1
|
Jacinto C, Javed Y, Lavorato G, Tarraga WA, Conde BIC, Orozco JM, Picco AS, Garcia J, Dias CSB, Malik S, Sharma SK. Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications. NANOSCALE ADVANCES 2025:d5na00195a. [PMID: 40255989 PMCID: PMC12004083 DOI: 10.1039/d5na00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/22/2025]
Abstract
Safe implementation of nanotechnology-based products in biomedical applications necessitates an extensive understanding of the (bio)transformations that nanoparticles undergo in living organisms. The long-term fate in the body is a crucial consideration because it governs potential risks for human health. To accurately predict the life cycle of nanoparticles, their fate after administration into the body-including their (bio)transformations, persistence, and biodegradation-needs to be thoroughly evaluated. Magnetic iron oxide nanoparticles (MIONPs) can enter the body through various routes, including inhalation, ingestion, dermal absorption, and injection. Microscale and nanoscale studies are performed to observe nanomaterial biotransformations and their effect on clinically relevant properties. Researchers are utilizing high-resolution TEM for nanoscale monitoring of the nanoparticles while microscale follow-up approaches comprise quantification tools at the whole organism level and the molecular level. Nanoparticle-cell interactions, including cellular uptake and intracellular trafficking, are key to understanding nanoparticle accumulation in cells and organs. Prolonged accumulation may induce cell stress and nanoparticle toxicity, often mediated through oxidative stress and inflammation. In this review article, the journey of nanoparticles in the body is depicted and their biotransformations and final fate are discussed. Immunohistochemical techniques are particularly valuable in tracking nanoparticle distribution within tissues and assessing their impact at the cellular level. A thorough description of a wide range of characterization techniques is provided to unveil the fate and biotransformations of clinically relevant nanoparticles and to assist in their design for successful biomedical applications.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas 57072-900 Maceió AL Brazil
| | - Yasir Javed
- Department of Physics, University of Agriculture Faisalabad Pakistan
| | - Gabriel Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Wilson A Tarraga
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | | | - Juan Manuel Orozco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Joel Garcia
- Department of Chemistry, De La Salle University Manila Philippines
| | - Carlos Sato Baraldi Dias
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans 45067 France
- Department of Biotechnology, Baba Farid College Bathinda 151001 India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab Bathinda 151401 India
- Department of Physics, Federal University of Maranhão São Luís 65080-805 Brazil
| |
Collapse
|
2
|
Soliman MG, Trinh DN, Ravagli C, Meleady P, Henry M, Movia D, Doumett S, Cappiello L, Prina-Mello A, Baldi G, Monopoli MP. Development of a fast and simple method for the isolation of superparamagnetic iron oxide nanoparticles protein corona from protein-rich matrices. J Colloid Interface Sci 2024; 659:503-519. [PMID: 38184993 DOI: 10.1016/j.jcis.2023.11.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
The adsorption of proteins onto the surface of nanoparticle (NP) leads to the formation of the so-called "protein corona" as consisting both loosely and tightly bound proteins. It is well established that the biological identity of NPs that may be acquired after exposure to a biological matrix is mostly provided by the components of the hard corona as the pristine surface is generally less accessible for binding. For that reason, the isolation and the characterisation of the NP-corona complexes and identification of the associated biomolecules can help in understanding its biological behaviour. Established methods for the isolation of the NP-HC complexes are time-demanding and can lead to different results based on the isolation method applied. Herein, we have developed a fast and simple method using ferromagnetic beads isolated from commercial MACS column and used for the isolation of superparamagnetic NP following exposure to different types of biological milieu. We first demonstrated the ability to easily isolate superparamagnetic iron oxide NPs (IONPs) from different concentrations of human blood plasma, and also tested the method on the corona isolation using more complex biological matrices, such as culture medium containing pulmonary mucus where the ordinary corona methods cannot be applied. Our developed method showed less than 20% difference in plasma corona composition when compared with centrifugation. It also showed effective isolation of NP-HC complexes from mucus-containing culture media upon comparing with centrifugation and MACS columns, which failed to wash out the unbound proteins. Our study was supported with a full characterisation profile including dynamic light scattering, nanoparticle tracking analysis, analytical disk centrifuge, and zeta potentials. The biomolecules/ proteins composing the HC were separated by vertical gel electrophoresis and subsequently analysed by liquid chromatography-tandem mass spectrometry. In addition to our achievements in comparing different isolation methods to separate IONPs with corona from human plasma, this is the first study that provides a complete characterisation profile of particle protein corona after exposure in vitro to pulmonary mucus-containing culture media.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland; Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Duong N Trinh
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland
| | - Costanza Ravagli
- Research Center Colorobbia, Cericol, Colorobbia Consulting, Via Pietramarina 123, 50053, Vinci, Florence, Italy
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dania Movia
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin 8, Ireland; Applied Radiation Therapy Trinity (ARTT), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin 8, Ireland
| | - Saer Doumett
- Research Center Colorobbia, Cericol, Colorobbia Consulting, Via Pietramarina 123, 50053, Vinci, Florence, Italy
| | - Laura Cappiello
- Research Center Colorobbia, Cericol, Colorobbia Consulting, Via Pietramarina 123, 50053, Vinci, Florence, Italy
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin 8, Ireland; Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Giovanni Baldi
- Research Center Colorobbia, Cericol, Colorobbia Consulting, Via Pietramarina 123, 50053, Vinci, Florence, Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland.
| |
Collapse
|
3
|
da Costa Marques R, Hüppe N, Speth KR, Oberländer J, Lieberwirth I, Landfester K, Mailänder V. Proteomics reveals time-dependent protein corona changes in the intracellular pathway. Acta Biomater 2023; 172:355-368. [PMID: 37839632 DOI: 10.1016/j.actbio.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
The intracellular protein corona has not been fully investigated in the field of nanotechnology-biology (nano-bio) interactions. To effectively understand intracellular protein corona formation and dynamics, we established a workflow to isolate the intracellular protein corona at different uptake times of two nanoparticles - magnetic hydroxyethyl starch nanoparticles (HES-NPs) and magnetic human serum albumin nanocapsules (HSA-NCs). We performed label-free quantitative LC-MS proteomics to analyze the composition of the intracellular protein corona and correlated our findings with results from conventional methods for intracellular trafficking of nanocarriers, such as flow cytometry, transmission electron microscopy (TEM), and confocal microscopy (cLSM). We determined the evolution of the intracellular protein corona. At different time stages the protein corona of the HES-NPs with a slower uptake changed, but there were fewer changes in that of the HSA-NCs with a more rapid uptake. We identified proteins that are involved in macropinocytosis (RAC1, ASAP2) as well as caveolin. This was confirmed by blocking experiments and by TEM studies. The investigated nanocarrier predominantly trafficked from early endosomes as determined by RAB5 identification in proteomics and in cLSM to late endosomes/lysosomes (RAB7, LAMP1, cathepsin K and HSP 90-beta) We further demonstrated differences between nanoparticles with slower and faster uptake kinetics and determined the associated proteome at different time points. Analysis of the intracellular protein corona provides us with effective data to examine the intracellular trafficking of nanocarriers used in efficient drug delivery and intracellular applications. STATEMENT OF SIGNIFICANCE: Many research papers focus on the protein corona on nanoparticles formed in biological fluids, but there are hardly any articles dealing with proteins that come in contact with nanoparticles inside cells. The "intracellular protein corona" studied here is a far more complex and highly demanding field. Most nanocarriers are designed to be taken up into cells. Given this, we chose two different nanocarriers to reveal changes in the proteins in dendritic cells during contact at specific times. Further studies will allow us to examine molecular target proteins using these methods. Our research is a significant addition towards the goal of understanding and thus improving the efficacy of drug nanocarriers.
