1
|
Lee J, Park J, Hur Y, Um D, Choi HS, Park J, Kim Y, Lee JS, Choi K, Kim E, Park YB, Choi JM, Kim TK, Lee Y. ETV5 reduces androgen receptor expression and induces neural stem-like properties during neuroendocrine prostate cancer development. Proc Natl Acad Sci U S A 2025; 122:e2420313122. [PMID: 40117308 PMCID: PMC11962414 DOI: 10.1073/pnas.2420313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Neuroendocrine prostate cancer (NEPC), an aggressive subtype induced by hormone therapy, lacks effective treatments. This study explored the role of E26 transformation-specific variant 5 (ETV5) in NEPC development. Analysis of multiple prostate cancer datasets revealed that NEPC is characterized by significantly elevated ETV5 expression compared to other subtypes. ETV5 expression increased progressively under hormone therapy through epigenetic modifications. ETV5 induced neural stem-like features in prostate cancer cells and facilitated their differentiation into NEPC under hormone treatment conditions, both in vitro and in vivo. Our molecular mechanistic study identified PBX3 and TLL1 as target genes of ETV5 that contribute to ETV5 overexpression-induced castration resistance and stemness. Notably, obeticholic acid, identified as an ETV5 inhibitor in this study, exhibited promising efficacy in suppressing NEPC development. This study highlights ETV5 as a key transcription factor that facilitates NEPC development and underscores its potential as a therapeutic target for this aggressive cancer subtype.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Hyung-Seok Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Joonyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yewon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jeon-Soo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Eunjeong Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu41566, Republic of Korea
| | - Young Bin Park
- Calici Co., Ltd., Korea, Daejeon34134, Republic of Korea
| | - Jae-Mun Choi
- Calici Co., Ltd., Korea, Daejeon34134, Republic of Korea
- Department of Bio-Artificial Intelligence Convergence, Chungnam National University, Daejeon34134, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong30019, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| |
Collapse
|
2
|
Hsu CC, Wang G, Li CF, Zhang X, Cai Z, Chen T, Pan BS, Manne RK, Deep G, Gu H, Wang Y, Peng D, Penugurti V, Zhou X, Xu Z, Chen Z, Chen M, Armstrong AJ, Huang J, Li HY, Lin HK. IMPA1-derived inositol maintains stemness in castration-resistant prostate cancer via IMPDH2 activation. J Exp Med 2024; 221:e20231832. [PMID: 39470689 PMCID: PMC11528126 DOI: 10.1084/jem.20231832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024] Open
Abstract
Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance. Notably, conditional Impa1 knockout in the prostate abrogates the pool and properties of PCSCs to orchestrate CRPC progression and prolong the survival of TRAMP mice. IMPA1-derived inositol serves as a cofactor that directly binds to and activates IMPDH2, which synthesizes guanylate nucleotides for maintaining PCSCs with ARlow/- features leading to CRPC progression and ABT resistance. IMPA1/inositol/IMPDH2 axis is upregulated in human prostate cancer, and its overexpression predicts poor survival outcomes. Genetically and pharmacologically targeting the IMPA1/inositol/IMPDH2 axis abrogates CRPC and overcomes ABT resistance in various CRPC xenografts, patient-derived xenograft (PDX) tumor models, and TRAMP mouse models. Our study identifies IMPDH2 as an inositol sensor whose activation by inositol represents a key mechanism for maintaining PCSCs for CRPC and ABT resistance.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Guihua Wang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Xian Zhang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Tingjin Chen
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Rajesh Kumar Manne
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Haiwei Gu
- Cellular Biology and Pharmacology Department, Center for Translational Science, The Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL, USA
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, Canada
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Vasudevarao Penugurti
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhigang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhongzhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Ming Chen
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | - Andrew J. Armstrong
- Duke Cancer Institute Center, Duke University School of Medicine, Durham, NC, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | - Hong-Yu Li
- Division of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hui-Kuan Lin
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| |
Collapse
|
3
|
Miller CD, Likasitwatanakul P, Toye E, Hwang JH, Antonarakis ES. Current uses and resistance mechanisms of enzalutamide in prostate cancer treatment. Expert Rev Anticancer Ther 2024; 24:1085-1100. [PMID: 39275993 PMCID: PMC11499039 DOI: 10.1080/14737140.2024.2405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. AREAS COVERED We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. EXPERT OPINION Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Pornlada Likasitwatanakul
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | | |
Collapse
|
4
|
McClelland S, Maxwell PJ, Branco C, Barry ST, Eberlein C, LaBonte MJ. Targeting IL-8 and Its Receptors in Prostate Cancer: Inflammation, Stress Response, and Treatment Resistance. Cancers (Basel) 2024; 16:2797. [PMID: 39199570 PMCID: PMC11352248 DOI: 10.3390/cancers16162797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the intricate roles of interleukin-8 (IL-8) and its receptors, CXCR1 and CXCR2, in prostate cancer (PCa), particularly in castration-resistant (CRPC) and metastatic CRPC (mCRPC). This review emphasizes the crucial role of the tumour microenvironment (TME) and inflammatory cytokines in promoting tumour progression and response to tumour cell targeting agents. IL-8, acting through C-X-C chemokine receptor type 1 (CXCR1) and type 2 (CXCR2), modulates multiple signalling pathways, enhancing the angiogenesis, proliferation, and migration of cancer cells. This review highlights the shift in PCa research focus from solely tumour cells to the non-cancer-cell components, including vascular endothelial cells, the extracellular matrix, immune cells, and the dynamic interactions within the TME. The immunosuppressive nature of the PCa TME significantly influences tumour progression and resistance to emerging therapies. Current treatment modalities, including androgen deprivation therapy and chemotherapeutics, encounter persistent resistance and are complicated by prostate cancer's notably "immune-cold" nature, which limits immune system response to the tumour. These challenges underscore the critical need for novel approaches that both overcome resistance and enhance immune engagement within the TME. The therapeutic potential of inhibiting IL-8 signalling is explored, with studies showing enhanced sensitivity of PCa cells to treatments, including radiation and androgen receptor inhibitors. Clinical trials, such as the ACE trial, demonstrate the efficacy of combining CXCR2 inhibitors with existing treatments, offering significant benefits, especially for patients with resistant PCa. This review also addresses the challenges in targeting cytokines and chemokines, noting the complexity of the TME and the need for precision in therapeutic targeting to avoid side effects and optimize outcomes.
Collapse
Affiliation(s)
- Shauna McClelland
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Pamela J. Maxwell
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Cristina Branco
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Simon T. Barry
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Cath Eberlein
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Melissa J. LaBonte
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| |
Collapse
|
5
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Chen H, Fang S, Zhu X, Liu H. Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression. Front Cell Dev Biol 2024; 12:1412337. [PMID: 39092186 PMCID: PMC11291335 DOI: 10.3389/fcell.2024.1412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Wang L, Lyu C, Stadlbauer B, Buchner A, Nößner E, Pohla H. Berbamine targets cancer stem cells and reverses cabazitaxel resistance via inhibiting IGF2BP1 and p-STAT3 in prostate cancer. Prostate 2024; 84:131-147. [PMID: 37828768 DOI: 10.1002/pros.24632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are a small subpopulation of tumor cells with the capability of self-renewal and drug resistance, leading to tumor progression and disease relapse. Our study aimed to investigate the antitumor effect of berbamine, extracted from berberis amurensis, on prostate CSCs. METHODS Sphere formation was used to collect prostate CSCs. The viability, proliferation, invasion, migration, and apoptosis assays were used to evaluate the antitumor effect of berbamine on prostate CSCs. Prostate CSC markers were analyzed by flow cytometry and qRT-PCR. Small RNA sequencing analysis was conducted to analyse miRNAs. Exosomes were extracted using the ExoQuick-TC kit and verified by testing exosomal markers using western blot. RESULTS Berbamine targets prostate CSCs. Additionally, berbamine enhanced the antitumor effect of cabazitaxel, a second-line chemotherapeutic drug for advanced prostate cancer, and re-sensitized Cabazitaxel-resistant PCa cells (CabaR-DU145) to cabazitaxel by inhibiting ABCG2, CXCR4, IGF2BP1, and p-STAT3. Berbamine enhanced the expression of let-7 miRNA family and miR-26b and influenced the downstream targets IGF2BP1 and p-STAT3, respectively. Silencing CXCR4 and ABCG2 downregulated the expression of IGF2BP1 and p-STAT3, respectively. Importantly, berbamine enhanced also levels of exosomal let-7 family and miR-26b, suggesting that berbamine possibly influences the expression of let-7 family and miR-26b through exosome delivery. Exosomes derived from berbamine-treated CabaR-DU145 cells re-sensitized the cells to cabazitaxel. CONCLUSION Berbamine enhanced the toxic activity of cabazitaxel and reversed cabazitaxel resistance potentially through CXCR4/exosomal let-7/IGF2BP1 and ABCG2/exosomal miR-26b/p-STAT3 axes.
