1
|
Xie AQ, Qiu H, Jiang W, Wang Y, Niu S, Zhang KQ, Ho GW, Wang XQ. Recent Advances in Spectrally Selective Daytime Radiative Cooling Materials. NANO-MICRO LETTERS 2025; 17:264. [PMID: 40392366 DOI: 10.1007/s40820-025-01771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025]
Abstract
Daytime radiative cooling is an eco-friendly and passive cooling technology that operates without external energy input. Materials designed for this purpose are engineered to possess high reflectivity in the solar spectrum and high emissivity within the atmospheric transmission window. Unlike broadband-emissive daytime radiative cooling materials, spectrally selective daytime radiative cooling (SSDRC) materials exhibit predominant mid-infrared emission in the atmospheric transmission window. This selective mid-infrared emission suppresses thermal radiation absorption beyond the atmospheric transmission window range, thereby improving the net cooling power of daytime radiative cooling. This review elucidates the fundamental characteristics of SSDRC materials, including their molecular structures, micro- and nanostructures, optical properties, and thermodynamic principles. It also provides a comprehensive overview of the design and fabrication of SSDRC materials in three typical forms, i.e., fibrous materials, membranes, and particle coatings, highlighting their respective cooling mechanisms and performance. Furthermore, the practical applications of SSDRC in personal thermal management, outdoor building cooling, and energy harvesting are summarized. Finally, the challenges and prospects are discussed to guide researchers in advancing SSDRC materials.
Collapse
Affiliation(s)
- An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Qiu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Wangkai Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yu Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, People's Republic of China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, People's Republic of China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
| | - Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
2
|
Zhu YY, Xue CH, Liu BY, Guo XJ, Qu YY, Wang HD, Ma CQ, Huang MC, Cheng J. Superhydrophobic and Flame-Retardant Poly(vinylidene Fluoride- co-hexafluoropropylene)/SiO 2/Aluminum Phosphate Composite Film for Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20284-20295. [PMID: 40107851 DOI: 10.1021/acsami.5c01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Radiative cooling technology has major benefits for energy-free thermoregulation since it can chill items without using any energy. However, the cooling efficacy of radiative cooling materials is hampered by outdoor pollution as well as a number of safety issues involved in practical applications, in particular, the fire hazard of polymer-based materials. Here, a porous composite film was created and manufactured that is flame-retardant, radiative cooling, and superhydrophobic. The average infrared emissivity of the film reached 97.2% with an average solar reflectance up to 98.4%. It produced subambient cooling in an outdoor environment, with an average temperature decrease of 11.5 °C. With a sliding angle of 3.6° and a water contact angle of 158.7°, the surface of the film exhibits conventional self-cleaning properties and is superhydrophobic. Notably, the film is flame-retardant with a limiting oxygen index of 38.3%, which is suitable for cooling materials with fire safety requirements.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Chao-Hua Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bing-Ying Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiao-Jing Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuan-Yuan Qu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hui-Di Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Chao-Qun Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Meng-Chen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jun Cheng
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| |
Collapse
|
3
|
Yu H, Lu J, Yan J, Bai T, Niu Z, Ye B, Cheng W, Wang D, Huan S, Han G. Selective Emission Fabric for Indoor and Outdoor Passive Radiative Cooling in Personal Thermal Management. NANO-MICRO LETTERS 2025; 17:192. [PMID: 40102320 PMCID: PMC11920469 DOI: 10.1007/s40820-025-01713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Radiative cooling fabric creates a thermally comfortable environment without energy input, providing a sustainable approach to personal thermal management. However, most currently reported fabrics mainly focus on outdoor cooling, ignoring to achieve simultaneous cooling both indoors and outdoors, thereby weakening the overall cooling performance. Herein, a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling. The fabric achieves 94% reflectance performance in the sunlight band (0.3-2.5 µm) and 6% in the mid-infrared band (2.5-25 µm), effectively minimizing heat absorption and radiation release obstruction. It also demonstrates 81% radiative emission performance in the atmospheric window band (8-13 µm) and 25% radiative transmission performance in the mid-infrared band (2.5-25 μm), providing 60 and 26 W m-2 net cooling power outdoors and indoors. In practical applications, the fabric achieves excellent indoor and outdoor human cooling, with temperatures 1.4-5.5 °C lower than typical polydimethylsiloxane film. This work proposes a novel design for the advanced radiative cooling fabric, offering significant potential to realize sustainable personal thermal management.
