1
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
2
|
Zhang R, Zuo X, Yin F. Nucleic Acid Framework-Enabled Spatial Organization for Biological Applications. CHEM & BIO ENGINEERING 2025; 2:71-86. [PMID: 40041004 PMCID: PMC11873853 DOI: 10.1021/cbe.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 03/06/2025]
Abstract
Nucleic acid frameworks (NAFs) are artificially prepared from natural nucleic acids with a precise size and structure. DNA origami exhibits controllable 2D lamellar structure and thus is easily used to construct 3D structures with different morphologies. Tetrahedral DNA nanostructures (TDNs) are prepared with four DNA strands that hybridize to each other with a tetrahedral structure. Here we summarize molecular spatial organization with DNA origami and TDNs as models for 2D- and 3D-recombinations, discuss NAF-based biomimicking of proteins and biomembranes, and introduce the identification probes, functional groups, and intercalators for biosensing, bioimaging, and nanomedicine therapy. NAFs are also extended to applications to guide the formation of inorganic nanoparticles with precise size and structure. Thus, the NAFs exhibit special organization, are easy to functionalize, and are becoming an important platform for interdisciplinary study and applications, such as nanotechnology, biochemistry, synthetic biology, and nanomedicine.
Collapse
Affiliation(s)
- Rui Zhang
- Institute
of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Zhiyuan
College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute
of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Zhangjiang
Institute for Advanced Study, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Fangfei Yin
- Institute
of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Zhangjiang
Institute for Advanced Study, Shanghai Jiao
Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Chen Y, Huang Y, Yang YR. DNA Nanotags for Multiplexed Single-Particle Electron Microscopy and In Situ Electron Cryotomography. JACS AU 2025; 5:17-27. [PMID: 39886579 PMCID: PMC11775714 DOI: 10.1021/jacsau.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
DNA nanostructures present new opportunities as Nanotags for electron microscopy (EM) imaging, leveraging their high programmability, unique shapes, biomolecule conjugation capability, and stability compatible with standard cryogenic sample preparation protocols. This perspective highlights the potential of DNA Nanotags to enable high-throughput multiplexed EM analysis and facilitate in situ particle identification for cryogenic electron tomography (cryo-ET). Meanwhile, applying Nanotags in live-cell environments requires the efficient cellular uptake of intact structures and successful cytosolic migration. Promising strategies such as employing direct cytosolic delivery platforms and expressing RNA-based Nanotags in situ are discussed, while more systematic studies are needed to fully understand the intracellular trafficking and achieve precise localization of DNA Nanotags.
Collapse
Affiliation(s)
- Yuanfang Chen
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqian Huang
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhe R. Yang
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology of China, CAS, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Young OJ, Dembele H, Rajwar A, Kwon IC, Ryu JH, Shih WM, Zeng YC. Cargo Quantification of Functionalized DNA Origami for Therapeutic Application. SMALL METHODS 2024:e2401376. [PMID: 39651835 DOI: 10.1002/smtd.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Indexed: 12/18/2024]
Abstract
In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics. This growing interest creates the need for effective methods to quantify cargo on DNA origami nanoparticles. The study consolidates several previously validated methods focusing on gel-based and fluorescence-based techniques, including multiplexed quantification of protein, peptide, and nucleic acid cargo on these nanoparticles. In this work, how gel band intensity and nanodrop fluorescence readings can be used to quantify protein, peptide, and RNA cargo on a DNA origami nanoparticle is demonstrated. This work may serve as a valuable resource for groups of researchers keen on utilizing DNA origami-based nanoparticles in therapeutic applications.
Collapse
Affiliation(s)
- Olivia J Young
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hawa Dembele
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anjali Rajwar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - William M Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang C Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Young OJ, Dembele H, Rajwar A, Kwon IC, Ryu JH, Shih WM, Zeng YC. Cargo quantification of functionalized DNA origami for therapeutic application. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609963. [PMID: 39253502 PMCID: PMC11383041 DOI: 10.1101/2024.08.27.609963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics. This growing interest creates the need for effective methods to quantify cargo on DNA origami nanoparticles. Our study consolidates several previously validated methods focusing on gel-based and fluorescence-based techniques, including multiplexed quantification of protein, peptide, and nucleic acid cargo on these nanoparticles. This work may serve as a valuable resource for groups researchers keen on utilizing DNA origami-based nanoparticles in therapeutic applications.
Collapse
Affiliation(s)
- Olivia J. Young
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hawa Dembele
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anjali Rajwar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - William M. Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang C. Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Huang K, Yang Q, Bao M, Wang S, Zhao L, Shi Q, Yang Y. Modulated Cell Internalization Behavior of Icosahedral DNA Framework with Programmable Surface Modification. J Am Chem Soc 2024; 146:21442-21452. [PMID: 39038211 DOI: 10.1021/jacs.4c04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Surface modification could enhance the cell internalization efficiency of nanovehicles for targeted gene or drug delivery. However, the influence of surface modification parameters, including recognition manners, valences, and patterns, is often clouded, especially for the endocytosis of DNA nanostructures in customized shapes. Focusing on an icosahedral DNA framework, we systematically programmed three distinct types of ligands with diverse valence and spatial distribution on their outer surface to study the internalization efficiency, endocytic pathways, and postinternalization fate. The comparison in different aspects of parameters deepens our understanding of the intricate relationship between surface modification and cell entry behavior, offering insights crucial for designing and optimizing DNA framework nanostructures for potent cell-targeted purposes.