Collapse
Affiliation(s)
- Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
| | - Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| | - Elfriede Nößner
- Immunoanalytics: Research Group Tissue Control of Immunocytes, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Munich, Germany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| |
Collapse
|
8
|
Passier M, van Genderen MN, Zaalberg A, Kneppers J, Bekers EM, Bergman AM, Zwart W, Eduati F. Exploring the Onset and Progression of Prostate Cancer through a Multicellular Agent-based Model. CANCER RESEARCH COMMUNICATIONS 2023; 3:1473-1485. [PMID: 37554550 PMCID: PMC10405859 DOI: 10.1158/2767-9764.crc-23-0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Over 10% of men will be diagnosed with prostate cancer during their lifetime. Arising from luminal cells of the prostatic acinus, prostate cancer is influenced by multiple cells in its microenvironment. To expand our knowledge and explore means to prevent and treat the disease, it is important to understand what drives the onset and early stages of prostate cancer. In this study, we developed an agent-based model of a prostatic acinus including its microenvironment, to allow for in silico studying of prostate cancer development. The model was based on prior reports and in-house data of tumor cells cocultured with cancer-associated fibroblasts (CAF) and protumor and/or antitumor macrophages. Growth patterns depicted by the model were pathologically validated on hematoxylin and eosin slide images of human prostate cancer specimens. We identified that stochasticity of interactions between macrophages and tumor cells at early stages strongly affect tumor development. In addition, we discovered that more systematic deviations in tumor development result from a combinatorial effect of the probability of acquiring mutations and the tumor-promoting abilities of CAFs and macrophages. In silico modeled tumors were then compared with 494 patients with cancer with matching characteristics, showing strong association between predicted tumor load and patients' clinical outcome. Our findings suggest that the likelihood of tumor formation depends on a combination of stochastic events and systematic characteristics. While stochasticity cannot be controlled, information on systematic effects may aid the development of prevention strategies tailored to the molecular characteristics of an individual patient. Significance We developed a computational model to study which factors of the tumor microenvironment drive prostate cancer development, with potential to aid the development of new prevention strategies.
Collapse
Affiliation(s)
- Margot Passier
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Maisa N.G. van Genderen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anniek Zaalberg
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| | - Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| | - Elise M. Bekers
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andries M. Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Kumar R, Sena LA, Denmeade SR, Kachhap S. The testosterone paradox of advanced prostate cancer: mechanistic insights and clinical implications. Nat Rev Urol 2023; 20:265-278. [PMID: 36543976 PMCID: PMC10164147 DOI: 10.1038/s41585-022-00686-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
The discovery of the benefits of castration for prostate cancer treatment in 1941 led to androgen deprivation therapy, which remains a mainstay of the treatment of men with advanced prostate cancer. However, as early as this original publication, the inevitable development of castration-resistant prostate cancer was recognized. Resistance first manifests as a sustained rise in the androgen-responsive gene, PSA, consistent with reactivation of the androgen receptor axis. Evaluation of clinical specimens demonstrates that castration-resistant prostate cancer cells remain addicted to androgen signalling and adapt to chronic low-testosterone states. Paradoxically, results of several studies have suggested that treatment with supraphysiological levels of testosterone can retard prostate cancer growth. Insights from these studies have been used to investigate administration of supraphysiological testosterone to patients with prostate cancer for clinical benefits, a strategy that is termed bipolar androgen therapy (BAT). BAT involves rapid cycling from supraphysiological back to near-castration testosterone levels over a 4-week cycle. Understanding how BAT works at the molecular and cellular levels might help to rationalize combining BAT with other agents to achieve increased efficacy and tumour responses.
Collapse
Affiliation(s)
- Rajendra Kumar
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sushant Kachhap
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
10
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
11
|
Kukkonen K, Autio-Kimura B, Rauhala H, Kesseli J, Nykter M, Latonen L, Visakorpi T. Nonmalignant AR-positive prostate epithelial cells and cancer cells respond differently to androgen. Endocr Relat Cancer 2022; 29:717-733. [PMID: 36219867 PMCID: PMC9644224 DOI: 10.1530/erc-22-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Prostate cancer research suffers from the lack of suitable models to study the role of normal cells in prostate carcinogenesis. To address this challenge, we developed a cell line model mimicking luminal prostate epithelial cells by modifying the immortalized prostate epithelial cell line RWPE-1 to constitutively express the androgen receptor (AR). RWPE-1-AR cells express known AR target genes, and exhibit coexpression of luminal and basal markers characteristic of transient amplifying cells, and an RNA signature resembling prostate luminal progenitor cells. Under unstimulated conditions, constitutive AR expression does not have a biologically significant effect on the proliferation of RWPE-1 cells, but when stimulated by androgens, growth is retarded. The transcriptional response of RWPE-1-AR cells to androgen stimulation involves suppression of the growth-related KRAS pathway and is thus markedly different from that of the prostate cancer cell line LNCaP and its derivative AR-overexpressing LNCaP-ARhi cells, in which growth- and cancer-related pathways are upregulated. Hence, the nonmalignant AR-positive RWPE-1-AR cell line model could be used to study the transformation of the prostate epithelium.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Bryn Autio-Kimura
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Hanna Rauhala
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Juha Kesseli
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Leena Latonen
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere, Finland
| |
Collapse
|
12
|
Özdemir BC, Arnold N, Fleischmann A, Hensel J, Klima I, Kruithof-de Julio M, Burkhard F, Hayoz S, Kiss B, Thalmann GN. Prediction of Biochemical Recurrence Based on Molecular Detection of Lymph Node Metastasis After Radical Prostatectomy. EUR UROL SUPPL 2022; 44:1-10. [PMID: 36185585 PMCID: PMC9520506 DOI: 10.1016/j.euros.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Background Molecular detection of lymph node (LN) micrometastases by analyzing mRNA expression of epithelial markers in prostate cancer (PC) patients provides higher sensitivity than histopathological examination. Objective To investigate which type of marker to use and whether molecular detection of micrometastases in LNs was predictive of biochemical recurrence. Design, setting, and participants LN samples from PC patients undergoing radical prostatectomy with extended LN dissection between 2009 and 2011 were examined for the presence of micrometastases by both routine histopathology and molecular analyses. Outcome measurements and statistical analysis The mRNA expression of a panel of markers of prostate epithelial cells, prostate stem cell–like cells, epithelial-to-mesenchymal transition, and stromal activation, was performed by quantitative real-time polymerase chain reaction. The expression levels of these markers in LN metastases from three PC patients were compared with the expression levels in LN from five control patients without PC in order to identify the panel of markers best suited for the molecular detection of LN metastases. The predictive value of the molecular detection of micrometastases for biochemical recurrence was assessed after a follow-up of 10 yr. Results and limitations Prostate epithelial markers are better suited for the detection of occult LN metastases than molecular markers of stemness, epithelial-to-mesenchymal transition, or reactive stroma. An analysis of 1023 LNs from 60 PC patients for the expression of prostate epithelial cell markers has revealed different expression levels and patterns between patients and between LNs of the same patient. The positive predictive value of molecular detection of occult LN metastasis for biochemical recurrence is 66.7% and the negative predictive value is 62.5%. Limitations are sample size and the hypothesis-driven selection of markers. Conclusions Molecular detection of epithelial cell markers increases the number of positive LNs and predicts tumor recurrence already at surgery. Patient summary We show that a panel of epithelial prostate markers rather than single genes is preferred for the molecular detection of lymph node micrometastases not visible at histopathological examination.
Collapse
|
13
|
Marklund M, Schultz N, Friedrich S, Berglund E, Tarish F, Tanoglidi A, Liu Y, Bergenstråhle L, Erickson A, Helleday T, Lamb AD, Sonnhammer E, Lundeberg J. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones. Nat Commun 2022; 13:5475. [PMID: 36115838 PMCID: PMC9482614 DOI: 10.1038/s41467-022-33069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.
Collapse
Affiliation(s)
- Maja Marklund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Niklas Schultz
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Stefanie Friedrich
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden
| | - Emelie Berglund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Firas Tarish
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Anna Tanoglidi
- Department of Pathology, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Yao Liu
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Ludvig Bergenstråhle
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Thomas Helleday
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Erik Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden.