Collapse
Affiliation(s)
- Richard da Costa Marques
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Natkritta Hüppe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kai R Speth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jennifer Oberländer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
4
|
Portilla Y, Fernández-Afonso Y, Pérez-Yagüe S, Mulens-Arias V, Morales MP, Gutiérrez L, Barber DF. Different coatings on magnetic nanoparticles dictate their degradation kinetics in vivo for 15 months after intravenous administration in mice. J Nanobiotechnology 2022; 20:543. [PMID: 36578018 PMCID: PMC9795732 DOI: 10.1186/s12951-022-01747-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The surface coating of iron oxide magnetic nanoparticle (MNPs) drives their intracellular trafficking and degradation in endolysosomes, as well as dictating other cellular outcomes. As such, we assessed whether MNP coatings might influence their biodistribution, their accumulation in certain organs and their turnover therein, processes that must be understood in vivo to optimize the design of nanoformulations for specific therapeutic/diagnostic needs. RESULTS In this study, three different MNP coatings were analyzed, each conferring the identical 12 nm iron oxide cores with different physicochemical characteristics: 3-aminopropyl-triethoxysilane (APS), dextran (DEX), and dimercaptosuccinic acid (DMSA). When the biodistribution of these MNPs was analyzed in C57BL/6 mice, they all mainly accumulated in the spleen and liver one week after administration. The coating influenced the proportion of the MNPs in each organ, with more APS-MNPs accumulating in the spleen and more DMSA-MNPs accumulating in the liver, remaining there until they were fully degraded. The changes in the physicochemical properties of the MNPs (core size and magnetic properties) was also assessed during their intracellular degradation when internalized by two murine macrophage cell lines. The decrease in the size of the MNPs iron core was influenced by their coating and the organ in which they accumulated. Finally, MNP degradation was analyzed in the liver and spleen of C57BL/6 mice from 7 days to 15 months after the last intravenous MNP administration. CONCLUSIONS The MNPs degraded at different rates depending on the organ and their coating, the former representing the feature that was fundamental in determining the time they persisted. In the liver, the rate of degradation was similar for all three coatings, and it was faster than in the spleen. This information regarding the influence of coatings on the in vivo degradation of MNPs will help to choose the best coating for each biomedical application depending on the specific clinical requirements.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Yilian Fernández-Afonso
- Departamento de Química Analítica, Instituto de Nanociencia Y Materiales de Aragón (INMA), Universidad de Zaragoza, CSIC and CIBER-BBN, 50018, Zaragoza, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
- Integrative Biomedical Materials and Nanomedicine Laboratory, Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University, Carrer Doctor Aiguader 88, 08003, Barcelona, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049, Madrid, Spain
| | - Lucía Gutiérrez
- Departamento de Química Analítica, Instituto de Nanociencia Y Materiales de Aragón (INMA), Universidad de Zaragoza, CSIC and CIBER-BBN, 50018, Zaragoza, Spain.
| | - Domingo F Barber
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Kotakadi SM, Borelli DPR, Nannepaga JS. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front Bioeng Biotechnol 2022; 10:789016. [PMID: 35547173 PMCID: PMC9081342 DOI: 10.3389/fbioe.2022.789016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetotactic bacteria (MTB) are aquatic microorganisms have the ability to biomineralize magnetosomes, which are membrane-enclosed magnetic nanoparticles. Magnetosomes are organized in a chain inside the MTB, allowing them to align with and traverse along the earth’s magnetic field. Magnetosomes have several potential applications for targeted cancer therapy when isolated from the MTB, including magnetic hyperthermia, localized medication delivery, and tumour monitoring. Magnetosomes features and properties for various applications outperform manufactured magnetic nanoparticles in several ways. Similarly, the entire MTB can be regarded as prospective agents for cancer treatment, thanks to their flagella’s ability to self-propel and the magnetosome chain’s ability to guide them. MTBs are conceptualized as nanobiots that can be guided and manipulated by external magnetic fields and are driven to hypoxic areas, such as tumor sites, while retaining the therapeutic and imaging characteristics of isolated magnetosomes. Furthermore, unlike most bacteria now being studied in clinical trials for cancer treatment, MTB are not pathogenic but might be modified to deliver and express certain cytotoxic chemicals. This review will assess the current and prospects of this burgeoning research field and the major obstacles that must be overcome before MTB can be successfully used in clinical treatments.
Collapse
Affiliation(s)
- Sai Manogna Kotakadi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | | | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
- *Correspondence: John Sushma Nannepaga, , orcid.org/0000-0002-8739-9936
| |
Collapse
|
6
|
Hoang KNL, Wheeler KE, Murphy CJ. Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles. Anal Chem 2022; 94:4737-4746. [PMID: 35258278 DOI: 10.1021/acs.analchem.1c05243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Upon exposure to a biological environment, nanoparticles (NPs) acquire biomolecular coatings, the most studied of which is the protein corona. This protein corona gives NPs a new biological identity that will determine various biological responses including cellular uptake, biodistribution, and toxicity. The standard method to isolate NPs from a biological matrix in order to study their coronas is centrifugation, but more gentle means of retrieval may enable deeper understanding of both irreversibly bound hard coronas and more loosely bound soft coronas. In this study, magnetic gold-coated iron oxide NPs were incubated with rainbow trout gill cell total protein extracts and mass spectrometric proteomic analysis was conducted to determine the composition of the protein coronas isolated by either centrifugation or magnetic retrieval. The number of washes were varied to strip away the soft coronas and isolate the hard corona. Hundreds of proteins were adsorbed to the NPs. Some proteins were common to all isolation methods and many others were particular to the isolation method. Some qualitative trends in protein character were discerned from quantitative proteomic analyses, but more importantly, a new kind of protein corona was identified, mixed corona, in which the labile or inert nature of the protein-NP interaction is dependent upon sample history.
Collapse
Affiliation(s)
- Khoi Nguyen L Hoang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Portilla Y, Mulens-Arias V, Paradela A, Ramos-Fernández A, Pérez-Yagüe S, Morales MP, Barber DF. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials 2022; 281:121365. [PMID: 35038611 DOI: 10.1016/j.biomaterials.2022.121365] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Magnetic nanoparticles (MNPs) are potential theranostic tools that are biodegraded through different endocytic pathways. However, little is known about the endolysosomal network through which MNPs transit and the influence of the surface coating in this process. Here, we studied the intracellular transit of two MNPs with identical iron oxide core size but with two distinct coatings: 3-aminopropyl-trietoxysilane (APS) and dimercaptosuccinic acid (DMSA). Using endolysosomal markers and a high throughput analysis of the associated proteome, we tracked the MNPs intracellularly in two different mouse cell lines, RAW264.7 (macrophages) and Pan02 (tumor cells). We did not detect differences in the MNP trafficking kinetics nor in the MNP-containing endolysosome phenotype in Pan02 cells. Nonetheless, DMSA-MNPs transited at slower rate than APS-MNPs in macrophages as measured by MNP accumulation in Rab7+ endolysosomes. Macrophage DMSA-MNP-containing endolysosomes had a higher percentage of lytic enzymes and catalytic proteins than their APS-MNP counterparts, concomitantly with a V-type ATPase enrichment, suggesting an acidic nature. Consequently, more autophagic vesicles are induced by DMSA-MNPs in macrophages, enhancing the expression of iron metabolism-related genes and proteins. Therefore, unlike Pan02 cells, the MNP coating appears to influence the intracellular trafficking rate and the endolysosome nature in macrophages. These results highlight how the MNP coating can determine the nanoparticle intracellular fate and biodegradation in a cell-type bias.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain; Current address: Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University, PRBB, Carrer Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Antonio Ramos-Fernández
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Cursi L, Vercellino S, McCafferty MM, Sheridan E, Petseva V, Adumeau L, Dawson KA. Multifunctional superparamagnetic nanoparticles with a fluorescent silica shell for the in vitro study of bio-nano interactions at the subcellular scale. NANOSCALE 2021; 13:16324-16338. [PMID: 34570135 DOI: 10.1039/d1nr04582b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the high level of interest in bio-nano interactions, detailed intracellular mechanisms that govern nanoscale recognition and signalling still need to be unravelled. Magnetic nanoparticles (NPs) are valuable tools for elucidating complex intracellular bio-nano interactions. Using magnetic NPs, it is possible to isolate cell compartments that the particles interact with during intracellular trafficking. Studies at the subcellular scale rely heavily on optical microscopy; therefore, combining the advantages of magnetic recovery with excellent imaging properties to allow intracellular NP tracking is of utmost interest for the nanoscience field. However, it is a challenge to prepare highly magnetic NPs with a suitable fluorescence for the fluorescence imaging techniques typically used for biological studies. Here we present the synthesis of biocompatible multifunctional superparamagnetic multicore NPs with a bright fluorescent silica shell. The incorporation of an organic fluorophore in the silica surrounding the magnetic multicore was optimised to enable the particles to be tracked with the most common imaging techniques. To prevent dye loss resulting from silica dissolution in biological environments, which would reduce the time that the particles could be tracked, we added a thin dense encapsulating silica layer to the NPs which is highly stable in biological media. The synthesised multifunctional nanoparticles were evaluated in cell uptake experiments in which their intracellular location could be clearly identified using fluorescence imaging microscopy, even after 3 days. The magnetic properties of the iron oxide core enabled both efficient recovery of the NPs from the intracellular environment and the extraction of cell compartments involved in their intracellular trafficking. Thus, the NPs reported here provide a promising tool for the study of the processes regulating bio-nano interactions.
Collapse
Affiliation(s)
- Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Silvia Vercellino
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mura M McCafferty
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Emily Sheridan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Vanya Petseva
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Dong P, Stellmacher J, Bouchet LM, Nieke M, Kumar A, Osorio‐Blanco ER, Nagel G, Lohan SB, Teutloff C, Patzelt A, Schäfer‐Korting M, Calderón M, Meinke MC, Alexiev U. A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pin Dong
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Freie Universität Berlin Institute of Pharmacy Berlin Germany
| | - Johannes Stellmacher
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| | - Lydia M. Bouchet
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | - Marius Nieke
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
- Humboldt-Universität zu Berlin Institute of Biology Berlin Germany
| | - Amit Kumar
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | | | - Gregor Nagel
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Christian Teutloff
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | | | - Marcelo Calderón
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
- POLYMAT Faculty of Chemistry University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián Spain
- IKERBASQUE Basque Foundation for Science 48013 Bilbao Spain
| | - Martina C. Meinke
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ulrike Alexiev
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| |
Collapse
|
11
|
Dong P, Stellmacher J, Bouchet LM, Nieke M, Kumar A, Osorio‐Blanco ER, Nagel G, Lohan SB, Teutloff C, Patzelt A, Schäfer‐Korting M, Calderón M, Meinke MC, Alexiev U. A Dual Fluorescence-Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM-EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:14938-14944. [PMID: 33544452 PMCID: PMC8251738 DOI: 10.1002/anie.202012852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/27/2021] [Indexed: 12/30/2022]
Abstract
Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo.