Collapse
Affiliation(s)
- Haijiao Yu
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Jiqing Lu
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Jie Yan
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Tian Bai
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Zhaoxuan Niu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, People's Republic of China
| | - Bin Ye
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Wanli Cheng
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
| | - Dong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
| | - Guangping Han
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
| |
Collapse
|
4
|
Lee J, Kim DK, Kwon D, Yu J, Park JG, Yoo Y. Turning Discarded Oyster Shells into Sustainable Passive Radiative Cooling Films. Polymers (Basel) 2025; 17:275. [PMID: 39940478 PMCID: PMC11820610 DOI: 10.3390/polym17030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Inorganic materials used in passive radiative cooling have achieved a commendable level of performance through synthesis, yet they lack sustainability and environmental friendliness as they do not incorporate recycling. This study developed a novel passive radiative cooling (PRC) film utilizing calcium carbonate extracted from discarded oyster shells (D-CaCO3) and polyurethane (PU) as the matrix. This sustainable approach leverages the unique properties of CaCO3, such as high solar reflectance and strong infrared emissivity, to achieve significant cooling effects. The PU/D-CaCO3 film absorbs only 22% of total solar light and exhibits a high emissivity of 95% in the atmospheric window, achieving temperatures up to 7 °C lower than the surrounding environment under 650 W/m2 solar irradiance. Furthermore, field tests were conducted to verify the implementation of our optical strategy by analyzing the optical properties and FDTD simulations. Consequently, the PU/D-CaCO3 film outperformed conventional white paint and pure PU, demonstrating a maximum temperature difference of 7 °C. Additionally, the passive radiative cooling efficiency of the film was verified through theoretical calculations. The oyster-shell-derived CaCO3 utilizes waste and contributes to carbon sequestration, aligning with sustainable and eco-friendly goals. This research demonstrates the potential of using marine-derived materials in passive cooling technologies, offering a path to reduce energy consumption and greenhouse gas emissions in cooling applications. The findings highlight the commercial viability and environmental benefits of PU/D-CaCO3 films, marking significant progress in passive radiative cooling.
Collapse
Affiliation(s)
- Junghwan Lee
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong 17546, Republic of Korea; (J.L.); (D.K.K.); (D.K.); (J.Y.)
| | - Dae Kyom Kim
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong 17546, Republic of Korea; (J.L.); (D.K.K.); (D.K.); (J.Y.)
| | - Daeyul Kwon
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong 17546, Republic of Korea; (J.L.); (D.K.K.); (D.K.); (J.Y.)
| | - Jeehoon Yu
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong 17546, Republic of Korea; (J.L.); (D.K.K.); (D.K.); (J.Y.)
| | | | - Youngjae Yoo
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong 17546, Republic of Korea; (J.L.); (D.K.K.); (D.K.); (J.Y.)
| |
Collapse
|
5
|
Liu R, Wang S, Zhou Z, Zhang K, Wang G, Chen C, Long Y. Materials in Radiative Cooling Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401577. [PMID: 38497602 PMCID: PMC11733833 DOI: 10.1002/adma.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Radiative cooling (RC) is a carbon-neutral cooling technology that utilizes thermal radiation to dissipate heat from the Earth's surface to the cold outer space. Research in the field of RC has garnered increasing interest from both academia and industry due to its potential to drive sustainable economic and environmental benefits to human society by reducing energy consumption and greenhouse gas emissions from conventional cooling systems. Materials innovation is the key to fully exploit the potential of RC. This review aims to elucidate the materials development with a focus on the design strategy including their intrinsic properties, structural formations, and performance improvement. The main types of RC materials, i.e., static-homogeneous, static-composite, dynamic, and multifunctional materials, are systematically overviewed. Future trends, possible challenges, and potential solutions are presented with perspectives in the concluding part, aiming to provide a roadmap for the future development of advanced RC materials.
Collapse
Affiliation(s)
- Rong Liu
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Shancheng Wang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Zhengui Zhou
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Keyi Zhang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Guanya Wang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Changyuan Chen
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Yi Long
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| |
Collapse
|
6
|
Zhou C, Fu C, Tian G, He F, Huang S, Guo Z. Biomimetic Alumina Film for Passive Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70737-70745. [PMID: 39668742 DOI: 10.1021/acsami.4c18311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Passive daytime radiative cooling is receiving more and more attention as a cooling method that does not consume energy to cool objects. However, most radiative cooling materials require the mixing of multiple particles, which increases the manufacturing process requirements. Most radiative cooling materials are susceptible to outdoor abrasion, pollution, and UV exposure, which leads to decreased performance. In this paper, the biomimetic film with both radiative cooling and self-cleaning functions was prepared by a simple evaporation-induced self-assembly process and spraying process using Al2O3 as the main radiatively cooling raw material, poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF-HFP)] as the additive, and polydimethylsiloxane as the binder. Therefore, we can get a biomimetic-Al2O3-P(VDF-HFP)-PDMS film (BAPPF). The BAPPF was spectrally selective. Specifically, the reflectance of BAPPF in the solar spectrum (0.45-0.89 μm) exceeded 100%, and the average reflectance in the main thermal effect of the solar spectrum (0.78-1.10 μm) was 99.92%. In addition, the BAPPF had 96.97% reflectance in the solar spectrum (0.3-2.5 μm) and 90.55% mid-infrared emissivity in the atmospheric window (8-13 μm). The combined performance enabled BAPPF to reduce temperature by up to 8.4 °C over air temperature in outdoor tests. What's more, BAPPF had excellent superhydrophobic properties, with a water contact angle of up to 159°. The self-cleaning of the BAPPF prevented contamination and maintained cooling even when working outdoors for long periods of time. Furthermore, the BAPPF maintained high performance after mechanical friction, chemical corrosion, UV aging, and water impact, which has broad reference value and application prospects.