Collapse
Affiliation(s)
- Kui Huang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiulan Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Bao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shengwen Wang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Luming Zhao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Shi
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
7
|
Alexander S, Wang WX, Tseng CY, Douglas TR, Chou LYT. High-Throughput, Label-Free Detection of DNA Origami in Single-Cell Suspensions Using origamiFISH-Flow. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400236. [PMID: 38686679 DOI: 10.1002/smll.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Structural DNA nanotechnology enables custom fabrication of nanoscale devices and promises diverse biological applications. However, the effects of design on DNA nanostructure (DN)-cell interactions in vitro and in vivo are not yet well-characterized. origamiFISH is a recently developed technique for imaging DNs in cells and tissues. Compared to the use of fluorescent tags, origamiFISH offers label-free and structure-agnostic detection of DNs with significantly improved sensitivity. Here, the origamiFISH technique is extended to quantify DNs in single-cell suspensions, including in nonadherent cells such as subsets of immune cells, via readout by flow cytometry. This method, referred to as origamiFISH-Flow, is high-throughput (e.g., 10 000 cells per second) and compatible with immunostaining for concurrent cell-type and cell-state characterization. It is shown that origamiFISH-Flow provides 20-fold higher signal-to-noise ratio for DN detection compared to dye labeling approaches, leading to the capture of >25-fold more DN+ cells under single-picomolar DN uptake concentrations. Additionally, the use of origamiFISH-Flow is validated to profile the uptake of various DN shapes across multiple cell lines and splenocytes, as well as to quantify in vivo DN accumulation in lymphoid organs. Together, origamiFISH-Flow offers a new tool to interrogate DN interactions with cells and tissues, while providing insights for tailoring their designs in bio-applications.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Wendy Xueyi Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Chung-Yi Tseng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Travis R Douglas
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
8
|
Ye R, Wang Y, Liu Y, Cai P, Song J. Self-assembled methodologies for the construction of DNA nanostructures and biological applications. Biomater Sci 2024; 12:3712-3724. [PMID: 38912847 DOI: 10.1039/d4bm00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Over the past decades, deoxyribonucleic acid (DNA), as a versatile building block, has been widely employed to construct functionalized nanostructures. Among the diverse types of materials, DNA related nanostructures have gained growing attention due to their intrinsic programmability, favorable biocompatibility, and strong molecular recognition capability. The conventional construction strategy for building DNA structures is based on Watson-Crick base-pairing rules, which are mainly driven by the hydrogen bonding of bases. However, hydrogen bonding-based DNA nanostructures cannot meet the requirements of specific morphology and multifunctionality. Currently, various functional elements have been introduced to expand the synthetic methodologies for constructing the DNA hybrid nanostructures, including small molecules, peptide polymers, organic ligands and transition metal ions. Besides, the potential applications for these DNA hybrid nanostructures have also been explored. It has been demonstrated that DNA hybrid structures with various properties can be extensively applied in the fields of magnetic resonance, luminescence imaging, biomedical detection, and drug delivery systems. In this review, we highlight the pioneering contributions to the methodologies of DNA-based nanostructure assembly. Furthermore, the recent advances in drug delivery systems and biomedical diagnosis based on DNA hybrid nanostructures are briefly summarized.
Collapse
Affiliation(s)
- Rui Ye
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuqi Wang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ping Cai
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
9
|
Martins ASG, Reis SD, Benson E, Domingues MM, Cortinhas J, Vidal Silva JA, Santos SD, Santos NC, Pêgo AP, Moreno PMD. Enhancing Neuronal Cell Uptake of Therapeutic Nucleic Acids with Tetrahedral DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309140. [PMID: 38342712 DOI: 10.1002/smll.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
The successful translation of therapeutic nucleic acids (NAs) for the treatment of neurological disorders depends on their safe and efficient delivery to neural cells, in particular neurons. DNA nanostructures can be a promising NAs delivery vehicle. Nonetheless, the potential of DNA nanostructures for neuronal cell delivery of therapeutic NAs is unexplored. Here, tetrahedral DNA nanostructures (TDN) as siRNA delivery scaffolds to neuronal cells, exploring the influence of functionalization with two different reported neuronal targeting ligands: C4-3 RNA aptamer and Tet1 peptide are investigated. Nanostructures are characterized in vitro, as well as in silico using molecular dynamic simulations to better understand the overall TDN structural stability. Enhancement of neuronal cell uptake of TDN functionalized with the C4-3 Aptamer (TDN-Apt), not only in neuronal cell lines but also in primary neuronal cell cultures is demonstrated. Additionally, TDN and TDN-Apt nanostructures carrying siRNA are shown to promote silencing in a process aided by chloroquine-induced endosomal disruption. This work presents a thorough workflow for the structural and functional characterization of the proposed TDN as a nano-scaffold for neuronal delivery of therapeutic NAs and for targeting ligands evaluation, contributing to the future development of new neuronal drug delivery systems based on DNA nanostructures.
Collapse
Affiliation(s)
- Ana S G Martins
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n, Porto, 4200-465, Portugal
| | - Sara D Reis
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Erik Benson
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Tomtebodavägen 23, Solna, 171 65, Sweden
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - João Cortinhas
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Joana A Vidal Silva
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Sofia D Santos
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Ana P Pêgo
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Pedro M D Moreno
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| |
Collapse
|
10
|
Ye J, Yang D, Shi C, Zhou F, Wang P. Designer
DNA
Nanostructures and Their Cellular Uptake Behaviors. DNA NANOTECHNOLOGY FOR CELL RESEARCH 2024:375-399. [DOI: 10.1002/9783527840816.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Bonde S, Osmani RAM, Trivedi R, Patravale V, Angolkar M, Prasad AG, Ravikumar AA. Harnessing DNA origami's therapeutic potential for revolutionizing cardiovascular disease treatment: A comprehensive review. Int J Biol Macromol 2024; 270:132246. [PMID: 38735608 DOI: 10.1016/j.ijbiomac.2024.132246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
DNA origami is a cutting-edge nanotechnology approach that creates precise and detailed 2D and 3D nanostructures. The crucial feature of DNA origami is how it is created, which enables precise control over its size and shape. Biocompatibility, targetability, programmability, and stability are further advantages that make it a potentially beneficial technique for a variety of applications. The preclinical studies of sophisticated programmable nanomedicines and nanodevices that can precisely respond to particular disease-associated triggers and microenvironments have been made possible by recent developments in DNA origami. These stimuli, which are endogenous to the targeted disorders, include protein upregulation, pH, redox status, and small chemicals. Oncology has traditionally been the focus of the majority of past and current research on this subject. Therefore, in this comprehensive review, we delve into the intricate world of DNA origami, exploring its defining features and capabilities. This review covers the fundamental characteristics of DNA origami, targeting DNA origami to cells, cellular uptake, and subcellular localization. Throughout the review, we emphasised on elucidating the imperative for such a therapeutic platform, especially in addressing the complexities of cardiovascular disease (CVD). Moreover, we explore the vast potential inherent in DNA origami technology, envisioning its promising role in the realm of CVD treatment and beyond.
