1
|
Suhag S, Yadav P, Sachdeva V, Lohan K, Luhach V, Hooda V. Enhancing cellulase performance through nanomaterials and MOFs: innovations and applications. Prep Biochem Biotechnol 2025:1-22. [PMID: 40266270 DOI: 10.1080/10826068.2025.2494105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Cellulase is widely utilized in industries such as biofuel production, food processing, textiles, and waste management due to its catalytic efficiency in breaking down cellulose. However, its industrial application is limited by instability under harsh conditions. This review examines innovative methodologies for enhancing cellulase performance through immobilization on nanomaterials, including magnetic nanoparticles, carbon-based nanomaterials, and metal-organic frameworks (MOFs). Immobilization techniques, such as adsorption, covalent bonding, and cross-linking, have been shown to significantly improve cellulase stability, activity, and reusability. Key findings include a threefold increase in catalytic efficiency when cellulase is immobilized on magnetic nanoparticles, alongside notable enhancements in thermal stability when employing MOF composites. Despite these advancements, challenges such as enzyme leakage, material costs, and scalability remain. Future opportunities lie in developing more cost-effective, scalable immobilization strategies, with interdisciplinary approaches offering the potential to further enhance enzyme efficiency across diverse application.
Collapse
Affiliation(s)
- Shashi Suhag
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Poonam Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Veena Sachdeva
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Khushi Lohan
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Vijeta Luhach
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
2
|
Wang Y, Tian Y, Rennison AP, Blennow A, Westh P, Svensson B, Møller MS. Applying the Sabatier Principle to Decipher the Surface-Structure-Dependent Catalysis of Different Starch Granules by Pullulanase. JACS AU 2025; 5:55-60. [PMID: 39886568 PMCID: PMC11775686 DOI: 10.1021/jacsau.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025]
Abstract
Interfacial enzyme catalysis is widespread in both nature and industry. Granular starch is a sustainable and abundant raw material for which a rigorous correlation of the surface structure with enzymatic degradation is lacking. Here pullulanase-catalyzed debranching of 12 granular starches varying in amylopectin contents and branch chain contents and lengths is shown to present a biphasic relationship characteristic of the Sabatier principle. Introducing normalization of the specific rate (v 0/E 0) by a substrate-dependent constant C, related to the Arrhenius prefactor of k cat, reveals that optimal activity according to the Sabatier principle occurs at moderate substrate binding strength. The density of pullulanase attack sites (kinΓmax), determined using combined conventional and inverse Michaelis-Menten kinetics, was increased by branching enzyme treatment. Medium kinΓmax and branch chain length conferred the highest activity depending on substrate load. Correlation analysis demonstrated that starch granular crystallinity, surface order, and average branch chain length influence the enzymatic degradation by affecting the C constant. Therefore, C should be considered together with the enzyme binding strength to understand the degradation of starch granules. The Sabatier principle could serve as a diagnostic tool to characterize enzyme performance on substrates having different surface structures and guide rational modification of granular starches for specific purposes.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Yu Tian
- Department
of Plant and Environmental Sciences, University
of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Andrew Philip Rennison
- Applied
Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | | | - Peter Westh
- Interfacial
Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Birte Svensson
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Marie Sofie Møller
- Applied
Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| |
Collapse
|
3
|
Peng Y, Wang D, Yu J, Wu J, Wang F, Liu Y, Li X. Multi-scale structure and digestible process of wheat starch as affected by distribution behavior of rice glutelin amyloid fibril aggregates during gelatinization and digestion. Int J Biol Macromol 2025; 284:138197. [PMID: 39615728 DOI: 10.1016/j.ijbiomac.2024.138197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
The effect of distribution behaviors of rice glutelin amyloid fibril aggregates (RAFA) on the structures and digestible process of wheat starch was investigated, and the interaction was revealed by molecular dynamics simulations. Rice glutelin (RG)/RAFA enhanced the long-range ordered structure of starch, and the relative crystallinity of gelatinized RAFA-wheat starch reached 14.35 %. Moreover, the RAFA was more effective than RG in improving the short-range ordered structure of starch. Simultaneously, the RAFA exhibited higher cross-linking with starch than the RG, forming continuous and compact network structures that encapsulated the starch. After 180 min of in vitro pancreatic digestion, the residual RAFA encapsulating the starch was still observed in the chyme, hindering amylolytic enzyme action and alleviating the starch digestibility. Molecular dynamics simulations further confirmed that the RAFA, compared to the RG, bound more readily to the starch molecule and formed more stable complexing structure. And the RAFA formed hydrogen bonds with the hydroxyl groups of starch through polar amino acid residues (Gln and Asn) and nonpolar residues (Ala, Gly, and Ile) with binding free energy of -263.868 kJ/mol, while that of the RG-starch was -28.798 kJ/mol. The study enriches the theory of regulating starch digestion using food-derived protein amyloid fibril aggregates.