Collapse
Affiliation(s)
- Chen Zhou
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Changhui Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Guangyi Tian
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Feifan He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Shaolong Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
7
|
Yang L, Wang G, Duan S, Zhang J, Li C. Structurally Colored Photonic Crystal Biomimetic Microstructures for Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62827-62837. [PMID: 39486038 DOI: 10.1021/acsami.4c10050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Daytime radiative cooling offers a novel solution to the energy crisis, enabling green and efficient thermal management in space. High reflectance in the solar spectrum is essential for passive radiative cooling, rendering dye coloring and similar methods unsuitable for colored coolers. This paper presents a structurally colored photonic crystal biomimetic microstructured radiative cooler. Inspired by natural biological systems, this cooler features a dual-layered microtruncated-cone array structure on the surface and bottom membrane layers. The silver reflector and 3D micrograting surface structure produce continuous iridescent colors through multiple interference effects. Optimized lithographic process enable the fabrication of the ordered dual-layer surface microstructure arrays with precise angular combinations. The dual-layered microtruncated-cone introduces a gradient refractive index, reducing impedance mismatch at the interface. As a result, the radiative cooler achieves high solar spectral reflectance (0.95) and high mid-infrared emissivity (0.95). Notably, the net theoretical cooling power and the subambient temperature drop are 106.9 W m-2 and 7.4 °C, respectively, at an ambient temperature of 40 °C, with a measured average temperature reduction of 6.1 °C under direct sunlight. This performance matches that of advanced radiative coolers, striking a balance between aesthetics and radiative cooling capability.
Collapse
Affiliation(s)
- Lili Yang
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Key Laboratory of Thermal Management and Energy Utilization of Aviation Vehicles, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210016, China
| | - Gang Wang
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shuxian Duan
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinrui Zhang
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chong Li
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
8
|
Cai W, Wang J, Wang W, Li S, Rahman MZ, Tawiah B, Ming Y, Zhou X, Xing W, Hu Y, Zhu J, Fei B. Colored Radiative Cooling and Flame-Retardant Polyurethane-Based Coatings: Selective Absorption/Reflection in Solar Waveband. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402349. [PMID: 39114871 DOI: 10.1002/smll.202402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Indexed: 11/21/2024]
Abstract
The aesthetic demand has become an imperative challenge to advance the practical and commercial application of daytime radiative cooling technology toward mitigating climate change. Meanwhile, the application of radiative cooling materials usually focuses on the building surface, related tightly to fire safety. Herein, the absorption and reflection spectra of organic and inorganic colorants are first compared in solar waveband, finding that iron oxides have higher reflectivity in NIR region. Second, three kinds of iron oxides-based colorants are selected to combine porous structure and silicon-modified ammonium polyphosphate (Si-APP) to engineer colored polyurethane-based (PU) coating, thus enhancing the reflectivity and flame retardancy. Together with reflectivity of more than 90% in near-infrared waveband and infrared emissivity of ≈91%, average temperature drops of ≈5.7, ≈7.9, and ≈3.8 °C are achieved in porous PU/Fe2O3/Si-APP, porous PU/Fe2O3·H2O/Si-APP, and porous PU/Fe3O4·H2O/Si-APP, compared with dense control samples. The catalysis effect of iron oxides in the cross-linking reaction of pyrolysis products and dehydration mechanism of Si-APP enable PU coating to produce an intumescent and protective char residue. Consequently, PU composite coatings demonstrate desirable fire safety. The ingenious choice of colorants effectively minimizes the solar heating effect and trades off the daytime radiative cooling and aesthetic appearance requirement.