Collapse
Affiliation(s)
- Smita Bonde
- Department of Pharmaceutics, SSR College of Pharmacy, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Rashmi Trivedi
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Akhila Akkihebbal Ravikumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
12
|
Kashani GK, Naghib SM, Soleymani S, Mozafari MR. A review of DNA nanoparticles-encapsulated drug/gene/protein for advanced controlled drug release: Current status and future perspective over emerging therapy approaches. Int J Biol Macromol 2024; 268:131694. [PMID: 38642693 DOI: 10.1016/j.ijbiomac.2024.131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
In the last ten years, the field of nanomedicine has experienced significant progress in creating novel drug delivery systems (DDSs). An effective strategy involves employing DNA nanoparticles (NPs) as carriers to encapsulate drugs, genes, or proteins, facilitating regulated drug release. This abstract examines the utilization of DNA NPs and their potential applications in strategies for controlled drug release. Researchers have utilized the distinctive characteristics of DNA molecules, including their ability to self-assemble and their compatibility with living organisms, to create NPs specifically for the purpose of delivering drugs. The DNA NPs possess numerous benefits compared to conventional drug carriers, such as exceptional stability, adjustable dimensions and structure, and convenient customization. Researchers have successfully achieved a highly efficient encapsulation of different therapeutic agents by carefully designing their structure and composition. This advancement enables precise and targeted delivery of drugs. The incorporation of drugs, genes, or proteins into DNA NPs provides notable advantages in terms of augmenting therapeutic effectiveness while reducing adverse effects. DNA NPs serve as a protective barrier for the enclosed payloads, preventing their degradation and extending their duration in the body. The protective effect is especially vital for delicate biologics, such as proteins or gene-based therapies that could otherwise be vulnerable to enzymatic degradation or quick elimination. Moreover, the surface of DNA NPs can be altered to facilitate specific targeting towards particular tissues or cells, thereby augmenting the accuracy of delivery. A significant benefit of DNA NPs is their capacity to regulate the kinetics of drug release. Through the manipulation of the DNA NPs structure, scientists can regulate the rate at which the enclosed cargo is released, enabling a prolonged and regulated dispensation of medication. This control is crucial for medications with limited therapeutic ranges or those necessitating uninterrupted administration to attain optimal therapeutic results. In addition, DNA NPs have the ability to react to external factors, including alterations in temperature, pH, or light, which can initiate the release of the payload at precise locations or moments. This feature enhances the precision of drug release control. The potential uses of DNA NPs in the controlled release of medicines are extensive. The NPs have the ability to transport various therapeutic substances, for example, drugs, peptides, NAs (NAs), and proteins. They exhibit potential for the therapeutic management of diverse ailments, including cancer, genetic disorders, and infectious diseases. In addition, DNA NPs can be employed for targeted drug delivery, traversing biological barriers, and surpassing the constraints of conventional drug administration methods.
Collapse
Affiliation(s)
- Ghazal Kadkhodaie Kashani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia; Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
13
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
14
|
Jiang Q, Shang Y, Xie Y, Ding B. DNA Origami: From Molecular Folding Art to Drug Delivery Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301035. [PMID: 37715333 DOI: 10.1002/adma.202301035] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Indexed: 09/17/2023]
Abstract
DNA molecules that store genetic information in living creatures can be repurposed as building blocks to construct artificial architectures, ranging from the nanoscale to the microscale. The precise fabrication of self-assembled DNA nanomaterials and their various applications have greatly impacted nanoscience and nanotechnology. More specifically, the DNA origami technique has realized the assembly of various nanostructures featuring rationally predesigned geometries, precise addressability, and versatile programmability, as well as remarkable biocompatibility. These features have elevated DNA origami from academic interest to an emerging class of drug delivery platform for a wide range of diseases. In this minireview, the latest advances in the burgeoning field of DNA-origami-based innovative platforms for regulating biological functions and delivering versatile drugs are presented. Challenges regarding the novel drug vehicle's safety, stability, targeting strategy, and future clinical translation are also discussed.
Collapse
Affiliation(s)
- Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
| | - Yiming Xie
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
15
|
Youssef S, Tsang E, Samanta A, Kumar V, Gothelf KV. Reversible Protection and Targeted Delivery of DNA Origami with a Disulfide-Containing Cationic Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301058. [PMID: 37916910 DOI: 10.1002/smll.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/08/2023] [Indexed: 11/03/2023]
Abstract
DNA nanostructures have considerable biomedical potential as intracellular delivery vehicles as they are highly homogeneous and can be functionalized with high spatial resolution. However, challenges like instability under physiological conditions, limited cellular uptake, and lysosomal degradation limit their use. This paper presents a bio-reducible, cationic polymer poly(cystaminebisacrylamide-1,6-diaminohexane) (PCD) as a reversible DNA origami protector. PCD displays a stronger DNA affinity than other cationic polymers. DNA nanostructures with PCD protection are shielded from low salt conditions and DNase I degradation and show a 40-fold increase in cell-association when linked to targeting antibodies. Confocal microscopy reveals a potential secondary cell uptake mechanism, directly delivering the nanostructures to the cytoplasm. Additionally, PCD can be removed by cleaving its backbone disulfides using the intracellular reductant, glutathione. Finally, the application of these constructs is demonstrated for targeted delivery of a cytotoxic agent to cancer cells, which efficiently decreases their viability. The PCD protective agent that is reported here is a simple and efficient method for the stabilization of DNA origami structures. With the ability to deprotect the DNA nanostructures upon entry of the intracellular space, the possibility for the use of DNA origami in pharmaceutical applications is enhanced.
Collapse
Affiliation(s)
- Sarah Youssef
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Anirban Samanta
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
16
|
Navarro N, Aviñó A, Domènech Ò, Borrell JH, Eritja R, Fàbrega C. Defined covalent attachment of three cancer drugs to DNA origami increases cytotoxicity at nanomolar concentration. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102722. [PMID: 38007069 DOI: 10.1016/j.nano.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/27/2023]
Abstract
DNA nanostructures have captured great interest as drug delivery vehicles for cancer therapy. Despite rapid progress in the field, some hurdles, such as low cellular uptake, low tissue specificity or ambiguous drug loading, remain unsolved. Herein, well-known antitumor drugs (doxorubicin, auristatin, and floxuridine) were site-specifically incorporated into DNA nanostructures, demonstrating the potential advantages of covalently linking drug molecules via structural staples instead of incorporating the drugs by noncovalent binding interactions. The covalent strategy avoids critical issues such as an unknown number of drug-DNA binding events and premature drug release. Moreover, covalently modified origami offers the possibility of precisely incorporating several synergetic antitumor drugs into the DNA nanostructure at a predefined molar ratio and to control the exact spatial orientation of drugs into DNA origami. Additionally, DNA-based nanoscaffolds have been reported to have a low intracellular uptake. Thus, two cellular uptake enhancing mechanisms were studied: the introduction of folate units covalently linked to DNA origami and the transfection of DNA origami with Lipofectamine. Importantly, both methods increased the internalization of DNA origami into HTB38 and HCC2998 colorectal cancer cells and produced greater cytotoxic activity when the DNA origami incorporated antiproliferative drugs. The results here present a successful and conceptually distinct approach for the development of DNA-based nanostructures as drug delivery vehicles, which can be considered an important step towards the development of highly precise nanomedicines.