Collapse
Affiliation(s)
- Yuan Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Dongyue Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Jian Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China.
| |
Collapse
|
4
|
Yang Y, Fu J, Duan Q, Xie H, Dong X, Yu L. Strategies and Methodologies for Improving Toughness of Starch Films. Foods 2024; 13:4036. [PMID: 39766978 PMCID: PMC11728288 DOI: 10.3390/foods13244036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/15/2025] Open
Abstract
Starch films have attracted increasing attention due to their biodegradability, edibility, and potential use as animal feed from post-products. Applications of starch-based films include food packaging, coating, and medicine capsules. However, a major drawback of starch-based films is their brittleness, particularly under dry conditions, caused by starch retrogradation and the instability of plasticizers. To address this challenge, various strategies and methodologies have been developed, including plasticization, chemical modification, and physical reinforcement. This review covers fundamental aspects, such as the microstructures, phase transitions, and compatibility of starch, as well as application-oriented techniques, including processing methods, plasticizer selection, and chemical modifications. Plasticizers play a crucial role in developing starch-based materials, as they mitigate brittleness and improve processability. Given the abundance of hydroxyl groups in starch, the plasticizers used must also contain hydroxyl or polar groups for compatibility. Chemical modification, such as esterification and etherification, effectively prevents starch recrystallization. Reinforcements, particularly with nanocellulose, significantly improved the mechanical properties of starch film. Drawing upon both the literature and our expertise, this review not only summarizes the advancements in this field but also identifies the limitations of current technologies and outlines promising research directions for future development.
Collapse
Affiliation(s)
- Yiwen Yang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Jun Fu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qingfei Duan
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Huifang Xie
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Xinyi Dong
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Long Yu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Amahrous A, Taib M, Meftah S, Oukani E, Lahboub B. ChemicalComposition, Health Benefits and Future Prospects of Hairless Canary Seed (Phalariscanariensis L.): A Review. J Oleo Sci 2024; 73:1361-1375. [PMID: 39414460 DOI: 10.5650/jos.ess24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
The increasing global population and the rise of health-conscious consumers have led to a growing demand for innovative foods and functional ingredients. Hairless canary seed (Phalaris canariensis L.), which has recently obtained regulatory food approval from Health Canada and the United States Food and Drug Administration (US-FDA), has the potential to meet these demands due to its unique nutrient profile and characteristics. Canary seed stands out among cereals and pseudo-cereals (gluten-free cereals) as it has the highest protein content and is gluten-free. Additionally, it contains significant amounts of tryptophan, an amino acid typically lacking in cereals. It is considered a true cereal grain that can be processed into flour, starch, and oil for various food and non-food applications. This article provides a comprehensive overview of the chemical composition, functional properties, and biological activities of canary seeds. It also explores the processing methods for incorporating these seeds into food and cosmetic products. Furthermore, suggestions for future research directions are presented to enhance the utilization of this plant. Overall, it is evident that Phalaris canariensis holds considerable potential as a sustainable crop that can be further developed.