Collapse
Affiliation(s)
- Wei Cai
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junling Wang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sicheng Li
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071, P. R. China
| | - Mohammad Ziaur Rahman
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Benjamin Tawiah
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yang Ming
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xia Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Weiyi Xing
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
9
|
Huang L, Hu Y, Yao X, Chesman ASR, Wang H, Sagoe-Crentsil K, Duan W. Designing Nanoporous Polymer Films for High-Performance Passive Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54401-54411. [PMID: 39239925 DOI: 10.1021/acsami.4c09365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Energy-free passive daytime radiative cooling (PDRC) technology makes it an attractive solution to both the building energy crisis and global warming. Spectrally selective porous polymers have great potential for practical PDRC applications owing to their cooling performance and scalability. A fundamental understanding of the relationship between the cooling performance and pore properties is crucial for guiding future structural designs of high-performance PDRC materials. However, one of the key challenges is achieving uniform nanopores and tailorable pore morphologies in the PDRC coating films. Here we demonstrate a strategy to use advanced metal-organic framework (MOF) nanocrystals as a sacrificial template creating a nanoporous poly(vinylidene fluoride) (PVDF) coating film with uniform-sized nanopores for highly daytime passive radiative cooling. The experimental evidence indicates that nanopores around 400 nm in size, comparable to the wavelength within the ultraviolet and visible spectra, along with an appropriate porosity of 37%, contribute to excellent solar reflectance (94.9 ± 0.8%) and high long-wave infrared emission (92.8 ± 1.4%) in the resulting porous PVDF films. This leads to subambient cooling of ≈9.5 °C and a promising net cooling power of 137 W/m2 at midday under solar intensities of ∼1275 and ∼1320 W/m2. The performance equals or exceeds that of state-of-the-art polymeric PDRC designs, and this general strategy of tailing nanostructures is expected to open a new avenue toward high-performance radiative cooling materials for PDRC applications.
Collapse
Affiliation(s)
- Liao Huang
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yaoxin Hu
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Xupei Yao
- Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | | | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Kwesi Sagoe-Crentsil
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Wenhui Duan
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Fan H, Wang K, Ding Y, Qiang Y, Yang Z, Xu H, Li M, Xu Z, Huang C. Core-Shell Composite Nanofibers with High Temperature Resistance, Hydrophobicity and Breathability for Efficient Daytime Passive Radiative Cooling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406987. [PMID: 39194411 DOI: 10.1002/adma.202406987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Radiative cooling technology, which is renowned for its ability to dissipate heat without energy consumption, has garnered immense interest. However, achieving high performance, multifunctionality, and smart integration while addressing challenges such as film thickness and enhancing anisotropic light reflection remains challenging. In this study, a core-shell composite nanofiber, PVDF@PEI, is introduced and designed primarily from a symmetry-breaking perspective to develop highly efficient radiative cooling materials. Using a combination of solvent-induced phase separation (EIPS) inverse spinning and (aggregation) self-assembly methods (EISA or EIAA) and coaxial electrostatic spinning (ES), superconformal surface anisotropic porous nanofiber membranes are fabricated. These membranes exhibit exceptional thermal stability (up to 210 °C), high hydrophobicity (contact angle of 126°), robust UV protection (exceeding 99%), a fluorescence multiplication effect (with a 0.6% increase in fluorescence quantum efficiency), and good breathability. These properties enable the material to excel in a wide range of application scenarios. Moreover, this material achieved a remarkable daytime cooling temperature of 8 °C. The development of this fiber membrane offers significant advancements in the field of wearables and the multifunctionality of materials, paving new paths for future research and innovation.
Collapse
Affiliation(s)
- Hong Fan
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Kefan Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Yangjian Ding
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Yueyue Qiang
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Zhuo Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Huan Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Min Li
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Zewen Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Cheng Huang
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, No.1188, Wuzhong District, Suzhou, 215006, China
- School of Flexible Electronics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Guangming District, Shenzhen, 518107, China
| |
Collapse
|
11
|
Deng Y, Yang Y, Xiao Y, Zeng X, Xie HL, Lan R, Zhang L, Yang H. Annual Energy-Saving Smart Windows with Actively Controllable Passive Radiative Cooling and Multimode Heating Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401869. [PMID: 38641342 DOI: 10.1002/adma.202401869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Smart windows with radiative heat management capability using the sun and outer space as zero-energy thermodynamic resources have gained prominence, demonstrating a minimum carbon footprint. However, realizing on-demand thermal management throughout all seasons while reducing fossil energy consumption remains a formidable challenge. Herein, an energy-efficient smart window that enables actively tunable passive radiative cooling (PRC) and multimode heating regulation is demonstrated by integrating the emission-enhanced polymer-dispersed liquid crystal (SiO2@PRC PDLC) film and a low-emission layer deposited with carbon nanotubes. Specifically, this device can achieve a temperature close to the chamber interior ambient under solar irradiance of 700 W m-2, as well as a temperature drop of 2.3 °C at sunlight of 500 W m-2, whose multistage PRC efficiency can be rapidly adjusted by a moderate voltage. Meanwhile, synchronous cooperation of passive radiative heating (PRH), solar heating (SH), and electric heating (EH) endows this smart window with the capability to handle complicated heating situations during cold weather. Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer SiO2@PRC PDLC, normal glass, and commercial low-E glass when applied in different climate zones. This work provides a feasible pathway for year-round thermal management, presenting a huge potential in energy-saving applications.
