethylene-carbonate-linked L-valine side chains to DMCU phenolic groups and produced targeted 1-trifluoroacetic acid (1-TFA) and 2-trifluoroacetic acid (2-TFA) derivatives. The terminus L-valine of ethylene-carbonate-linked side chain is known to be a L-type amino acid transporter 1 (LAT1) recognition element and therefore, these two derivatives were expected to readily enter into LAT1-expressing cancer cells. In practice, 1-TFA or 2-TFA were synthesized from DMCU in four steps with 34–48% overall yield. Based on the corresponding LC-MS analysis, water solubility of DMCU, 1-TFA, and 2-TFA at room temperature (25 ± 1 °C) were 0.018, 249.7, and 375.8 mg/mL, respectively, indicating >10,000-fold higher solubility of 1-TFA and 2-TFA than DMCU. Importantly, anti-proliferative assay demonstrated that 2-TFA is a potent anti-cancer agent against LAT1-expressing lung cancer cells NCI-H460, NCI-H358, and A549 cells due to its high intracellular uptake compared to DMCU and 1-TFA. In this study, we logically designed and synthesized the targeted compounds, established the LC-MS analytical methods for evaluations of drug solubility and intracellular uptake levels, and showed improved solubility and anti-cancer activities of 2-TFA. Our results provide a strategical direction for the future development of curcuminoid-like phenolic compounds.
Collapse
Affiliation(s)
- Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Hui-Yi Lin
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; (H.-Y.L.); (S.-C.K.)
| | | | - Sheng-Chu Kuo
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; (H.-Y.L.); (S.-C.K.)
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Pei-Chih Lee
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (P.-C.L.); (M.-T.H.)
| | - Min-Tsang Hsieh
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; (H.-Y.L.); (S.-C.K.)
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (P.-C.L.); (M.-T.H.)
| |
Collapse
|
3
|
Prieto-Costas LA, Milton L, Quiñones-Jurgensen CM, Rivera JM. Screening and Quantification of the Encapsulation of Dyes in Supramolecular Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12681-12689. [PMID: 34665963 PMCID: PMC9886066 DOI: 10.1021/acs.langmuir.1c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The encapsulation of therapeutic agents, such as drugs and vaccines, into colloidal particles offers an attractive strategy to enhance their efficacy. Previously, we reported the development of guanosine-based supramolecular colloidal particles suitable for encapsulating a broad array of guests ranging from small molecule drugs, like doxorubicin, to proteins, like GFP. Many biomedical applications of such particles require a precise determination of the amount of encapsulated therapeutic agents. Despite many studies describing the development of particle-based delivery systems, a general method for the precise and quick quantification of the encapsulated payload is still lacking. Here, we report a method based on flow cytometry measurements for complexes made from guanosine-based particles and a variety of commercially available fluorescent dyes. This method allows us to determine the apparent affinities of such dyes for two variants of these particles, which in turn provides insightful structure-affinity relationships. In contrast to the current methods, such as those that rely on fluorescence microscopy based on measurements of absorption/fluorescence of dissolved particles or on the supernatant of the solution, the reported method is suitable for high-throughput screening and more reproducible results. The protocol described here should be applicable to a wide variety of colloidal particles being developed around the world. Our group is currently expanding the scope to quantify the encapsulation of other molecules of biomedical interest, such as proteins and nucleic acids.
Collapse
Affiliation(s)
- Luis A Prieto-Costas
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Logan Milton
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Carla M Quiñones-Jurgensen
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - José M Rivera
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
4
|
Zhu D, Yan H, Zhou Z, Tang J, Liu X, Hartmann R, Parak WJ, Shen Y, Feliu N. Influence of the Modulation of the Protein Corona on Gene Expression Using Polyethylenimine (PEI) Polyplexes as Delivery Vehicle. Adv Healthc Mater 2021; 10:e2100125. [PMID: 34086423 PMCID: PMC11469282 DOI: 10.1002/adhm.202100125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Indexed: 12/16/2022]
Abstract
The protein corona can significantly modulate the physicochemical properties and gene delivery of polyethylenimine (PEI)/DNA complexes (polyplexes). The effects of the protein corona on the transfection have been well studied in terms of averaged gene expression in a whole cell population. Such evaluation methods give excellent and reliable statistics, but they in general provide the final transfection efficiency without reflecting the dynamic process of gene expression. In this regard the influence of bovine serum albumin (BSA) on the gene expression of PEI polyplexes also on a single cell level via live imaging is analyzed. The results reveal that although the BSA corona causes difference in the overall gene expression and mRNA transcription, the gene expression behavior on the level of individual cell is similar, including the mitosis-dependent expression, distributions of onset time, expression pattern in two daughter cells, and expression kinetics in successfully transfected cells. Comparison of single cell and ensemble data on whole cell cultures indicate that the protein corona does not alter the transfection process after nuclear entry, including cell division, polyplex dissociation, and protein expression. Its influence on other steps of in vitro gene delivery before nuclear entry shall render the difference in the overall transfection.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda road 38Hangzhou310007China
- Fachbereich Physik und Chemie and CHyNUniversität HamburgNotkestraße 85Hamburg22607Germany
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHaishu road 58Hangzhou310000China
| | - Huijie Yan
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda road 38Hangzhou310007China
- Fachbereich Physik und Chemie and CHyNUniversität HamburgNotkestraße 85Hamburg22607Germany
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda road 38Hangzhou310007China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda road 38Hangzhou310007China
| | - Xiangrui Liu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda road 38Hangzhou310007China
| | - Raimo Hartmann
- Fachbereich PhysikPhilipps Universität MarburgRenthof 6Marburg35032Germany
| | - Wolfgang J. Parak
- Fachbereich Physik und Chemie and CHyNUniversität HamburgNotkestraße 85Hamburg22607Germany
- CIC biomaGUNEMiramon Pasealekua 182San Sebastian20014Spain
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda road 38Hangzhou310007China
| | - Neus Feliu
- Fachbereich Physik und Chemie and CHyNUniversität HamburgNotkestraße 85Hamburg22607Germany
- Fraunhofer Center for Applied Nanotechnology (CAN)Grindelallee 117Hamburg20146Germany
| |
Collapse
|
5
|
FitzGerald LI, Johnston AP. It’s what’s on the inside that counts: Techniques for investigating the uptake and recycling of nanoparticles and proteins in cells. J Colloid Interface Sci 2021; 587:64-78. [DOI: 10.1016/j.jcis.2020.11.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
|
6
|
Abstract
Nanotechnology has been widely applied to medical interventions for prevention, diagnostics, and therapeutics of diseases, and the application of nanotechnology for medical purposes, which is called as a term "nanomedicine" has received tremendous attention. In particular, the design and development of nanoparticle for biosensors have received a great deal of attention, since those are most impactful area of clinical translation showing potential breakthrough in early diagnosis of diseases such as cancers and infections. For example, the nanoparticles that have intrinsic unique features such as magnetic responsive characteristics or photoluminescence can be utilized for noninvasive visualization of inner body. Drug delivery that makes use of drug-containing nanoparticles as a carrier is another field of study, in which the particulate form nanomedicine is given by parenteral administration for further systemic targeting to pathological tissues. In addition, encapsulation into nanoparticles gives the opportunity to secure the sensitive therapeutic payloads that are readily degraded or deactivated until reached to the target in biological environments, or to provide sufficient solubilization (e.g., to deliver compounds which have physicochemical properties that strongly limit their aqueous solubility and therefore systemic bioavailability). The nanomedicine is further intended to enhance the targeting index such as increased specificity and reduced false binding, thus improve the diagnostic and therapeutic performances. In this chapter, principles of nanomaterials for medicine will be thoroughly covered with applications for imaging-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
7
|
Zyuzin MV, Zhu D, Parak WJ, Feliu N, Escudero A. Development of Silica-Based Biodegradable Submicrometric Carriers and Investigating Their Characteristics as in Vitro Delivery Vehicles. Int J Mol Sci 2020; 21:E7563. [PMID: 33066289 PMCID: PMC7590072 DOI: 10.3390/ijms21207563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Nanostructured silica (SiO2)-based materials are attractive carriers for the delivery of bioactive compounds into cells. In this study, we developed hollow submicrometric particles composed of SiO2 capsules that were separately loaded with various bioactive molecules such as dextran, proteins, and nucleic acids. The structural characterization of the reported carriers was conducted using transmission and scanning electron microscopies (TEM/SEM), confocal laser scanning microscopy (CLSM), and dynamic light scattering (DLS). Moreover, the interaction of the developed carriers with cell lines was studied using standard viability, proliferation, and uptake assays. The submicrometric SiO2-based capsules loaded with DNA plasmid encoding green fluorescence proteins (GFP) were used to transfect cell lines. The obtained results were compared with studies made with similar capsules composed of polymers and show that SiO2-based capsules provide better transfection rates on the costs of higher toxicity.