Collapse
Affiliation(s)
- Ayoub Amahrous
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Mehdi Taib
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Said Meftah
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Elhassan Oukani
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Bouyazza Lahboub
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| |
Collapse
|
6
|
Sharma M, Bains A, Dhull SB, Chawla P, Goksen G, Ali N. Extraction, characterization, and utilization of mung bean starch as an edible coating material for papaya fruit shelf-life enhancement. Food Sci Nutr 2024; 12:5188-5200. [PMID: 39055197 PMCID: PMC11266876 DOI: 10.1002/fsn3.4166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/27/2024] Open
Abstract
This research was aimed to investigate the utilization of mung bean starch as an innovative edible coating material to enhance the shelf-life of cut papaya fruits. The study focused on the extraction process of mung bean starch and its subsequent characterization through various analyses. Particle size (142.3 ± 1.24 nm), zeta potential (-25.52 ± 1.02 mV), morphological images, Fourier transform infrared (FTIR) spectra, and thermal stability (68.36 ± 0.15°C) were assessed to determine the mung bean starch properties. The functional properties, such as bulk density (0.51 ± 0.004 g/cm3) and tapped density (0.62 ± 0.010 g/cm3), angle of repose (21.61°), swelling power (12.26 ± 0.25%), and minimum gelation concentration (4.01 ± 1.25%), were examined to detect its potential as a coating base material. Subsequently, the prepared mung bean starch coating solution (1%, 2%, 3%, 4%, and 5%) was applied to papaya fruits and the coated fruits' physicochemical characteristics evaluated during storage. These characteristics encompassed color, weight loss, pH shifts, total soluble solids, titratable acidity, vitamin C content, fruit firmness, microbial analysis, and sensory attributes. The results revealed that starch coating on papaya maintained its color, reduced weight loss, preserved vitamin C, and delayed firmness loss, enhancing shelf-life when compared to control sample. These findings demonstrated the effectiveness of mung bean starch coatings in preserving papaya fruits. The research made a significant contribution to the use of mung bean starch as a potential coating material for improving the shelf-life of papaya fruits. This finding has great promise for the field of food preservation and quality control.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraPunjabIndia
| | - Sanju Bala Dhull
- Department of Food Science and TechnologyChaudhary Devi Lal UniversitySirsaHaryanaIndia
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
7
|
Yan G, Zhou Y, Wu J, Jin C, Zhao L, Wang W. Novel Strain of Paenibacillus phyllosphaerae CS-148 for the Direct Hydrolysis of Raw Starch into Glucose: Isolation and Fermentation Optimization. Appl Biochem Biotechnol 2024; 196:4125-4139. [PMID: 37897622 DOI: 10.1007/s12010-023-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The conventional process for converting starch to glucose is energy-intensive. To lower the cost of this process, a novel strain of Paenibacillus phyllosphaerae CS-148 was isolated and identified, which could directly hydrolyze raw starch into glucose and accumulate glucose in the fermentation broth. The effects of different organic and inorganic nitrogen sources, the culture temperature, the initial pH, and the agitation speed on the yield of glucose were optimized through the one-factor-at-a-time method. Nine factors were screened by Plackett-Burman design, and three factors (raw corncob starch, yeast extract and (NH4)2SO4) had significant effects on glucose yield. Three significant factors were further optimized using Box-Behnken design. Under the optimized fermentation conditions (raw corncob starch 40.4 g/L, yeast extract 4.27 g/L, (NH4)2SO4 4.39 g/L, KH2PO4 2 g/L, MgSO4`7H2O 2 g/L, FeSO4`7H2O 0.02 g/L, NaCl 2 g/L, KCl 0.5 g/L, inoculums volume 4%, temperature 35 °C, agitation rate 150 rpm, and initial pH 7.0), the maximum glucose yield reached 17.32 ± 0.46 g/L, which is 1.33-fold compared to that by initial fermentation conditions. The maximum conversion rate and glucose productivity were 0.43 ± 0.01 g glucose/g raw corn starch and 0.22 ± 0.01 g/(L·h), respectively. These results implied that P. phyllosphaerae CS-148 could be used in the food industry or fermentation industry at a low cost.
Collapse
Affiliation(s)
- Guilong Yan
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, 223300, China.
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.