Collapse
Affiliation(s)
- Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain
| | - Òscar Domènech
- Physical Chemistry Section, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), Barcelona 08028, Spain
| | - Jordi H Borrell
- Physical Chemistry Section, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), Barcelona 08028, Spain
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain.
| | - Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain.
| |
Collapse
|
17
|
Jabbari A, Sameiyan E, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aptamer-based targeted delivery systems for cancer treatment using DNA origami and DNA nanostructures. Int J Pharm 2023; 646:123448. [PMID: 37757957 DOI: 10.1016/j.ijpharm.2023.123448] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Due to the limitations of conventional cancer treatment methods, nanomedicine has appeared as a promising alternative, allowing improved drug targeting and decreased drug toxicity. In the development of cancer nanomedicines, among various nanoparticles (NPs), DNA nanostructures are more attractive because of their precisely controllable size, shape, excellent biocompatibility, programmability, biodegradability, and facile functionalization. Aptamers are introduced as single-stranded RNA or DNA molecules with recognize their corresponding targets. So, incorporating aptamers into DNA nanostructures led to influential vehicles for bioimaging and biosensing as well as targeted cancer therapy. In this review, the recent developments in the application of aptamer-based DNA origami and DNA nanostructures in advanced cancer treatment have been highlighted. Some of the main methods of cancer treatment are classified as chemo-, gene-, photodynamic- and combined therapy. Finally, the opportunities and problems for targeted DNA aptamer-based nanocarriers for medicinal applications have also been discussed.
Collapse
Affiliation(s)
- Atena Jabbari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Sameiyan
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Lu W, Chen T, Xiao D, Qin X, Chen Y, Shi S. Application and prospects of nucleic acid nanomaterials in tumor therapy. RSC Adv 2023; 13:26288-26301. [PMID: 37670995 PMCID: PMC10476027 DOI: 10.1039/d3ra04081j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer poses a great threat to human life, and current cancer treatments, such as radiotherapy, chemotherapy, and surgery, have significant side effects and limitations that hinder their application. Nucleic acid nanomaterials have specific spatial configurations and can be used as nanocarriers to deliver different therapeutic drugs, thereby enabling various biomedical applications, such as biosensors and cancer therapy. In recent decades, a variety of DNA nanostructures have been synthesized, and they have demonstrated remarkable potential in cancer therapy related applications, such as DNA origami structures, tetrahedral framework nucleic acids, and dynamic DNA nanostructures. Importantly, more attention is also being paid to RNA nanostructures, which play an important role in gene therapy. Therefore, this review introduces the developmental history of nucleic acid nanotechnology, summarizes the applications of DNA and RNA nanostructures for tumor treatment, and discusses the development opportunities for nucleic acid nanomaterials in the future.
Collapse
Affiliation(s)
- Weitong Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Tianyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Xin Qin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University Chengdu Sichuan 610041 China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
19
|
Zhang Y, Tian X, Wang Z, Wang H, Liu F, Long Q, Jiang S. Advanced applications of DNA nanostructures dominated by DNA origami in antitumor drug delivery. Front Mol Biosci 2023; 10:1239952. [PMID: 37609372 PMCID: PMC10440542 DOI: 10.3389/fmolb.2023.1239952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
DNA origami is a cutting-edge DNA self-assembly technique that neatly folds DNA strands and creates specific structures based on the complementary base pairing principle. These innovative DNA origami nanostructures provide numerous benefits, including lower biotoxicity, increased stability, and superior adaptability, making them an excellent choice for transporting anti-tumor agents. Furthermore, they can considerably reduce side effects and improve therapy success by offering precise, targeted, and multifunctional drug delivery system. This comprehensive review looks into the principles and design strategies of DNA origami, providing valuable insights into this technology's latest research achievements and development trends in the field of anti-tumor drug delivery. Additionally, we review the key function and major benefits of DNA origami in cancer treatment, some of these approaches also involve aspects related to DNA tetrahedra, aiming to provide novel ideas and effective solutions to address drug delivery challenges in cancer therapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Qipeng Long
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| |
Collapse
|
20
|
Pawlak MR, Smiley AT, Ramirez MP, Kelly MD, Shamsan GA, Anderson SM, Smeester BA, Largaespada DA, Odde DJ, Gordon WR. RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes. Nat Commun 2023; 14:2468. [PMID: 37117218 PMCID: PMC10147940 DOI: 10.1038/s41467-023-38157-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.
Collapse
Affiliation(s)
- Matthew R Pawlak
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Smiley
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Paz Ramirez
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Marcus D Kelly
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sarah M Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Wendy R Gordon
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
21
|
Ghosal S, Bag S, Bhowmik S. Unravelling the Drug Encapsulation Ability of Functional DNA Origami Nanostructures: Current Understanding and Future Prospects on Targeted Drug Delivery. Polymers (Basel) 2023; 15:1850. [PMID: 37111997 PMCID: PMC10144338 DOI: 10.3390/polym15081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Rapid breakthroughs in nucleic acid nanotechnology have always driven the creation of nano-assemblies with programmable design, potent functionality, good biocompatibility, and remarkable biosafety during the last few decades. Researchers are constantly looking for more powerful techniques that provide enhanced accuracy with greater resolution. The self-assembly of rationally designed nanostructures is now possible because of bottom-up structural nucleic acid (DNA and RNA) nanotechnology, notably DNA origami. Because DNA origami nanostructures can be organized precisely with nanoscale accuracy, they serve as a solid foundation for the exact arrangement of other functional materials for use in a number of applications in structural biology, biophysics, renewable energy, photonics, electronics, medicine, etc. DNA origami facilitates the creation of next-generation drug vectors to help in the solving of the rising demand on disease detection and therapy, as well as other biomedicine-related strategies in the real world. These DNA nanostructures, generated using Watson-Crick base pairing, exhibit a wide variety of properties, including great adaptability, precise programmability, and exceptionally low cytotoxicity in vitro and in vivo. This paper summarizes the synthesis of DNA origami and the drug encapsulation ability of functionalized DNA origami nanostructures. Finally, the remaining obstacles and prospects for DNA origami nanostructures in biomedical sciences are also highlighted.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry 607402, India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry 607402, India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
22
|
Liu F, Liu X, Gao W, Zhao L, Huang Q, Arai T. Transmembrane capability of DNA origami sheet enhanced by 3D configurational changes. iScience 2023; 26:106208. [PMID: 36876133 PMCID: PMC9982283 DOI: 10.1016/j.isci.2023.106208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
DNA origami-engineered nanostructures are widely used in biomedical applications involving transmembrane delivery. Here, we propose a method to enhance the transmembrane capability of DNA origami sheets by changing their configuration from two-dimensional to three-dimensional. Three DNA nanostructures are designed and constructed, including the two-dimensional rectangular DNA origami sheet, the DNA tube, and the DNA tetrahedron. The latter two are the variants of the DNA origami sheet with three-dimensional morphologies achieved through one-step folding and multi-step parallel folding separately. The design feasibility and structural stability of three DNA nanostructures are confirmed by molecular dynamics simulations. The fluorescence signals of the brain tumor models demonstrate that the tubular and the tetrahedral configurational changes could dramatically increase the penetration efficiency of the original DNA origami sheet by about three and five times, respectively. Our findings provide constructive insights for further rational designs of DNA nanostructures for transmembrane delivery.