Collapse
Affiliation(s)
- Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia;
| | - Dingcheng Zhu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146 Hamburg, Germany
| | - Alberto Escudero
- Departamento de Química Inorgánica. Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, E–41012 Seville, Spain
- Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla–CSIC, Calle Américo Vespucio 49, E–41092 Seville, Spain
| |
Collapse
|
8
|
Roy S, Zhu D, Parak WJ, Feliu N. Lysosomal Proton Buffering of Poly(ethylenimine) Measured In Situ by Fluorescent pH-Sensor Microcapsules. ACS NANO 2020; 14:8012-8023. [PMID: 32568521 DOI: 10.1021/acsnano.9b10219] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Poly(ethylenimine) (PEI) is frequently used as transfection agent for delivery of nucleic acids to the cytosol. After endocytosis of complexes of PEI and nucleic acids, a fraction of them can escape endosomes/lysosomes and reach the cytosol. One proposed mechanism is the so-called proton sponge effect, which involves buffering of the lysosomal pH by PEI. There are however also reports that report the absence of such buffering. In this work, the buffering capacity of PEI of the lysosomal pH was investigated in situ by combining PEI and pH-sensing ratiometric fluorophores in a single carrier particle. As carrier particles, hereby capsules were used, which were composed of polyelectrolyte walls based on layer-by-layer assembly, with the pH sensors located inside the capsule cavities. In this way, the local pH around individual particles could be monitored during the whole process of endocytosis. Results demonstrate the pH-buffering capability of PEI, which prevents the strong acidification of lysosomes containing PEI. This effect was related to the presence of PEI and was not related to the overall charge of the carrier particles. In case PEI was added in molecular form, no buffering of pH could be observed by endocytosed encapsulated pH-sensing ratiometric fluorophores. Co-localization experiments demonstrated that this was due to the fact that internalized free PEI and the encapsulated pH-sensing ratiometric fluorophores were not located in the same lysosomes. Missing co-localization might explain why also in other studies no pH buffering was found; in the case of co-delivery of PEI, the pH sensors could be clearly observed.
Collapse
Affiliation(s)
- Sathi Roy
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Dingcheng Zhu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- CIC Biomagune, Miramon Pasealekua 182, 20014 San Sebastian, Spain
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| |
Collapse
|
9
|
Ashraf S, Hassan Said A, Hartmann R, Assmann M, Feliu N, Lenz P, Parak WJ. Quantitative Particle Uptake by Cells as Analyzed by Different Methods. Angew Chem Int Ed Engl 2020; 59:5438-5453. [PMID: 31657113 PMCID: PMC7155048 DOI: 10.1002/anie.201906303] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Indexed: 12/21/2022]
Abstract
There is a large number of two-dimensional static in vitro studies about the uptake of colloidal nano- and microparticles, which has been published in the last decade. In this Minireview, different methods used for such studies are summarized and critically discussed. Supplementary experimental data allow for a direct comparison of the different techniques. Emphasis is given on how quantitative parameters can be extracted from studies in which different experimental techniques have been used, with the goal of allowing better comparison.
Collapse
Affiliation(s)
- Sumaira Ashraf
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Institute of Industrial BiotechnologyGovernment College University LahorePunjab54000Pakistan
| | - Alaa Hassan Said
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Electronics and Nano Devices lab (END)Department of PhysicsFaculty of SciencesSouth Valley University83523QenaEgypt
| | - Raimo Hartmann
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
| | - Marcus‐Alexander Assmann
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Fraunhofer Institute for High-Speed DynamicsErnst Mach Institute79104FreiburgGermany
| | - Neus Feliu
- Fachbereich Physik und Chemie, CHyNUniversität Hamburg20146HamburgGermany
| | - Peter Lenz
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
| | - Wolfgang J. Parak
- Fachbereich Physik und Chemie, CHyNUniversität Hamburg20146HamburgGermany
- Institute of Nano Biomedicine and EngineeringKey Laboratory for Thin Film and Microfabrication Technology of the Ministry of EducationDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
10
|
Analyse quantitativer Partikelaufnahme von Zellen über verschiedene Messmethoden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Kaurav M, Kumar R, Jain A, Pandey RS. Novel Biomimetic Reconstituted Built-in Adjuvanted Hepatitis B Vaccine for Transcutaneous Immunization. J Pharm Sci 2019; 108:3550-3559. [PMID: 31348940 DOI: 10.1016/j.xphs.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Transcutaneous immunization is the administration of a vaccine on the skin to generate efficient systemic and mucosal immune responses against an antigen. In the present study, reconstituted hepatitis B surface antigen vesicles (HBsAg-REVs) integrated with monophosphoryl lipid A were prepared by the delipidation-reconstitution method and tested as built-in adjuvanted vaccine, system for transcutaneous immunization using a combined approach of tape strippings, and enhanced antigen skin contact time. Prepared vesicles were extensively characterized for size, shape, zeta potential, and antigen protein loading efficiency. Following topical application, HBsAg-REVs skin permeation on isolated rat skin and cell uptake by bone marrow-derived dendritic cells were determined by confocal laser scanning microscopy and flow cytometry, respectively. The humoral and cellular immune responses elicited by HBsAg-REVs via transcutaneous immunization were comparable to the marketed intramuscular hepatitis B vaccine formulation with predefined immunization protocols. This study supports that delivery of reconstituted HBsAg vesicles via transcutaneous route may open a new vista for designing topical vaccines with possible immune protection against hepatitis B in future.
