1
|
Liu J, Mosti F, Zhao HT, Lollis D, Sotelo-Fonseca JE, Escobar-Tomlienovich CF, Musso CM, Mao Y, Massri AJ, Doll HM, Moss ND, Sousa AMM, Wray GA, Schmidt ERE, Silver DL. A human-specific enhancer fine-tunes radial glia potency and corticogenesis. Nature 2025:10.1038/s41586-025-09002-1. [PMID: 40369080 DOI: 10.1038/s41586-025-09002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Humans have evolved an extraordinarily expanded and complex cerebral cortex associated with developmental and gene regulatory modifications1-3. Human accelerated regions (HARs) are highly conserved DNA sequences with human-specific nucleotide substitutions. Although there are thousands of annotated HARs, their functional contribution to species-specific cortical development remains largely unknown4,5. HARE5 is a HAR transcriptional enhancer of the WNT signalling receptor Frizzled8 that is active during brain development6. Here, using genome-edited mouse (Mus musculus, Mm) and primate models, we demonstrated that human (Homo sapiens, Hs) HARE5 fine-tunes cortical development and connectivity by controlling the proliferative and neurogenic capacities of neural progenitor cells. Hs-HARE5 knock-in mice have significantly enlarged neocortices, containing more excitatory neurons. By measuring neural dynamics in vivo, we showed that these anatomical features result in increased functional independence between cortical regions. We assessed underlying developmental mechanisms using fixed and live imaging, lineage analysis and single-cell RNA sequencing. We discovered that Hs-HARE5 modifies radial glial cell behaviour, with increased self-renewal at early developmental stages, followed by expanded neurogenic potential. Using genome-edited human and chimpanzee (Pan troglodytes, Pt) neural progenitor cells and cortical organoids, we showed that four human-specific variants of Hs-HARE5 drive increased enhancer activity that promotes progenitor proliferation. Finally, we showed that Hs-HARE5 increased progenitor proliferation by amplifying canonical WNT signalling. These findings illustrate how small changes in regulatory DNA can directly affect critical signalling pathways to modulate brain development. Our study uncovered new functions of HARs as key regulatory elements crucial for the expansion and complexity of the human cerebral cortex.
Collapse
Affiliation(s)
- Jing Liu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Hanzhi T Zhao
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Davoneshia Lollis
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Yiwei Mao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Hannah M Doll
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole D Moss
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Andre M M Sousa
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ewoud R E Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Naffaa MM, Yin HH. A cholinergic signaling pathway underlying cortical circuit activation of quiescent neural stem cells in the lateral ventricle. Sci Signal 2024; 17:eadk8810. [PMID: 39316665 DOI: 10.1126/scisignal.adk8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/18/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Neural stem cells (NSCs) in the subventricular zone (SVZ) located along the lateral ventricles (LVs) of the mammalian brain continue to self-renew to produce new neurons after birth and into adulthood. Quiescent LV cells, which are situated close to the ependymal cells lining the LVs, are activated by choline acetyltransferase-positive (ChAT+) neurons within the subependymal (subep) region of the SVZ when these neurons are stimulated by projections from the anterior cingulate cortex (ACC). Here, we uncovered a signaling pathway activated by the ACC-subep-ChAT+ circuit responsible for the activation and proliferation of quiescent LV NSCs specifically in the ventral area of the SVZ. This circuit activated muscarinic M3 receptors on quiescent LV NSCs, which subsequently induced signaling mediated by the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). Downstream of IP3R1 activation, which would be expected to increase intracellular Ca2+, Ca2+-/calmodulin-dependent protein kinase II δ and the MAPK10 signaling pathway were stimulated and required for the proliferation of quiescent LV NSCs in the SVZ. These findings reveal the mechanisms that regulate quiescent LV NSCs and underscore the critical role of projections from the ACC in promoting their proliferative activity within the ventral SVZ.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
4
|
Castro-Torres RD, Olloquequi J, Parcerisas A, Ureña J, Ettcheto M, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci 2024; 350:122750. [PMID: 38801982 DOI: 10.1016/j.lfs.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.
Collapse
Affiliation(s)
- Rubén D Castro-Torres
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, 08028 Barcelona, Catalonia, Spain; Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Av. 5 Poniente 1670, 3460000 Talca, Chile
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Jesús Ureña
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miren Ettcheto
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ester Verdaguer
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carme Auladell
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Liu J, Mosti F, Zhao HT, Sotelo-Fonseca JE, Escobar-Tomlienovich CF, Lollis D, Musso CM, Mao Y, Massri AJ, Doll HM, Sousa AM, Wray GA, Schmidt E, Silver DL. A human-specific enhancer fine-tunes radial glia potency and corticogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588953. [PMID: 38645099 PMCID: PMC11030412 DOI: 10.1101/2024.04.10.588953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Humans evolved an extraordinarily expanded and complex cerebral cortex, associated with developmental and gene regulatory modifications 1-3 . Human accelerated regions (HARs) are highly conserved genomic sequences with human-specific nucleotide substitutions. Although there are thousands of annotated HARs, their functional contribution to human-specific cortical development is largely unknown 4,5 . HARE5 is a HAR transcriptional enhancer of the WNT signaling receptor Frizzled8 (FZD8) active during brain development 6 . Here, using genome-edited mouse and primate models, we demonstrate that human (Hs) HARE5 fine-tunes cortical development and connectivity by controlling the proliferative and neurogenic capacity of neural progenitor cells (NPCs). Hs-HARE5 knock-in mice have significantly enlarged neocortices containing more neurons. By measuring neural dynamics in vivo we show these anatomical features correlate with increased functional independence between cortical regions. To understand the underlying developmental mechanisms, we assess progenitor fate using live imaging, lineage analysis, and single-cell RNA sequencing. This reveals Hs-HARE5 modifies radial glial progenitor behavior, with increased self-renewal at early developmental stages followed by expanded neurogenic potential. We use genome-edited human and chimpanzee (Pt) NPCs and cortical organoids to assess the relative enhancer activity and function of Hs-HARE5 and Pt-HARE5. Using these orthogonal strategies we show four human-specific variants in HARE5 drive increased enhancer activity which promotes progenitor proliferation. These findings illustrate how small changes in regulatory DNA can directly impact critical signaling pathways and brain development. Our study uncovers new functions for HARs as key regulatory elements crucial for the expansion and complexity of the human cerebral cortex.