Collapse
Affiliation(s)
- Yuan Deng
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education and Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yihai Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuanhang Xiao
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education and Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xingping Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education and Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Ruochen Lan
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Lanying Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
12
|
Hu L, Wang C, Zhu H, Zhou Y, Li H, Liu L, Ma L. Adaptive Thermal Management Radiative Cooling Smart Window with Perfect Near-Infrared Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306823. [PMID: 38403873 DOI: 10.1002/smll.202306823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/02/2024] [Indexed: 02/27/2024]
Abstract
The architectural window with spectrally selective features and radiative cooling is an effective way to save building energy consumption. However, architectural windows that combine both functions are currently based on micro-nano photonic structures, which undoubtedly hinder their commercial application due to the complexity of manufacture. Herein, a novel tunable visible light transmittance radiative cooling smart window (TTRC smart window) with perfect near-infrared (NIR) shielding ability is manufactured via a mass-producible scraping method. TTRC smart window presents high luminous transmittance (Tlum = 56.8%), perfect NIR shielding (TNIR = 3.4%), bidirectional transparency adjustment ability unavailable in other transparent radiative coolers based on photonic structures (ΔTlum = 54.2%), and high emittance in the atmospheric window (over 94%). Outdoor measurements confirm that smart window can reduce 8.2 and 6.6 °C, respectively, compared to ordinary glass and indium tin oxide (ITO) glass. Moreover, TTRC smart window can save over 20% of annual energy in the tropics compared to ITO and ordinary glass. The simple preparation method employed in this work and the superior optical properties of the smart window have significantly broadened the scope of application of architectural windows and advanced the commercialization of architectural windows.
Collapse
Affiliation(s)
- Lechuan Hu
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Chengchao Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Haojun Zhu
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Yan Zhou
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Haizeng Li
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Linhua Liu
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Lanxin Ma
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
13
|
Cao C, Ji S, Jiang Y, Su J, Xia H, Li H, Tian C, Wong YJ, Feng X, Chen X. Mitigating the Overheat of Stretchable Electronic Devices Via High-Enthalpy Thermal Dissipation of Hydrogel Encapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401875. [PMID: 38598692 DOI: 10.1002/adma.202401875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Indexed: 04/12/2024]
Abstract
The practical application of flexible and stretchable electronics is significantly influenced by their thermal and chemical stability. Elastomer substrates and encapsulation, due to their soft polymer chains and high surface-area-to-volume ratio, are particularly susceptible to high temperatures and flame. Excessive heat poses a severe threat of damage and decomposition to these elastomers. By leveraging water as a high enthalpy dissipating agent, here, a hydrogel encapsulation strategy is proposed to enhance the flame retardancy and thermal stability of stretchable electronics. The hydrogel-based encapsulation provides thermal protection against flames for more than 10 s through the evaporation of water. Further, the stretchability and functions automatically recover by absorbing air moisture. The incorporation of hydrogel encapsulation enables stretchable electronics to maintain their functions and perform complex tasks, such as fire saving in soft robotics and integrated electronics sensing. With high enthalpy heat dissipation, encapsulated soft electronic devices are effectively shielded and retain their full functionality. This strategy offers a universal method for flame retardant encapsulation of stretchable electronic devices.
Collapse
Affiliation(s)
- Can Cao
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Shaobo Ji
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiangtao Su
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Huarong Xia
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Haicheng Li
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Changhao Tian
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Yi Jing Wong
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Xue Feng
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
14
|
Han D, Fei J, Wan MP, Li H, Ng BF. Investigation of recycled materials for radiative cooling under tropical climate. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:593-599. [PMID: 39635092 PMCID: PMC11501400 DOI: 10.1515/nanoph-2023-0593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2024]
Abstract
As a sustainable alternative to using virgin polymer, we propose the use of recycled polymer for the fabrication of passive radiative cooling materials to tackle both the increasing demand for cooling systems and to upcycle plastic waste. Using recycled acrylic sheets as the binder for BaSO4 thorough sol-gel method, a sustained 1.2 °C sub-ambient temperature during daytime and 3 °C sub-ambient temperature during nighttime was achieved under the hot and humid conditions of the tropical climate. The coating achieved 97.7 % solar reflectance and 95 % infrared emittance. Separately, when porosity is introduced to recycled acrylic sheets through a phase inversion method, a near-ambient temperature during noontime and sustained sub-ambient temperature of 2.5 °C during nighttime was achieved (with 96.7 % solar reflectance). Comparable performances are also obtained using recycled polyvinyl chloride (PVC) pipe and expanded polystyrene (EPS) foam.