Collapse
Affiliation(s)
- Fengyu Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, and School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, and School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.,Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
23
|
Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. APPLIED PHYSICS REVIEWS 2023; 10:011304. [PMID: 36874908 PMCID: PMC9869343 DOI: 10.1063/5.0121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
Collapse
Affiliation(s)
- Nicole I. Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kristine Y. Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
24
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
25
|
Fàbrega C, Aviñó A, Navarro N, Jorge AF, Grijalvo S, Eritja R. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics 2023; 15:320. [PMID: 36839642 PMCID: PMC9959333 DOI: 10.3390/pharmaceutics15020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.
Collapse
Affiliation(s)
- Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Andreia F. Jorge
- Department of Chemistry, Coimbra Chemistry Centre (CQC), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Santiago Grijalvo
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Colloidal and Interfacial Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
26
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
27
|
Abstract
This chapter discusses the methods involved in achieving and analyzing cellular uptake of DNA origami. While cells naturally internalize substances from their surroundings, more than a simple addition of DNA origami in the surrounding cell medium is necessary to ensure DNA origami particles successfully enter the intracellular environment. Starting with the folding of the DNA, careful handling of sterile buffers and tools is essential, as well as the use of an endotoxin free scaffold. We explain how DNA origami needs a certain form of stabilization or protection to survive the degrading low-salt and high-nuclease environment of common cell culture media. Depending on the preferred method of post-uptake analysis (confocal), microscopy, or flow cytometry, we elaborate on the full protocols and crucial steps to prepare cell uptake experiments. Finally, notes are added on the intracellular fate (see Notes 14 and 15), and cellular retention of DNA origami (see Note 16) is discussed.
Collapse
Affiliation(s)
- Maartje M C Bastings
- Programmable Biomaterials Laboratory, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, Switzerland.
| |
Collapse
|
28
|
Ijäs H, Kostiainen MA, Linko V. Protein Coating of DNA Origami. Methods Mol Biol 2023; 2639:195-207. [PMID: 37166719 DOI: 10.1007/978-1-0716-3028-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA origami has emerged as a common technique to create custom two- (2D) and three-dimensional (3D) structures at the nanoscale. These DNA nanostructures have already proven useful in development of many biotechnological tools; however, there are still challenges that cast a shadow over the otherwise bright future of biomedical uses of these DNA objects. The rather obvious obstacles in harnessing DNA origami as drug-delivery vehicles and/or smart biodevices are related to their debatable stability in biologically relevant media, especially in physiological low-cation and endonuclease-rich conditions, relatively poor transfection rates, and, although biocompatible by nature, their unpredictable compatibility with the immune system. Here we demonstrate a technique for coating DNA origami with albumin proteins for enhancing their pharmacokinetic properties. To facilitate protective coating, a synthesized positively charged dendron was linked to bovine serum albumin (BSA) through a covalent maleimide-cysteine bonding, and then the purified dendron-protein conjugates were let to assemble on the negatively charged surface of DNA origami via electrostatic interaction. The resulted BSA-dendron conjugate-coated DNA origami showed improved transfection, high resistance against endonuclease digestion, and significantly enhanced immunocompatibility compared to bare DNA origami. Furthermore, our proposed coating strategy can be considered highly versatile as a maleimide-modified dendron serving as a synthetic DNA-binding domain can be linked to any protein with an available cysteine site.
Collapse
Affiliation(s)
- Heini Ijäs
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
- LIBER Center of Excellence, Aalto University, Aalto, Finland
- Ludwig-Maximilians-University, Munich, Germany
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
29
|
Scherf M, Scheffler F, Maffeo C, Kemper U, Ye J, Aksimentiev A, Seidel R, Reibetanz U. Trapping of protein cargo molecules inside DNA origami nanocages. NANOSCALE 2022; 14:18041-18050. [PMID: 36445741 DOI: 10.1039/d2nr05356j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of the DNA origami technique has directly inspired the idea of using three-dimensional DNA cages for the encapsulation and targeted delivery of drug or cargo molecules. The cages would be filled with molecules that would be released at a site of interest upon cage opening triggered by an external stimulus. Though different cage variants have been developed, efficient loading of DNA cages with freely-diffusing cargo molecules that are not attached to the DNA nanostructure and their efficient retention within the cages has not been presented. Here we address these challenges using DNA origami nanotubes formed by a double-layer of DNA helices that can be sealed with tight DNA lids at their ends. In a first step we attach DNA-conjugated cargo proteins to complementary target strands inside the DNA tubes. After tube sealing, the cargo molecules are released inside the cavity using toehold-mediated strand displacement by externally added invader strands. We show that DNA invaders are rapidly entering the cages through their DNA walls. Retention of ∼70 kDa protein cargo molecules inside the cages was, however, poor. Guided by coarse-grained simulations of the DNA cage dynamics, a tighter sealing of the DNA tubes was developed which greatly reduced the undesired escape of cargo proteins. These improved DNA nanocages allow for efficient encapsulation of medium-sized cargo molecules while remaining accessible to small molecules that can be used to trigger reactions, including a controlled release of the cargo via nanocage opening.
Collapse
Affiliation(s)
- Merle Scherf
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Science, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Florian Scheffler
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Science, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL 61801, USA
| | - Ulrich Kemper
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Science, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Jingjing Ye
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Science, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
- Cluster for Advancing Electronic Devices Dresden, University of Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL 61801, USA
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Science, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
- Cluster for Advancing Electronic Devices Dresden, University of Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
| | - Uta Reibetanz
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
30
|
Singh M, Sharma D, Garg M, Kumar A, Baliyan A, Rani R, Kumar V. Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnol Adv 2022; 61:108052. [DOI: 10.1016/j.biotechadv.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
31
|
Zhou K, Mei Z, Lei Y, Guan Z, Mao C, Li Y. Boosted Productivity in Single-Tile-Based DNA Polyhedra Assembly by Simple Cation Replacement. Chembiochem 2022; 23:e202200138. [PMID: 35676202 DOI: 10.1002/cbic.202200138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Cations such as divalent magnesium ion (Mg2+ ) play an essential role in DNA self-assembly. However, the strong electrostatic shielding effect of Mg2+ would be disadvantageous in some situations that require relatively weak interactions to allow a highly reversible error-correcting mechanism in the process of assembly. Herein, by substituting the conventional divalent Mg2+ with monovalent sodium ion (Na+ ), we have achieved one-pot high-yield assembly of tile-based DNA polyhedra at micromolar concentration of tiles, at least 10 times higher than the DNA concentrations reported previously. This strategy takes advantage of coexisting counterions and is expected to surmount the major obstacle to potential applications of such DNA nanostructures: large-scale production.