Collapse
|
6
|
Coschiera A, Yoshihara M, Lauter G, Ezer S, Pucci M, Li H, Kavšek A, Riedel CG, Kere J, Swoboda P. Primary cilia promote the differentiation of human neurons through the WNT signaling pathway. BMC Biol 2024; 22:48. [PMID: 38413974 PMCID: PMC10900739 DOI: 10.1186/s12915-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Primary cilia emanate from most human cell types, including neurons. Cilia are important for communicating with the cell's immediate environment: signal reception and transduction to/from the ciliated cell. Deregulation of ciliary signaling can lead to ciliopathies and certain neurodevelopmental disorders. In the developing brain cilia play well-documented roles for the expansion of the neural progenitor cell pool, while information about the roles of cilia during post-mitotic neuron differentiation and maturation is scarce. RESULTS We employed ciliated Lund Human Mesencephalic (LUHMES) cells in time course experiments to assess the impact of ciliary signaling on neuron differentiation. By comparing ciliated and non-ciliated neuronal precursor cells and neurons in wild type and in RFX2 -/- mutant neurons with altered cilia, we discovered an early-differentiation "ciliary time window" during which transient cilia promote axon outgrowth, branching and arborization. Experiments in neurons with IFT88 and IFT172 ciliary gene knockdowns, leading to shorter cilia, confirm these results. Cilia promote neuron differentiation by tipping WNT signaling toward the non-canonical pathway, in turn activating WNT pathway output genes implicated in cyto-architectural changes. CONCLUSIONS We provide a mechanistic entry point into when and how ciliary signaling coordinates, promotes and translates into anatomical changes. We hypothesize that ciliary alterations causing neuron differentiation defects may result in "mild" impairments of brain development, possibly underpinning certain aspects of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Andrea Coschiera
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba, Japan
- Chiba University, Chiba, Japan
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
- Uppsala University, Uppsala, Sweden
| | - Sini Ezer
- University of Helsinki, Stem Cells and Metabolism Research Program, and Folkhälsan Research Center, Helsinki, Finland
| | - Mariangela Pucci
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
- University of Teramo, Teramo, Italy
| | - Haonan Li
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Alan Kavšek
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- University of Helsinki, Stem Cells and Metabolism Research Program, and Folkhälsan Research Center, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
7
|
Sarabia-Sánchez MA, Robles-Flores M. WNT Signaling in Stem Cells: A Look into the Non-Canonical Pathway. Stem Cell Rev Rep 2024; 20:52-66. [PMID: 37804416 PMCID: PMC10799802 DOI: 10.1007/s12015-023-10610-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/09/2023]
Abstract
Tissue homeostasis is crucial for multicellular organisms, wherein the loss of cells is compensated by generating new cells with the capacity for proliferation and differentiation. At the origin of these populations are the stem cells, which have the potential to give rise to cells with both capabilities, and persevere for a long time through the self-renewal and quiescence. Since the discovery of stem cells, an enormous effort has been focused on learning about their functions and the molecular regulation behind them. Wnt signaling is widely recognized as essential for normal and cancer stem cell. Moreover, β-catenin-dependent Wnt pathway, referred to as canonical, has gained attention, while β-catenin-independent Wnt pathways, known as non-canonical, have remained conspicuously less explored. However, recent evidence about non-canonical Wnt pathways in stem cells begins to lay the foundations of a conceivably vast field, and on which we aim to explain this in the present review. In this regard, we addressed the different aspects in which non-canonical Wnt pathways impact the properties of stem cells, both under normal conditions and also under disease, specifically in cancer.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
8
|
Becker CJ, Cigliola V, Gillotay P, Rich A, De Simone A, Han Y, Di Talia S, Poss KD. In toto imaging of glial JNK signaling during larval zebrafish spinal cord regeneration. Development 2023; 150:dev202076. [PMID: 37997694 PMCID: PMC10753585 DOI: 10.1242/dev.202076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Identification of signaling events that contribute to innate spinal cord regeneration in zebrafish can uncover new targets for modulating injury responses of the mammalian central nervous system. Using a chemical screen, we identify JNK signaling as a necessary regulator of glial cell cycling and tissue bridging during spinal cord regeneration in larval zebrafish. With a kinase translocation reporter, we visualize and quantify JNK signaling dynamics at single-cell resolution in glial cell populations in developing larvae and during injury-induced regeneration. Glial JNK signaling is patterned in time and space during development and regeneration, decreasing globally as the tissue matures and increasing in the rostral cord stump upon transection injury. Thus, dynamic and regional regulation of JNK signaling help to direct glial cell behaviors during innate spinal cord regeneration.