Collapse
Affiliation(s)
- Di Han
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| | - Jipeng Fei
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| | - Man Pun Wan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| | - Bing Feng Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| |
Collapse
|
15
|
Song J, Shen Q, Shao H, Deng X. Anti-Environmental Aging Passive Daytime Radiative Cooling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305664. [PMID: 38148594 PMCID: PMC10933639 DOI: 10.1002/advs.202305664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Indexed: 12/28/2023]
Abstract
Passive daytime radiative cooling technology presents a sustainable solution for combating global warming and accompanying extreme weather, with great potential for diverse applications. The key characteristics of this cooling technology are the ability to reflect most sunlight and radiate heat through the atmospheric transparency window. However, the required high solar reflectance is easily affected by environmental aging, rendering the cooling ineffective. In recent years, significant advancements have been made in understanding the failure mechanisms, design strategies, and manufacturing technologies of daytime radiative cooling. Herein, a critical review on anti-environmental aging passive daytime radiative cooling with the goal of advancing their commercial applications is presented. It is first introduced the optical mechanisms and optimization principles of radiative cooling, which serve as a basis for further endowing environmental durability. Then the environmental aging conditions of passive daytime radiative cooling, mainly focusing on UV exposure, thermal aging, surface contamination and chemical corrosion are discussed. Furthermore, the developments of anti-environmental aging passive daytime radiative cooling materials, including design strategies, fabrication techniques, structures, and performances, are reviewed and classified for the first time. Last but not the least, the remaining open challenges and the insights are presented for the further promotion of the commercialization progress.
Collapse
Affiliation(s)
- Jianing Song
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Qingchen Shen
- Bio‐inspired Photonics GroupYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Huijuan Shao
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xu Deng
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
16
|
Han D, Wang C, Han CB, Cui Y, Ren WR, Zhao WK, Jiang Q, Yan H. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO 2 Aerogel Coating for Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9303-9312. [PMID: 38343044 DOI: 10.1021/acsami.3c18101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Daytime radiative cooling technology offers a low-carbon, environmentally friendly, and nonpower-consuming approach to realize building energy conservation. It is important to design materials with high solar reflectivity and high infrared emissivity in atmospheric windows. Herein, a porous calcium silicate composite SiO2 aerogel water-borne coating with strong passive radiative cooling and high thermal insulation properties is proposed, which shows an exceptional solar reflectance of 94%, high sky window emissivity of 96%, and 0.0854 W/m·K thermal conductivity. On the SiO2/CaSiO3 radiative cooling coating (SiO2-CS-coating), a strategy is proposed to enhance the atmospheric window emissivity by lattice resonance, which is attributed to the eight-membered ring structure of porous calcium silicate, thereby increasing the atmospheric window emissivity. In the daytime test (solar irradiance 900W/m2, ambient temperature 43 °C, wind speed 0.53 m/s, humidity 25%), the temperature inside the box can achieve a cooling temperature of 13 °C lower than that of the environment, which is 30 °C, and the theoretical cooling power is 96 W/m2. Compared with the commercial white coating, SiO2-CS-coating can save 70 kW·h of electric energy in 1 month, and the energy consumption is reduced by 36%. The work provides a scalable, widely applicable radiative-cooling coating for building comfort, which can greatly reduce indoor temperatures and is suitable for building surfaces.