Collapse
Affiliation(s)
- Pin Dong
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Freie Universität BerlinInstitute of PharmacyBerlinGermany
| | - Johannes Stellmacher
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| | - Lydia M. Bouchet
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | - Marius Nieke
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
- Humboldt-Universität zu BerlinInstitute of BiologyBerlinGermany
| | - Amit Kumar
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | | | - Gregor Nagel
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Christian Teutloff
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Marcelo Calderón
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
- POLYMATFaculty of ChemistryUniversity of the Basque CountryUPV/EHU20018Donostia-San SebastiánSpain
- IKERBASQUEBasque Foundation for Science48013BilbaoSpain
| | - Martina C. Meinke
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Ulrike Alexiev
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| |
Collapse
|
12
|
Sheridan E, Vercellino S, Cursi L, Adumeau L, Behan JA, Dawson KA. Understanding intracellular nanoparticle trafficking fates through spatiotemporally resolved magnetic nanoparticle recovery. NANOSCALE ADVANCES 2021; 3:2397-2410. [PMID: 36134166 PMCID: PMC9419038 DOI: 10.1039/d0na01035a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/21/2021] [Indexed: 05/08/2023]
Abstract
The field of nanomedicine has the potential to be a game-changer in global health, with possible applications in prevention, diagnostics, and therapeutics. However, despite extensive research focus and funding, the forecasted explosion of novel nanomedicines is yet to materialize. We believe that clinical translation is ultimately hampered by a lack of understanding of how nanoparticles really interact with biological systems. When placed in a biological environment, nanoparticles adsorb a biomolecular layer that defines their biological identity. The challenge for bionanoscience is therefore to understand the evolution of the interactions of the nanoparticle-biomolecules complex as the nanoparticle is trafficked through the intracellular environment. However, to progress on this route, scientists face major challenges associated with isolation of specific intracellular compartments for analysis, complicated by the diversity of trafficking events happening simultaneously and the lack of synchronization between individual events. In this perspective article, we reflect on how magnetic nanoparticles can help to tackle some of these challenges as part of an overall workflow and act as a useful platform to investigate the bionano interactions within the cell that contribute to this nanoscale decision making. We discuss both established and emerging techniques for the magnetic extraction of nanoparticles and how they can potentially be used as tools to study the intracellular journey of nanomaterials inside the cell, and their potential to probe nanoscale decision-making events. We outline the inherent limitations of these techniques when investigating particular bio-nano interactions along with proposed strategies to improve both specificity and resolution. We conclude by describing how the integration of magnetic nanoparticle recovery with sophisticated analysis at the single-particle level could be applied to resolve key questions for this field in the future.
Collapse
Affiliation(s)
- Emily Sheridan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Silvia Vercellino
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin Belfield Dublin 4 Ireland
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - James A Behan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
13
|
Innes E, Yiu HHP, McLean P, Brown W, Boyles M. Simulated biological fluids - a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit Rev Toxicol 2021; 51:217-248. [PMID: 33905298 DOI: 10.1080/10408444.2021.1903386] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of simulated biological fluids (SBFs) is a promising in vitro technique to better understand the release mechanisms and possible in vivo behaviour of materials, including fibres, metal-containing particles and nanomaterials. Applications of SBFs in dissolution tests allow a measure of material biopersistence or, conversely, bioaccessibility that in turn can provide a useful inference of a materials biodistribution, its acute and long-term toxicity, as well as its pathogenicity. Given the wide range of SBFs reported in the literature, a review was conducted, with a focus on fluids used to replicate environments that may be encountered upon material inhalation, including extracellular and intracellular compartments. The review aims to identify when a fluid design can replicate realistic biological conditions, demonstrate operation validation, and/or provide robustness and reproducibility. The studies examined highlight simulated lung fluids (SLFs) that have been shown to suitably replicate physiological conditions, and identify specific components that play a pivotal role in dissolution mechanisms and biological activity; including organic molecules, redox-active species and chelating agents. Material dissolution was not always driven by pH, and likewise not only driven by SLF composition; specific materials and formulations correspond to specific dissolution mechanisms. It is recommended that SLF developments focus on biological predictivity and if not practical, on better biological mimicry, as such an approach ensures results are more likely to reflect in vivo behaviour regardless of the material under investigation.
Collapse
Affiliation(s)
- Emma Innes
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Humphrey H P Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - William Brown
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | | |
Collapse
|
14
|
Zharkov MN, Brodovskaya EP, Kulikov OA, Gromova EV, Ageev VP, Atanova AV, Kozyreva ZV, Tishin AM, Pyatakov AP, Pyataev NA, Sukhorukov GB. Enhanced cytotoxicity caused by AC magnetic field for polymer microcapsules containing packed magnetic nanoparticles. Colloids Surf B Biointerfaces 2021; 199:111548. [DOI: 10.1016/j.colsurfb.2020.111548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/28/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
15
|
Wang C, Chen B, He M, Hu B. Composition of Intracellular Protein Corona around Nanoparticles during Internalization. ACS NANO 2021; 15:3108-3122. [PMID: 33570905 DOI: 10.1021/acsnano.0c09649] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been well established that the early-stage interactions of nanoparticles with cells are governed by the extracellular protein corona. However, after entering into the cells, the evolving protein corona is the key to subsequent processing of nanoparticles by cells. To identify the protein corona around intracellular nanoparticles, it is essential to maintain its original compositions during cell treatment. Herein, we develop a paraformaldehyde (PFA) cross-linking strategy to stabilize corona compositions when extracting protein coronas from cells, providing original information on protein coronas around intercellular gold nanoparticles (AuNPs). The stability of the protein corona after PFA cross-linking was carefully investigated with several characterization methods, and the results demonstrate that PFA cross-linking successfully prevents the dissociation and exchange of corona proteins. Then the recovered intracellular protein corona around AuNPs from living HepG2 cells with a PFA cross-linking strategy was subjected to nanoHPLC-MS/MS for proteomic analysis. It was found that the compositions of intracellular protein coronas are dominated by cell-derived proteins and undergo significant variation of protein species and amounts over time during internalization. Time-resolved analysis provides relevant proteins involved in nanoparticle cellular uptake and transportation, indicating that AuNPs are endocytosed mainly by a clathrin-mediated uptake mechanism and directed into an endolysosomal pathway toward their final destination. Such proteomic-based results are verified by pharmacological inhibition and TEM imaging analysis. This work provides a universal strategy to study compositions of protein corona around intercellular nanoparticles and could be a footstone to link the formation of protein corona around nanoparticles to their biological function in cells.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
17
|
King AM, Bray C, Hall SCL, Bear JC, Bogart LK, Perrier S, Davies GL. Exploring precision polymers to fine-tune magnetic resonance imaging properties of iron oxide nanoparticles. J Colloid Interface Sci 2020; 579:401-411. [PMID: 32615483 DOI: 10.1016/j.jcis.2020.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/14/2020] [Accepted: 06/07/2020] [Indexed: 11/27/2022]
Abstract
The use of bio-polymers as stabilising agents for iron oxide-based negative magnetic resonance imaging (MRI) contrast agents has become popular in recent years, however the wide polydispersity of biologically-derived and commercially available polymers limits the ability to produce truly tuneable and reproducible behaviour, a major challenge in this area. In this work, stable colloids of iron oxide nanoparticles were prepared utilising precision-engineered bio-polymer mimics, poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) polymers, with controlled narrow polydispersity molecular weights, as templating stabilisers. In addition to producing magnetic colloids with excellent MRI contrast capabilities (r2 values reaching 434.2 mM-1 s-1 at 25 °C and 23 MHz, several times higher than similar commercial analogues), variable field relaxometry provided unexpected important insights into the dynamic environment of the hydrated materials, and hence their exceptional MRI behaviour. Thanks to the polymer's templating backbone and flexible conformation in aqueous suspension, nanocomposites appear to behave as "multi-core" clustered species, enhancing interparticle interactions whilst retaining water diffusion, boosting relaxation properties at low frequency. This clustering behaviour, evidenced by small-angle X-ray scattering, and strong relaxometric response, was fine-tuned using the well-defined molecular weight polymer species with precise iron to polymer ratios. By also showing negligible haemolytic activity, these nanocomposites exhibit considerable potential for MRI diagnostics.