Collapse
Affiliation(s)
- Monika Kaurav
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Rajendra Kumar
- National UGC Centre of Excellence in NanoBiomedical Applications, Panjab University, Chandigarh 160014, India
| | - Atul Jain
- National UGC Centre of Excellence in NanoBiomedical Applications, Panjab University, Chandigarh 160014, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| |
Collapse
|
12
|
Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 2019; 143:22-36. [PMID: 31158406 DOI: 10.1016/j.addr.2019.05.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles modified with ligands for specific targeting towards receptors expressed on the surface of target cells are discussed in literature towards improved delivery strategies. In such concepts the ligand density on the surface of the nanoparticles plays an important role. How many ligands per nanoparticle are best for the most efficient delivery? Importantly, this number may be different for in vitro and in vivo scenarios. In this review first viruses as "biological" nanoparticles are analyzed towards their ligand density, which is then compared to the ligand density of engineered nanoparticles. Then, experiments are reviewed in which in vitro and in vivo nanoparticle delivery has been analyzed in terms of ligand density. These results help to understand which ligand densities should be attempted for better targeting. Finally synthetic methods for controlling the ligand density of nanoparticles are described.
Collapse
|
13
|
Yi Q, Ma J, Kang K, Gu Z. Bioreducible nanocapsules for folic acid-assisted targeting and effective tumor-specific chemotherapy. Int J Nanomedicine 2018; 13:653-667. [PMID: 29440892 PMCID: PMC5798557 DOI: 10.2147/ijn.s149458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Increasing demands in precise control over delivery and functionalization of therapeutic agents for tumor-specific chemotherapy have led to a rapid development in nanocarriers. Herein, we report a nanocapsule (NC) system for tumor-oriented drug delivery and effective tumor therapy. MATERIALS AND METHODS Functionalized hyaluronan is utilized to build up the NC shells, in which bioreduction cleavable sites, targeting ligand folic acid (FA), and zwitterionic tentacles are integrated. RESULTS The hollow NCs obtained (~50 nm in diameter) showed well-defined spherical shell structures with a shell thickness of ~8 nm. These specially designed NCs (doxorubicin [DOX]/FA-Z-NCs) with high drug encapsulation content exhibited good biocompatibility in vitro and fast intracellular drug release behavior mediated by intracellular glutathione. CONCLUSION Cellular uptake tests demonstrated rapid uptake of these functionalized NCs and effective escape from endosomes. Antitumor efficacy of the DOX/FA-Z-NCs was confirmed by the significant tumor growth inhibition effect as well as greatly reduced side effects, in contrast with those of the free drug DOX hydrochloride.
Collapse
Affiliation(s)
- Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu
| | - Jin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
14
|
Zhu D, Yan H, Zhou Z, Tang J, Liu X, Hartmann R, Parak WJ, Feliu N, Shen Y. Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater Sci 2018; 6:1800-1817. [DOI: 10.1039/c8bm00128f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the various cationic polymers developed as non-viral gene delivery vectors, polyethylenimine (PEI) has been/is frequently used in in vitro transfection.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Huijie Yan
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | | | - Wolfgang J. Parak
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Neus Feliu
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| |
Collapse
|
15
|
Zyuzin MV, Yan Y, Hartmann R, Gause KT, Nazarenus M, Cui J, Caruso F, Parak WJ. Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells. Bioconjug Chem 2017. [PMID: 28644614 DOI: 10.1021/acs.bioconjchem.7b00231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The presence of a protein corona on various synthetic nanomaterials has been shown to strongly influence how they interact with cells. However, it is unclear if the protein corona also exists on protein particles, and if so, its role in particle-cell interactions. In this study, pure human serum albumin (HSA) particles were fabricated via mesoporous silica particle templating. Our data reveal that various serum proteins adsorbed on the particles, when exposed to human blood plasma, forming a corona. In human umbilical vein endothelial cells (HUVECs), the corona was shown to decrease particle binding to the cell membrane, increase the residence time of particles in early endosomes, and reduce the amount of internalized particles within the first hours of exposure to particles. These findings reveal important information regarding the mechanisms used by vascular endothelial cells to internalize protein-based particulate materials exposed to blood plasma. The ability to control the cellular recognition of these organic particles is expected to aid the advancement of HSA-based materials for intravenous drug delivery.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Fachbereich Physik, Philipps-Universität Marburg , 35037 Marburg, Germany
| | - Yan Yan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.,Centre for BioNano Interactions, School of Chemistry, University College Dublin , Belfield, Dublin 4, Ireland
| | - Raimo Hartmann
- Fachbereich Physik, Philipps-Universität Marburg , 35037 Marburg, Germany
| | - Katelyn T Gause
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Moritz Nazarenus
- Fachbereich Physik, Philipps-Universität Marburg , 35037 Marburg, Germany
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.,Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, and the School of Chemistry and Chemical Engineering, Shandong University , Jinan, Shandong 250100, China
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg , 35037 Marburg, Germany
| |
Collapse
|
16
|
Feliu N, Sun X, Alvarez Puebla RA, Parak WJ. Quantitative Particle-Cell Interaction: Some Basic Physicochemical Pitfalls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6639-6646. [PMID: 28379704 DOI: 10.1021/acs.langmuir.6b04629] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There are numerous reports about particle-cell interaction studies in the literature. Many of those are performed in two-dimensional cell cultures. While the interpretation of such studies seems trivial at first sight, in fact for quantitative analysis some basic physical and physicochemical bases need to be considered. This starts with the dispersion of the particles, for which gravity, Brownian motion, and interparticle interactions need to be considered. The respective strength of these interactions determines whether the particles will sediment, are dispersed, or are agglomerated. This in turn largely influences their interaction with cells. While in the case of well-dispersed particles only a fraction of them will come into contact with cells in a two-dimensional culture, (agglomeration-induced) sedimentation drives the particles toward the cell surface, resulting in enhanced uptake.
Collapse
Affiliation(s)
- Neus Feliu
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
- Department of Laboratory Medicine (LABMED), Karolinska Institutet , Stockholm, Sweden
- Medcom Advance S.A., Barcelona, Spain
| | - Xing Sun
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
| | - Ramon A Alvarez Puebla
- Departamento de Química Física e Inorgánica and Emas, Universitat Rovira i Virgili , Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
17
|
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. Diverse Applications of Nanomedicine. ACS NANO 2017; 11:2313-2381. [PMID: 28290206 PMCID: PMC5371978 DOI: 10.1021/acsnano.6b06040] [Citation(s) in RCA: 815] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 04/14/2023]
Abstract
The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.