Collapse
Affiliation(s)
- Dong Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chenghai Wang
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
- Langgu (Tianjin) New Material Technology Co., Ltd., Tianjin 300392, People's Republic of China
| | - Chang Bao Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yanan Cui
- Langgu (Tianjin) New Material Technology Co., Ltd., Tianjin 300392, People's Republic of China
| | - Wen Rui Ren
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Wen Kang Zhao
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Quan Jiang
- China Testing & Certification International Group Co., Ltd., Beijing 100000, People's Republic of China
- China Buiding Material Federation Metal Composite Materials & Products Branch, Beijing 100024, People's Republic of China
| | - Hui Yan
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
17
|
Mascaretti L, Chen Y, Henrotte O, Yesilyurt O, Shalaev VM, Naldoni A, Boltasseva A. Designing Metasurfaces for Efficient Solar Energy Conversion. ACS PHOTONICS 2023; 10:4079-4103. [PMID: 38145171 PMCID: PMC10740004 DOI: 10.1021/acsphotonics.3c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Metasurfaces have recently emerged as a promising technological platform, offering unprecedented control over light by structuring materials at the nanoscale using two-dimensional arrays of subwavelength nanoresonators. These metasurfaces possess exceptional optical properties, enabling a wide variety of applications in imaging, sensing, telecommunication, and energy-related fields. One significant advantage of metasurfaces lies in their ability to manipulate the optical spectrum by precisely engineering the geometry and material composition of the nanoresonators' array. Consequently, they hold tremendous potential for efficient solar light harvesting and conversion. In this Review, we delve into the current state-of-the-art in solar energy conversion devices based on metasurfaces. First, we provide an overview of the fundamental processes involved in solar energy conversion, alongside an introduction to the primary classes of metasurfaces, namely, plasmonic and dielectric metasurfaces. Subsequently, we explore the numerical tools used that guide the design of metasurfaces, focusing particularly on inverse design methods that facilitate an optimized optical response. To showcase the practical applications of metasurfaces, we present selected examples across various domains such as photovoltaics, photoelectrochemistry, photocatalysis, solar-thermal and photothermal routes, and radiative cooling. These examples highlight the ways in which metasurfaces can be leveraged to harness solar energy effectively. By tailoring the optical properties of metasurfaces, significant advancements can be expected in solar energy harvesting technologies, offering new practical solutions to support an emerging sustainable society.
Collapse
Affiliation(s)
- Luca Mascaretti
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
- Department
of Physical Electronics, Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University
in Prague, Břehová
7, 11519 Prague, Czech Republic
| | - Yuheng Chen
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Olivier Henrotte
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Omer Yesilyurt
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Vladimir M. Shalaev
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | - Alexandra Boltasseva
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| |
Collapse
|
18
|
Krzywanski J, Kijo-Kleczkowska A, Nowak W, De Souza-Santos ML. Technological and Modelling Progress in Green Engineering and Sustainable Development: Advancements in Energy and Materials Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7238. [PMID: 38005167 PMCID: PMC10673036 DOI: 10.3390/ma16227238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Due to a growing number of environmental issues, including global warming, water scarcity, and fossil fuel depletion, the topic of modern materials in energy is becoming crucial for our civilization. The technological advancements that have been observed bring many innovations that significantly impact how energy can be generated, stored, and distributed. Moreover, new opportunities have emerged in energy and materials engineering due to the increasing computational capability of current data processing systems. Methods that are highly demanding, time-consuming, and difficult to apply may now be considered when developing complete and sophisticated models in many areas of science and technology. Combining computational methods and AI algorithms allows for multi-threaded analyses solving advanced and interdisciplinary problems. Therefore, knowledge and experience in this subject, as well as the investigation of new, more efficient, and environmentally friendly solutions, currently represent one of the main directions of scientific research. The Special Issue "Advances in Materials: Modelling Challenges and Technological Progress for Green Engineering and Sustainable Development" aims to bring together research on material advances, focusing on modelling challenges and technological progress (mainly for green engineering and sustainable development). Original research studies, review articles, and short communications are welcome, especially those focusing on (but not limited to) artificial intelligence, other computational methods, and state-of-the-art technological concepts related to the listed keywords within energy and materials engineering.
Collapse
Affiliation(s)
- Jaroslaw Krzywanski
- Department of Advanced Computational Methods, Faculty of Science and Technology, Jan Dlugosz University, 13/15 Armii Krajowej, 42-200 Czestochowa, Poland
| | - Agnieszka Kijo-Kleczkowska
- Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland;
| | - Wojciech Nowak
- Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Marcio L. De Souza-Santos
- Department of Energy, School of Mechanical Engineering, UNICAMP—University of Campinas, Campinas 13083-970, SP, Brazil;
| |
Collapse
|
19
|
Shi S, Lv P, Valenzuela C, Li B, Liu Y, Wang L, Feng W. Scalable Bacterial Cellulose-Based Radiative Cooling Materials with Switchable Transparency for Thermal Management and Enhanced Solar Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301957. [PMID: 37231557 DOI: 10.1002/smll.202301957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Radiative cooling materials that can dynamically control solar transmittance and emit thermal radiation into cold outer space are critical for smart thermal management and sustainable energy-efficient buildings. This work reports the judicious design and scalable fabrication of biosynthetic bacterial cellulose (BC)-based radiative cooling (Bio-RC) materials with switchable solar transmittance, which are developed by entangling silica microspheres with continuously secreted cellulose nanofibers during in situ cultivation. Theresulting film shows a high solar reflection (95.3%) that can be facilely switched between an opaque state and a transparent state upon wetting. Interestingly, the Bio-RC film exhibits a high mid-infrared emissivity (93.4%) and an average sub-ambient temperature drop of ≈3.7 °C at noon. When integrating with a commercially available semi-transparent solar cell, the switchable solar transmittance of Bio-RC film enables an enhancement of solar power conversion efficiency (opaque state: 0.92%, transparent state: 0.57%, bare solar cell: 0.33%). As a proof-of-concept illustration, an energy-efficient model house with its roof built with Bio-RC-integrated semi-transparent solar cell is demonstrated. This research can shine new light on the design and emerging applications of advanced radiative cooling materials.