Collapse
Affiliation(s)
- Clayton J. Becker
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Valentina Cigliola
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose, 06100 Nice, France
| | - Pierre Gillotay
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashley Rich
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alessandro De Simone
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Yanchao Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006 Jiangsu, China
| | - Stefano Di Talia
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Lee DG, Kim YK, Baek KH. The bHLH Transcription Factors in Neural Development and Therapeutic Applications for Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232213936. [PMID: 36430421 PMCID: PMC9696289 DOI: 10.3390/ijms232213936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The development of functional neural circuits in the central nervous system (CNS) requires the production of sufficient numbers of various types of neurons and glial cells, such as astrocytes and oligodendrocytes, at the appropriate periods and regions. Hence, severe neuronal loss of the circuits can cause neurodegenerative diseases such as Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Treatment of such neurodegenerative diseases caused by neuronal loss includes some strategies of cell therapy employing stem cells (such as neural progenitor cells (NPCs)) and gene therapy through cell fate conversion. In this report, we review how bHLH acts as a regulator in neuronal differentiation, reprogramming, and cell fate determination. Moreover, several different researchers are conducting studies to determine the importance of bHLH factors to direct neuronal and glial cell fate specification and differentiation. Therefore, we also investigated the limitations and future directions of conversion or transdifferentiation using bHLH factors.
Collapse
Affiliation(s)
- Dong Gi Lee
- Joint Section of Science in Environmental Technology, Food Technology, and Molecular Biotechnology, Ghent University, Incheon 21569, Korea
| | - Young-Kwang Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam 13488, Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7134
| |
Collapse
|
10
|
Drugs and Endogenous Factors as Protagonists in Neurogenic Stimulation. Stem Cell Rev Rep 2022; 18:2852-2871. [PMID: 35962176 DOI: 10.1007/s12015-022-10423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 10/15/2022]
Abstract
Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.
Collapse
|
11
|
Kalantary-Charvadeh A, Hosseini V, Mehdizadeh A, Nazari Soltan Ahmad S, Rahbarghazi R, Nozad Charoudeh H, Nouri M, Darabi M. The porcupine inhibitor WNT974 provokes ectodermal lineage differentiation of human embryonic stem cells. Cell Biochem Funct 2022; 40:359-368. [PMID: 35445405 DOI: 10.1002/cbf.3700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Porcupine (Porcn) enzyme plays an essential role in Wnt signaling activation. Stearoyl-CoA desaturase-1 (SCD1) is required to provide Porcn substrates. The aim of this study was to determine the effect of a novel Porcn inhibitor on the fate of human embryonic stem cells (hESCs) and the reliance of Porcn on SCD1 activity. hESCs were cultured on a feeder layer or Matrigel-coated plates. Small molecules WNT974 (LGK-974) and CAY10566 were used to inhibit Porcn and SCD1 activity, respectively. We assessed the effect of Porcn inhibition on viability, expression of Wnt signaling targets, pluripotency markers, proliferation, differentiation, and protein fatty acylation. hESCs' conditioned medium (CM) containing secreted Wnt proteins were applied in rescue experiments. To examine the catalytic dependency of Porcn on SCD1, the results of combined inhibitor treatment were compared with the SCD1 inhibitor alone. LGK-974 at the selected concentrations showed mild effects on hESCs viability, but significantly reduced messenger RNA and protein expression of Wnt signaling targets (Axin-2 and c-Myc) and pluripotency markers (OCT-4 and SOX-2) (p < .05). Adding 1 μM of Porcn inhibitor reduced proliferation (p = .03) and enhanced differentiation capacity into ectodermal progenitors (p = .02), which were reverted by CM. Click chemistry reaction did not show significant alteration in protein fatty acylation upon LGK-974 treatment. Moreover, combined inhibitor treatment caused no further substantial reduction in Wnt signaling targets, pluripotency markers, and protein fatty acylation relative to CAY10566-treated cultures. The substrate availability for Porcn activity is regulated by SCD1 and targeting Porcn by LGK-974 prompts the transition of hESCs from self-renewal state to ectodermal lineage.
Collapse
Affiliation(s)
- Ashkan Kalantary-Charvadeh
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Tatapudy S, Peralta J, Nystul T. Distinct roles of Bendless in regulating FSC niche competition and daughter cell differentiation. Development 2021; 148:dev199630. [PMID: 35020878 PMCID: PMC8645206 DOI: 10.1242/dev.199630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/13/2021] [Indexed: 04/05/2024]
Abstract
A major goal in the study of adult stem cells is to understand how cell fates are specified at the proper time and place to facilitate tissue homeostasis. Here, we found that an E2 ubiquitin ligase, Bendless (Ben), has multiple roles in the Drosophila ovarian epithelial follicle stem cell (FSC) lineage. First, Ben is part of the JNK signaling pathway, and we found that it, as well as other JNK pathway genes, are essential for differentiation of FSC daughter cells. Our data suggest that JNK signaling promotes differentiation by suppressing the activation of the EGFR effector, ERK. Also, we found that loss of ben, but not the JNK kinase hemipterous, resulted in an upregulation of hedgehog signaling, increased proliferation and increased niche competition. Lastly, we demonstrate that the hypercompetition phenotype caused by loss of ben is suppressed by decreasing the rate of proliferation or knockdown of the hedgehog pathway effector, Smoothened (Smo). Taken together, our findings reveal a new layer of regulation in which a single gene influences cell signaling at multiple stages of differentiation in the early FSC lineage.