Collapse
Affiliation(s)
- Aaron M King
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Caroline Bray
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Stephen C L Hall
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Joseph C Bear
- School of Life Science, Pharmacy and Chemistry, Kingston University, Penryhn Road, Kingston-upon-Thames, KT1 2EE, UK
| | - Lara K Bogart
- UCL Healthcare Biomagnetics Laboratory, 21 Albemarle Street, London W1S 4BS, UK
| | - Sebastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Gemma-Louise Davies
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
18
|
Alirezaie Alavijeh A, Barati M, Barati M, Abbasi Dehkordi H. The Potential of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer Based on Body Magnetic Field and Organ-on-the-Chip. Adv Pharm Bull 2019; 9:360-373. [PMID: 31592054 PMCID: PMC6773933 DOI: 10.15171/apb.2019.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is an abnormal cell growth which tends to proliferate in an uncontrolled way and, in some cases, leads to metastasis. If cancer is left untreated, it can immediately cause death. The use of magnetic nanoparticles (MNPs) as a drug delivery system will enable drugs to target tissues and cell types precisely. This study describes usual strategies and consideration for the synthesis of MNPs and incorporates payload drug on MNPs. They have advantages such as visual targeting and delivering which will be discussed in this review. In addition, we considered body magnetic field to make drug delivery process more effective and safer by the application of MNPs and tumor-on-chip.
Collapse
Affiliation(s)
- Ali Alirezaie Alavijeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Barati
- Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hussein Abbasi Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
19
|
Yang H, Wang M, Zhang Y, Liu X, Yu S, Guo Y, Yang S, Yang L. Detailed insight into the formation of protein corona: Conformational change, stability and aggregation. Int J Biol Macromol 2019; 135:1114-1122. [DOI: 10.1016/j.ijbiomac.2019.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/25/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
|
20
|
Mejías R, Hernández Flores P, Talelli M, Tajada-Herráiz JL, Brollo MEF, Portilla Y, Morales MP, Barber DF. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:340-355. [PMID: 30525392 DOI: 10.1021/acsami.8b18451] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell-nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells.
Collapse
Affiliation(s)
- Raquel Mejías
- Department of Immunology and Oncology, and NanoBiomedicine Initiative , Centro Nacional de Biotecnología (CNB/CSIC) , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Patricia Hernández Flores
- Department of Immunology and Oncology, and NanoBiomedicine Initiative , Centro Nacional de Biotecnología (CNB/CSIC) , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Marina Talelli
- Department of Immunology and Oncology, and NanoBiomedicine Initiative , Centro Nacional de Biotecnología (CNB/CSIC) , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - José L Tajada-Herráiz
- Department of Immunology and Oncology, and NanoBiomedicine Initiative , Centro Nacional de Biotecnología (CNB/CSIC) , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - María E F Brollo
- Department of Energy, Environment and Health , Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC) , Sor Juana Inés de la Cruz 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Yadileiny Portilla
- Department of Immunology and Oncology, and NanoBiomedicine Initiative , Centro Nacional de Biotecnología (CNB/CSIC) , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - María P Morales
- Department of Energy, Environment and Health , Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC) , Sor Juana Inés de la Cruz 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative , Centro Nacional de Biotecnología (CNB/CSIC) , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| |
Collapse
|
21
|
In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link? Biotechnol Adv 2017; 35:889-904. [DOI: 10.1016/j.biotechadv.2017.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
|
22
|
Davies GL, Govan J, Tekoriute R, Serrano-García R, Nolan H, Farrell D, Hajatpour O, Gun'ko YK. Magnetically activated adhesives: towards on-demand magnetic triggering of selected polymerisation reactions. Chem Sci 2017; 8:7758-7764. [PMID: 29163912 PMCID: PMC5674535 DOI: 10.1039/c7sc03474a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/17/2017] [Indexed: 11/21/2022] Open
Abstract
We demonstrate a new strategy to inhibit and trigger polymerisation of an adhesive formulation, utilising colloidal core@shell CoFe2O4@MnO2 magnetic nanoparticles.
On-demand initiation of chemical reactions is becoming increasingly popular in many areas. The use of a magnetic field to trigger reactions is an intriguing concept, with vast potential in both research and industrial settings, though it remains a challenge as yet unsolved. Here we report the first example of on-demand magnetic activation of a polymerisation process using an anaerobic adhesive formulation as an example of this new approach toward triggering polymerisation reactions using an external magnetic field. Our strategy involves the use of a colloidal system comprising functional methacrylate ester monomers, peroxide and CuII-salt as polymerisation initiators and magnetic nanoparticles coated with an oxidising shell. This unique combination prevents reduction of the reactive transition metal (CuII) ion by the metal substrates (steel or aluminium) to be joined – hence inhibiting the redox radical initiated cationic polymerisation reaction and efficiently preventing adhesion. The polymerisation and corresponding adhesion process can be triggered by removal of the functional magnetic particles using a permanent external magnet either prior to formulation application or at the joint to be adhered, enabling the polymerisation to proceed through CuII-mediated reduction. This new approach enables on-demand magnetically-triggered reaction initiation and holds potential for a range of useful applications in chemistry, materials science and relevant industrial manufacturing.
Collapse
Affiliation(s)
- Gemma-Louise Davies
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Joseph Govan
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland .
| | - Renata Tekoriute
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland .
| | - Raquel Serrano-García
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland .
| | - Hugo Nolan
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland .
| | - David Farrell
- Henkel Ireland Operations & Research Limited , Tallaght Business Park, Whitestown, Tallaght , Dublin 24 , Ireland
| | - Ory Hajatpour
- Henkel Ireland Operations & Research Limited , Tallaght Business Park, Whitestown, Tallaght , Dublin 24 , Ireland
| | - Yurii K Gun'ko
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland . .,ITMO University , 197101 , St. Petersburg , Russia
| |
Collapse
|
23
|
Ma X, Hartmann R, Jimenez de Aberasturi D, Yang F, Soenen SJH, Manshian BB, Franz J, Valdeperez D, Pelaz B, Feliu N, Hampp N, Riethmüller C, Vieker H, Frese N, Gölzhäuser A, Simonich M, Tanguay RL, Liang XJ, Parak WJ. Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. ACS NANO 2017; 11:7807-7820. [PMID: 28640995 DOI: 10.1021/acsnano.7b01760] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exposure of cells to colloidal nanoparticles (NPs) can have concentration-dependent harmful effects. Mostly, such effects are monitored with biochemical assays or probes from molecular biology, i.e., viability assays, gene expression profiles, etc., neglecting that the presence of NPs can also drastically affect cellular morphology. In the case of polymer-coated Au NPs, we demonstrate that upon NP internalization, cells undergo lysosomal swelling, alterations in mitochondrial morphology, disturbances in actin and tubulin cytoskeleton and associated signaling, and reduction of focal adhesion contact area and number of filopodia. Appropriate imaging and data treatment techniques allow for quantitative analyses of these concentration-dependent changes. Abnormalities in morphology occur at similar (or even lower) NP concentrations as the onset of reduced cellular viability. Cellular morphology is thus an important quantitative indicator to verify harmful effects of NPs to cells, without requiring biochemical assays, but relying on appropriate staining and imaging techniques.
Collapse
Affiliation(s)
- Xiaowei Ma
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | | | | | | | - Stefaan J H Soenen
- Biomedical MRI Unit/MoSAIC, Catholic University of Leuven , 3000 Leuven, Belgium
| | - Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Catholic University of Leuven , 3000 Leuven, Belgium
| | - Jonas Franz
- nAnostic Institute, Center for Nanotechnology, University of Münster , 48149 Münster, Germany
| | | | | | - Neus Feliu
- Department of Laboratory Medicine (LABMED), Karolinska Institutet , SE-17177 Stockholm, Sweden
- Medcom Advance S.A. , 08840 Barcelona, Spain
| | | | | | - Henning Vieker
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Natalie Frese
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Armin Gölzhäuser
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Michael Simonich
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University , Corvallis, Oregon 97331, United States
| | - Robert L Tanguay
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University , Corvallis, Oregon 97331, United States
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | | |
Collapse
|
24
|
Salili SM, Worden M, Nemati A, Miller DW, Hegmann T. Synthesis of Distinct Iron Oxide Nanomaterial Shapes Using Lyotropic Liquid Crystal Solvents. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E211. [PMID: 28767058 PMCID: PMC5575693 DOI: 10.3390/nano7080211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/20/2022]
Abstract
A room temperature reduction-hydrolysis of Fe(III) precursors such as FeCl₃ or Fe(acac)₃ in various lyotropic liquid crystal phases (lamellar, hexagonal columnar, or micellar) formed by a range of ionic or neutral surfactants in H₂O is shown to be an effective and mild approach for the preparation of iron oxide (IO) nanomaterials with several morphologies (shapes and dimensions), such as extended thin nanosheets with lateral dimensions of several hundred nanometers as well as smaller nanoflakes and nanodiscs in the tens of nanometers size regime. We will discuss the role of the used surfactants and lyotropic liquid crystal phases as well as the shape and size differences depending upon when and how the resulting nanomaterials were isolated from the reaction mixture. The presented synthetic methodology using lyotropic liquid crystal solvents should be widely applicable to several other transition metal oxides for which the described reduction-hydrolysis reaction sequence is a suitable pathway to obtain nanoscale particles.