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
14
|
Storck WK, May AM, Westbrook TC, Duan Z, Morrissey C, Yates JA, Alumkal JJ. The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity. Front Endocrinol (Lausanne) 2022; 13:926585. [PMID: 35909568 PMCID: PMC9329809 DOI: 10.3389/fendo.2022.926585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
The androgen receptor (AR) signaling pathway is critical for growth and differentiation of prostate cancer cells. For that reason, androgen deprivation therapy with medical or surgical castration is the principal treatment for metastatic prostate cancer. More recently, new potent AR signaling inhibitors (ARSIs) have been developed. These drugs improve survival for men with metastatic castration-resistant prostate cancer (CRPC), the lethal form of the disease. However, ARSI resistance is nearly universal. One recently appreciated resistance mechanism is lineage plasticity or switch from an AR-driven, luminal differentiation program to an alternate differentiation program. Importantly, lineage plasticity appears to be increasing in incidence in the era of new ARSIs, strongly implicating AR suppression in this process. Lineage plasticity and shift from AR-driven tumors occur on a continuum, ranging from AR-expressing tumors with low AR activity to AR-null tumors that have activation of alternate differentiation programs versus the canonical luminal program found in AR-driven tumors. In many cases, AR loss coincides with the activation of a neuronal program, most commonly exemplified as therapy-induced neuroendocrine prostate cancer (t-NEPC). While genetic events clearly contribute to prostate cancer lineage plasticity, it is also clear that epigenetic events-including chromatin modifications and DNA methylation-play a major role. Many epigenetic factors are now targetable with drugs, establishing the importance of clarifying critical epigenetic factors that promote lineage plasticity. Furthermore, epigenetic marks are readily measurable, demonstrating the importance of clarifying which measurements will help to identify tumors that have undergone or are at risk of undergoing lineage plasticity. In this review, we discuss the role of AR pathway loss and activation of a neuronal differentiation program as key contributors to t-NEPC lineage plasticity. We also discuss new epigenetic therapeutic strategies to reverse lineage plasticity, including those that have recently entered clinical trials.
Collapse
Affiliation(s)
- William K. Storck
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Allison M. May
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| | - Thomas C. Westbrook
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Zhi Duan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Joel A. Yates
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Joshi J. Alumkal
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
16
|
Hu WY, Lu R, Hu DP, Imir OB, Zuo Q, Moline D, Afradiasbagharani P, Liu L, Lowe S, Birch L, Griend DJV, Madak-Erdogan Z, Prins GS. Per- and polyfluoroalkyl substances target and alter human prostate stem-progenitor cells. Biochem Pharmacol 2022; 197:114902. [PMID: 34968493 PMCID: PMC8890783 DOI: 10.1016/j.bcp.2021.114902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are a large family of widely used synthetic chemicals that are environmentally and biologically persistent and present in most individuals. Chronic PFAS exposure have been linked to increased prostate cancer risk in occupational settings, however, underlying mechanisms have not been interrogated. Herein we examined exposure of normal human prostate stem-progenitor cells (SPCs) to 10 nM PFOA or PFOS using serial passage of prostasphere cultures. Exposure to either PFAS for 3-4 weeks increased spheroid numbers and size indicative of elevated stem cell self-renewal and progenitor cell proliferation. Transcriptome analysis using single-cell RNA sequencing (scRNA-seq) showed 1) SPC expression of PPARs and RXRs able to mediate PFAS effects, 2) the emergence of a new cell cluster of aberrantly differentiated luminal progenitor cells upon PFOS/PFOA exposure, and 3) enrichment of cancer-associated signaling pathways. Metabolomic analysis of PFAS-exposed prostaspheres revealed increased glycolytic pathways including the Warburg effect as well as strong enrichment of serine and glycine metabolism which may promote a pre-malignant SPC fate. Finally, growth of in vivo xenografts of tumorigenic RWPE-2 human prostate cells, shown to contain cancer stem-like cells, was markedly enhanced by daily PFOS feeding to nude mice hosts. Together, these findings are the first to identify human prostate SPCs as direct PFAS targets with resultant reprogrammed transcriptomes and metabolomes that augment a preneoplastic state and may contribute to an elevated prostate cancer risk with chronic exposures.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States; Chicago Center for Health and Environment, University of Illinois at Chicago, United States
| | - Ranli Lu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Dan Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Ozan Berk Imir
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, United States
| | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, United States
| | - Dan Moline
- Department of Pathology, College of Medicine, University of Illinois at Chicago, United States
| | | | - Lifeng Liu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, United States
| | - Lynn Birch
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Donald J Vander Griend
- Chicago Center for Health and Environment, University of Illinois at Chicago, United States; Department of Pathology, College of Medicine, University of Illinois at Chicago, United States; University of Illinois Cancer Center, University of Illinois at Chicago, United States
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, United States; Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, United States; Department of Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, United States; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States; Chicago Center for Health and Environment, University of Illinois at Chicago, United States; Department of Pathology, College of Medicine, University of Illinois at Chicago, United States; Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, United States; Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, United States; University of Illinois Cancer Center, University of Illinois at Chicago, United States.
| |
Collapse
|
17
|
Segura-Moreno YY, Sanabria-Salas MC, Varela R, Mesa JA, Serrano ML. Decoding the heterogeneous landscape in the development prostate cancer. Oncol Lett 2021; 21:376. [PMID: 33777200 PMCID: PMC7988715 DOI: 10.3892/ol.2021.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/02/2020] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) is characterized as being histologically and molecularly heterogeneous; however, this is not only incorrect among individuals, but also at the multiple foci level, which originates in the prostate gland itself. The reasons for such heterogeneity have not been fully elucidated; however, understanding these may be crucial in determining the course of the disease. PCa is characterized by a complex network of chromosomal rearrangements, which simultaneously deregulate multiple genes; this could explain the appearance of exclusive events associated with molecular subtypes, which have been extensively investigated to establish clinical management and the development of therapies targeted to this type of cancer. From a clinical aspect, the prognosis of the patient has focused on the characteristics of the index lesion (the largest focus in PCa); however, a significant percentage of patients (11%) also exhibit an aggressive secondary foci, which may determine the prognosis of the disease, and could be the determining factor of why, in different studies, the classification of the subtypes does not have an association with prognosis. Due to the aforementioned reasons, the analysis of molecular subtypes in several foci, from the same individual could assist in determining the association between clinical evolution and management of patients with PCa. Castration-resistant PCa (CRPC) has the worst prognosis and develops following androgen ablation therapy. Currently, there are two models to explain the development of CRPC: i) The selection model and ii) the adaptation model; both of which, have been found to include alterations described in the molecular subtypes, such as Enhancer of zeste 2 polycomb repressive complex 2 subunit overexpression, isocitrate dehydrogenase (NAPD+)1 and forkhead box A1 mutations, suggesting that the presence of specific molecular alterations could predict the development of CRPC. This type of analysis could lead to a biological understanding of PCa, to develop personalized medicine strategies, which could improve the response to treatment thus, avoiding the development of resistance. Therefore, the present review discusses the primary molecular factors, to which variable heterogeneity in PCa progress has been attributed.
Collapse
Affiliation(s)
- Yenifer Yamile Segura-Moreno
- Cancer Biology Research Group, National Institute of Cancerology, Bogota 110411, Colombia.,Department of Chemistry, Faculty of Sciences, National University of Colombia, University City, Bogota 111321, Colombia
| | | | - Rodolfo Varela
- Department of Urology, National Institute of Cancerology, Bogota 110411, Colombia.,Department of Urology, National University of Colombia, University City, Bogota 111321, Colombia
| | - Jorge Andrés Mesa
- Department of Pathology, National Institute of Cancerology, Bogota 110411, Colombia
| | - Martha Lucia Serrano
- Cancer Biology Research Group, National Institute of Cancerology, Bogota 110411, Colombia.,Department of Chemistry, Faculty of Sciences, National University of Colombia, University City, Bogota 111321, Colombia
| |
Collapse
|
18
|
Antao AM, Ramakrishna S, Kim KS. The Role of Nkx3.1 in Cancers and Stemness. Int J Stem Cells 2021; 14:168-179. [PMID: 33632988 PMCID: PMC8138659 DOI: 10.15283/ijsc20121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
The well-known androgen-regulated homeobox gene, NKX3.1, is located on the short arm of chromosome 8. It is the first known prostate epithelium-specific marker, and is a transcription factor involved in development of the testes and prostate. In addition to specifying the prostate epithelium and maintaining normal prostate secretory function, Nkx3.1 is an established marker for prostate cancer. Over the years, however, this gene has been implicated in various other cancers, and technological advances have allowed determination of its role in other cellular functions. Nkx3.1 has also been recently identified as a factor capable of replacing Oct4 in cellular reprogramming. This review highlights the role of this tumor suppressor and briefly describes its functions, ranging from prostate development to maintenance of stemness and cellular reprogramming.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
19
|
Karkampouna S, De Filippo MR, Ng CKY, Klima I, Zoni E, Spahn M, Stein F, Haberkant P, Thalmann GN, Kruithof-de Julio M. Stroma Transcriptomic and Proteomic Profile of Prostate Cancer Metastasis Xenograft Models Reveals Prognostic Value of Stroma Signatures. Cancers (Basel) 2020; 12:cancers12123786. [PMID: 33334054 PMCID: PMC7768471 DOI: 10.3390/cancers12123786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023] Open
Abstract
Resistance acquisition to androgen deprivation treatment and metastasis progression are a major clinical issue associated with prostate cancer (PCa). The role of stroma during disease progression is insufficiently defined. Using transcriptomic and proteomic analyses on differentially aggressive patient-derived xenografts (PDXs), we investigated whether PCa tumors predispose their microenvironment (stroma) to a metastatic gene expression pattern. RNA sequencing was performed on the PCa PDXs BM18 (castration-sensitive) and LAPC9 (castration-resistant), representing different disease stages. Using organism-specific reference databases, the human-specific transcriptome (tumor) was identified and separated from the mouse-specific transcriptome (stroma). To identify proteomic changes in the tumor (human) versus the stroma (mouse), we performed human/mouse cell separation and subjected protein lysates to quantitative Tandem Mass Tag labeling and mass spectrometry. Tenascin C (TNC) was among the most abundant stromal genes, modulated by androgen levels in vivo and highly expressed in castration-resistant LAPC9 PDX. The tissue microarray of primary PCa samples (n = 210) showed that TNC is a negative prognostic marker of the clinical progression to recurrence or metastasis. Stroma markers of osteoblastic PCa bone metastases seven-up signature were induced in the stroma by the host organism in metastatic xenografts, indicating conserved mechanisms of tumor cells to induce a stromal premetastatic signature. A 50-gene list stroma signature was identified based on androgen-dependent responses, which shows a linear association with the Gleason score, metastasis progression and progression-free survival. Our data show that metastatic PCa PDXs, which differ in androgen sensitivity, trigger differential stroma responses, which show the metastasis risk stratification and prognostic biomarker potential.