Collapse
Affiliation(s)
| | | | - Todd Nystul
- Department of Anatomy and Department of OB/Gyn-RS, University of California, San Francisco, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
13
|
Torres VI, Barrera DP, Varas-Godoy M, Arancibia D, Inestrosa NC. Selective Surface and Intraluminal Localization of Wnt Ligands on Small Extracellular Vesicles Released by HT-22 Hippocampal Neurons. Front Cell Dev Biol 2021; 9:735888. [PMID: 34722516 PMCID: PMC8548728 DOI: 10.3389/fcell.2021.735888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The Wnt signaling pathway induces various responses underlying the development and maturation of the nervous system. Wnt ligands are highly hydrophobic proteins that limit their diffusion through an aqueous extracellular medium to a target cell. Nevertheless, their attachment to small extracellular vesicles-like exosomes is one of the described mechanisms that allow their transport under this condition. Some Wnt ligands in these vehicles are expected to be dependent on post-translational modifications such as acylation. The mechanisms determining Wnt loading in exosomes and delivery to the target cells are largely unknown. Here, we took advantage of a cell model that secret a highly enriched population of small extracellular vesicles (sEVs), hippocampal HT-22 neurons. First, to establish the cell model, we characterized the morphological and biochemical properties of an enriched fraction of sEVs obtained from hippocampal HT-22 neurons that express NCAM-L1, a specific exosomal neuronal marker. Transmission electron microscopy showed a highly enriched fraction of exosome-like vesicles. Next, the exosomal presence of Wnt3a, Wnt5a, and Wnt7a was confirmed by western blot analysis and electron microscopy combined with immunogold. Also, we studied whether palmitoylation is a necessary post-translational modification for the transport Wnt in these vesicles. We found that proteinase-K treatment of exosomes selectively decreased their Wnt5a and Wnt7a content, suggesting that their expression is delimited to the exterior membrane surface. In contrast, Wnt3a remained attached, suggesting that it is localized within the exosome lumen. On the other hand, Wnt-C59, a specific inhibitor of porcupine O-acyltransferase (PORCN), decreased the association of Wnt with exosomes, suggesting that Wnt ligand acylation is necessary for them to be secreted by exosomes. These findings may help to understand the action of the Wnt ligands in the target cell, which could be defined during the packaging of the ligands in the secretory cell sEVs.
Collapse
Affiliation(s)
- Viviana I Torres
- Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Daniela P Barrera
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Varas-Godoy
- Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Duxan Arancibia
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
14
|
Liu T, Gonzalez De Los Santos F, Hirsch M, Wu Z, Phan SH. Noncanonical Wnt Signaling Promotes Myofibroblast Differentiation in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:489-499. [PMID: 34107237 PMCID: PMC8641847 DOI: 10.1165/rcmb.2020-0499oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
The Wnt/β-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/β-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear. This study showed significantly higher levels of Wnt11 expression in cells from both patients with idiopathic pulmonary fibrosis and bleomycin-treated mice, as well as in TGFβ-treated mouse lung fibroblasts. Moreover, Wnt11 induced myofibroblast differentiation as manifested by increased α-SMA (ACTA2) expression, which was similar to that induced by canonical Wnt3a/β-catenin signaling. Further investigation revealed that Wnt11 induction of α-SMA was associated with the activation of JNK (c-Jun N-terminal kinase)/c-Jun signaling and was inhibited by a JNK inhibitor. The potential importance of this signaling pathway was supported by in vivo evidence showing significantly increased levels of Wnt11 and activated JNK in the lungs of mice with bleomycin-induced pulmonary fibrosis. Interestingly, fibroblasts did not express canonical Wnt3a, but treatment of these cells with exogenous Wnt3a induced endogenous Wnt11 and Wnt5a, resulting in repression of the Wnt3a/β-catenin target gene Axin2. These findings suggested that the noncanonical Wnt induction of myofibroblast differentiation mediated by the JNK/c-Jun pathway might play a significant role in pulmonary fibrosis, in addition to or in synergy with canonical Wnt3a/β-catenin signaling. Moreover, Wnt3a activation of noncanonical Wnt signaling might trigger a switch from canonical to noncanonical Wnt signaling to induce myofibroblast differentiation.
Collapse
Affiliation(s)
| | | | - Mitchell Hirsch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
15
|
Fan D, Yue Q, Chen J, Wang C, Yu R, Jin Z, Yin S, Wang Q, Chen L, Liao X, Peng C, Zhang J, Cao Z, Mao Y, Huang R, Chen L, Li C. Reprogramming the immunosuppressive microenvironment of IDH1 wild-type glioblastoma by blocking Wnt signaling between microglia and cancer cells. Oncoimmunology 2021; 10:1932061. [PMID: 34123575 PMCID: PMC8183516 DOI: 10.1080/2162402x.2021.1932061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vast majority (>90%) of glioblastoma (GBM) patients belong to the isocitrate dehydrogenase 1 wild type (IDH1WT) group which exhibits a poor prognosis with a median survival of less than 15 months. This study demonstrated numerous immunosuppressive genes as well as β-catenin gene, pivotal for Wnt/β-catenin signaling, were upregulated in 206 IDH1WT glioma patients using the Chinese Glioma Genome Atlas (CGGA) database. The increase in microglia with an immunosuppressive phenotype and the overexpression of β-catenin protein were further verified in IDH1WT GBM patients and IDH1WT GL261 glioma allografts. Subsequently, we found that IDH1WT GL261 cell-derived conditioned medium activated Wnt/β-catenin signaling in primary microglia and triggered their transition to an immunosuppressive phenotype. Blocking Wnt/β-catenin signaling not only attenuated microglial polarization to the immunosuppressive subtype but also reactivated immune responses in IDH1WT GBM allografts by simultaneously enhancing cytotoxic CD8+ T cell infiltration and downregulating regulatory T cells. Positron emission tomography imaging demonstrated enhanced proinflammatory activities in IDH1WT GBM allografts after the blockade of Wnt signaling. Finally, gavage administration of a Wnt signaling inhibitor significantly restrained tumor proliferation and improved the survival of model mice bearing IDH1WT GBM allografts. Depletion of CD8+ T cells remarkably abrogated the therapeutic efficacy induced by the Wnt signaling inhibitor. Overall, the present work indicates that the crosstalk between IDH1WT glioma cells and immunosuppressive microglia is important in maintaining the immunosuppressive glioma microenvironment. Blocking Wnt/β-catenin signaling is a promising complement for IDH1WT GBM treatment by improving the hostile immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Dandan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Ziyi Jin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shujie Yin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Luo Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xueling Liao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Chengyuan Peng