Collapse
Affiliation(s)
- Kaixuan Zhou
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhichao Mei
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yunxiang Lei
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhen Guan
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yulin Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
32
|
Sun S, Yang Y, Niu H, Luo M, Wu ZS. Design and application of DNA nanostructures for organelle-targeted delivery of anticancer drugs. Expert Opin Drug Deliv 2022; 19:707-723. [PMID: 35618266 DOI: 10.1080/17425247.2022.2083603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION DNA nanostructures targeting organelles are of great significance for the early diagnosis and precise therapy of human cancers. This review is expected to promote the development of DNA nanostructure-based cancer treatment with organelle-level precision in the future. AREAS COVERED In this review, we introduce the different principles for targeting organelles, summarize the progresses in the development of organelle-targeting DNA nanostructures, highlight their advantages and applications in disease treatment, and discuss current challenges and future prospects. EXPERT OPINION Accurate targeting is a basic problem for effective cancer treatment. However, current DNA nanostructures cannot meet the actual needs. Targeting specific organelles is expected to further improve the therapeutic effect and overcome tumor cell resistance, thereby holding great practical significance for tumor treatment in the clinic. With the deepening of the research on the molecular mechanism of disease development, especially on tumorigenesis and tumor progression, and increasing understanding of the behavior of biological materials in living cells, more versatile DNA nanostructures will be constructed to target subcellular organelles for drug delivery, essentially promoting the early diagnosis of cancers, classification, precise therapy and the estimation of prognosis in the future.
Collapse
Affiliation(s)
- Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China.,Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China.,Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Mengxue Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
33
|
Aliouat H, Peng Y, Waseem Z, Wang S, Zhou W. Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials 2022; 285:121532. [DOI: 10.1016/j.biomaterials.2022.121532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
34
|
Fan Q, He Z, Xiong J, Chao J. Smart Drug Delivery Systems Based on DNA Nanotechnology. Chempluschem 2022; 87:e202100548. [PMID: 35233992 DOI: 10.1002/cplu.202100548] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/13/2022] [Indexed: 11/12/2022]
Abstract
The development of DNA nanotechnology has attracted tremendous attention in biotechnological and biomedical fields involving biosensing, bioimaging and disease therapy. In particular, precise control over size and shape, easy modification, excellent programmability and inherent homology make the sophisticated DNA nanostructures vital for constructing intelligent drug carriers. Recent advances in the design of multifunctional DNA-based drug delivery systems (DDSs) have demonstrated the effectiveness and advantages of DNA nanostructures, showing the unique benefits and great potential in enhancing the delivery of pharmaceutical compounds and reducing systemic toxicity. This Review aims to overview the latest researches on DNA nanotechnology-enabled nanomedicine and give a perspective on their future opportunities.
Collapse
Affiliation(s)
- Qin Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
| | - Zhimei He
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
| | - Jinxin Xiong
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
| |
Collapse
|
35
|
Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release 2022; 341:166-183. [PMID: 34822907 DOI: 10.1016/j.jconrel.2021.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The safety issues like immunogenicity and unacceptable cancer risk of viral vectors for DNA/mRNA vaccine delivery necessitate the development of non-viral vectors with no toxicity. Among the non-viral strategies, cell-penetrating peptides (CPPs) have been a topic of interest recently because of their ability to cross plasma membranes and facilitate nucleic acids delivery both in vivo and in vitro. In addition to the application in the field of gene vaccine and gene therapy, CPPs based nucleic acids delivery have been proved by its potential application like gene editing, RNA-sequencing, and imaging. Here, we focus on summarizing the recent applications and progress of CPPs-mediated nucleic acids delivery and discuss the current problems and solutions in this field.
Collapse
Affiliation(s)
- Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, Medical School, China Three Gorges University, Yichang 443002, China
| | - Lin Teng
- Department of Cardiovascular Medicine, The First Clinical Medical College of China Three Gorges University, Yichang 443002, China
| | - Lidan Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Linlin Chen
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
| | - Xiangli Guo
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Bonn Belingon
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Xuemei Feng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Wendou Shang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yingying Wan
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
36
|
Chen K, Zhang Y, Zhu L, Chu H, Huang K, Shao X, Asakiya C, Huang K, Xu W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J Control Release 2021; 341:869-891. [PMID: 34952045 DOI: 10.1016/j.jconrel.2021.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Over the past few decades, rapid advances of nucleic acid nanotechnology always drive the development of nanoassemblies with programmable design, powerful functionality, excellent biocompatibility and outstanding biosafety. Nowadays, nucleic acid-based self-assembling nanocarriers (NASNs) play an increasingly greater role in the research and development in biomedical studies, particularly in drug delivery, release and targeting. In this review, NASNs are systematically summarized the strategies cooperated with their broad applications in drug delivery. We first discuss the self-assembling methods of nanocarriers comprised of DNA, RNA and composite materials, and summarize various categories of targeting media, including aptamers, small molecule ligands and proteins. Furthermore, drug release strategies by smart-responding multiple kinds of stimuli are explained, and various applications of NASNs in drug delivery are discussed, including protein drugs, nucleic acid drugs, small molecule drugs and nanodrugs. Lastly, we propose limitations and potential of NASNs in the future development, and expect that NASNs enable facilitate the development of new-generation drug vectors to assist in solving the growing demands on disease diagnosis and therapy or other biomedicine-related applications in the real world.
Collapse
Affiliation(s)
- Keren Chen
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Yangzi Zhang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Huashuo Chu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Xiangli Shao
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Charles Asakiya
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China.
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
37
|
Chen Y, Tian R, Shang Y, Jiang Q, Ding B. Regulation of Biological Functions at the Cell Interface by DNA Nanostructures. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yongjian Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish College Sino-Danish Center for Education and Research University of Chinese Academy of Sciences 100049 Beijing China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
38
|
Gong Z, Tang Y, Ma N, Cao W, Wang Y, Wang S, Tian Y. Applications of DNA-Functionalized Proteins. Int J Mol Sci 2021; 22:12911. [PMID: 34884714 PMCID: PMC8657886 DOI: 10.3390/ijms222312911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
As an important component that constitutes all the cells and tissues of the human body, protein is involved in most of the biological processes. Inspired by natural protein systems, considerable efforts covering many discipline fields were made to design artificial protein assemblies and put them into application in recent decades. The rapid development of structural DNA nanotechnology offers significant means for protein assemblies and promotes their application. Owing to the programmability, addressability and accurate recognition ability of DNA, many protein assemblies with unprecedented structures and improved functions have been successfully fabricated, consequently creating many brand-new researching fields. In this review, we briefly introduced the DNA-based protein assemblies, and highlighted the limitations in application process and corresponding strategies in four aspects, including biological catalysis, protein detection, biomedicine treatment and other applications.