Collapse
Affiliation(s)
- Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Maria R. De Filippo
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Charlotte K. Y. Ng
- Oncogenomics Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 40, 3008 Bern, Switzerland;
| | - Irena Klima
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Martin Spahn
- Lindenhofspital Bern, Prostate Center Bern, 3012 Bern, Switzerland;
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; (F.S.); (P.H.)
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; (F.S.); (P.H.)
| | - George N. Thalmann
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
- Department of Urology, Inselspital, Anna Seiler Haus, Bern University Hospital, 3010 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
- Department of Urology, Inselspital, Anna Seiler Haus, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
20
|
Federer-Gsponer JR, Müller DC, Zellweger T, Eggimann M, Marston K, Ruiz C, Seifert HH, Rentsch CA, Bubendorf L, Le Magnen C. Patterns of stemness-associated markers in the development of castration-resistant prostate cancer. Prostate 2020; 80:1108-1117. [PMID: 32628318 DOI: 10.1002/pros.24039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Putative castration-resistant (CR) stem-like cells (CRSC) have been identified based on their ability to initiate and drive prostate cancer (PCa) recurrence following castration in vivo. Yet the relevance of these CRSC in the course of the human disease and particularly for the transition from hormone-naive (HN) to castration-resistance is unclear. In this study, we aimed at deciphering the significance of CRSC markers in PCa progression. METHODS We constructed a tissue microarray comprising 112 matched HN and CR tissue specimens derived from 55 PCa patients. Expression of eight stemness-associated markers (ALDH1A1, ALDH1A3, ALDH3A1, BMI1, NANOG, NKX3.1, OCT4, SOX2) was assessed by immunohistochemistry and scored as a percentage of positive tumor cells. For each marker, the resulting scores were statistically analyzed and compared to pathological and clinical data associated with the samples. Unsupervised clustering analysis was performed to stratify patients according to the expression of the eight CRSC markers. Publicly-available transcriptional datasets comprising HN and CR PCa samples were interrogated to assess the expression of the factors in silico. RESULTS Immunohistochemical assessment of paired samples revealed atypical patterns of expression and intra- and intertumor heterogeneity for a subset of CRSC markers. While the expression of particular CRSC markers was dynamic over time in some patients, none of the markers showed significant changes in expression upon the development of castration resistance (CR vs HN). Using unsupervised clustering approaches, we identified phenotypic subtypes based on the expression of specific stem-associated markers. In particular, we found (a) patterns of mutual exclusivity for ALDH1A1 and ALDH1A3 expression, which was also observed at the transcriptomic level in publicly-available PCa datasets, and (b) a phenotypic cluster associated with more aggressive features. Finally, by comparing HN and CR matched samples, we identified phenotypic cluster switches (ie, change of phenotypic cluster between the HN and CR state), that may be associated with clinical and predictive relevance. CONCLUSIONS Our findings indicate stemness-associated patterns that are associated with the development of castration-resistance. These results pave the way toward a deeper understanding of the relevance of CRSC markers in PCa progression and resistance to androgen-deprivation therapy.
Collapse
Affiliation(s)
| | - David C Müller
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | | | - Maurice Eggimann
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina Marston
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Ruiz
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Clémentine Le Magnen
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Raspollini MR, Montagnani I, Cirri P, Baroni G, Cimadamore A, Scarpelli M, Cheng L, Lopez-Beltran A, Montironi R, Barnea ER. PreImplantation Factor immunohistochemical expression correlates with prostate cancer aggressiveness. Int J Biol Markers 2020; 35:82-90. [PMID: 32389051 DOI: 10.1177/1724600820919969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The PreImplantation Factor (PIF)-a peptide secreted by viable embryos-exerts autotrophic protective effects, promotes endometrial receptivity and controls trophoblast invasion. Synthetic PIF (sPIF) has both immune-protective and regenerative properties, and reduces oxidative stress and protein misfolding. PIF is detected by immunohistochemistry (IHC) in hyperplastic endometriotic lesions and advanced uterine cancer. sPIF reduces graft-versus-host disease while maintaining a graft-versus-leukemia effect. METHODS PIF detection in prostate cancer was assessed in 50 human prostate samples following radical prostatectomy using tumor-microarray-based IHC correlating PIF immune staining with Gleason score (GS) and cancer aggressiveness. RESULTS PIF was detected in moderate-to-high risk prostate cancer (GS 4+3 and beyond, prognostic groups 3 to 5). In prostate cancer (GS (WHO Grade Group (GG)5), PIF was detected in 50% of cases; in prostate cancer (GS 4+4 GG4), PIF was observed in 62.5% of cases; in prostate cancer (GS 4+3 GG3), PIF immunostaining was observed in 57.1% of cases. In prostate cancer, (GS 3+4 GG2) and (GS 3+3 GG1) cases where PIF staining was negative to weak, membranous staining was observed in 20% of cases (staining pattern considered negative). High-grade prostate intraepithelial neoplasia PIF positive stain in 28.57% of cases (6 of 21) was observed. In contrast, PIF was not detected in normal prostate glands. Importantly, sPIF added to the PC3 cell line alone or combined with prostate cancer fibroblast feeder-cells did not affect proliferation. Only when peripheral blood mononuclear cells were added to the culture, a minor increase in cell proliferation was noted, reflecting local proliferation control. CONCLUSIONS Collectively, PIF assessment could be a valuable, simple-to-use immunohistochemical biomarker to evaluate aggressiveness/prognosis in specimens from prostate cancer patients.
Collapse
Affiliation(s)
| | - Ilaria Montagnani
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Toscana, Italy
| | - Paolo Cirri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche Sezione di Scienze Biochimiche, Scuola di Scienze della Salute Umana Università degli Studi di Firenze, Florence, Toscana, Italy
| | - Gianna Baroni
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Toscana, Italy
| | - Alessia Cimadamore
- Institute of Pathological Anatomy and Histopathology Polytechnic University of the Marche Region, Ancona, Torrette, Italy
| | - Marina Scarpelli
- Institute of Pathological Anatomy and Histopathology Polytechnic University of the Marche Region, Ancona, Torrette, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Unit of Anatomical Pathology, Faculty of Medicine, University of Cordoba, Cordoba, Andalucía, Spain
| | - Rodolfo Montironi
- Institute of Pathological Anatomy and Histopathology Polytechnic University of the Marche Region, Ancona, Torrette, Italy
| | - Eytan R Barnea
- BioIncept, LLC & The Society for the Investigation of Early Pregnancy (SIEP), New York, NY, USA
| |
Collapse
|
22
|
Zebrafish Microenvironment Elevates EMT and CSC-Like Phenotype of Engrafted Prostate Cancer Cells. Cells 2020; 9:cells9040797. [PMID: 32225005 PMCID: PMC7226630 DOI: 10.3390/cells9040797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
To visually and genetically trace single-cell dynamics of human prostate cancer (PCa) cells at the early stage of metastasis, a zebrafish (ZF) xenograft model was employed. The phenotypes of intravenously transplanted fluorescent cells were monitored by high-resolution, single-cell intravital confocal and light-sheet imaging. Engrafted osteotropic, androgen independent PCa cells were extravasated from caudle vein, invaded the neighboring tissue, proliferated and formed experimental metastases around caudal hematopoietic tissue (CHT) in four days. Gene expression comparison between cells in culture and in CHT revealed that engrafted PCa cells responded to the ZF microenvironment by elevating expression of epithelial-mesenchymal transition (EMT) and stemness markers. Next, metastatic potentials of ALDHhi cancer stem-like cells (CSCs) and ALDHlow non-CSCs were analyzed in ZF. Engraftment of CSCs induced faster metastatic onset, however after six days both cell subpopulations equally responded to the ZF microenvironment, resulting in the same increase of stemness genes expression including Nanog, Oct-4 and Cripto. Knockdown of Cripto significantly reduced the vimentin/E-cadherin ratio in engrafted cells, indicating that Cripto is required for transduction of the microenvironment signals from the ZF niche to increase mesenchymal potential of cells. Targeting of either Cripto or EMT transcriptional factors Snail 1 and Zeb1 significantly suppressed metastatic growth. These data indicated that zebrafish microenvironment governed the CSC/EMT plasticity of human PCa cells promoting metastasis initiation.