| | - Yuzhen Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Jianguo Wu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Ci Jin
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Liqin Zhao
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Wei Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| |
Collapse
|
8
|
Braşoveanu M, Sabbaghi H, Ticoș D, Dumitru M, Sunooj KV, Sher F, Nemţanu MR. Enhancing starch functionality through synergistic modification via sequential treatments with cold plasma and electron beam irradiation. Int J Biol Macromol 2024; 270:132346. [PMID: 38750859 DOI: 10.1016/j.ijbiomac.2024.132346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
The impact of dual sequential modifications using radio-frequency (RF) plasma and electron beam irradiation (EBI) on starch properties was investigated and compared with single treatments within an irradiation dose range of 5-20 kGy. Regardless of sequence, dual treatments synergistically affected starch properties, increasing acidity, solubility, and paste clarity, while decreasing rheological features with increasing irradiation dose. The molecular weight distribution was also synergistically influenced. Amylopectin distribution broadened particularly below 10 kGy. Amylose narrowed its distribution across all irradiation doses. This was due to dominating EBI-induced degradation and molecular rearrangements from RF plasma. With the highest average radiation-chemical yield (G) and degradation rate constant (k) of (2.12 ± 0.14) × 10-6 mol·J-1 and (3.43 ± 0.23) × 10-4 kGy-1, respectively, upon RF plasma pre-treatment, amylose underwent random chain scission. In comparison to single treatments, dual modification caused minor alterations in spectral characteristics and crystal short-range order structure, along with increased granule aggregation and surface irregularities. The synergistic effect was dose-dependent, significant up to 10 kGy, irrespective of treatment sequence. The highest synergistic ratio was observed when RF plasma preceded irradiation, demonstrating the superior efficiency of plasma pre-treatment in combination with EBI. This synergy has the potential to lower costs and extend starch's technological uses by enhancing radiation sensitivity and reducing the irradiation dose.
Collapse
Affiliation(s)
- Mirela Braşoveanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., PO Box MG-36, 077125 Măgurele, Romania
| | - Hassan Sabbaghi
- Department of Food Science and Technology, Faculty of Agriculture and Animal Science, University of Torbat-e Jam, Torbat-e Jam, Razavi Khorasan Province, Iran
| | - Dorina Ticoș
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., PO Box MG-36, 077125 Măgurele, Romania
| | - Marius Dumitru
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., PO Box MG-36, 077125 Măgurele, Romania
| | | | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Monica R Nemţanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., PO Box MG-36, 077125 Măgurele, Romania.
| |
Collapse
|
9
|
Xie J, Cheng L, Li Z, Li C, Hong Y, Gu Z. Effect of non-starch components on the structural properties, physicochemical properties and in vitro digestibility of waxy highland barley starch. Int J Biol Macromol 2024; 255:128013. [PMID: 37951447 DOI: 10.1016/j.ijbiomac.2023.128013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Highland barley (HB) endosperm with an amylose content of 0-10 % is called waxy HB (WHB). WHB is a naturally slow-digesting grain, and the interaction between its endogenous non-starch composition and the WHB starch (WHBS) has an important effect on starch digestion. This paper focuses on the mechanisms by which the components of β-glucan, proteins and lipids affect the molecular, granular, crystalline structure and digestive properties of WHBS. After eliminating the main nutrients except for starch, the estimated glycemic index (eGI) of the samples rose from 62.56 % to 92.93 %, and the rapidly digested starch content increased from 60.81 % to 98.56 %, respectively. The resistant starch (RS) content, in contrast, dropped from 38.61 % to 0.13 %. Comparatively to lipids, β-glucan and protein contributed more to the rise in eGI and decline in RS content. The crystalline characteristics of starch were enhanced in the decomposed samples. The samples' gelatinization properties improved, as did the order of the starch molecules. Protein and β-glucan form a dense matrix on the surface of WHBS particles to inhibit WHBS digestion. In summary, this study revealed the mechanism influencing the digestibility of WHBS from the perspective of endogenous non-starch composition and provided a theoretical basis to develop slow-digesting foods.
Collapse
Affiliation(s)
- Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Jiaxing Institute of Future Food, Jiaxing 314050, People's Republic of China.
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Jha S, Sarkhel S, Saha S, Sahoo B, Kumari A, Chatterjee K, Mazumder PM, Sarkhel G, Mohan A, Roy A. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Res Int 2024; 175:113771. [PMID: 38129003 DOI: 10.1016/j.foodres.2023.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Exposing the hydrated-soft-starch matrix of intact grain or reconstituted flour dough to a high-temperature-short-time (HTST) leads to rapid vapor generation that facilitates high-pressure build-up in its elastic matrix linked to large deformation and expansion. The expanded starch matrix at high temperatures dries up quickly by flash vaporization of water, which causes loss of its structural flexibility and imparts a porous and rigid structure of the expanded porous starch matrix (EPSM). EPSM, with abundant pores in its construction, offers adsorptive effectiveness, solubility, swelling ability, mechanical strength, and thermal stability. It can be a sustainable and easy-to-construct alternative to porous starch (PS) in food and pharmaceutical applications. This review is a comparative study of PS and EPSM on their preparation methods, structure, and physicochemical properties, finding compatibility and addressing challenges in recommending EPSM as an alternative to PS in adsorbing, dispersing, stabilizing, and delivering active ingredients in a controlled and efficient way.