Collapse
Affiliation(s)
- Beatriz Pelaz
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Frauke Alves
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Anne M. Andrews
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sumaira Ashraf
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lajos P. Balogh
- AA Nanomedicine & Nanotechnology Consultants, North Andover, Massachusetts 01845, United States
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
| | - Alessandra Bestetti
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cornelia Brendel
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Susanna Bosi
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
| | - Monica Carril
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Warren C. W. Chan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xiaodong Chen
- School of Materials
Science and Engineering, Nanyang Technological
University, Singapore 639798
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine,
National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Cheng
- Molecular
Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford
for Cancer Early Detection, Stanford University, Stanford, California 94305, United States
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument
Science and Engineering, School of Electronic Information and Electronical
Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials
Science and Engineering, Tongji University, Shanghai, China
| | - Christian Dullin
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
| | - Alberto Escudero
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- Instituto
de Ciencia de Materiales de Sevilla. CSIC, Universidad de Sevilla, 41092 Seville, Spain
| | - Neus Feliu
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mingyuan Gao
- Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, China
| | | | - Yury Gogotsi
- Department of Materials Science and Engineering and A.J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Arnold Grünweller
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Zhongwei Gu
- College of Polymer Science and Engineering, Sichuan University, 610000 Chengdu, China
| | - Naomi J. Halas
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Norbert Hampp
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Roland K. Hartmann
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry,
and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Patrick Hunziker
- University Hospital, 4056 Basel, Switzerland
- CLINAM,
European Foundation for Clinical Nanomedicine, 4058 Basel, Switzerland
| | - Ji Jian
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Philipp Jungebluth
- Thoraxklinik Heidelberg, Universitätsklinikum
Heidelberg, 69120 Heidelberg, Germany
| | - Pranav Kadhiresan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | - Jindřich Kopeček
- Biomedical Polymers Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nicholas A. Kotov
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Harald F. Krug
- EMPA, Federal Institute for Materials
Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- HIPS - Helmhotz Institute for Pharmaceutical Research Saarland, Helmholtz-Center for Infection Research, 66123 Saarbrücken, Germany
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Mei Ling Lim
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Ciber-BBN, 20014 Donostia - San Sebastián, Spain
| | - Xiaowei Ma
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Paolo Macchiarini
- Laboratory of Bioengineering Regenerative Medicine (BioReM), Kazan Federal University, 420008 Kazan, Russia
| | - Huan Meng
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Helmuth Möhwald
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Paul Mulvaney
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre E. Nel
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shuming Nie
- Emory University, Atlanta, Georgia 30322, United States
| | - Peter Nordlander
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Teruo Okano
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Tai Hyun Park
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Reginald M. Penner
- Department of Chemistry, University of
California, Irvine, California 92697, United States
| | - Maurizio Prato
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Victor Puntes
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Institut Català de Nanotecnologia, UAB, 08193 Barcelona, Spain
- Vall d’Hebron University Hospital
Institute of Research, 08035 Barcelona, Spain
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Amila Samarakoon
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Raymond E. Schaak
- Department of Chemistry, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youqing Shen
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Sebastian Sjöqvist
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Andre G. Skirtach
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Department of Molecular Biotechnology, University of Ghent, B-9000 Ghent, Belgium
| | - Mahmoud G. Soliman
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Molly M. Stevens
- Department of Materials,
Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical
Engineering, National Tsing Hua University, Hsinchu City, Taiwan,
ROC 300
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China
| | - Rainer Tietze
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Buddhisha N. Udugama
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - J. Scott VanEpps
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Tanja Weil
- Institut für
Organische Chemie, Universität Ulm, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | - Paul S. Weiss
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Itamar Willner
- Institute of Chemistry, The Center for
Nanoscience and Nanotechnology, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Yuzhou Wu
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | - Zhao Yue
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qiang Zhang
- School of Pharmaceutical Science, Peking University, 100191 Beijing, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules,
CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wolfgang J. Parak
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
| |
Collapse
|
18
|
Zyuzin MV, Díez P, Goldsmith M, Carregal-Romero S, Teodosio C, Rejman J, Feliu N, Escudero A, Almendral MJ, Linne U, Peer D, Fuentes M, Parak WJ. Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjug Chem 2017; 28:556-564. [DOI: 10.1021/acs.bioconjchem.6b00657] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Meir Goldsmith
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | | | - Alberto Escudero
- Instituto
de Ciencia de Materiales de Sevilla, CSIC − Universidad de Sevilla, C. Américo Vespucio 49, E-41092, Seville, Spain
| | - María Jesús Almendral
- Department
of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain
| | | | - Dan Peer
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Wolfgang J. Parak
- CIC biomaGUNE, Paseo de Miramón
182, 20014 Donostia
− San Sebastián, Spain
| |
Collapse
|
19
|
Laguna M, Escudero A, Núñez NO, Becerro AI, Ocaña M. Europium-doped NaGd(WO4)2 nanophosphors: synthesis, luminescence and their coating with fluorescein for pH sensing. Dalton Trans 2017; 46:11575-11583. [DOI: 10.1039/c7dt01986f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uniform nanospheres of Eu : NaGd(WO4)2 have been synthesized and further coated with fluorescein to develop a ratiometric pH sensor for biotechnological applications.
Collapse
Affiliation(s)
- Mariano Laguna
- Instituto de Ciencia de Materiales de Sevilla
- CSIC-US
- Sevilla
- Spain
| | - Alberto Escudero
- Instituto de Ciencia de Materiales de Sevilla
- CSIC-US
- Sevilla
- Spain
| | - Nuria O. Núñez
- Instituto de Ciencia de Materiales de Sevilla
- CSIC-US
- Sevilla
- Spain
| | - Ana I. Becerro
- Instituto de Ciencia de Materiales de Sevilla
- CSIC-US
- Sevilla
- Spain
| | - Manuel Ocaña
- Instituto de Ciencia de Materiales de Sevilla
- CSIC-US
- Sevilla
- Spain
| |
Collapse
|
20
|
Rejman J, Nazarenus M, Jimenez de Aberasturi D, Said AH, Feliu N, Parak WJ. Some thoughts about the intracellular location of nanoparticles and the resulting consequences. J Colloid Interface Sci 2016; 482:260-266. [DOI: 10.1016/j.jcis.2016.07.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
|
21
|
Carrillo-Carrion C, Escudero A, Parak WJ. Optical sensing by integration of analyte-sensitive fluorophore to particles. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Ashraf S, Park J, Bichelberger MA, Kantner K, Hartmann R, Maffre P, Said AH, Feliu N, Lee J, Lee D, Nienhaus GU, Kim S, Parak WJ. Zwitterionic surface coating of quantum dots reduces protein adsorption and cellular uptake. NANOSCALE 2016; 8:17794-17800. [PMID: 27722485 DOI: 10.1039/c6nr05805a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have studied the effect of the zwitterionic surface coating of quantum dots (QDs) on their interaction with a serum supplemented cell medium and their internalization by human cervical carcinoma (HeLa) cells. Zwitterionic QDs showed negligible adsorption of human serum albumin (HSA) selected as a model serum protein, in contrast to similar but negatively charged QDs. The incorporation of zwitterionic QDs by HeLa cells was found to be lower than for negatively charged QDs and for positively charged QDs, for which the uptake yield was largest. Our results suggest that the suppression of protein adsorption, here accomplished by zwitterionic QD surfaces, offers a strategy that allows for reducing the cellular uptake of nanoparticles.