Collapse
|
23
|
Endo D, Kaneko S, Ishii K, Kohno K, Sato A, Virgona N, Yano T. The Effect of Bowman-Birk Inhibitor from Soybeans on the Sensitivity of Prostate Cancer Stem-like Cells to Anti-androgen Agent. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daiki Endo
- Graduate School of Food and Nutritional Sciences, Toyo University
| | - Saki Kaneko
- Graduate School of Food and Nutritional Sciences, Toyo University
| | - Kyota Ishii
- Faculty of Food and Nutritional Sciences and Toyo University
| | - Kakeru Kohno
- Graduate School of Food and Nutritional Sciences, Toyo University
- Institute of Life Innovation Studies, Toyo University
| | - Ayami Sato
- Institute of Life Innovation Studies, Toyo University
| | | | - Tomohiro Yano
- Graduate School of Food and Nutritional Sciences, Toyo University
- Faculty of Food and Nutritional Sciences and Toyo University
- Institute of Life Innovation Studies, Toyo University
| |
Collapse
|
24
|
Hong P, Guo RQ, Song G, Yang KW, Zhang L, Li XS, Zhang K, Zhou LQ. Prognostic role of chromogranin A in castration-resistant prostate cancer: A meta-analysis. Asian J Androl 2019; 20:561-566. [PMID: 30084431 PMCID: PMC6219310 DOI: 10.4103/aja.aja_57_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We aimed to investigate the prognostic value of chromogranin A (CgA) in castration-resistant prostate cancer (CRPC). We conducted a systematic literature search of PubMed, Web of Science, and EMBASE for citations published prior to September 2017 that described CgA and CRPC and performed a standard meta-analysis on survival outcomes. Our meta-analysis included eight eligible studies with 686 patients. The results were as follows: progression-free survival (PFS) was associated with CgA level (hazard ratio [HR] = 2.47, 95% confidence interval [CI]: 1.47-4.14, P = 0.0006); PFS was relative to CgA change (HR = 9.22, 95% CI: 3.03-28.05, P < 0.0001); and overall survival (OS) was relative to CgA level (HR = 1.47, 95% CI: 1.15-1.87, P = 0.002). When we divided the patients into two groups according to therapy status, the result for OS relative to CgA level was an HR of 1.26 (95% CI: 1.09-1.45, P = 0.001) in the first-line hormonal therapy group, and an HR of 2.33 (95% CI: 1.40-3.89, P = 0.001) in the second-line hormonal therapy or chemotherapy group. This meta-analysis indicated that a high CgA level had a negative influence on OS and PFS in CRPC patients. In addition, CRPC patients with a rising CgA had a shorter PFS. Further studies are needed to verify the prognostic value of CgA in CRPC.
Collapse
Affiliation(s)
- Peng Hong
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Run-Qi Guo
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Gang Song
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Kai-Wei Yang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Lei Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Xue-Song Li
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Kai Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Li-Qun Zhou
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| |
Collapse
|
25
|
Lee CH, Decker AM, Cackowski FC, Taichman RS. Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biol Toxicol 2019; 36:115-130. [PMID: 31250347 DOI: 10.1007/s10565-019-09483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers and the second leading cause of cancer death among US males. When diagnosed in an early disease stage, primary tumors of PCa may be treated with surgical resection or radiation, sometimes combined with androgen deprivation therapy, with favorable outcomes. Unfortunately, the treatment efficacy of each approach decreases significantly in later stages of PCa that involve metastasis to soft tissues and bone. Metastatic PCa is a heterogeneous disease containing host cells, mature cancer cells, and subpopulation of cancer stem cells (CSC). CSCs are highly tumorigenic due to their self-renewing and differentiating potential, clinically resulting in recurrence and resistance to standard therapies. Therefore, there is a large unmet clinical need to develop therapies, which target CSC activity. In this review, we summarize the main signaling pathways that are implicated in the current pre-clinical and clinical studies of recurrent metastatic PCa within the bone microenvironment targeting CSCs and discuss the trajectory of therapeutics moving forward.
Collapse
Affiliation(s)
- Clara H Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA. .,Department of Periodontology, University of Alabama Birmingham School of Dentistry, Birmingham, Alabama, USA.
| |
Collapse
|
26
|
Guo Z, Wang Y, Xiang S, Wang S, Chan FL. Chromogranin A is a predictor of prognosis in patients with prostate cancer: a systematic review and meta-analysis. Cancer Manag Res 2019; 11:2747-2758. [PMID: 31114331 PMCID: PMC6497897 DOI: 10.2147/cmar.s190678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Background: The prognostic value of chromogranin-A (CHGA) as a biomarker of prostate cancer (PCa) has been evaluated extensively. However, to date the results still remain controversial. This study aims to perform a meta-analysis on previous studies in order to determine whether CHGA would be a biomarker for survival in PCa patients. Methods: MEDLINE, Embase, Web of Science, and Cochrane Library databases were searched to identify eligible studies published before September 2018, regarding the association of CHGA gene expression with survival outcomes in patients with PCa. Multivariate adjusted HRs and associated 95% CIs were calculated using random effects models. Results: Ten cohort studies involving 3,172 patients were finally included. According to the included studies, circulating CHGA levels were tested in serum, plasma, and tissues. The results showed an association between high CHGA expression and worse overall survival (OS) (HR=1.24, 95% CI: 1.07-1.44; P=0.004; I 2=77.6%) in PCa patients. However, no significant association was observed between increasing CHGA expression and shorter progression-free survival (HR=1.73, 95% CI: 0.92-3.28; P=0.090; I 2=73.9%). The results of sensitivity analysis validated the rationality and reliability of our analysis. Conclusion: Current evidence indicates that high CHGA expression is a potential marker for poor OS in PCa. Future studies are needed to explore tailored treatments that directly target CHGA for the improvement of survival in men with PCa.
Collapse
Affiliation(s)
- Zhenlang Guo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yuliang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Songtao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Shusheng Wang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| |
Collapse
|
27
|
Manna FL, Karkampouna S, Zoni E, De Menna M, Hensel J, Thalmann GN, Kruithof-de Julio M. Metastases in Prostate Cancer. Cold Spring Harb Perspect Med 2019; 9:a033688. [PMID: 29661810 PMCID: PMC6396340 DOI: 10.1101/cshperspect.a033688] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prostate cancer (PCa) prognosis and clinical outcome is directly dependent on metastatic occurrence. The bone microenvironment is a favorable metastatic niche. Different biological processes have been suggested to contribute to the osteotropism of PCa such as hemodynamics, bone-specific signaling interactions, and the "seed and soil" hypothesis. However, prevalence of disseminating tumor cells in the bone is not proportional to the actual occurrence of metastases, as not all patients will develop bone metastases. The fate and tumor-reforming ability of a metastatic cell is greatly influenced by the microenvironment. In this review, the molecular mechanisms of bone and soft-tissue metastasis in PCa are discussed. Specific attention is dedicated to the residual disease, novel approaches, and animal models used in oncological translational research are illustrated.
Collapse
Affiliation(s)
- Federico La Manna
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Sofia Karkampouna
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Eugenio Zoni
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marta De Menna
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Janine Hensel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - George N Thalmann
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
28
|
Abstract
Comprehensive knowledge of the normal prostate epithelial lineage hierarchy is a prerequisite to investigate the identity of the cells of origin for prostate cancer. The basal and luminal cells constitute most of the prostate epithelium and have been the major focuses of the study on the cells of origin for prostate cancer. Much progress has been made during the past few decades, mainly using mouse models, to understand the inter-lineage relationship and intra-lineage heterogeneity in adults as well as the lineage plasticity during conditions of stress. These studies have concluded that the adult mouse prostate basal and luminal cells are largely independently sustained under physiological conditions, but both types of cells possess the capacity for bipotent differentiation under stress or artificial experimental conditions. However, the existence or the identity of the putative progenitors within each lineage warrants further investigation. Whether the human prostate lineage hierarchy is completely the same as that of the mouse remains uncertain. Experiments from independent groups have demonstrated that both types of cells in mice and humans can serve as targets for transformation. But controversies remain whether the disease from distinct cells of origin display different clinical behaviors. Further investigation of the intra-lineage heterogeneity will provide new insights into this issue. Understanding the identity of the cells of origin for prostate cancer will help identify novel prognostic markers for early detection of aggressive prostate cancers, provide insights into the therapeutic vulnerability of these tumors, and inspire novel therapeutic strategies.