Collapse
Affiliation(s)
- Zhaoqiu Gong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuanyuan Tang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Ningning Ma
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Wenhong Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Yong Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Shuang Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
39
|
DNA nanotechnology-facilitated ligand manipulation for targeted therapeutics and diagnostics. J Control Release 2021; 340:292-307. [PMID: 34748871 DOI: 10.1016/j.jconrel.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Ligands, mostly binding to proteins to form complexes and catalyze chemical reactions, can serve as drug and probe molecules, as well as sensing elements. DNA nanotechnology can integrate the high editability of DNA nanostructures and the biological activity of ligands into functionalized DNA nanostructures in a manner of controlled ligand stoichiometry, type, and arrangement, which provides significant advantages for targeted therapeutics and diagnostics. As therapeutic agents, multiple- and multivalent-ligands functionalized DNA nanostructures increase ligand-receptor affinity and activate multivalent ligand-receptor interactions, enabling improved regulation of cell signaling and enhanced control of cell behavior. As diagnostic agents, multiple ligands interaction via DNA nanostructures endows DNA nanosensors with high sensitivity and excellent signal transduction capability. Herein, we review the principles and advantages of using DNA nanostructures to manipulate ligands for targeted therapeutics and diagnostics and provide future perspectives.
Collapse
|
40
|
Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos HA, Kostiainen MA, Linko V. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures. Macromol Biosci 2021; 21:e2100272. [PMID: 34614301 DOI: 10.1002/mabi.202100272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Nanostructures based on DNA self-assembly present an innovative way to address the increasing need for target-specific delivery of therapeutic molecules. Currently, most of the chemotherapeutics being used in clinical practice have undesired and exceedingly high off-target toxicity. This is a challenge in particular for small molecules, and hence, developing robust and effective methods to lower these side effects and enhance the antitumor activity is of paramount importance. Prospectively, these issues could be tackled with the help of DNA nanotechnology, which provides a route for the fabrication of custom, biocompatible, and multimodal structures, which can, to some extent, resist nuclease degradation and survive in the cellular environment. Similar to widely employed liposomal products, the DNA nanostructures (DNs) are loaded with selected drugs, and then by employing a specific stimulus, the payload can be released at its target region. This review explores several strategies and triggers to achieve targeted delivery of DNs. Notably, different modalities are explained through which DNs can interact with their respective targets as well as how structural changes triggered by external stimuli can be used to achieve the display or release of the cargo. Furthermore, the prospects and challenges of this technology are highlighted.
Collapse
Affiliation(s)
- Iris Seitz
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Kurt Nurmi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| |
Collapse
|
41
|
Wu X, Liu Q, Liu F, Wu T, Shang Y, Liu J, Ding B. An RNA/DNA hybrid origami-based nanoplatform for efficient gene therapy. NANOSCALE 2021; 13:12848-12853. [PMID: 34477769 DOI: 10.1039/d1nr00517k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nucleic acid nanostructures are promising biomaterials for the delivery of homologous gene therapy drugs. Herein, we report a facile strategy for the construction of target mRNA (scaffold) and antisense (staple strands) co-assembled RNA/DNA hybrid "origami" for efficient gene therapy. In our design, the mRNA was folded into a chemically well-defined nanostructure through RNA-DNA hybridization with high yield. After the incorporation of an active cell-targeting aptamer, the tailored RNA/DNA hybrid origami demonstrated efficient cellular uptake and controllable release of antisenses in response to intracellular RNase H digestion. The biocompatible RNA/DNA origami (RDO) elicited a noticeable inhibition of cell proliferation based on the silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This RDO-based nanoplatform provides a novel strategy for the further development of gene therapy.
Collapse
Affiliation(s)
- Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kocabey S, Ekim Kocabey A, Schneiter R, Rüegg C. Membrane-Interacting DNA Nanotubes Induce Cancer Cell Death. NANOMATERIALS 2021; 11:nano11082003. [PMID: 34443832 PMCID: PMC8397952 DOI: 10.3390/nano11082003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology offers to build nanoscale structures with defined chemistries to precisely position biomolecules or drugs for selective cell targeting and drug delivery. Owing to the negatively charged nature of DNA, for delivery purposes, DNA is frequently conjugated with hydrophobic moieties, positively charged polymers/peptides and cell surface receptor-recognizing molecules or antibodies. Here, we designed and assembled cholesterol-modified DNA nanotubes to interact with cancer cells and conjugated them with cytochrome c to induce cancer cell apoptosis. By flow cytometry and confocal microscopy, we observed that DNA nanotubes efficiently bound to the plasma membrane as a function of the number of conjugated cholesterol moieties. The complex was taken up by the cells and localized to the endosomal compartment. Cholesterol-modified DNA nanotubes, but not unmodified ones, increased membrane permeability, caspase activation and cell death. Irreversible inhibition of caspase activity with a caspase inhibitor, however, only partially prevented cell death. Cytochrome c-conjugated DNA nanotubes were also efficiently taken up but did not increase the rate of cell death. These results demonstrate that cholesterol-modified DNA nanotubes induce cancer cell death associated with increased cell membrane permeability and are only partially dependent on caspase activity, consistent with a combined form of apoptotic and necrotic cell death. DNA nanotubes may be further developed as primary cytotoxic agents, or drug delivery vehicles, through cholesterol-mediated cellular membrane interactions and uptake.
Collapse
Affiliation(s)
- Samet Kocabey
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700 Fribourg, Switzerland
- Correspondence: (S.K.); (C.R.)
| | - Aslihan Ekim Kocabey
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 10, PER05, 1700 Fribourg, Switzerland; (A.E.K.); (R.S.)
| | - Roger Schneiter
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 10, PER05, 1700 Fribourg, Switzerland; (A.E.K.); (R.S.)
| | - Curzio Rüegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700 Fribourg, Switzerland
- Correspondence: (S.K.); (C.R.)
| |
Collapse
|
43
|
Shen L, Wang P, Ke Y. DNA Nanotechnology-Based Biosensors and Therapeutics. Adv Healthc Mater 2021; 10:e2002205. [PMID: 34085411 DOI: 10.1002/adhm.202002205] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past few decades, DNA nanotechnology engenders a vast variety of programmable nanostructures utilizing Watson-Crick base pairing. Due to their precise engineering, unprecedented programmability, and intrinsic biocompatibility, DNA nanostructures cannot only interact with small molecules, nucleic acids, proteins, viruses, and cancer cells, but also can serve as nanocarriers to deliver different therapeutic agents. Such addressability innate to DNA nanostructures enables their use in various fields of biomedical applications such as biosensors and cancer therapy. This review is begun with a brief introduction of the development of DNA nanotechnology, followed by a summary of recent applications of DNA nanostructures in biosensors and therapeutics. Finally, challenges and opportunities for practical applications of DNA nanotechnology are discussed.