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianpin Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonglian Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruimin Huang
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
16
|
van Vliet AC, Lee J, van der Poel M, Mason MRJ, Noordermeer JN, Fradkin LG, Tannemaat MR, Malessy MJA, Verhaagen J, De Winter F. Coordinated changes in the expression of Wnt pathway genes following human and rat peripheral nerve injury. PLoS One 2021; 16:e0249748. [PMID: 33848304 PMCID: PMC8043392 DOI: 10.1371/journal.pone.0249748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Arie C. van Vliet
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jinhui Lee
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Marlijn van der Poel
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Matthew R. J. Mason
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | - Lee G. Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Martijn R. Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. A. Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Jean F, Stuart A, Tarailo-Graovac M. Dissecting the Genetic and Etiological Causes of Primary Microcephaly. Front Neurol 2020; 11:570830. [PMID: 33178111 PMCID: PMC7593518 DOI: 10.3389/fneur.2020.570830] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH; “small head syndrome”) is a rare, heterogeneous disease arising from the decreased production of neurons during brain development. As of August 2020, the Online Mendelian Inheritance in Man (OMIM) database lists 25 genes (involved in molecular processes such as centriole biogenesis, microtubule dynamics, spindle positioning, DNA repair, transcriptional regulation, Wnt signaling, and cell cycle checkpoints) that are implicated in causing MCPH. Many of these 25 genes were only discovered in the last 10 years following advances in exome and genome sequencing that have improved our ability to identify disease-causing variants. Despite these advances, many patients still lack a genetic diagnosis. This demonstrates a need to understand in greater detail the molecular mechanisms and genetics underlying MCPH. Here, we briefly review the molecular functions of each MCPH gene and how their loss disrupts the neurogenesis program, ultimately demonstrating that microcephaly arises from cell cycle dysregulation. We also explore the current issues in the genetic basis and clinical presentation of MCPH as additional avenues of improving gene/variant prioritization. Ultimately, we illustrate that the detailed exploration of the etiology and inheritance of MCPH improves the predictive power in identifying previously unknown MCPH candidates and diagnosing microcephalic patients.
Collapse
Affiliation(s)
- Francesca Jean
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Stuart
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway. Genes (Basel) 2020; 11:genes11070804. [PMID: 32708801 PMCID: PMC7397164 DOI: 10.3390/genes11070804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway’s impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.
Collapse
|
19
|
Kalantary-Charvadeh A, Hosseini V, Mehdizadeh A, Darabi M. Application of porcupine inhibitors in stem cell fate determination. Chem Biol Drug Des 2020; 96:1052-1068. [PMID: 32419352 DOI: 10.1111/cbdd.13704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023]
Abstract
Porcupine (Porcn), a membrane-bound O-acyltransferase, is an endoplasmic reticulum-located protein that has catalytic activity. Porcn is involved in post-translational lipid modification of wingless-Int (Wnt) proteins and serves as an indispensable step in the Wnt proper secretion and signaling. Small-molecule inhibitors targeting Porcn catalytic function in vitro and in vivo are of great interest not only for treating cancer and fibrotic disorders but also in the field of regenerative medicine. Although a number of studies have been conducted, the exact role of Porcn in stem cell fate is not entirely clear. In some cases, Porcn inhibition declined differentiation rate, and in others, it induced stem cell differentiation toward specific lineages. In this review, we first elaborated the Porcn catalytic activity and its inhibitors. Then, we discussed about the recently reported results of Porcn inhibitors in stem cells self-renewal and differentiation.
Collapse
Affiliation(s)
- Ashkan Kalantary-Charvadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat Commun 2020; 11:1936. [PMID: 32321913 PMCID: PMC7176679 DOI: 10.1038/s41467-020-15714-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/24/2020] [Indexed: 11/09/2022] Open
Abstract
The intestinal epithelium is a structured organ composed of crypts harboring Lgr5+ stem cells, and villi harboring differentiated cells. Spatial transcriptomics have demonstrated profound zonation of epithelial gene expression along the villus axis, but the mechanisms shaping this spatial variability are unknown. Here, we combine laser capture micro-dissection and single cell RNA sequencing to uncover spatially zonated populations of mesenchymal cells along the crypt-villus axis. These include villus tip telocytes (VTTs) that express Lgr5, a gene previously considered a specific crypt epithelial stem cell marker. VTTs are elongated cells that line the villus tip epithelium and signal through Bmp morphogens and the non-canonical Wnt5a ligand. Their ablation is associated with perturbed zonation of enterocyte genes induced at the villus tip. Our study provides a spatially-resolved cell atlas of the small intestinal stroma and exposes Lgr5+ villus tip telocytes as regulators of the epithelial spatial expression programs along the villus axis.