Collapse
|
29
|
Zhang D, Zhao S, Li X, Kirk JS, Tang DG. Prostate Luminal Progenitor Cells in Development and Cancer. Trends Cancer 2018; 4:769-783. [PMID: 30352679 PMCID: PMC6212301 DOI: 10.1016/j.trecan.2018.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has a predominantly luminal phenotype. Basal cells were previously identified as a cell of origin for PCa, but increasing evidence implicates luminal cells as a preferred cell of origin for PCa, as well as key drivers of tumor development and progression. Prostate luminal cells are understudied compared with basal cells. In this review, we describe the contribution of prostate luminal progenitor (LP) cells to luminal cell development and their role in prostate development, androgen-mediated regeneration of castrated prostate, and tumorigenesis. We also discuss the potential value of LP transcriptomics to identify new targets and therapies to treat aggressive PCa. Finally, we propose future research directions focusing on molecular mechanisms underlying LP cell biology and heterogeneity in normal and diseased prostate.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jason S Kirk
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
30
|
Skvortsov S, Skvortsova II, Tang DG, Dubrovska A. Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells 2018; 36:1457-1474. [PMID: 29845679 DOI: 10.1002/stem.2859] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PCa) is heterogeneous, harboring phenotypically diverse cancer cell types. PCa cell heterogeneity is caused by genomic instability that leads to the clonal competition and evolution of the cancer genome and by epigenetic mechanisms that result in subclonal cellular differentiation. The process of tumor cell differentiation is initiated from a population of prostate cancer stem cells (PCSCs) that possess many phenotypic and functional properties of normal stem cells. Since the initial reports on PCSCs in 2005, there has been much effort to elucidate their biological properties, including unique metabolic characteristics. In this Review, we discuss the current methods for PCSC enrichment and analysis, the hallmarks of PCSC metabolism, and the role of PCSCs in tumor progression. Stem Cells 2018;36:1457-1474.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA. EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer 2018; 1870:229-238. [PMID: 29981816 DOI: 10.1016/j.bbcan.2018.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Neuroendocrine/Aggressive Variant Prostate Cancers are lethal variants of the disease, with an aggressive clinical course and very short responses to conventional therapy. The age-adjusted incidence rate for this tumor sub-type has steadily increased over the past 20 years in the United States, with no reduction in the associated mortality rate. The molecular networks fueling its emergence and sustenance are still obscure; however, many factors have been associated with the onset and progression of neuroendocrine differentiation in clinically typical adenocarcinomas including loss of androgen-receptor expression and/or signaling, conventional therapy, and dysregulated cytokine function. "Tumor-plasticity" and the ability to dedifferentiate into alternate cell lineages are central to this process. Epithelial-to-mesenchymal (EMT) signaling pathways are major promoters of stem-cell properties in prostate tumor cells. In this review, we examine the contributions of EMT-induced cellular-plasticity and stem-cell signaling pathways to the progression of Neuroendocrine/Aggressive Variant Prostate Cancers in the light of potential therapeutic opportunities.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anurag N Paranjape
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sankar Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
33
|
Chua CW, Epsi NJ, Leung EY, Xuan S, Lei M, Li BI, Bergren SK, Hibshoosh H, Mitrofanova A, Shen MM. Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation. eLife 2018; 7:28768. [PMID: 29334357 PMCID: PMC5807048 DOI: 10.7554/elife.28768] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer.
Collapse
Affiliation(s)
- Chee Wai Chua
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Nusrat J Epsi
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, United States.,Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, United States
| | - Eva Y Leung
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Shouhong Xuan
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Ming Lei
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Bo I Li
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Sarah K Bergren
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, United States.,Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, United States
| | - Michael M Shen
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| |
Collapse
|
34
|
Saha A, Blando J, Fernandez I, Kiguchi K, DiGiovanni J. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo. Oncotarget 2018; 7:25194-207. [PMID: 26910370 PMCID: PMC5041897 DOI: 10.18632/oncotarget.7535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/29/2016] [Indexed: 12/11/2022] Open
Abstract
A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Jorge Blando
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Irina Fernandez
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA.,Stem Cell Transplantation Department, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Kaoru Kiguchi
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| |
Collapse
|
35
|
Astrologo L, Zoni E, Karkampouna S, Gray PC, Klima I, Grosjean J, Goumans MJ, Hawinkels LJAC, van der Pluijm G, Spahn M, Thalmann GN, Ten Dijke P, Kruithof-de Julio M. ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models. Front Cell Dev Biol 2017; 5:104. [PMID: 29259971 PMCID: PMC5723291 DOI: 10.3389/fcell.2017.00104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is the second most common cancer in men and lethality is normally associated with the consequences of metastasis rather than the primary tumor. Therefore, targeting the molecular pathways that underlie dissemination of primary tumor cells and the formation of metastases has a great clinical value. Bone morphogenetic proteins (BMPs) play a critical role in tumor progression and this study focuses on the role of BMP9- Activin receptor-Like Kinase 1 and 2 (ALK1 and ALK2) axis in prostate cancer. In order to study the effect of BMP9 in vitro and in vivo on cancer cells and tumor growth, we used a soluble chimeric protein consisting of the ALK1 extracellular domain (ECD) fused to human Fc (ALK1Fc) that prevents binding of BMP9 to its cell surface receptors and thereby blocks its ability to activate downstream signaling. ALK1Fc sequesters BMP9 and the closely related BMP10 while preserving the activation of ALK1 and ALK2 through other ligands. We show that ALK1Fc acts in vitro to decrease BMP9-mediated signaling and proliferation of prostate cancer cells with tumor initiating and metastatic potential. In line with these observations, we demonstrate that ALK1Fc also reduces tumor cell proliferation and tumor growth in vivo in an orthotopic transplantation model, as well as in the human patient derived xenograft BM18. Furthermore, we also provide evidence for crosstalk between BMP9 and NOTCH and find that ALK1Fc inhibits NOTCH signaling in human prostate cancer cells and blocks the induction of the NOTCH target Aldehyde dehydrogenase member ALDH1A1, which is a clinically relevant marker associated with poor survival and advanced-stage prostate cancer. Our study provides the first demonstration that ALK1Fc inhibits prostate cancer progression, identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. Altogether, these findings support the validity of ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.
Collapse
Affiliation(s)
- Letizia Astrologo
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Eugenio Zoni
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands
| | - Sofia Karkampouna
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Irena Klima
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Joël Grosjean
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Marie J Goumans
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Lukas J A C Hawinkels
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Martin Spahn
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
36
|
Genetically engineered oncolytic Newcastle disease virus mediates cytolysis of prostate cancer stem like cells. J Biotechnol 2017; 260:91-97. [DOI: 10.1016/j.jbiotec.2017.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 01/31/2023]
|
37
|
Prostate Cancer Stem Cell Markers Drive Progression, Therapeutic Resistance, and Bone Metastasis. Stem Cells Int 2017; 2017:8629234. [PMID: 28690641 PMCID: PMC5485361 DOI: 10.1155/2017/8629234] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
Metastatic or recurrent tumors are the primary cause of cancer-related death. For prostate cancer, patients diagnosed with local disease have a 99% 5-year survival rate; however, this 5-year survival rate drops to 28% in patients with metastatic disease. This dramatic decline in survival has driven interest in discovering new markers able to identify tumors likely to recur and in developing new methods to prevent metastases from occurring. Biomarker discovery for aggressive tumor cells includes attempts to identify cancer stem cells (CSCs). CSCs are defined as tumor cells capable of self-renewal and regenerating the entire tumor heterogeneity. Thus, it is hypothesized that CSCs may drive primary tumor aggressiveness, metastatic colonization, and therapeutic relapse. The ability to identify these cells in the primary tumor or circulation would provide prognostic information capable of driving prostate cancer treatment decisions. Further, the ability to target these CSCs could prevent tumor metastasis and relapse after therapy allowing for prostate cancer to finally be cured. Here, we will review potential CSC markers and highlight evidence that describes how cells expressing each marker may drive prostate cancer progression, metastatic colonization and growth, tumor recurrence, and resistance to treatment.