Collapse
Affiliation(s)
- Sumaira Ashraf
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany.
| | - Joonhyuck Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-Dong, Nam-Gu, Pohang, South Korea.
| | | | - Karsten Kantner
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany.
| | - Raimo Hartmann
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany.
| | - Pauline Maffre
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Alaa Hassan Said
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany. and Department of Physics, Faculty of Sciences, South Valley University, Qena, Egypt
| | - Neus Feliu
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany.
| | - Junhwa Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-Dong, Nam-Gu, Pohang, South Korea.
| | - Dakyeon Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Hyoja-Dong, Nam-Gu, Pohang, South Korea
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. and Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-Dong, Nam-Gu, Pohang, South Korea.
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany.
| |
Collapse
|
23
|
Feliu N, Hühn J, Zyuzin MV, Ashraf S, Valdeperez D, Masood A, Said AH, Escudero A, Pelaz B, Gonzalez E, Duarte MAC, Roy S, Chakraborty I, Lim ML, Sjöqvist S, Jungebluth P, Parak WJ. Quantitative uptake of colloidal particles by cell cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:819-828. [PMID: 27306826 DOI: 10.1016/j.scitotenv.2016.05.213] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids may change their physicochemical properties along their life cycle, and appropriate characterization is required during the different stages.
Collapse
Affiliation(s)
- Neus Feliu
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany; (b)Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm, Sweden
| | - Jonas Hühn
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Mikhail V Zyuzin
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Sumaira Ashraf
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Daniel Valdeperez
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Atif Masood
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Alaa Hassan Said
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany; Physics Department, Faculty of Science, South Valley University, Egypt
| | - Alberto Escudero
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany; Instituto de Ciencia de Materiales de Sevilla, CSIC - Universidad de Sevilla, Seville, Spain
| | - Beatriz Pelaz
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Elena Gonzalez
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany; University of Vigo, Vigo, Spain
| | | | - Sathi Roy
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Indranath Chakraborty
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Mei L Lim
- (b)Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Sjöqvist
- (b)Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm, Sweden
| | - Philipp Jungebluth
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany
| | - Wolfgang J Parak
- (a)Department of Physics, Philipps University Marburg, Marburg, Germany; CIC biomaGUNE, San Sebastian, Spain.
| |
Collapse
|
24
|
Hou S, Sikora KN, Tang R, Liu Y, Lee YW, Kim ST, Jiang Z, Vachet RW, Rotello VM. Quantitative Differentiation of Cell Surface-Bound and Internalized Cationic Gold Nanoparticles Using Mass Spectrometry. ACS NANO 2016; 10:6731-6. [PMID: 27337000 PMCID: PMC5848210 DOI: 10.1021/acsnano.6b02105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Differentiation between cell surface-bound and internalized nanoparticles is challenging yet essential for accurately quantifying cellular uptake. Here, we describe a versatile mass spectrometry-based method that allows separate quantification of both cell surface-bound and internalized nanoparticles. This rapid method uses tuned laser fluencies to selectively desorb and ionize cell surface-bound cationic gold nanoparticles from intact cells, providing quantification of external particles. Overall nanoparticle quantities are obtained from the cell lysates, with subtraction of external particles from the total amount providing quantification of taken-up nanoparticles. The utility of this strategy was demonstrated through simultaneous quantitative determination of how cell-surface proteoglycans influence nanoparticle binding and uptake into cells.
Collapse
Affiliation(s)
| | | | - Rui Tang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Sung Tae Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
25
|
Scarpa E, Bailey JL, Janeczek AA, Stumpf PS, Johnston AH, Oreffo ROC, Woo YL, Cheong YC, Evans ND, Newman TA. Quantification of intracellular payload release from polymersome nanoparticles. Sci Rep 2016; 6:29460. [PMID: 27404770 PMCID: PMC4941396 DOI: 10.1038/srep29460] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Polymersome nanoparticles (PMs) are attractive candidates for spatio-temporal controlled delivery of therapeutic agents. Although many studies have addressed cellular uptake of solid nanoparticles, there is very little data available on intracellular release of molecules encapsulated in membranous carriers, such as polymersomes. Here, we addressed this by developing a quantitative assay based on the hydrophilic dye, fluorescein. Fluorescein was encapsulated stably in PMs of mean diameter 85 nm, with minimal leakage after sustained dialysis. No fluorescence was detectable from fluorescein PMs, indicating quenching. Following incubation of L929 cells with fluorescein PMs, there was a gradual increase in intracellular fluorescence, indicating PM disruption and cytosolic release of fluorescein. By combining absorbance measurements with flow cytometry, we quantified the real-time intracellular release of a fluorescein at a single-cell resolution. We found that 173 ± 38 polymersomes released their payload per cell, with significant heterogeneity in uptake, despite controlled synchronisation of cell cycle. This novel method for quantification of the release of compounds from nanoparticles provides fundamental information on cellular uptake of nanoparticle-encapsulated compounds. It also illustrates the stochastic nature of population distribution in homogeneous cell populations, a factor that must be taken into account in clinical use of this technology.
Collapse
Affiliation(s)
- Edoardo Scarpa
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, United Kingdom.,Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, United Kingdom
| | - Joanne L Bailey
- Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, United Kingdom
| | - Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, United Kingdom.,Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, United Kingdom
| | - Patrick S Stumpf
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, United Kingdom.,Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, United Kingdom
| | - Alexander H Johnston
- Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, United Kingdom
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, United Kingdom.,Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, United Kingdom
| | - Yin L Woo
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.,University of Malaya Cancer Research Institute (UMCRI), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying C Cheong
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, United Kingdom.,Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, United Kingdom.,Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Tracey A Newman
- Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, United Kingdom.,Clinical and Experimental Sciences, Medicine, University of Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
26
|
Valdepérez D, del Pino P, Sánchez L, Parak WJ, Pelaz B. Highly active antibody-modified magnetic polyelectrolyte capsules. J Colloid Interface Sci 2016; 474:1-8. [DOI: 10.1016/j.jcis.2016.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 01/27/2023]
|
27
|
A high throughput method for quantification of cell surface bound and internalized chitosan nanoparticles. Int J Biol Macromol 2015; 81:858-66. [DOI: 10.1016/j.ijbiomac.2015.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/15/2015] [Accepted: 09/13/2015] [Indexed: 01/09/2023]
|
28
|
Abdelmonem AM, Pelaz B, Kantner K, Bigall NC, Del Pino P, Parak WJ. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. J Inorg Biochem 2015; 153:334-338. [PMID: 26387023 DOI: 10.1016/j.jinorgbio.2015.08.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/20/2015] [Accepted: 08/28/2015] [Indexed: 01/19/2023]
Abstract
The influence of the surface charge and the state of agglomeration of ZnO nanoparticles on cellular uptake and viability are investigated. For this purpose, ZnO nanoparticles were synthesized by colloidal routes and their physicochemical properties were investigated in detail. Three different surface modifications were investigated, involving coatings with the amphiphilic polymer poly(isobutylene-alt-maleic anhydride)-graft-dodecyl, mercaptoundecanoic acid, and L-arginine, which provide the nanoparticles with either a negative or a positive zeta-potential. The hydrodynamic diameters and zeta-potentials of all three nanoparticle species were investigated at different pH values and NaCl concentrations by means of dynamic light scattering and laser Doppler anemometry, respectively. The three differently modified ZnO nanoparticle species of similar sizes were also investigated in respect to their cellular uptake by 3T3 fibroblasts and HeLa cells, and their effect on cell viability.