Collapse
|
21
|
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int J Mol Sci 2020; 21:E2613. [PMID: 32283767 PMCID: PMC7177258 DOI: 10.3390/ijms21072613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
C-JUN N-terminal kinases (JNKs), which belong to the mitogen-activated protein kinase (MAPK) family, are evolutionarily conserved kinases that mediate cell responses to various types of extracellular stress insults. They regulate physiological processes such as embryonic development and tissue regeneration, playing roles in cell proliferation and programmed cell death. JNK signaling is also involved in tumorigenesis and progression of several types of malignancies. Recent studies have shown that JNK signaling has crucial roles in regulating the traits of cancer stem cells (CSCs). Here we describe the functions of the JNK signaling pathway in self-renewal and differentiation, which are essential features of various types of stem cells, such as embryonic, induced pluripotent, and adult tissue-specific stem cells. We also review current knowledge of JNK signaling in CSCs and discuss its role in maintaining the CSC phenotype. A better understanding of JNK signaling as an essential regulator of stemness may provide a basis for the development of regenerative medicine and new therapeutic strategies against malignant tumors.
Collapse
Affiliation(s)
- Takashi Semba
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel Sammons
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Bobkova NV, Poltavtseva RA, Leonov SV, Sukhikh GT. Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. BIOCHEMISTRY (MOSCOW) 2020; 85:S108-S130. [PMID: 32087056 DOI: 10.1134/s0006297920140060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It had been commonly believed for a long time, that once established, degeneration of the central nervous system (CNS) is irreparable, and that adult person merely cannot restore dead or injured neurons. The existence of stem cells (SCs) in the mature brain, an organ with minimal regenerative ability, had been ignored for many years. Currently accepted that specific structures of the adult brain contain neural SCs (NSCs) that can self-renew and generate terminally differentiated brain cells, including neurons and glia. However, their contribution to the regulation of brain activity and brain regeneration in natural aging and pathology is still a subject of ongoing studies. Since the 1970s, when Fuad Lechin suggested the existence of repair mechanisms in the brain, new exhilarating data from scientists around the world have expanded our knowledge on the mechanisms implicated in the generation of various cell phenotypes supporting the brain, regulation of brain activity by these newly generated cells, and participation of SCs in brain homeostasis and regeneration. The prospects of the SC research are truthfully infinite and hitherto challenging to forecast. Once researchers resolve the issues regarding SC expansion and maintenance, the implementation of the SC-based platform could help to treat tissues and organs impaired or damaged in many devastating human diseases. Over the past 10 years, the number of studies on SCs has increased exponentially, and we have already become witnesses of crucial discoveries in SC biology. Comprehension of the mechanisms of neurogenesis regulation is essential for the development of new therapeutic approaches for currently incurable neurodegenerative diseases and neuroblastomas. In this review, we present the latest achievements in this fast-moving field and discuss essential aspects of NSC biology, including SC regulation by hormones, neurotransmitters, and transcription factors, along with the achievements of genetic and chemical reprogramming for the safe use of SCs in vitro and in vivo.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - R A Poltavtseva
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology (National Research University), The Phystech School of Biological and Medical Physics, Dolgoprudny, Moscow Region, 141700, Russia
| | - G T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia.
| |
Collapse
|
23
|
Gao J, Liao Y, Qiu M, Shen W. Wnt/β-Catenin Signaling in Neural Stem Cell Homeostasis and Neurological Diseases. Neuroscientist 2020; 27:58-72. [PMID: 32242761 DOI: 10.1177/1073858420914509] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem/progenitor cells (NSCs) maintain the ability of self-renewal and differentiation and compose the complex nervous system. Wnt signaling is thought to control the balance of NSC proliferation and differentiation via the transcriptional coactivator β-catenin during brain development and adult tissue homeostasis. Disruption of Wnt signaling may result in developmental defects and neurological diseases. Here, we summarize recent findings of the roles of Wnt/β-catenin signaling components in NSC homeostasis for the regulation of functional brain circuits. We also suggest that the potential role of Wnt/β-catenin signaling might lead to new therapeutic strategies for neurological diseases, including, but not limited to, spinal cord injury, Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Liao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Boonsawat P, Joset P, Steindl K, Oneda B, Gogoll L, Azzarello-Burri S, Sheth F, Datar C, Verma IC, Puri RD, Zollino M, Bachmann-Gagescu R, Niedrist D, Papik M, Figueiro-Silva J, Masood R, Zweier M, Kraemer D, Lincoln S, Rodan L, Passemard S, Drunat S, Verloes A, Horn AHC, Sticht H, Steinfeld R, Plecko B, Latal B, Jenni O, Asadollahi R, Rauch A. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet Med 2019; 21:2043-2058. [PMID: 30842647 PMCID: PMC6752480 DOI: 10.1038/s41436-019-0464-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/11/2019] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.