Collapse
|
38
|
Ceder JA, Aalders TW, Schalken JA. Label retention and stem cell marker expression in the developing and adult prostate identifies basal and luminal epithelial stem cell subpopulations. Stem Cell Res Ther 2017; 8:95. [PMID: 28446230 PMCID: PMC5406885 DOI: 10.1186/s13287-017-0544-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/06/2017] [Accepted: 03/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is the second most frequent cancer among males worldwide, and most patients with metastatic disease eventually develop therapy-resistant disease. Recent research has suggested the existence of cancer stem-like cells, and that such cells are behind the therapy resistance and progression. METHODS Here, we have taken advantage of the relatively quiescent nature of stem cells to identify the slow-cycling label-retaining stem cell (LRC) populations of the prostate gland. Mice were pulsed with bromodeoxyuridine (BrdU) during prostate organogenesis, and the LRC populations were then identified and characterized in 5-day-old and in 6-month-old adult animals using immunohistochemistry and immunofluorescence. RESULTS Quantification of LRCs in the adult mouse prostate showed that epithelial LRCs were significantly more numerous in prostatic ducts (3.7 ± 0.47% SD) when compared to the proximal (1.4 ± 0.83%) and distal epithelium (0.48 ± 0.08%) of the secretory lobes. LRCs were identified in both the basal and epithelial cell layers of the prostate, and LRCs co-expressed several candidate stem cell markers in a developmental and duct/acini-specific manner, including Sca-1, TROP-2, CD133, CD44, c-kit, and the novel prostate progenitor marker cytokeratin-7. Importantly, a significant proportion of LRCs were localized in the luminal cell layer, the majority in ducts and the proximal prostate, that co-expressed high levels of androgen receptor in the adult prostate. CONCLUSIONS Our results suggest that there are separate basal and luminal stem cell populations in the prostate, and they open up the possibility that androgen receptor-expressing luminal stem-like cells could function as cancer-initiating and relapse-responsible cells in prostate cancer.
Collapse
Affiliation(s)
- Jens Adam Ceder
- Department of Translational Medicine, Lund University, Skåne University Hospital, Jan Waldenströms gata 35, CRC 91:10, SE20502, Malmö, Sweden.
| | - Tilly Wilhelmina Aalders
- Department of Urology (Route 267), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jack Antonius Schalken
- Department of Urology (Route 267), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Archer LK, Frame FM, Maitland NJ. Stem cells and the role of ETS transcription factors in the differentiation hierarchy of normal and malignant prostate epithelium. J Steroid Biochem Mol Biol 2017; 166:68-83. [PMID: 27185499 DOI: 10.1016/j.jsbmb.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/07/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most common cancer of men in the UK and accounts for a quarter of all new cases. Although treatment of localised cancer can be successful, there is no cure for patients presenting with invasive prostate cancer and there are less treatment options. They are generally treated with androgen-ablation therapies but eventually the tumours become hormone resistant and patients develop castration-resistant prostate cancer (CRPC) for which there are no further successful or curative treatments. This highlights the need for new treatment strategies. In order to prevent prostate cancer recurrence and treatment resistance, all the cell populations in a heterogeneous prostate tumour must be targeted, including the rare cancer stem cell (CSC) population. The ETS transcription factor family members are now recognised as a common feature in multiple cancers including prostate cancer; with aberrant expression, loss of tumour suppressor function, inactivating mutations and the formation of fusion genes observed. Most notably, the TMPRSS2-ERG gene fusion is present in approximately 50% of prostate cancers and in prostate CSCs. However, the role of other ETS transcription factors in prostate cancer is less well understood. This review will describe the prostate epithelial cell hierarchy and discuss the evidence behind prostate CSCs and their inherent resistance to conventional cancer therapies. The known and proposed roles of the ETS family of transcription factors in prostate epithelial cell differentiation and regulation of the CSC phenotype will be discussed, as well as how they might be targeted for therapy.
Collapse
Affiliation(s)
- Leanne K Archer
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom.
| |
Collapse
|
40
|
Yun EJ, Lo UG, Hsieh JT. The evolving landscape of prostate cancer stem cell: Therapeutic implications and future challenges. Asian J Urol 2016; 3:203-210. [PMID: 29264188 PMCID: PMC5730868 DOI: 10.1016/j.ajur.2016.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/04/2023] Open
Abstract
Prostate cancer (PCa) is the most common cause of malignancy in males and the second leading cause of cancer mortality in United States. Current treatments for PCa include surgery, radiotherapy, and androgen-deprivation therapy. Eventually, PCa relapses to an advanced castration-resistant PCa (CRPC) that becomes a systematic disease and incurable. Therefore, identifying cellular components and molecular mechanisms that drive aggressive PCa at early stage is critical for disease prognosis and therapeutic intervention. One potential strategy for aggressive PCa is to target cancer stem cells (CSCs) that are identified by several unique characteristics such as immortal, self-renewal, and pluripotency. Also, CSC is believed to be a major factor contributing to resistance to radiotherapy and conventional chemotherapies. Moreover, CSCs are thought to be the critical cause of metastasis, tumor recurrence and cancer-related death of multiple cancer types, including PCa. In this review, we discuss recent progress made in understanding prostate cancer stem cells (PCSCs). We focus on the therapeutic strategies aimed at targeting specific surface markers of CSCs, the key signaling pathways in the maintenance of self-renewal capacity of CSCs, ATP-binding cassette (ABC) transporters that mediate the drug-resistance of CSCs, dysregulated microRNAs expression profiles in CSCs, and immunotherapeutic strategies developed against PCSCs surface markers.
Collapse
Affiliation(s)
- Eun-Jin Yun
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - U-Ging Lo
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
41
|
Zhang Q, Sun M, Zhou S, Guo B. Class I HDAC inhibitor mocetinostat induces apoptosis by activation of miR-31 expression and suppression of E2F6. Cell Death Discov 2016; 2:16036. [PMID: 27551526 PMCID: PMC4979414 DOI: 10.1038/cddiscovery.2016.36] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022] Open
Abstract
The class I selective inhibitor of the histone deacetylases, mocetinostat, has promising antitumor activities in both preclinical studies and the clinical trials. To understand how mocetinostat induces apoptosis, we examined the effects of mocetinostat on miR-31, a proapoptotic microRNA that was previously found to be epigenetically silenced in prostate cancer. We found that miR-31 was significantly upregulated by mocetinostat in prostate cancer cells. Antiapoptotic protein E2F6, the target of miR-31, was decreased by mocetinostat treatment. When miR-31 was blocked with an inhibitor, the ability of mocetinostat to induce apoptosis was reduced. We further demonstrated that mocetinostat enhanced the activity of docetaxel in apoptosis induction. While siRNA knockdown of E2F6 sensitized cancer cells to mocetinostat-induced apoptosis, overexpression of E2F6 blocked mocetinostat-induced apoptosis. In an orthotopic xenograft model, we demonstrated that mocetinostat activated miR-31, decreased E2F6, induced apoptosis, and significantly reduced prostate cancer growth. Importantly, we found that mocetinostat also increased miR-31 expression, decreased E2F6, and induced apoptosis in the primary prostate cancer stem cells. Thus, activation of miR-31 and downregulation of E2F6 constitute an important mechanism in mocetinostat-induced apoptosis in prostate cancer.
Collapse
Affiliation(s)
- Q Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University , Fargo, ND 58108, USA
| | - M Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University , Fargo, ND 58108, USA
| | - S Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University , Fargo, ND 58108, USA
| | - B Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University , Fargo, ND 58108, USA
| |
Collapse
|
42
|
Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1238-60. [DOI: 10.1016/j.bbamcr.2016.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
|
43
|
Moreira D, Zhang Q, Hossain DMS, Nechaev S, Li H, Kowolik CM, D'Apuzzo M, Forman S, Jones J, Pal SK, Kortylewski M. TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget 2016; 6:17302-13. [PMID: 26046794 PMCID: PMC4627309 DOI: 10.18632/oncotarget.4029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/09/2015] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer progression was associated with tumorigenic signaling activated by proinflammatory mediators. However, the etiology of these events remains elusive. Here, we demonstrate that triggering of the innate immune receptor, Toll-like Receptor 9 (TLR9), in androgen-independent prostate cancer cells initiates signaling cascade leading to increased tumor growth and progression. Using limited dilution/serial transplantation experiments, we show that TLR9 is essential for prostate cancer cells' potential to propagate and self-renew in vivo. Furthermore, low expression or silencing of TLR9 limits the clonogenic potential and mesenchymal stem cell-like properties of LNCaP- and PC3-derived prostate cancer cell variants. Genome-wide transcriptional analysis of prostate cancer cells isolated from xenotransplanted TLR9-positive and -negative tumors revealed a unique gene expression signature, with prominent upregulation of inflammation- and stem cell-related markers. TLR9 signaling orchestrated expression of critical stem cell-related genes such as NKX3.1, KLF-4, BMI-1 and COL1A1, at both mRNA and protein levels. Our further analysis identified that TLR9-induced NF-κB/RELA and STAT3 transcription factors co-regulated NKX3.1 and KLF4 gene expression by directly binding to both promoters. Finally, we demonstrated the feasibility of using TLR9-targeted siRNA delivery to block RELA- and STAT3-dependent prostate cancer cell self-renewal in vivo. The intratumoral administration of CpG-RELAsiRNA or CpG-STAT3siRNA but not control conjugates inhibited growth of established prostate tumors and reduced clonogenic potential of cancer cells. Overcoming cancer cell self-renewal and tumor-propagating potential by targeted inhibition of TLR9 signaling can provide therapeutic strategy for late-stage prostate cancer patients.