Collapse
Affiliation(s)
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | - Karsten Kantner
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | - Nadja C Bigall
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | | | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany; CIC Biomagune, San Sebastian, Spain.
| |
Collapse
|
29
|
Kantner K, Ashraf S, Carregal-Romero S, Carrillo-Carrion C, Collot M, Del Pino P, Heimbrodt W, De Aberasturi DJ, Kaiser U, Kazakova LI, Lelle M, de Baroja NM, Montenegro JM, Nazarenus M, Pelaz B, Peneva K, Gil PR, Sabir N, Schneider LM, Shabarchina LI, Sukhorukov GB, Vazquez M, Yang F, Parak WJ. Particle-based optical sensing of intracellular ions at the example of calcium - what are the experimental pitfalls? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:896-904. [PMID: 25504784 DOI: 10.1002/smll.201402110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/24/2014] [Indexed: 06/04/2023]
Abstract
Colloidal particles with fluorescence read-out are commonly used as sensors for the quantitative determination of ions. Calcium, for example, is a biologically highly relevant ion in signaling, and thus knowledge of its spatio-temporal distribution inside cells would offer important experimental data. However, the use of particle-based intracellular sensors for ion detection is not straightforward. Important associated problems involve delivery and intracellular location of particle-based fluorophores, crosstalk of the fluorescence read-out with pH, and spectral overlap of the emission spectra of different fluorophores. These potential problems are outlined and discussed here with selected experimental examples. Potential solutions are discussed and form a guideline for particle-based intracellular imaging of ions.
Collapse
Affiliation(s)
- Karsten Kantner
- Fachbereich Physik, Philipps- Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The Application of LbL-Microcarriers for the Treatment of Chronic Inflammation: Monitoring the Impact of LbL-Microcarriers on Cell Viability. Macromol Biosci 2015; 15:546-57. [DOI: 10.1002/mabi.201400405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/03/2014] [Indexed: 01/10/2023]
|
31
|
Harimech PK, Hartmann R, Rejman J, del Pino P, Rivera-Gil P, Parak WJ. Encapsulated enzymes with integrated fluorescence-control of enzymatic activity. J Mater Chem B 2015; 3:2801-2807. [DOI: 10.1039/c4tb02077d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Capsules filled with enzymes and fluorescence probes allow in situ enzymatic activity as well as kinetics on a single particle level to be monitored.
Collapse
Affiliation(s)
| | - Raimo Hartmann
- Fachbereich Physik
- Philipps Universität Marburg
- Marburg
- Germany
| | - Joanna Rejman
- Fachbereich Physik
- Philipps Universität Marburg
- Marburg
- Germany
| | | | | | - Wolfgang J. Parak
- Fachbereich Physik
- Philipps Universität Marburg
- Marburg
- Germany
- CIC Biomagune
| |
Collapse
|
32
|
Nazarenus M, Zhang Q, Soliman MG, del Pino P, Pelaz B, Carregal-Romero S, Rejman J, Rothen-Rutishauser B, Clift MJD, Zellner R, Nienhaus GU, Delehanty JB, Medintz IL, Parak WJ. In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far? BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1477-90. [PMID: 25247131 PMCID: PMC4168913 DOI: 10.3762/bjnano.5.161] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
The interfacing of colloidal nanoparticles with mammalian cells is now well into its second decade. In this review our goal is to highlight the more generally accepted concepts that we have gleaned from nearly twenty years of research. While details of these complex interactions strongly depend, amongst others, upon the specific properties of the nanoparticles used, the cell type, and their environmental conditions, a number of fundamental principles exist, which are outlined in this review.
Collapse
Affiliation(s)
- Moritz Nazarenus
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Mahmoud G Soliman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Pablo del Pino
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | | | - Joanna Rejman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Martin J D Clift
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Reinhard Zellner
- Institute of Physical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - James B Delehanty
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| |
Collapse
|
33
|
Zhang P, Song X, Tong W, Gao C. Nanoparticle/Polymer Assembled Microcapsules with pH Sensing Property. Macromol Biosci 2014; 14:1495-504. [DOI: 10.1002/mabi.201400259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/18/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Pan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xiaoxue Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
34
|
Orlando T, Paolini A, Pineider F, Clementi E, Pasi F, Guari Y, Larionova J, Sacchi L, Nano R, Corti M, Lascialfari A. NMR as evaluation strategy for cellular uptake of nanoparticles. NANO LETTERS 2014; 14:3959-3965. [PMID: 24913622 DOI: 10.1021/nl501282x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Advanced nanostructured materials, such as gold nanoparticles, magnetic nanoparticles, and multifunctional materials, are nowadays used in many state-of-the-art biomedical application. However, although the engineering in this field is very advanced, there remain some fundamental problems involving the interaction mechanisms between nanostructures and cells or tissues. Here we show the potential of (1)H NMR in the investigation of the uptake of two different kinds of nanostructures, that is, maghemite and gold nanoparticles, and of a chemotherapy drug (Temozolomide) in glioblastoma tumor cells. The proposed experimental protocol provides a new way to investigate the general problem of cellular uptake for a variety of biocompatible nanostructures and drugs.
Collapse
Affiliation(s)
- Tomas Orlando
- Department of Physics and INSTM Unit, University of Pavia , Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Costa RR, Girotti A, Santos M, Arias FJ, Mano JF, Rodríguez-Cabello JC. Cellular uptake of multilayered capsules produced with natural and genetically engineered biomimetic macromolecules. Acta Biomater 2014; 10:2653-62. [PMID: 24561713 DOI: 10.1016/j.actbio.2014.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/17/2014] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
Multilayered microcapsules of chitosan and biomimetic elastin-like recombinamers (ELRs) were prepared envisaging the intracellular delivery of active agents. Two ELRs containing either a bioactive RGD sequence or a scrambled non-functional RDG were used to construct two types of functionalized polymeric microcapsules, both of spherical shape ∼4μm in diameter. Cell viability studies with human mesenchymal stem cells (hMSCs) were performed using microcapsule/cell ratios between 5:1 and 100:1. After 3 and 72h of co-incubation, no signs of cytotoxicity were found, but cells incubated with RGD-functionalized microcapsules exhibited higher viability values than RDG cells. The internalization efficacy and bioavailability of encapsulated DQ-ovalbumin were assessed by monitoring the fluorescence changes in the cargo. The data show that surface functionalization did not significantly influence internalization by hMSCs, but the bioavailability of DQ-ovalbumin degraded faster when encapsulated within RGD-functionalized microcapsules. The microcapsules developed show promise for intracellular drug delivery with increased drug efficacy.