Collapse
Affiliation(s)
- Paranchai Boonsawat
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | | | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Satellite, Ahmedabad, India
| | - Chaitanya Datar
- Sahyadri Medical Genetics and Tissue Engineering Facility, Kothrud, Pune and Bharati Hospital and Research Center Dhankawadi, Pune, India
| | - Ishwar C Verma
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Marcella Zollino
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Rahim Masood
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Dennis Kraemer
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Sharyn Lincoln
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Sandrine Passemard
- Service de Neuropédiatrie, Hôpital Universitaire Robert Debré, APHP, Paris, France
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Séverine Drunat
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Anselm H C Horn
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Steinfeld
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara Plecko
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Gorroño-Etxebarria I, Aguirre U, Sanchez S, González N, Escobar A, Zabalza I, Quintana JM, Vivanco MDM, Waxman J, Kypta RM. Wnt-11 as a Potential Prognostic Biomarker and Therapeutic Target in Colorectal Cancer. Cancers (Basel) 2019; 11:E908. [PMID: 31261741 PMCID: PMC6679153 DOI: 10.3390/cancers11070908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 02/05/2023] Open
Abstract
The expression of the secreted factor Wnt-11 is elevated in several types of cancer, including colorectal cancer, where it promotes cancer cell migration and invasion. Analysis of colorectal cancer gene expression databases associated WNT11 mRNA expression with increased likelihood of metastasis in a subset of patients. WNT11 expression was correlated with the expression of the Wnt receptors FZD6, RYK, and PTK7, and the combined expression of WNT11, FZD6 and RYK or PTK7 was associated with an increased risk of 5-year mortality rates. Immunohistochemical analysis of Wnt-11 in a cohort of 357 colorectal cancer patients found significantly higher Wnt-11 levels in tumors, compared with benign tissue. Elevated Wnt-11 levels occurred more frequently in rectal tumors than in colonic tumors and in tumors from women than men. In univariate analysis, increased Wnt-11 expression was also associated with tumor invasion and increased 5-year mortality. High Wnt-11 levels were not associated with high levels of nuclear β-catenin, suggesting Wnt-11 is not simply an indicator for activation of β-catenin-dependent signaling. Expression of Wnt-11 in colorectal cancer cell lines expressing low endogenous Wnt-11 inhibited β-catenin/Tcf activity and increased ATF2-dependent transcriptional activity. WNT11 gene silencing and antibody-mediated inhibition of Wnt-11 in colorectal cancer cell lines expressing high Wnt-11 reduced their capacity for invasion. Together, these observations suggest that Wnt-11 could be a potential target for the treatment of patients with invasive colorectal cancer.
Collapse
Affiliation(s)
| | - Urko Aguirre
- Research Unit, Galdakao-Usansolo Hospital, 48960 Galdakao, Spain
- Kronikgune Institute, Health Services Research on Chronic Patients Network (REDISSEC), 48902 Bilbao, Spain
| | - Saray Sanchez
- Cancer Heterogeneity Lab, CIC bioGUNE, 48160 Derio, Spain
| | - Nerea González
- Research Unit, Galdakao-Usansolo Hospital, 48960 Galdakao, Spain
- Kronikgune Institute, Health Services Research on Chronic Patients Network (REDISSEC), 48902 Bilbao, Spain
| | - Antonio Escobar
- Kronikgune Institute, Health Services Research on Chronic Patients Network (REDISSEC), 48902 Bilbao, Spain
- Research Unit, Basurto University Hospital, Osakidetza, 48013 Bilbao, Spain
| | - Ignacio Zabalza
- Department of Pathology, Galdakao-Usansolo Hospital and Biocruces-Bizkaia Institute, 48960 Galdakao, Spain
| | - José Maria Quintana
- Research Unit, Galdakao-Usansolo Hospital, 48960 Galdakao, Spain
- Kronikgune Institute, Health Services Research on Chronic Patients Network (REDISSEC), 48902 Bilbao, Spain
| | | | - Jonathan Waxman
- Department of Surgery and Cancer, Imperial College London, W12 0NN London, UK
| | - Robert M Kypta
- Cancer Heterogeneity Lab, CIC bioGUNE, 48160 Derio, Spain.
- Department of Surgery and Cancer, Imperial College London, W12 0NN London, UK.
| |
Collapse
|
26
|
Ormaza G, Rodríguez JA, Ibáñez de Opakua A, Merino N, Villate M, Gorroño I, Rábano M, Palmero I, Vilaseca M, Kypta R, Vivanco MDM, Rojas AL, Blanco FJ. The Tumor Suppressor ING5 Is a Dimeric, Bivalent Recognition Molecule of the Histone H3K4me3 Mark. J Mol Biol 2019; 431:2298-2319. [PMID: 31026448 DOI: 10.1016/j.jmb.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 10/26/2022]
Abstract
The INhibitor of Growth (ING) family of tumor suppressors regulates the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at lysine 4 (H3K4me3). This modification is recognized by the plant homeodomain (PHD) present at the C-terminus of the five ING proteins. ING5 facilitates histone H3 acetylation by the HBO1 complex, and also H4 acetylation by the MOZ/MORF complex. We show that ING5 forms homodimers through its N-terminal domain, which folds independently into an elongated coiled-coil structure. The central region of ING5, which contains the nuclear localization sequence, is flexible and disordered, but it binds dsDNA with micromolar affinity. NMR analysis of the full-length protein reveals that the two PHD fingers of the dimer are chemically equivalent and independent of the rest of the molecule, and they bind H3K4me3 in the same way as the isolated PHD. We have observed that ING5 can form heterodimers with the highly homologous ING4, and that two of three primary tumor-associated mutants in the N-terminal domain strongly destabilize the coiled-coil structure. They also affect cell proliferation and cell cycle phase distribution, suggesting a driver role in cancer progression.