Collapse
Affiliation(s)
- Dayson Moreira
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Qifang Zhang
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Dewan Md S Hossain
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Sergey Nechaev
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Haiqing Li
- Bioinformatics Core Facility, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Claudia M Kowolik
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematologic Malignancies, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Jeremy Jones
- Department of Cell Biology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Sumanta K Pal
- Department of Medical Oncology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
44
|
Chen X, Li Q, Liu X, Liu C, Liu R, Rycaj K, Zhang D, Liu B, Jeter C, Calhoun-Davis T, Lin K, Lu Y, Chao HP, Shen J, Tang DG. Defining a Population of Stem-like Human Prostate Cancer Cells That Can Generate and Propagate Castration-Resistant Prostate Cancer. Clin Cancer Res 2016; 22:4505-16. [PMID: 27060154 DOI: 10.1158/1078-0432.ccr-15-2956] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/27/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE We have shown that the phenotypically undifferentiated (PSA(-/lo)) prostate cancer cell population harbors long-term self-renewing cancer stem cells (CSC) that resist castration, and a subset of the cells within the PSA(-/lo) population bearing the ALDH(hi)CD44(+)α2β1(+) phenotype (Triple Marker(+)/TM(+)) is capable of robustly initiating xenograft tumors in castrated mice. The goal of the current project is to further characterize the biologic properties of TM(+) prostate cancer cell population, particularly in the context of initiating and propagating castration-resistant prostate cancer (CRPC). EXPERIMENTAL DESIGN The in vivo CSC activities were measured by limiting-dilution serial tumor transplantation assays in both androgen-dependent and androgen-independent prostate cancer xenograft models. In vitro clonal, clonogenic, and sphere-formation assays were conducted in cells purified from xenograft and patient tumors. qPCR, Western blot, lentiviral-mediated gene knockdown, and human microRNA arrays were performed for mechanistic studies. RESULTS By focusing on the LAPC9 model, we show that the TM(+) cells are CSCs with both tumor-initiating and tumor-propagating abilities for CRPC. Moreover, primary patient samples have TM(+) cells, which possess CSC activities in "castrated" culture conditions. Mechanistically, we find that (i) the phenotypic markers are causally involved in CRPC development; (ii) the TM(+) cells preferentially express castration resistance and stem cell-associated molecules that regulate their CSC characteristics; and (iii) the TM(+) cells possess distinct microRNA expression profiles and miR-499-5p functions as an oncomir. CONCLUSIONS Our results define the TM(+) prostate cancer cells as a population of preexistent stem-like cancer cells that can both mediate and propagate CRPC and highlight the TM(+) cell population as a therapeutic target. Clin Cancer Res; 22(17); 4505-16. ©2016 AACR.
Collapse
Affiliation(s)
- Xin Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas. Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Qiuhui Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York.
| | - Xin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Ruifang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Kiera Rycaj
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Dingxiao Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York. Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China. Centers for Cancer Epigenetics, Stem Cell and Developmental Biology, RNA Interference and Non-coding RNAs, and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
45
|
Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria PJ, Cavallini L, Ciardiello C, Reis Sobreiro M, Morello M, Kharmate G, Jang SC, Kim DK, Hosseini-Beheshti E, Tomlinson Guns E, Gleave M, Gho YS, Mathivanan S, Yang W, Freeman MR, Di Vizio D. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 2016; 6:11327-41. [PMID: 25857301 PMCID: PMC4484459 DOI: 10.18632/oncotarget.3598] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/22/2015] [Indexed: 01/06/2023] Open
Abstract
Large oncosomes (LO) are atypically large (1-10μm diameter) cancer-derived extracellular vesicles (EVs), originating from the shedding of membrane blebs and associated with advanced disease. We report that 25% of the proteins, identified by a quantitative proteomics analysis, are differentially represented in large and nano-sized EVs from prostate cancer cells. Proteins enriched in large EVs included enzymes involved in glucose, glutamine and amino acid metabolism, all metabolic processes relevant to cancer. Glutamine metabolism was altered in cancer cells exposed to large EVs, an effect that was not observed upon treatment with exosomes. Large EVs exhibited discrete buoyant densities in iodixanol (OptiPrepTM) gradients. Fluorescent microscopy of large EVs revealed an appearance consistent with LO morphology, indicating that these structures can be categorized as LO. Among the proteins enriched in LO, cytokeratin 18 (CK18) was one of the most abundant (within the top 5th percentile) and was used to develop an assay to detect LO in the circulation and tissues of mice and patients with prostate cancer. These observations indicate that LO represent a discrete EV type that may play a distinct role in tumor progression and that may be a source of cancer-specific markers.
Collapse
Affiliation(s)
- Valentina R Minciacchi
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cristiana Spinelli
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samantha Morley
- The Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Mandana Zandian
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Lorenzo Cavallini
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Chiara Ciardiello
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Experimental Pharmacology Unit, Department of Research, IRCCS-Istituto Nazionale Tumori G. Pascale, Naples, Italy
| | - Mariana Reis Sobreiro
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matteo Morello
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geetanjali Kharmate
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Su Chul Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Elham Hosseini-Beheshti
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Emma Tomlinson Guns
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Abstract
Prostate cancer (P-Ca) remains a leading cause of cancer-related death in men. Lately, increasing evidence for a hierarchically organized cancer stem cell (CSC) model emerged for different tumors entities, including P-Ca. CSCs are defined by several characteristics including self-renewal, pluripotency and tumorigenicity and are thought to be responsible for tumor recurrence, metastasis and cancer related death. In this review we discuss the recent research in the field of CSCs, its limitations and therapeutical implications in general and specifically in P-Ca.
Collapse
Affiliation(s)
- Felix Moltzahn
- Department of Urology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
47
|
The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells. Stem Cells Int 2016; 2016:4829602. [PMID: 26880966 PMCID: PMC4737002 DOI: 10.1155/2016/4829602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/04/2015] [Accepted: 12/13/2015] [Indexed: 11/18/2022] Open
Abstract
The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of "core" transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR) in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells.
Collapse
|
48
|
Hensel J, Thalmann GN. Biology of Bone Metastases in Prostate Cancer. Urology 2016; 92:6-13. [PMID: 26768714 DOI: 10.1016/j.urology.2015.12.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Advanced-stage prostate cancer (PCa) patients are often diagnosed with bone metastases. Bone metastases remain incurable and therapies are palliative. PCa cells prevalently cause osteoblastic lesions, characterized by an excess of bone formation. The prevailing concept indicates that PCa cancer cell secrete an excess of paracrine factors stimulating osteoblasts directly or indirectly, thereby leading to an excess of bone formation. The exact mechanisms by which bone formation stimulates PCa cell growth are mostly elusive. In this review, the mechanisms of PCa cancer cell osteotropism, the cancer cell-induced response within the bone marrow/bone stroma, and therapeutic stromal targets will be summarized.
Collapse
Affiliation(s)
- Janine Hensel
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
49
|
Shibata M, Shen MM. Stem cells in genetically-engineered mouse models of prostate cancer. Endocr Relat Cancer 2015; 22:T199-208. [PMID: 26341780 PMCID: PMC4618022 DOI: 10.1530/erc-15-0367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 12/24/2022]
Abstract
The cancer stem cell model proposes that tumors have a hierarchical organization in which tumorigenic cells give rise to non-tumorigenic cells, with only a subset of stem-like cells able to propagate the tumor. In the case of prostate cancer, recent analyses of genetically engineered mouse (GEM) models have provided evidence supporting the existence of cancer stem cells in vivo. These studies suggest that cancer stem cells capable of tumor propagation exist at various stages of tumor progression from prostatic intraepithelial neoplasia (PIN) to advanced metastatic and castration-resistant disease. However, studies of stem cells in prostate cancer have been limited by available approaches for evaluating their functional properties in cell culture and transplantation assays. Given the role of the tumor microenvironment and the putative cancer stem cell niche, future studies using GEM models to analyze cancer stem cells in their native tissue microenvironment are likely to be highly informative.
Collapse
Affiliation(s)
- Maho Shibata
- Departments of MedicineGenetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| | - Michael M Shen
- Departments of MedicineGenetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
50
|
Strand DW, Goldstein AS. The many ways to make a luminal cell and a prostate cancer cell. Endocr Relat Cancer 2015; 22:T187-97. [PMID: 26307022 PMCID: PMC4893788 DOI: 10.1530/erc-15-0195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
Research in the area of stem/progenitor cells has led to the identification of multiple stem-like cell populations implicated in prostate homeostasis and cancer initiation. Given that there are multiple cells that can regenerate prostatic tissue and give rise to prostate cancer, our focus should shift to defining the signaling mechanisms that drive differentiation and progenitor self-renewal. In this article, we will review the literature, present the evidence and raise important unanswered questions that will help guide the field forward in dissecting critical mechanisms regulating stem-cell differentiation and tumor initiation.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of UrologyUniversity of Texas Southwestern, Dallas, Texas, USADepartment of Molecular and Medical PharmacologyDepartment of Urology, David Geffen School of Medicine, Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Andrew S Goldstein
- Department of UrologyUniversity of Texas Southwestern, Dallas, Texas, USADepartment of Molecular and Medical PharmacologyDepartment of Urology, David Geffen School of Medicine, Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|