Collapse
Affiliation(s)
- Shukuan Shi
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Pengfei Lv
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Binxuan Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, P. R. China
| |
Collapse
|
20
|
Kousis I, D’Amato R, Pisello AL, Latterini L. Daytime Radiative Cooling: A Perspective toward Urban Heat Island Mitigation. ACS ENERGY LETTERS 2023; 8:3239-3250. [PMID: 37469389 PMCID: PMC10353003 DOI: 10.1021/acsenergylett.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Traditional cooling and heating systems in residential buildings account for more than 15% of global electricity consumption and 10% of global emissions of greenhouse gases. Daytime radiative cooling (DRC) is an emerging passive cooling technology that has garnered significant interest in recent years due to its high cooling capability. It is expected to play a pivotal role in improving indoor and outdoor urban environments by mitigating surface and air temperatures while decreasing relevant energy demand. Yet, DRC is in its infancy, and thus several challenges need to be addressed to establish its efficient wide-scale application into the built environment. In this Perspective, we critically discuss the strategies and progress in materials development to achieve DRC and highlight the challenges and future paths to pave the way for real-life applications. Advances in nanofabrication in combination with the establishment of uniform experimental protocols, both in the laboratory/field and through simulations, are expected to drive economic increases in DRC.
Collapse
Affiliation(s)
- Ioannis Kousis
- Environmental
Applied Physics Lab (EAPLAB) at Interuniversity Research Center on
Pollution and Environment (CIRIAF), University
of Perugia, Via G. Duranti 63, Perugia 06125, Italy
| | - Roberto D’Amato
- Nano4Light-Lab,
Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Anna Laura Pisello
- Environmental
Applied Physics Lab (EAPLAB) at Interuniversity Research Center on
Pollution and Environment (CIRIAF), University
of Perugia, Via G. Duranti 63, Perugia 06125, Italy
- Department
of Engineering, University of Perugia, Via G. Duranti 97, Perugia 06125, Italy
| | - Loredana Latterini
- Nano4Light-Lab,
Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
21
|
Woo HY, Choi Y, Chung H, Lee DW, Paik T. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling. NANO CONVERGENCE 2023; 10:17. [PMID: 37071232 PMCID: PMC10113424 DOI: 10.1186/s40580-023-00365-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Compared to traditional cooling systems, radiative cooling (RC) is a promising cooling strategy in terms of reducing energy consumption enormously and avoiding severe environmental issues. Radiative cooling materials (RCMs) reduce the temperature of objects without using an external energy supply by dissipating thermal energy via infrared (IR) radiation into the cold outer space through the atmospheric window. Therefore, RC has a great potential for various applications, such as energy-saving buildings, vehicles, water harvesting, solar cells, and personal thermal management. Herein, we review the recent progress in the applications of inorganic nanoparticles (NPs) and microparticles (MPs) as RCMs and provide insights for further development of RC technology. Particle-based RCMs have tremendous potential owing to the ease of engineering their optical and physical properties, as well as processibility for facile, inexpensive, and large area deposition. The optical and physical properties of inorganic NPs and MPs can be tuned easily by changing their size, shape, composition, and crystals structures. This feature allows particle-based RCMs to fulfill requirements pertaining to passive daytime radiative cooling (PDRC), which requires high reflectivity in the solar spectrum and high emissivity within the atmospheric window. By adjusting the structures and compositions of colloidal inorganic particles, they can be utilized to design a thermal radiator with a selective emission spectrum at wavelengths of 8-13 μm, which is preferable for PDRC. In addition, colloidal particles can exhibit high reflectivity in the solar spectrum through Mie-scattering, which can be further engineered by modifying the compositions and structures of colloidal particles. Recent advances in PDRC that utilize inorganic NPs and MPs are summarized and discussed together with various materials, structural designs, and optical properties. Subsequently, we discuss the integration of functional NPs to achieve functional RCMs. We describe various approaches to the design of colored RCMs including structural colors, plasmonics, and luminescent wavelength conversion. In addition, we further describe experimental approaches to realize self-adaptive RC by incorporating phase-change materials and to fabricate multifunctional RC devices by using a combination of functional NPs and MPs.
Collapse
Affiliation(s)
- Ho Young Woo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoonjoo Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyesun Chung
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Da Won Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|