Collapse
Affiliation(s)
- Seyyed Muhammad Salili
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
| | - Matthew Worden
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA.
| | - Ahlam Nemati
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada.
| | - Torsten Hegmann
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA.
| |
Collapse
|
25
|
Shannahan J. The biocorona: a challenge for the biomedical application of nanoparticles. NANOTECHNOLOGY REVIEWS 2017; 6:345-353. [PMID: 29607287 PMCID: PMC5875931 DOI: 10.1515/ntrev-2016-0098] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Formation of the biocorona on the surface of nanoparticles is a significant obstacle for the development of safe and effective nanotechnologies, especially for nanoparticles with biomedical applications. Following introduction into a biological environment, nanoparticles are rapidly coated with biomolecules resulting in formation of the nanoparticle-biocorona. The addition of these biomolecules alters the nanoparticle's physicochemical characteristics, functionality, biodistribution, and toxicity. To synthesize effective nanotherapeutics and to more fully understand possible toxicity following human exposures, it is necessary to elucidate these interactions between the nanoparticle and the biological media resulting in biocorona formation. A thorough understanding of the mechanisms by which the addition of the biocorona governs nanoparticle-cell interactions is also required. Through elucidating the formation and the biological impact of the biocorona, the field of nanotechnology can reach its full potential. This understanding of the biocorona will ultimately allow for more effective laboratory screening of nanoparticles and enhanced biomedical applications. The importance of the nanoparticle-biocorona has been appreciated for a decade; however, there remain numerous future directions for research which are necessary for study. This perspectives article will summarize the unique challenges presented by the nanoparticle-biocorona and avenues of future needed investigation.
Collapse
Affiliation(s)
- Jonathan Shannahan
- Corresponding author: Jonathan Shannahan, School of Health Sciences, Purdue University, 550 Stadium Mall Dr. 47907, West Lafayette, Indiana, USA, Tel.: +765-494-2326,
| |
Collapse
|
26
|
Castagnola V, Cookman J, de Araújo JM, Polo E, Cai Q, Silveira CP, Krpetić Ž, Yan Y, Boselli L, Dawson KA. Towards a classification strategy for complex nanostructures. NANOSCALE HORIZONS 2017; 2:187-198. [PMID: 32260640 DOI: 10.1039/c6nh00219f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The range of possible nanostructures is so large and continuously growing, that collating and unifying the knowledge connected to them, including their biological activity, is a major challenge. Here we discuss a concept that is based on the connection of microscopic features of the nanomaterials to their biological impacts. We also consider what would be necessary to identify the features that control their biological interactions, and make them resemble each other in a biological context.
Collapse
Affiliation(s)
- V Castagnola
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Feliu N, Docter D, Heine M, Del Pino P, Ashraf S, Kolosnjaj-Tabi J, Macchiarini P, Nielsen P, Alloyeau D, Gazeau F, Stauber RH, Parak WJ. In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev 2017; 45:2440-57. [PMID: 26862602 DOI: 10.1039/c5cs00699f] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
What happens to inorganic nanoparticles (NPs), such as plasmonic gold or silver, superparamagnetic iron oxide, or fluorescent quantum dot NPs after they have been administrated to a living being? This review discusses the integrity, biodistribution, and fate of NPs after in vivo administration. The hybrid nature of the NPs is described, conceptually divided into the inorganic core, the engineered surface coating comprising of the ligand shell and optionally also bio-conjugates, and the corona of adsorbed biological molecules. Empirical evidence shows that all of these three compounds may degrade individually in vivo and can drastically modify the life cycle and biodistribution of the whole heterostructure. Thus, the NPs may be decomposed into different parts, whose biodistribution and fate would need to be analyzed individually. Multiple labeling and quantification strategies for such a purpose will be discussed. All reviewed data indicate that NPs in vivo should no longer be considered as homogeneous entities, but should be seen as inorganic/organic/biological nano-hybrids with complex and intricately linked distribution and degradation pathways.
Collapse
Affiliation(s)
- Neus Feliu
- Advanced Center for Translational Regenerative Medicine (ACTREM), Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Ear, Nose and Throat, Karolinska Institutet, Stockholm, Sweden and Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany.
| | - Dominic Docter
- Department of Nanobiomedicine, ENT/University Medical Center of Mainz, Mainz, Germany.
| | - Markus Heine
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Pablo Del Pino
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany. and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Física de la Materia Condensada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain and CIC biomaGUNE, 20009 Donostia-San Sebastián, Spain
| | - Sumaira Ashraf
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany.
| | - Jelena Kolosnjaj-Tabi
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot, Paris, France.
| | - Paolo Macchiarini
- Advanced Center for Translational Regenerative Medicine (ACTREM), Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Ear, Nose and Throat, Karolinska Institutet, Stockholm, Sweden
| | - Peter Nielsen
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS/Université Paris Diderot, Paris, France.
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot, Paris, France.
| | - Roland H Stauber
- Department of Nanobiomedicine, ENT/University Medical Center of Mainz, Mainz, Germany.
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany. and CIC biomaGUNE, 20009 Donostia-San Sebastián, Spain
| |
Collapse
|
28
|
Yue Y, Li X, Sigg L, Suter MJF, Pillai S, Behra R, Schirmer K. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnology 2017; 15:16. [PMID: 28245850 PMCID: PMC5331694 DOI: 10.1186/s12951-017-0254-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/22/2017] [Indexed: 12/05/2022] Open
Abstract
Background Silver nanoparticles (AgNP) are widely applied and can, upon use, be released into the aquatic environment. This raises concerns about potential impacts of AgNP on aquatic organisms. We here present a side by side comparison of the interaction of AgNP with two contrasting cell types: algal cells, using the algae Euglena gracilis as model, and fish cells, a cell line originating from rainbow trout (Oncorhynchus mykiss) gill (RTgill-W1). The comparison is based on the AgNP behavior in exposure media, toxicity, uptake and interaction with proteins. Results (1) The composition of exposure media affected AgNP behavior and toxicity to algae and fish cells. (2) The toxicity of AgNP to algae was mediated by dissolved silver while nanoparticle specific effects in addition to dissolved silver contributed to the toxicity of AgNP to fish cells. (3) AgNP did not enter into algal cells; they only adsorbed onto the cell surface. In contrast, AgNP were taken up by fish cells via endocytic pathways. (4) AgNP can bind to both extracellular and intracellular proteins and inhibit enzyme activity. Conclusion Our results showed that fish cells take up AgNP in contrast to algal cells, where AgNP sorbed onto the cell surface, which indicates that the cell wall of algae is a barrier to particle uptake. This particle behaviour results in different responses to AgNP exposure in algae and fish cells. Yet, proteins from both cell types can be affected by AgNP exposure: for algae, extracellular proteins secreted from cells for, e.g., nutrient acquisition. For fish cells, intracellular and/or membrane-bound proteins, such as the Na+/K+-ATPase, are susceptible to AgNP binding and functional impairment. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0254-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yue
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), Oslo, 0454, Norway
| | - Xiaomei Li
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Laura Sigg
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.,, Wattstrasse 13a, 8307, Effretikon, Switzerland
| | - Marc J-F Suter
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland
| | - Smitha Pillai
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland
| | - Renata Behra
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland. .,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.
| | - Kristin Schirmer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland. .,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
29
|
Volatron J, Carn F, Kolosnjaj-Tabi J, Javed Y, Vuong QL, Gossuin Y, Ménager C, Luciani N, Charron G, Hémadi M, Alloyeau D, Gazeau F. Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602030. [PMID: 28060465 DOI: 10.1002/smll.201602030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Proteins implicated in iron homeostasis are assumed to be also involved in the cellular processing of iron oxide nanoparticles. In this work, the role of an endogenous iron storage protein-namely the ferritin-is examined in the remediation and biodegradation of magnetic iron oxide nanoparticles. Previous in vivo studies suggest the intracellular transfer of the iron ions released during the degradation of nanoparticles to endogenous protein cages within lysosomal compartments. Here, the capacity of ferritin cages to accommodate and store the degradation products of nanoparticles is investigated in vitro in the physiological acidic environment of the lysosomes. Moreover, it is questioned whether ferritin proteins can play an active role in the degradation of the nanoparticles. The magnetic, colloidal, and structural follow-up of iron oxide nanoparticles and proteins in lysosome-like medium confirms the efficient remediation of potentially harmful iron ions generated by nanoparticles within ferritins. The presence of ferritins, however, delays the degradation of particles due to a complex colloidal behavior of the mixture in acidic medium. This study exemplifies the important implications of intracellular proteins in processes of degradation and metabolization of iron oxide nanoparticles.