Collapse
|
36
|
Abstract
Porous CaCO₃ vaterite microparticles have been introduced a decade ago as sacrificial cores and becoming nowadays as one of the most popular templates to encapsulate bioactive molecules. This is due to the following beneficial features: i) mild decomposition conditions, ii) highly developed surface area, and iii) controlled size as well as easy and chip preparation. Such properties allow one to template and design particles with well tuned material properties in terms of composition, structure, functionality -- the parameters crucially important for bioapplications. This review presents a recent progress in utilizing the CaCO₃ cores for the assembly of micrometer-sized beads and capsules with encapsulated both small drugs and large biomacromolecules. Bioapplications of all the particles for drug delivery, biotechnology, and biosensing as well as future perspectives for templating are addressed.
Collapse
Affiliation(s)
- Dmitry Volodkin
- Fraunhofer Institute for Biomedical Engineering (IBMT), Am Muehlenberg 13, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
37
|
|
38
|
Carregal-Romero S, Rinklin P, Schulze S, Schäfer M, Ott A, Hühn D, Yu X, Wolfrum B, Weitzel KM, Parak WJ. Ion Transport Through Polyelectrolyte Multilayers. Macromol Rapid Commun 2013; 34:1820-6. [DOI: 10.1002/marc.201300571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/31/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Susana Carregal-Romero
- Fachbereich Physik; Philipps Universität Marburg; Marburg Germany
- BIONAND; Centro Andaluz de Nanomedicina y Biotecnología; Málaga Spain
| | - Philipp Rinklin
- Institute of Bioelectronics PGI-8/ICS-8, JARA-FIT; Forschungszentrum, Jülich Jülich Germany
| | - Susanne Schulze
- Fachbereich Chemie; Philipps Universität Marburg; Marburg Germany
| | - Martin Schäfer
- Fachbereich Chemie; Philipps Universität Marburg; Marburg Germany
| | - Andrea Ott
- Fachbereich Physik; Philipps Universität Marburg; Marburg Germany
| | - Dominik Hühn
- Fachbereich Physik; Philipps Universität Marburg; Marburg Germany
| | - Xiang Yu
- Fachbereich Physik; Philipps Universität Marburg; Marburg Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics PGI-8/ICS-8, JARA-FIT; Forschungszentrum, Jülich Jülich Germany
| | | | - Wolfgang J. Parak
- Fachbereich Physik; Philipps Universität Marburg; Marburg Germany
- CIC Biomagune; San Sebastian Spain
| |
Collapse
|
39
|
Mahmoudi M, Abdelmonem AM, Behzadi S, Clement JH, Dutz S, Ejtehadi MR, Hartmann R, Kantner K, Linne U, Maffre P, Metzler S, Moghadam MK, Pfeiffer C, Rezaei M, Ruiz-Lozano P, Serpooshan V, Shokrgozar MA, Nienhaus GU, Parak WJ. Temperature: the "ignored" factor at the NanoBio interface. ACS NANO 2013; 7:6555-62. [PMID: 23808533 DOI: 10.1021/nn305337c] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Upon incorporation of nanoparticles (NPs) into the body, they are exposed to biological fluids, and their interaction with the dissolved biomolecules leads to the formation of the so-called protein corona on the surface of the NPs. The composition of the corona plays a crucial role in the biological fate of the NPs. While the effects of various physicochemical parameters on the composition of the corona have been explored in depth, the role of temperature upon its formation has received much less attention. In this work, we have probed the effect of temperature on the protein composition on the surface of a set of NPs with various surface chemistries and electric charges. Our results indicate that the degree of protein coverage and the composition of the adsorbed proteins on the NPs' surface depend on the temperature at which the protein corona is formed. Also, the uptake of NPs is affected by the temperature. Temperature is, thus, an important parameter that needs to be carefully controlled in quantitative studies of bionano interactions.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kastl L, Sasse D, Wulf V, Hartmann R, Mircheski J, Ranke C, Carregal-Romero S, Martínez-López JA, Fernández-Chacón R, Parak WJ, Elsasser HP, Rivera Gil P. Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. ACS NANO 2013; 7:6605-6618. [PMID: 23826767 DOI: 10.1021/nn306032k] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.
Collapse
Affiliation(s)
- Lena Kastl
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gottstein C, Wu G, Wong BJ, Zasadzinski JA. Precise quantification of nanoparticle internalization. ACS NANO 2013; 7:4933-45. [PMID: 23706031 PMCID: PMC3767576 DOI: 10.1021/nn400243d] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanoparticles have opened new exciting avenues for both diagnostic and therapeutic applications in human disease, and targeted nanoparticles are increasingly used as specific drug delivery vehicles. The precise quantification of nanoparticle internalization is of importance to measure the impact of physical and chemical properties on the uptake of nanoparticles into target cells or into cells responsible for rapid clearance. Internalization of nanoparticles has been measured by various techniques, but comparability of data between different laboratories is impeded by lack of a generally accepted standardized assay. Furthermore, the distinction between associated and internalized particles has been a challenge for many years, although this distinction is critical for most research questions. Previously used methods to verify intracellular location are typically not quantitative and do not lend themselves to high-throughput analysis. Here, we developed a mathematical model which integrates the data from high-throughput flow cytometry measurements with data from quantitative confocal microscopy. The generic method described here will be a useful tool in biomedical nanotechnology studies. The method was then applied to measure the impact of surface coatings of vesosomes on their internalization by cells of the reticuloendothelial system (RES). RES cells are responsible for rapid clearance of nanoparticles, and the resulting fast blood clearance is one of the major challenges in biomedical applications of nanoparticles. Coating of vesosomes with long chain polyethylene glycol showed a trend for lower internalization by RES cells.
Collapse
Affiliation(s)
- Claudia Gottstein
- Department of Chemical Engineering and California NanoSystems Institute, University of California-Santa Barbara, Santa Barbara, California 93106-6105, USA.
| | | | | | | |
Collapse
|
42
|
Hühn D, Kantner K, Geidel C, Brandholt S, De Cock I, Soenen SJH, Rivera Gil P, Montenegro JM, Braeckmans K, Müllen K, Nienhaus GU, Klapper M, Parak WJ. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS NANO 2013; 7:3253-63. [PMID: 23566380 DOI: 10.1021/nn3059295] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To study charge-dependent interactions of nanoparticles (NPs) with biological media and NP uptake by cells, colloidal gold nanoparticles were modified with amphiphilic polymers to obtain NPs with identical physical properties except for the sign of the charge (negative/positive). This strategy enabled us to solely assess the influence of charge on the interactions of the NPs with proteins and cells, without interference by other effects such as different size and colloidal stability. Our study shows that the number of adsorbed human serum albumin molecules per NP was not influenced by their surface charge. Positively charged NPs were incorporated by cells to a larger extent than negatively charged ones, both in serum-free and serum-containing media. Consequently, with and without protein corona (i.e., in serum-free medium) present, NP internalization depends on the sign of charge. The uptake rate of NPs by cells was higher for positively than for negatively charged NPs. Furthermore, cytotoxicity assays revealed a higher cytotoxicity for positively charged NPs, associated with their enhanced uptake.