Collapse
Affiliation(s)
- Luyao Shen
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Pengfei Wang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
44
|
Wang Y, Benson E, Fördős F, Lolaico M, Baars I, Fang T, Teixeira AI, Högberg B. DNA Origami Penetration in Cell Spheroid Tissue Models is Enhanced by Wireframe Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008457. [PMID: 34096116 PMCID: PMC7613750 DOI: 10.1002/adma.202008457] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Indexed: 05/16/2023]
Abstract
As DNA origami applications in biomedicine are expanding, more knowledge is needed to assess these structures' interaction with biological systems. Here, uptake and penetration in cell and cell spheroid tissue models (CSTMs) are studied to elucidate whether differences in internal structure can be a factor in the efficacy of DNA-origami-based delivery. Two structures bearing largely similar features in terms of both geometry and molecular weight, but with different internal designs-being either compact, lattice-based origami or following an open, wireframe design-are designed. In CSTMs, wireframe rods are able to penetrate deeper than close-packed rods. Moreover, doxorubicin-loaded wireframe rods show a higher cytotoxicity in CSTMs. These results can be explained by differences in structural mechanics, local deformability, local material density, and accessibility to cell receptors between these two DNA origami design paradigms. In particular, it is suggested that the main reason for the difference in penetration dynamic arises from differences in interaction with scavenger receptors where lattice-based structures appear to be internalized to a higher degree than polygonal structures of the same size and shape. It is thus argued that the choice of structural design method constitutes a crucial parameter for the application of DNA origami in drug delivery.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17177Sweden
| | - Erik Benson
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17177Sweden
| | - Ferenc Fördős
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17177Sweden
| | - Marco Lolaico
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17177Sweden
| | - Igor Baars
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17177Sweden
| | - Trixy Fang
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17177Sweden
| | - Ana I. Teixeira
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17177Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17177Sweden
| |
Collapse
|
45
|
Ojasalo S, Piskunen P, Shen B, Kostiainen MA, Linko V. Hybrid Nanoassemblies from Viruses and DNA Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1413. [PMID: 34071795 PMCID: PMC8228324 DOI: 10.3390/nano11061413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as "structured" genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.
Collapse
Affiliation(s)
- Sofia Ojasalo
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| |
Collapse
|
46
|
Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. VIEW 2021. [DOI: 10.1002/viw.20200067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
47
|
|
48
|
Ijäs H, Shen B, Heuer-Jungemann A, Keller A, Kostiainen M, Liedl T, Ihalainen JA, Linko V. Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release. Nucleic Acids Res 2021; 49:3048-3062. [PMID: 33660776 PMCID: PMC8034656 DOI: 10.1093/nar/gkab097] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Doxorubicin (DOX) is a common drug in cancer chemotherapy, and its high DNA-binding affinity can be harnessed in preparing DOX-loaded DNA nanostructures for targeted delivery and therapeutics. Although DOX has been widely studied, the existing literature of DOX-loaded DNA-carriers remains limited and incoherent. Here, based on an in-depth spectroscopic analysis, we characterize and optimize the DOX loading into different 2D and 3D scaffolded DNA origami nanostructures (DONs). In our experimental conditions, all DONs show similar DOX binding capacities (one DOX molecule per two to three base pairs), and the binding equilibrium is reached within seconds, remarkably faster than previously acknowledged. To characterize drug release profiles, DON degradation and DOX release from the complexes upon DNase I digestion was studied. For the employed DONs, the relative doses (DOX molecules released per unit time) may vary by two orders of magnitude depending on the DON superstructure. In addition, we identify DOX aggregation mechanisms and spectral changes linked to pH, magnesium, and DOX concentration. These features have been largely ignored in experimenting with DNA nanostructures, but are probably the major sources of the incoherence of the experimental results so far. Therefore, we believe this work can act as a guide to tailoring the release profiles and developing better drug delivery systems based on DNA-carriers.
Collapse
Affiliation(s)
- Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Boxuan Shen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Amelie Heuer-Jungemann
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| |
Collapse
|
49
|
He L, Mu J, Gang O, Chen X. Rationally Programming Nanomaterials with DNA for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003775. [PMID: 33898180 PMCID: PMC8061415 DOI: 10.1002/advs.202003775] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Indexed: 05/05/2023]
Abstract
DNA is not only a carrier of genetic information, but also a versatile structural tool for the engineering and self-assembling of nanostructures. In this regard, the DNA template has dramatically enhanced the scalability, programmability, and functionality of the self-assembled DNA nanostructures. These capabilities provide opportunities for a wide range of biomedical applications in biosensing, bioimaging, drug delivery, and disease therapy. In this review, the importance and advantages of DNA for programming and fabricating of DNA nanostructures are first highlighted. The recent progress in design and construction of DNA nanostructures are then summarized, including DNA conjugated nanoparticle systems, DNA-based clusters and extended organizations, and DNA origami-templated assemblies. An overview on biomedical applications of the self-assembled DNA nanostructures is provided. Finally, the conclusion and perspectives on the self-assembled DNA nanostructures are presented.
Collapse
Affiliation(s)
- Liangcan He
- Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore117597Singapore
| | - Jing Mu
- Institute of Precision MedicinePeking University Shenzhen HospitalShenzhen518036China
| | - Oleg Gang
- Department of Chemical Engineering and Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkNY10027USA
- Center for Functional NanomaterialsBrookhaven National LaboratoryUptonNY11973USA
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore117597Singapore
| |
Collapse
|
50
|
Lacroix A, Sleiman HF. DNA Nanostructures: Current Challenges and Opportunities for Cellular Delivery. ACS NANO 2021; 15:3631-3645. [PMID: 33635620 DOI: 10.1021/acsnano.0c06136] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA nanotechnology has produced a wide range of self-assembled structures, offering unmatched possibilities in terms of structural design. Because of their programmable assembly and precise control of size, shape, and function, DNA particles can be used for numerous biological applications, including imaging, sensing, and drug delivery. While the biocompatibility, programmability, and ease of synthesis of nucleic acids have rapidly made them attractive building blocks, many challenges remain to be addressed before using them in biological conditions. Enzymatic hydrolysis, low cellular uptake, immune cell recognition and degradation, and unclear biodistribution profiles are yet to be solved. Rigorous methodologies are needed to study, understand, and control the fate of self-assembled DNA structures in physiological conditions. In this review, we describe the current challenges faced by the field as well as recent successes, highlighting the potential to solve biology problems or develop smart drug delivery tools. We then propose an outlook to drive the translation of DNA constructs toward preclinical design. We particularly believe that a detailed understanding of the fate of DNA nanostructures within living organisms, achieved through thorough characterization, is the next required step to reach clinical maturity.
Collapse
Affiliation(s)
- Aurélie Lacroix
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|