Collapse
Affiliation(s)
- Jeanne Volatron
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
| | - Florent Carn
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
| | - Jelena Kolosnjaj-Tabi
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
| | - Yasir Javed
- Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
- Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Quoc Lam Vuong
- Service de Physique Biomédicale, Université de Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Yves Gossuin
- Service de Physique Biomédicale, Université de Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Christine Ménager
- Laboratoire PHENIX, UMR 7195, CNRS/Université Pierre et Marie Curie/ESPCI, 4 place Jussieu, 75252, Paris Cedex 05, France
| | - Nathalie Luciani
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
| | - Gaëlle Charron
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
| | - Miryana Hémadi
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, UMR 7086 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, 75205, Paris Cedex 13, France
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
| | - Florence Gazeau
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
| |
Collapse
|
30
|
Schöttler S, Landfester K, Mailänder V. Die Steuerung des Stealth-Effekts von Nanoträgern durch das Verständnis der Proteinkorona. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Susanne Schöttler
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Hautklinik; Universitätsmedizin der Johannes Gutenberg-Universität; Langenbeckstraße 1 55131 Mainz Deutschland
| | - Katharina Landfester
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Volker Mailänder
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Hautklinik; Universitätsmedizin der Johannes Gutenberg-Universität; Langenbeckstraße 1 55131 Mainz Deutschland
| |
Collapse
|
31
|
Schöttler S, Landfester K, Mailänder V. Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angew Chem Int Ed Engl 2016; 55:8806-15. [PMID: 27303916 DOI: 10.1002/anie.201602233] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Indexed: 12/13/2022]
Abstract
The past decade has seen a significant increase in interest in the use of polymeric nanocarriers in medical applications. In particular, when used as drug vectors in targeted delivery, nanocarriers could overcome many obstacles for drug therapy. Nevertheless, their application is still impeded by the complex composition of the blood proteins covering the particle surface, termed the protein corona. The protein corona complicates any prediction of cell interactions, biodistribution, and toxicity. In particular, the unspecific uptake of nanocarriers is a major obstacle in clinical studies. This Minireview provides an overview of what we currently know about the characteristics of the protein corona of nanocarriers, with a focus on surface functionalization that reduces unspecific uptake (the stealth effect). The ongoing improvement of nanocarriers to allow them to meet all the requirements necessary for successful application, including targeted delivery and stealth, are further discussed.
Collapse
Affiliation(s)
- Susanne Schöttler
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
32
|
Zanganeh S, Spitler R, Erfanzadeh M, Alkilany AM, Mahmoudi M. Protein corona: Opportunities and challenges. Int J Biochem Cell Biol 2016; 75:143-7. [PMID: 26783938 PMCID: PMC5233713 DOI: 10.1016/j.biocel.2016.01.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/15/2016] [Indexed: 12/23/2022]
Abstract
In contact with biological fluids diverse type of biomolecules (e.g., proteins) adsorb onto nanoparticles forming protein corona. Surface properties of the coated nanoparticles, in terms of type and amount of associated proteins, dictate their interactions with biological systems and thus biological fate, therapeutic efficiency and toxicity. In this perspective, we will focus on the recent advances and pitfalls in the protein corona field.
Collapse
Affiliation(s)
- Saeid Zanganeh
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, USA
| | - Ryan Spitler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, USA
| | - Mohsen Erfanzadeh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology Faculty of Pharmacy, the University of Jordan, Amman 11942, Jordan
| | - Morteza Mahmoudi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1127-1138. [DOI: 10.1016/j.nano.2015.11.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 01/11/2023]
|
34
|
Yu J, Zhang Y, Sun W, Wang C, Ranson D, Ye Y, Weng Y, Gu Z. Internalized compartments encapsulated nanogels for targeted drug delivery. NANOSCALE 2016; 8:9178-84. [PMID: 27074960 PMCID: PMC5001168 DOI: 10.1039/c5nr08895j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.
Collapse
Affiliation(s)
- Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Davis Ranson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006, China.
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
35
|
Meder F, Thomas SS, Fitzpatrick LW, Alahmari A, Wang S, Beirne JG, Vaz G, Redmond G, Dawson KA. Labeling the Structural Integrity of Nanoparticles for Advanced In Situ Tracking in Bionanotechnology. ACS NANO 2016; 10:4660-4671. [PMID: 26959685 DOI: 10.1021/acsnano.6b01001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Observing structural integrity of nanoparticles is essential in bionanotechnology but not always straightforward to measure in situ and in real-time. Fluorescent labels used for tracking intrinsically nonfluorescent nanomaterials generally do not allow simultaneous observation of integrity. Consequently, structural changes like degradation and disassembly cannot easily be followed in situ using fluorescence signals. We show that thioflavin T (ThT), a fluorophore and molecular rotor known to tag specific fibril structures in amyloids, can "label" the structural integrity of widely used and intrinsically nonfluorescent, silica nanoparticles (SiNPs). Entrapment of ThT in SiNPs controls the fluorohphore's relaxation pathway and leads to a red-shifted fluorescence spectrum providing real time information on SiNP integrity. The dynamic change of ThT fluorescence during degradation of doped SiNPs is found much higher than that of common labels fluorescein and rhodamine. Degradation kinetics of core-shell structures recorded by ThT fluorescence and light scattering prove the capability to clearly distinguish structural features during SiNPs degradation and allow obtaining degradation kinetics in vitro, in biological media, in serum, and in cells. The effect is transferable to different types of materials, here shown for ThT incorporated SiNPs with tightly tailorable sizes (9-100 nm), poly(lactic-co-glycolic acid) (PLGA) nanoparticles, poly(9-vinylcarbazole) (PVK) nanoparticles, and iron-doped-SiNPs (FeSiNPs). We thus suggest molecular rotors such as ThT as additional labels to effectively and easily sense nanoparticle structural status in situ and to enhance understanding and development of programmed nanoparticle disassembly in bionanotechnology.
Collapse
Affiliation(s)
- Fabian Meder
- Centre for BioNano Interactions, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| | - Steffi S Thomas
- Centre for BioNano Interactions, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| | - Laurence W Fitzpatrick
- Centre for BioNano Interactions, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| | - Amirah Alahmari
- Centre for BioNano Interactions, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| | - Suxiao Wang
- Functional Nanomaterials, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| | - Jason G Beirne
- Functional Nanomaterials, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| | - Gizela Vaz
- Centre for BioNano Interactions, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| | - Gareth Redmond
- Functional Nanomaterials, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, University College Dublin , School of Chemistry and Chemical Biology, Belfield 4, Dublin, Ireland
| |
Collapse
|
36
|
Liu Z, Zhan X, Yang M, Yang Q, Xu X, Lan F, Wu Y, Gu Z. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors. NANOSCALE 2016; 8:7544-7555. [PMID: 26949199 DOI: 10.1039/c5nr08447d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs.
Collapse
Affiliation(s)
- Ziyao Liu
- Sichuan University, National Engineering Research Center for Biomaterials Chengdu, Chengdu, China.
| | - Xiaohui Zhan
- Sichuan University, National Engineering Research Center for Biomaterials Chengdu, Chengdu, China.
| | - Minggang Yang
- Sichuan University, National Engineering Research Center for Biomaterials Chengdu, Chengdu, China.
| | - Qi Yang
- Sichuan University, National Engineering Research Center for Biomaterials Chengdu, Chengdu, China.
| | - Xianghui Xu
- Sichuan University, National Engineering Research Center for Biomaterials Chengdu, Chengdu, China.
| | - Fang Lan
- Sichuan University, National Engineering Research Center for Biomaterials Chengdu, Chengdu, China.
| | - Yao Wu
- Sichuan University, National Engineering Research Center for Biomaterials Chengdu, Chengdu, China.
| | - Zhongwei Gu
- Sichuan University, National Engineering Research Center for Biomaterials Chengdu, Chengdu, China.
| |
Collapse
|
37
|
Yue Y, Behra R, Sigg L, Schirmer K. Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium. Nanotoxicology 2016; 10:1075-83. [PMID: 27030289 DOI: 10.3109/17435390.2016.1172677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
While short-term exposures of vertebrate cells, such as from fish, can be performed in defined, serum-free media, long-term cultures generally require addition of growth factors and proteins, normally supplied with a serum supplement. However, proteins are known to alter nanoparticle properties by binding to nanoparticles. Therefore, in order to be able to study nanoparticle-cell interactions for extended periods, the rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1, was adapted to proliferate in a commercial, serum-free medium, InVitrus VP-6. The newly adapted cell strain was named RTgill-W1-pf (protein free). These cells proliferate at a speed similar to the RTgill-W1 cells cultured in a fully supplemented medium containing 5% fetal bovine serum. As well, they were successfully cryopreserved in liquid nitrogen and fully recovered after thawing. Yet, senescence set in after about 10 passages in InVitrus VP-6 medium, revealing that this medium cannot fully support long-term culture of the RTgill-W1 strain. The RTgill-W1-pf cell line was subsequently applied to investigate the effect of silver nanoparticles (AgNP) on cell proliferation over a period of 12 days. Indeed, cell proliferation was inhibited by 10 μM AgNP. This effect correlated with high levels of silver being associated with the cells. The new cell line, RTgill-W1-pf, can serve as a unique representation of the gill cell-environment interface, offering novel opportunities to study nanoparticle-cell interactions without serum protein interference.