Collapse
Affiliation(s)
- Shipra Jha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Gautam Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Anand Mohan
- Department of Food Science & Technology, University of Georgia, Athens, GA 30602, USA
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India.
| |
Collapse
|
11
|
Wang Y, Svensson B, Henrissat B, Møller MS. Functional Roles of N-Terminal Domains in Pullulanase from Human Gut Lactobacillus acidophilus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18898-18908. [PMID: 38053504 DOI: 10.1021/acs.jafc.3c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Pullulanases are multidomain α-glucan debranching enzymes with one or more N-terminal domains (NTDs) including carbohydrate-binding modules (CBMs) and domains of unknown function (DUFs). To elucidate the roles of NTDs in Lactobacillus acidophilus NCFM pullulanase (LaPul), two truncated variants, Δ41-LaPul (lacking CBM41) and Δ(41+DUFs)-LaPul (lacking CBM41 and two DUFs), were produced recombinantly. LaPul recognized 1.3- and 2.2-fold more enzyme attack-sites on starch granules compared to Δ41-LaPul and Δ(41+DUFs)-LaPul, respectively, as measured by interfacial kinetics. Δ41-LaPul displayed markedly lower affinity for starch granules and β-cyclodextrin (10- and >21-fold, respectively) in comparison to LaPul, showing substrate binding mainly stems from CBM41. Δ(41+DUFs)-LaPul exhibited a 12 °C lower melting temperature than LaPul and Δ41-LaPul, indicating that the DUFs are critical for LaPul stability. Notably, Δ41-LaPul exhibited a 14-fold higher turnover number (kcat) and 9-fold higher Michaelis constant (KM) compared to LaPul, while Δ(41+DUFs)-LaPul's values were close to those of LaPul, possibly due to the exposure of aromatic by truncation.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bernard Henrissat
- Enzyme Discovery, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Jiang X, Gu Y, Zhang L, Sun J, Yan J, Wang C, Lai B, Wu H. Physicochemical Properties of Granular and Gelatinized Lotus Rhizome Starch with Varied Proximate Compositions and Structural Characteristics. Foods 2023; 12:4330. [PMID: 38231847 DOI: 10.3390/foods12234330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
As a traditional and popular dietary supplement, lotus rhizome starch (LRS) has health benefits for its many nutritional components and is especially suitable for teenagers and seniors. In this paper, the approximate composition, apparent amylose content (AAC), and structural characteristics of five LRS samples from different regions were investigated, and their correlations with the physicochemical properties of granular and gelatinized LRS were revealed. LRS exhibited rod-shaped and ellipsoidal starch granules, with AAC ranging from 26.6% to 31.7%. LRS-3, from Fuzhou, Jiangxi Province, exhibited a deeper hydrogel color and contained more ash, with 302.6 mg/kg iron, and it could reach the pasting temperature of 62.6 °C. In comparison, LRS-5, from Baoshan, Yunnan Province, exhibited smoother granule surface, less fragmentation, and higher AAC, resulting in better swelling power and freeze-thaw stability. The resistant starch contents of LRS-3 and LRS-5 were the lowest (15.3%) and highest (69.7%), respectively. The enzymatic digestion performance of LRS was positively correlated with ash content and short- and long-term ordered structures but negatively correlated with AAC. Furthermore, the color and network firmness of gelatinized LRS was negatively correlated with its ash content, and the retrograde trend and freeze-thaw stability were more closely correlated with AAC and structural characteristics. These results revealed the physicochemical properties of LRS from different regions and suggested their advantages in appropriate applications as a hydrogel matrix.