Collapse
Affiliation(s)
- Dominik Hühn
- Department of Physics, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang B, Zhang Y, Mao Z, Gao C. Cellular Uptake of Covalent Poly(allylamine hydrochloride) Microcapsules and Its Influences on Cell Functions. Macromol Biosci 2012; 12:1534-45. [DOI: 10.1002/mabi.201200182] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/25/2012] [Indexed: 12/15/2022]
|
44
|
Reibetanz U, Schönberg M, Rathmann S, Strehlow V, Göse M, Leßig J. Inhibition of human neutrophil elastase by α1-antitrypsin functionalized colloidal microcarriers. ACS NANO 2012; 6:6325-6336. [PMID: 22703528 DOI: 10.1021/nn301791w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Layer-by-layer (LbL)-coated microcarriers offer a good opportunity as transport systems for active agents into specific cells and tissues. The assembling of oppositely charged polyelectrolytes enables a modular construction of the carriers and therefore an optimized integration and application of drug molecules. Here, we report the multilayer incorporation and transport of α(1)-antitrypsin (AT) by colloidal microcarriers. AT is an anti-inflammatory agent and shows inhibitory effects toward its pro-inflammatory antagonist, human neutrophil elastase (HNE). The highly proteolytic enzyme HNE is released by polymorphonuclear leukocytes (PMNs) during inflammatory processes and can cause host tissue destruction and pain. The high potential of this study is based on a simultaneous intra- and extracellular application of AT-functionalized LbL carriers. Carrier application in PMNs results in significant HNE inhibition within 21 h. Microcarriers phagocytosed by PMNs were time dependently decomposed inside phagolysosomes, which enables the step-by-step release of AT. Here, AT inactivates HNE before being released, which avoids a further HNE concentration increase in the extracellular space and, subsequently, reduces the risk of further tissue destruction. Additionally, AT surface-functionalized microcarriers allow the inhibition of already released HNE in the extracellular space. Finally, this study demonstrates the successful application of LbL carriers for a concurrent extra- and intracellular HNE inhibition aiming the rebalancing of protease and antiprotease concentrations and the subsequent termination of chronic inflammations.
Collapse
Affiliation(s)
- Uta Reibetanz
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstr 16-18, 04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Shoshi A, Schotter J, Schroeder P, Milnera M, Ertl P, Charwat V, Purtscher M, Heer R, Eggeling M, Reiss G, Brueckl H. Magnetoresistive-based real-time cell phagocytosis monitoring. Biosens Bioelectron 2012; 36:116-22. [PMID: 22560105 DOI: 10.1016/j.bios.2012.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
The uptake of large particles by cells (phagocytosis) is an important factor in cell biology and also plays a major role in biomedical applications. So far, most methods for determining the phagocytic properties rely on cell-culture incubation and end-point detection schemes. Here, we present a lab-on-a-chip system for real-time monitoring of magnetic particle uptake by human fibroblast (NHDF) cells. It is based on recording the time evolution of the average position and distribution of magnetic particles during phagocytosis by giant-magnetoresistive (GMR) type sensors. We employ particles with a mean diameter of 1.2 μm and characterize their phagocytosis-relevant properties. Our experiments at physiological conditions reveal a cellular uptake rate of 45 particles per hour and show that phagocytosis reaches saturation after an average uptake time of 27.7h. Moreover, reference phagocytosis experiments at 4°C are carried out to mimic environmental or disease related inhibition of the phagocytic behavior, and our measurements clearly show that we are able to distinguish between cell-membrane adherent and phagocytosed magnetic particles. Besides the demonstrated real-time monitoring of phagocytosis mechanisms, additional nano-biointerface studies can be realized, including on-chip cell adhesion/spreading as well as cell migration, attachment and detachment dynamics. This versatility shows the potential of our approach for providing a multifunctional platform for on-chip cell analysis.
Collapse
Affiliation(s)
- A Shoshi
- AIT Austrian Institute of Technology, Molecular Diagnostics, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gil PR, Nazarenus M, Ashraf S, Parak WJ. pH-sensitive capsules as intracellular optical reporters for monitoring lysosomal pH changes upon stimulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:943-948. [PMID: 22315201 DOI: 10.1002/smll.201101780] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Indexed: 05/31/2023]
Abstract
The concept of a long-term sensor for ion changes in the lysosome is presented. The sensor is made by layer-by-layer assembly of oppositely charged polyelectrolytes around ion-sensitive fluorophores, in this case for protons. The sensor is spontaneously incorporated by cells and resides over days in the lysosome. Intracellular changes of the concentration of protons upon cellular stimulation with pH-active agents are monitored by read-out of the sensor fluorescence at real time. With help of this sensor concept it is demonstrated that the different agents used (Monensin, Chloroquine, Bafilomycin A1, Amiloride) possessed different kinetics and mechanisms of action in affecting the intracellular pH values.
Collapse
Affiliation(s)
- Pilar Rivera Gil
- Fachbereich Physik and WZMW, Philipps Universität Marburg, Renthof 7, D-35037, Marburg, Germany
| | | | | | | |
Collapse
|
47
|
Baldassarre F, Vergaro V, Scarlino F, De Santis F, Lucarelli G, Torre AD, Ciccarella G, Rinaldi R, Giannelli G, Leporatti S. Polyelectrolyte Capsules as Carriers for Growth Factor Inhibitor Delivery to Hepatocellular Carcinoma. Macromol Biosci 2012; 12:656-65. [DOI: 10.1002/mabi.201100457] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/22/2011] [Indexed: 12/31/2022]
|
48
|
Zelikin AN, Städler B. Intelligent Polymer Thin Films and Coatings for Drug Delivery. INTELLIGENT SURFACES IN BIOTECHNOLOGY 2012:243-290. [DOI: 10.1002/9781118181249.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Tong W, Song X, Gao C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 2012; 41:6103-24. [DOI: 10.1039/c2cs35088b] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
De Koker S, De Cock LJ, Rivera-Gil P, Parak WJ, Auzély Velty R, Vervaet C, Remon JP, Grooten J, De Geest BG. Polymeric multilayer capsules delivering biotherapeutics. Adv Drug Deliv Rev 2011; 63:748-61. [PMID: 21504772 DOI: 10.1016/j.addr.2011.03.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/13/2011] [Accepted: 03/30/2011] [Indexed: 12/18/2022]
Abstract
Polymeric multilayer capsules have emerged as a novel drug delivery platform. These capsules are fabricated through layer-by-layer sequential deposition of polymers onto a sacrificial core template followed by the decomposition of this core yielding hollow capsules. The resulting nanometer thin membrane is permselective, allowing diffusion of water and ions but excluding larger molecules. Moreover, the sequential fabrication procedure allows a precise fine-tuning of the capsules' physicochemical and biological properties. These properties have put polymeric multilayer capsules under major attention in the field of drug delivery. In this review we focus on polymeric multilayer capsule mediated delivery of biotechnological macromolecular drugs such as peptides, proteins and nucleic acids.
Collapse
|