Collapse
Affiliation(s)
- Yang Yue
- a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology , Dübendorf , Switzerland .,b École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering , Lausanne , Switzerland , and
| | - Renata Behra
- a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology , Dübendorf , Switzerland .,c ETH (EidgenÖssische Technische Hochschule) Zürich, Department of Environmental Systems Sciences , Zürich , Switzerland
| | - Laura Sigg
- a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology , Dübendorf , Switzerland .,c ETH (EidgenÖssische Technische Hochschule) Zürich, Department of Environmental Systems Sciences , Zürich , Switzerland
| | - Kristin Schirmer
- a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology , Dübendorf , Switzerland .,b École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering , Lausanne , Switzerland , and.,c ETH (EidgenÖssische Technische Hochschule) Zürich, Department of Environmental Systems Sciences , Zürich , Switzerland
| |
Collapse
|
38
|
Roh J, Back SH, Ahn DJ. Shape-Persistent Replica Synthesis of Gold/Silver Bimetallic Nanoplates Using Tailored Silica Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1322-1327. [PMID: 26765777 DOI: 10.1002/smll.201500799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Shape-persistent replica synthesis of Au/Ag bimetallic nanoplates is invented. Using a tailored silica cage as a template for the synthesis, a successful shape-replication of Au/Ag bimetallic nanoplate is achieved at the cage core having geometry of initial Ag nanoplate. This work can open up the simple fabrication of multicomponent metallic particles, with nanogeometry being defined early at the initial stage.
Collapse
Affiliation(s)
- Jinkyu Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Hyuk Back
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
39
|
Müller LK, Simon J, Schöttler S, Landfester K, Mailänder V, Mohr K. Pre-coating with protein fractions inhibits nano-carrier aggregation in human blood plasma. RSC Adv 2016. [DOI: 10.1039/c6ra17028e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The change of a nanoparticles' physicochemical properties after incubation with defined protein fractions or whole human plasma was utilized for tailoring its properties regarding stability against aggregation and cellular response.
Collapse
Affiliation(s)
- L. K. Müller
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - J. Simon
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - S. Schöttler
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Dermatology Clinic
- University Medical Center Mainz
| | - K. Landfester
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - V. Mailänder
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Dermatology Clinic
- University Medical Center Mainz
| | - K. Mohr
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| |
Collapse
|
40
|
Maiolo D, Del Pino P, Metrangolo P, Parak WJ, Baldelli Bombelli F. Nanomedicine delivery: does protein corona route to the target or off road? Nanomedicine (Lond) 2015; 10:3231-47. [PMID: 26470748 DOI: 10.2217/nnm.15.163] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nanomedicine aims to find novel solutions for urgent biomedical needs. Despite this, one of the most challenging hurdles that nanomedicine faces is to successfully target therapeutic nanoparticles to cells of interest in vivo. As for any biomaterials, once in vivo, nanoparticles can interact with plasma biomolecules, forming new entities for which the name protein coronas (PCs) have been coined. The PC can influence the in vivo biological fate of a nanoparticle. Thus for guaranteeing the desired function of an engineered nanomaterial in vivo, it is crucial to dissect its PC in terms of formation and evolution within the body. In this contribution we will review the 'good' and 'bad' sides of the PC, starting from the scientific aspects to the technological applications.
Collapse
Affiliation(s)
- Daniele Maiolo
- Fondazione Centro Europeo Nanomedicina c/o Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, & Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Pablo Del Pino
- CIC Biomagune, San Sebastian, Spain.,Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | - Pierangelo Metrangolo
- Fondazione Centro Europeo Nanomedicina c/o Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, & Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.,VTT-Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland
| | - Wolfgang J Parak
- CIC Biomagune, San Sebastian, Spain.,Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | - Francesca Baldelli Bombelli
- Fondazione Centro Europeo Nanomedicina c/o Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, & Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
41
|
O'Connell DJ, Bombelli FB, Pitek AS, Monopoli MP, Cahill DJ, Dawson KA. Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials. NANOSCALE 2015; 7:15268-76. [PMID: 26324751 DOI: 10.1039/c5nr01970b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoparticles in physiological environments are known to selectively adsorb proteins and other biomolecules forming a tightly bound biomolecular 'corona' on their surface. Where the exchange times of the proteins are sufficiently long, it is believed that the protein corona constitutes the particle identity in biological milieu. Here we show that proteins in the corona retain their functional characteristics and can specifically bind to cognate proteins on arrays of thousands of immobilised human proteins. The biological identity of the nanomaterial is seen to be specific to the blood plasma concentration in which they are exposed. We show that the resulting in situ nanoparticle interactome is dependent on the protein concentration in plasma, with the emergence of a small number of dominant protein-protein interactions. These interactions are those driven by proteins that are adsorbed onto the particle surface and whose binding epitopes are subsequently expressed or presented suitably on the particle surface. We suggest that, since specific tailored protein arrays for target systems and organs can be designed, their use may be an important element in an overall study of the biomolecular corona.
Collapse
Affiliation(s)
- D J O'Connell
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
42
|
Kolosnjaj-Tabi J, Javed Y, Lartigue L, Volatron J, Elgrabli D, Marangon I, Pugliese G, Caron B, Figuerola A, Luciani N, Pellegrino T, Alloyeau D, Gazeau F. The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS NANO 2015; 9:7925-39. [PMID: 26168364 DOI: 10.1021/acsnano.5b00042] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Safe implementation of nanotechnology and nanomedicine requires an in-depth understanding of the life cycle of nanoparticles in the body. Here, we investigate the long-term fate of gold/iron oxide heterostructures after intravenous injection in mice. We show these heterostructures degrade in vivo and that the magnetic and optical properties change during the degradation process. These particles eventually eliminate from the body. The comparison of two different coating shells for heterostructures, amphiphilic polymer or polyethylene glycol, reveals the long lasting impact of initial surface properties on the nanocrystal degradability and on the kinetics of elimination of magnetic iron and gold from liver and spleen. Modulation of nanoparticles reactivity to the biological environment by the choice of materials and surface functionalization may provide new directions in the design of multifunctional nanomedicines with predictable fate.
Collapse
Affiliation(s)
- Jelena Kolosnjaj-Tabi
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
- Inserm U970, Paris Cardiovascular Research Center-PARCC/Université Paris-Descartes , 56 rue Leblanc, Paris 75015, France
| | - Yasir Javed
- Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
| | - Lénaic Lartigue
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
- Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
| | - Jeanne Volatron
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
| | - Dan Elgrabli
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
| | - Iris Marangon
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
| | | | - Benoit Caron
- ISTeP, UMR 7193 CNRS/Université Pierre et Marie Curie , 4 place Jussieu, Paris 75005, France
| | - Albert Figuerola
- Istituto Italiano di Tecnologia , via Morego 30, Genova 16163, Italy
| | - Nathalie Luciani
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia , via Morego 30, Genova 16163, Italy
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
| | - Florence Gazeau
- Laboratoire Matières et Systèmes Complexes, UMR 7057 CNRS/Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, Paris F-75205 Cedex 13, France
| |
Collapse
|
43
|
Human plasma protein adsorption onto alumina nanoparticles relevant to orthopedic wear. J Appl Biomater Funct Mater 2015; 13:e145-55. [PMID: 26045225 DOI: 10.5301/jabfm.5000219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2014] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Wear of ceramic orthopedic devices generates nanoparticles in vivo that may present a different biological character from the monolithic ceramic from which they are formed. The current work investigated protein adsorption from human plasma on alumina nanoparticles and monolithic samples representative of both wear particles and the ceramic components as implanted. MATERIALS AND METHODS A physicochemical characterization of the particles and their dispersion state was carried out, and the protein adsorption profiles were analyzed using 1D SDS-PAGE and mass spectrometry. RESULTS Significant differences in protein-binding profiles were identified where the nanoparticles selectively bound known transporter proteins rather than the more highly abundant serum proteins that were observed on the monoliths. CONCLUSIONS Proteins associated with opsonization of particles were seen to be present in the protein corona of the nanoparticles, which raises questions regarding the role of wear particles in periprosthetic tissue inflammation and aseptic loosening.
Collapse
|
44
|
Hamad-Schifferli K. Exploiting the novel properties of protein coronas: emerging applications in nanomedicine. Nanomedicine (Lond) 2015; 10:1663-74. [DOI: 10.2217/nnm.15.6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein coronas have been the focus of a great deal of study recently due to their inevitable formation and their impact on the biological consequences of nanomaterials. Although the field is still far from completely and definitively understanding protein coronas, we now have a good understanding of their behavior and their key characteristics. Protein corona composition changes with the environment and time, and also the physical properties of the underlying nanoparticle. More importantly, the protein corona has significant biological impact. Because we have a basic understanding of coronas, we can now move forward to exploiting their unique properties. Here, we discuss some emerging ways in which the protein corona is explicitly utilized for different applications in biology and medicine.
Collapse
|
45
|
Maiolo D, Paolini L, Di Noto G, Zendrini A, Berti D, Bergese P, Ricotta D. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem 2015; 87:4168-76. [PMID: 25674701 DOI: 10.1021/ac504861d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracellular Vesicles (EVs) - cell secreted vesicles that carry rich molecular information of the parental cell and constitute an important mode of intercellular communication - are becoming a primary topic in translational medicine. EVs (that comprise exosomes and microvesicles/microparticles) have a size ranging from 40 nm to 1 μm and share several physicochemical proprieties, including size, density, surface charge, and light interaction, with other nano-objects present in body fluids, such as single and aggregated proteins. This makes separation, titration, and characterization of EVs challenging and time-consuming. Here we present a cost-effective and fast colorimetric assay for probing by eye protein contaminants and determine the concentration of EV preparations, which exploits the synergy between colloidal gold nanoplasmonics, nanoparticle-protein corona, and nanoparticle-membrane interaction. The assay hits a limit of detection of protein contaminants of 5 ng/μL and has a dynamic range of EV concentration ranging from 35 fM to 35 pM, which matches the typical range of EV concentration in body fluids. This work provides the first example of the exploitation of the nanoparticle-protein corona in analytical chemistry.