Collapse
Affiliation(s)
- Xinyu Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiting Gu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lichao Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Jinjian Sun
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Jianan Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Mao L, Mhaske P, Farahnaky A, Majzoobi M. Effect of Dry Heating on Some Physicochemical Properties of Protein-Coated High Amylose and Waxy Corn Starch. Foods 2023; 12:foods12061350. [PMID: 36981276 PMCID: PMC10048297 DOI: 10.3390/foods12061350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The dry heat treatment (DHT) of starch and hydrocolloid mixtures is gaining acknowledgement since hydrocolloids can enhance the efficiency of DHT. However, the DHT of a starch-protein mixture has been less investigated. In this study, the effects of different proteins including sodium caseinate (SC), gelatin, and whey protein isolate (WPI) added to high amylose and waxy corn starches (HACS and WCS, respectively) prepared by the dry mixing and wet method before and after DHT were studied. The DHT of both starches with WPI and SC prepared by the wet method increased the peak viscosity, but no change was observed when gelatin was added. Dry mixing of HACS with the proteins did not affect the peak viscosity before and after DHT. The gelatinization temperatures and enthalpy of both starches showed a slight decrease with the addition of all proteins and reduced further after DHT. The firmness, gumminess, and cohesiveness of the samples decreased upon DHT. The SEM results revealed that the granules were coated by proteins and formed clusters. Particle size analysis showed an increase in the particle size with the addition of proteins, which reduced after DHT. Under the conditions used, the wet method was more successful than dry mixing and the effects of WPI > SC > gelatin in enhancing the physicochemical properties of the tested starches after DHT.
Collapse
Affiliation(s)
- Lili Mao
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Pranita Mhaske
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Asgar Farahnaky
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Mahsa Majzoobi
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
14
|
Fazeli M, Lipponen J. Developing Self-Assembled Starch Nanoparticles in Starch Nanocomposite Films. ACS OMEGA 2022; 7:44962-44971. [PMID: 36530235 PMCID: PMC9753517 DOI: 10.1021/acsomega.2c05251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 05/13/2023]
Abstract
Starch nanoparticles (SNPs) are synthesized by different precipitation techniques using corn starch, and SNP films are prepared by the evaporation casting method. The morphological study is investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The distribution and sizes of precipitated SNPs after synthesizing are discovered by these methods as well. The crystallinity of the SNPs is studied by the X-ray diffractometry (XRD) method that demonstrates reduction compared to neat starch granules, and it is changed from A-style to VH-style after precipitation. The chemical bonding of different SNPs after the nanoprecipitation is analyzed by Fourier transform infrared spectroscopy (FT-IR). Thermogravimetric analysis (TGA) demonstrates the decomposition of starch nanoparticles and the starch matrix that is related to the depolymerization of carbon chains in the range of 260 to 350 °C. The mechanical properties of the SNP films versus the temperature changing are discovered by dynamic mechanical analysis (DMA). The water contact angles of SNP films are measured using a goniometer, and the results showed the hydrophobic surfaces of the prepared films. Our study indicates that SNPs have a promising impact on the properties of corn starch films, which would be useful in biodegradable packaging material.
Collapse
|
15
|
Ren X, Qin M, Zhang M, Zhang Y, Wang Z, Liang S. Highland Barley Polyphenol Delayed the In Vitro Digestibility of Starch and Amylose by Modifying Their Structural Properties. Nutrients 2022; 14:nu14183743. [PMID: 36145118 PMCID: PMC9503818 DOI: 10.3390/nu14183743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Slowing starch digestibility can delay or even prevent the occurrence and development of type 2 diabetes. To explore the hypoglycemic potential of highland barley polyphenols (HBP), this study investigated the structural characteristics and starch digestibility of individual or mixed HBP-starch complexes. The results showed that a V-type structure was formed in HBP-starch complexes through non-covalent bonds, resulting in a decrease in rapidly digestible starch and an increase in resistant starch. Specially, the compounding of HBP extracted by acetone significantly reduced the rapidly digestible starch content in amylose from 41.11% to 36.17% and increased the resistant starch content from 6.15% to 13.27% (p < 0.05). Moreover, due to different contents and types of monomer phenols, the HBP extracted with acetone were more effective in inhibiting starch digestion than those extracted with methanol. Ferulic acid and catechin were two key components of HBP. Further results indicated that with the increased content of ferulic acid and catechin (from 1% to 5%), they formed a more ordered structure with amylose, resulting in the lower digestibility of the complex. Collectively, this study suggested that highland barley polyphenols could effectively delay starch digestion by forming a more ordered starch crystal structure. Highland barley polyphenols can be used as functional ingredients in regulating the digestive properties of starchy foods.