Collapse
Affiliation(s)
- Daniele Maiolo
- †Chemistry for Technologies Laboratory and INSTM, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Brescia, Italy
| | - Lucia Paolini
- ‡Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia, 25123 Brescia, Brescia, Italy
| | - Giuseppe Di Noto
- ‡Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia, 25123 Brescia, Brescia, Italy
| | - Andrea Zendrini
- ‡Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia, 25123 Brescia, Brescia, Italy
| | - Debora Berti
- §Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Paolo Bergese
- †Chemistry for Technologies Laboratory and INSTM, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Brescia, Italy
| | - Doris Ricotta
- ‡Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia, 25123 Brescia, Brescia, Italy
| |
Collapse
|
46
|
Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Piovesana S, Amenitsch H, Laganà A. Lipid composition: a “key factor” for the rational manipulation of the liposome–protein corona by liposome design. RSC Adv 2015. [DOI: 10.1039/c4ra13335h] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
When liposomes are exposed to biological fluids, a dynamic protein coating immediately covers them forming a ‘protein corona’. Those proteins can interact with receptors (over)expressed on the plasma membrane of target cells bringing the liposomes to their final destination.
Collapse
Affiliation(s)
- G. Caracciolo
- Department of Molecular Medicine
- ‘Sapienza’ University of Rome
- 00161 Rome
- Italy
| | - D. Pozzi
- Department of Molecular Medicine
- ‘Sapienza’ University of Rome
- 00161 Rome
- Italy
| | - A. L. Capriotti
- Department of Cheimistry
- ‘Sapienza’ University of Rome
- 00185 Rome
- Italy
| | - C. Cavaliere
- Department of Cheimistry
- ‘Sapienza’ University of Rome
- 00185 Rome
- Italy
| | - S. Piovesana
- Department of Cheimistry
- ‘Sapienza’ University of Rome
- 00185 Rome
- Italy
| | - H. Amenitsch
- Institute of inorganic Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - A. Laganà
- Department of Cheimistry
- ‘Sapienza’ University of Rome
- 00185 Rome
- Italy
| |
Collapse
|
47
|
Imai S, Yoshioka Y, Morishita Y, Yoshida T, Uji M, Nagano K, Mukai Y, Kamada H, Tsunoda SI, Higashisaka K, Tsutsumi Y. Size and surface modification of amorphous silica particles determine their effects on the activity of human CYP3A4 in vitro. NANOSCALE RESEARCH LETTERS 2014; 9:651. [PMID: 25520598 PMCID: PMC4266520 DOI: 10.1186/1556-276x-9-651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Because of their useful chemical and physical properties, nanomaterials are widely used around the world - for example, as additives in food and medicines - and such uses are expected to become more prevalent in the future. Therefore, collecting information about the effects of nanomaterials on metabolic enzymes is important. Here, we examined the effects of amorphous silica particles with various sizes and surface modifications on cytochrome P450 3A4 (CYP3A4) activity by means of two different in vitro assays. Silica nanoparticles with diameters of 30 and 70 nm (nSP30 and nSP70, respectively) tended to inhibit CYP3A4 activity in human liver microsomes (HLMs), but the inhibitory activity of both types of nanoparticles was decreased by carboxyl modification. In contrast, amine-modified nSP70 activated CYP3A4 activity. In HepG2 cells, nSP30 inhibited CYP3A4 activity more strongly than the larger silica particles did. Taken together, these results suggest that the size and surface characteristics of the silica particles determined their effects on CYP3A4 activity and that it may be possible to develop silica particles that do not have undesirable effects on metabolic enzymes by altering their size and surface characteristics.
Collapse
Affiliation(s)
- Shunji Imai
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Morishita
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tokuyuki Yoshida
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miyuki Uji
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Nagano
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
| | - Yohei Mukai
- Laboratory of Innovative Antibody Engineering and Design, Center for Drug Innovation and Screening, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin-ichi Tsunoda
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
48
|
Pearson RM, Juettner VV, Hong S. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Front Chem 2014; 2:108. [PMID: 25506050 PMCID: PMC4245918 DOI: 10.3389/fchem.2014.00108] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/11/2014] [Indexed: 02/03/2023] Open
Abstract
Achieving controlled cellular responses of nanoparticles (NP) is critical for the successful development and translation of NP-based drug delivery systems. However, precise control over the physicochemical and biological properties of NPs could become convoluted, diminished, or completely lost as a result of the adsorption of biomolecules to their surfaces. Characterization of the formation of the "biomolecular" corona has thus received increased attention due to its impact on NP and protein structure as well as its negative effect on NP-based targeted drug delivery. This review presents a concise survey of the recent literature concerning the importance of the NP-biomolecule corona and how it can be utilized to improve the in vivo efficacy of targeted delivery systems.
Collapse
Affiliation(s)
- Ryan M. Pearson
- Department of Biopharmaceutical Sciences, University of Illinois at ChicagoChicago, IL, USA
| | - Vanessa V. Juettner
- Department of Biopharmaceutical Sciences, University of Illinois at ChicagoChicago, IL, USA
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, University of Illinois at ChicagoChicago, IL, USA
- Department of Bioengineering, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
49
|
Hofmann D, Tenzer S, Bannwarth MB, Messerschmidt C, Glaser SF, Schild H, Landfester K, Mailänder V. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS NANO 2014; 8:10077-10088. [PMID: 25244389 DOI: 10.1021/nn502754c] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rational design of nanocarriers for drug delivery approaches requires an unbiased knowledge of uptake mechanisms and intracellular trafficking pathways. Here we dissected these processes using a quantitative proteomics approach. We isolated intracellular vesicles containing superparamagnetic iron oxide polystyrene nanoparticles and analyzed their protein composition by label-free quantitative mass spectrometry. The proteomic snapshot of organelle marker proteins revealed that an atypical macropinocytic-like mechanism mediated the entry of nanoparticles. We show that the entry mechanism is controlled by actin reorganization, atypical macropinocytic signaling, and ADP-ribosylation factor 1. Additionally, our proteomics data demonstrated a central role for multivesicular bodies and multilamellar lysosomes in trafficking and final nanoparticle storage. This was confirmed by confocal microscopy and cryo-TEM measurements. By quantitatively analyzing the protein composition of nanoparticle-containing vesicles, our study clearly defines the routes of nanoparticle entry, intracellular trafficking, and the proteomic milieu of a nanoparticle-containing vesicle.
Collapse
Affiliation(s)
- Daniel Hofmann
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kolosnjaj-Tabi J, Javed Y, Lartigue L, Péchoux C, Luciani N, Alloyeau D, Gazeau F. [Life cycle of magnetic nanoparticles in the organism]. Biol Aujourdhui 2014; 208:177-90. [PMID: 25190577 DOI: 10.1051/jbio/2014021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 11/14/2022]
Abstract
The use of nanomaterials drastically increases and yet their behavior in living organisms remains poorly examined. At the same time a better comprehension of the interactions between nanoparticles and the biological environment would allow us to limit potential nanoparticle-based toxicity and fully exploit nanoparticles medical applications. In this perspective, it is high time we develop methods to detect, quantify and follow the evolution of nanoparticles in the complex biological environment, spanning all relevant scales from the nanometer up to the tissue level. In this work we follow the life cycle of magnetic nanoparticles in vivo, focusing on their transformations over time from administration to elimination. As opposed to traditional nano-toxicological approaches, we herein take the nanoparticle perspective and try to establish how biological environment might impact the particles properties and their fate (interaction with proteins, cell confinement, degradation...) from their initial state to a series of changes a nanoparticle might undergo on its journey throughout the organism.
Collapse
Affiliation(s)
- Jelena Kolosnjaj-Tabi
- Laboratoire Matière et Systèmes Complexes, CNRS - Université Paris Diderot, 75205 Paris Cedex 13, France
| | - Yasir Javed
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS - Université Paris Diderot, 75205 Paris Cedex 13, France
| | - Lénaïc Lartigue
- Laboratoire Matière et Systèmes Complexes, CNRS - Université Paris Diderot, 75205 Paris Cedex 13, France - Laboratoire Matériaux et Phénomènes Quantiques, CNRS - Université Paris Diderot, 75205 Paris Cedex 13, France
| | - Christine Péchoux
- INRA UMR 1313 - Génétique Animale et Biologie Intégrative - Plate-forme MIMA2, 78352 Jouy-en-Josas Cedex, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes, CNRS - Université Paris Diderot, 75205 Paris Cedex 13, France
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS - Université Paris Diderot, 75205 Paris Cedex 13, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS - Université Paris Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|