Collapse
Affiliation(s)
| | | | - Min Zhang
- Correspondence: ; Tel.: +86-10-68984547
| | | | | | | |
Collapse
|
16
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
17
|
Huang J, Wang Z, Fan L, Ma S. A review of wheat starch analyses: Methods, techniques, structure and function. Int J Biol Macromol 2022; 203:130-142. [PMID: 35093434 DOI: 10.1016/j.ijbiomac.2022.01.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
Wheat starch has received much attention as an important source of dietary energy for humans, an interesting carbohydrate and a polymeric material. The understanding of the structure and function of wheat starch has always been accompanied by newer technological tools. On the one hand, the general knowledge of wheat starch is constantly being enriched. On the other hand, an increasing number of studies are trying to add new insights to what is already known from two frontier perspectives, namely, wheat starch supramolecular structures and wheat starch fine structures (CLDs). This review describes the structure and function of wheat starch from the perspective of wheat starch analysis techniques (instruments).
Collapse
Affiliation(s)
- Jihong Huang
- College of Food and Medicine, Xuchang University, Xuchang, Henan 461000, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Ling Fan
- College of Food and Medicine, Xuchang University, Xuchang, Henan 461000, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| |
Collapse
|
18
|
Chakraborty I, Rongpipi S, Govindaraju I, B R, Mal SS, Gomez EW, Gomez ED, Kalita RD, Nath Y, Mazumder N. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose. Microsc Res Tech 2022; 85:1990-2015. [PMID: 35040538 DOI: 10.1002/jemt.24057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/07/2022]
Abstract
Cellulose obtained from plants is a bio-polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X-ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low-cost raw material with anticipated physicochemical properties. HIGHLIGHTS: Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Analytical techniques used for physicochemical characterization of cellulose include X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis.
Collapse
Affiliation(s)
- Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sintu Rongpipi
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rakesh B
- Department of Life Science, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Sib Sankar Mal
- Department of Chemistry, National Institute of Technology, Mangaluru, Karnataka, 575025, India
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
- Department of Biomedical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
- Materials Research Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Ranjan Dutta Kalita
- Department of Biotechnology, Royal Global University, Guwahati, Assam, 781035, India
| | - Yuthika Nath
- Department of Serology, State Forensic Science Laboratory, Guwahati, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
19
|
Sunder M, Mumbrekar KD, Mazumder N. Gamma radiation as a modifier of starch – Physicochemical perspective. Curr Res Food Sci 2022; 5:141-149. [PMID: 35059645 PMCID: PMC8760443 DOI: 10.1016/j.crfs.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 01/02/2022] [Indexed: 11/06/2022] Open
Abstract
Starch is one of the most common and abundantly found carbohydrates in cereals, roots, legumes, and some fruits. It is a tasteless, colorless, and odorless source of energy that is present in the amyloplasts of plants. Native starch comprises amylose, a linear α-glucan having α-1,4-linkage and amylopectin, a branched polysaccharide with both α-1,4-linkage and α-1,6-linkage. Due to the low solubility, high viscosity, and unstable pasting property of native starch, it has been restricted from its application in industries. Although native starch has been widely used in various industries, modification of the same by various chemical, enzymatic and physical methods have been carried out to alter its properties for better performance in several industrial aspects. Physical modification like gamma radiation is frequently used as it is rapid, penetrates deeper, less toxic, and cost-effective. Starch when irradiated with gamma rays is observed to produce free radicals, generate sugars owing to cleavage of amylopectin branches, and exhibit variation in enzymatic digestion, amylose content, morphology, crystallinity, thermal property, and chemical composition. These physicochemical properties of the starch due to gamma radiation are assessed using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and its application are discussed. Assessment and comparison of morphological features of native and gamma-irradiated starch. Investigation of crystallinity and structural type of crystalline domains through XRD. FTIR spectroscopy confirmed the changes in chemical composition of gamma-irradiated and native starch. DSC analysis revealed the changes in gelatinization temperature of gamma-irradiated and native starch.
Collapse
|
20
|
Braşoveanu M, Nemţanu MR, Ticoș D. Influence of the sample loading on the contribution of competitive effects for granular starch exposed to radio-frequency plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|