Collapse
Affiliation(s)
- Georgina Ormaza
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | | | | | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | - Maider Villate
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | - Irantzu Gorroño
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | - Miriam Rábano
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | - Ignacio Palmero
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, 28029 Madrid, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - Robert Kypta
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | | | - Adriana L Rojas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
27
|
Zhang J, He L, Yang Z, Li L, Cai W. Lithium chloride promotes proliferation of neural stem cells in vitro, possibly by triggering the Wnt signaling pathway. Anim Cells Syst (Seoul) 2018; 23:32-41. [PMID: 30834157 PMCID: PMC6394309 DOI: 10.1080/19768354.2018.1487334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023] Open
Abstract
The objective of this study was to clarify the relationship between the effect and associated mechanisms of lithium chloride on neural stem cells (NSCs) and the Wnt signaling pathway. The expression of key molecules proteins related to the Wnt signaling pathway in the proliferation and differentiation of control NSCs and lithium chloride-treated NSCs was detected by Western blot analysis. Flow cytometry analysis was applied to study the cell cycle dynamics of control NSCs and NSCs treated with lithium chloride. The therapeutic concentrations of lithium chloride stimulated NSC proliferation. β-catenin expression gradually decreased, while Gsk-3β expression gradually increased (P < 0.01). Furthermore, NSCs treated with lithium chloride showed significantly enhanced β-catenin expression and inhibited Gsk-3β expression in a dose-dependent manner. NSCs in the G0/G1-phases were activated with an increased therapeutic concentration of lithium chloride, while NSCs in the S-phase, as well as G2/M-phases, were arrested (P < 0.01). These data confirm that the proliferation of NSCs is remarkably promoted through changes of cell dynamics after treatment with lithium chloride. Our results provide insight into the effects of lithium chloride in promoting the proliferation abilities of NSCs in vitro and preventing the cells from differentiating, which is potentially mediated by activation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Geriatrics, Chinese PLA 113rd Hospital, Ningbo, People's Republic of China
| | - Lu He
- Department of Geriatrics, Chinese PLA 113rd Hospital, Ningbo, People's Republic of China
| | - Zhong Yang
- Department of Neurobiology, The Third Military Medical University, Chongqing, People's Republic of China
| | - Lihong Li
- Department of Neurobiology, The Third Military Medical University, Chongqing, People's Republic of China
| | - Wenqin Cai
- Department of Neurobiology, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Miao N, Bian S, Lee T, Mubarak T, Huang S, Wen Z, Hussain G, Sun T. Opposite Roles of Wnt7a and Sfrp1 in Modulating Proper Development of Neural Progenitors in the Mouse Cerebral Cortex. Front Mol Neurosci 2018; 11:247. [PMID: 30065628 PMCID: PMC6056652 DOI: 10.3389/fnmol.2018.00247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
The Wingless (Wnt)-mediated signals are involved in many important aspects of development of the mammalian cerebral cortex. How Wnts interact with their modulators in cortical development is still unclear. Here, we show that Wnt7a and secreted frizzled-related protein 1 (Sfrp1), a soluble modulator of Wnts, are co-expressed in mouse embryonic cortical neural progenitors (NPs). Knockout of Wnt7a in mice causes microcephaly due to reduced NP population and neurogenesis, and Sfrp1 has an opposing effect compared to Wnt7a. Similar to Dkk1, Sfrp1 decreases the Wnt1 and Wnt7a activity in vitro. Our results suggest that Wnt7a and Sfrp1 play opposite roles to ensure proper NP progeny in the developing cortex.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Shan Bian
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Taufif Mubarak
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Shiying Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Zhihong Wen
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ghulam Hussain
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
29
|
Yin N, Liang S, Liang S, Yang R, Hu B, Qin Z, Liu A, Faiola F. TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5459-5468. [PMID: 29608295 DOI: 10.1021/acs.est.8b00414] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA), as well as its alternatives Tetrabromobisphenol S (TBBPS) and Tetrachlorobisphenol A (TCBPA), are widely used halogenated flame retardants. Their high detection rates in human breast milk and umbilical cord serum have raised wide concerns about their adverse effects on human fetal development. In this study, we evaluated the cytotoxicity and neural developmental toxicity of TBBPA, TBBPS, and TCBPA with a mouse embryonic stem cell (mESC) system, at human body fluid and environmental relevant doses. All the three compounds showed similar trends in their cytotoxic effects. However, while TBBPA and TBBPS stimulated ESC neural differentiation, TCBPA significantly inhibited neurogenesis. Mechanistically, we demonstrated that, as far as the NOTCH (positive regulator) and WNT (negative regulator) pathways were concerned, TBBPA only partially and slightly disturbed them, whereas TBBPS significantly inhibited the WNT pathway, and TCBPA down-regulated the expression of NOTCH effectors but increased the WNT signaling, actions which both inhibited neural specification. In conclusion, our findings suggest that TBBPS and TCBPA may not be safe alternatives to TBBPA, and their toxicity need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Aifeng Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Biomass Energy and Bioprocess Technology , Chinese Academy of Science , Qingdao 266101 , China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
30
|
Saito K, Nobuhisa I, Harada K, Takahashi S, Anani M, Lickert H, Kanai-Azuma M, Kanai Y, Taga T. Maintenance of hematopoietic stem and progenitor cells in fetal intra-aortic hematopoietic clusters by the Sox17-Notch1-Hes1 axis. Exp Cell Res 2018; 365:145-155. [PMID: 29458175 DOI: 10.1016/j.yexcr.2018.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The aorta-gonad-mesonephros region, from which definitive hematopoiesis first arises in midgestation mouse embryos, has intra-aortic hematopoietic clusters (IAHCs) containing hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). We previously reported expression of the transcription factor Sox17 in IAHCs, and overexpression of Sox17 in CD45lowc-KIThigh cells comprising IAHCs maintains the formation of cell clusters and their multipotency in vitro over multiple passages. Here, we demonstrate the importance of NOTCH1 in IAHC formation and maintenance of the HSC/HPC phenotype. We further show that Notch1 expression is positively regulated by SOX17 via direct binding to its gene promoter. SOX17 and NOTCH1 were both found to be expressed in vivo in cells of IAHCs by whole mount immunostaining. We found that cells transduced with the active form of NOTCH1 or its downstream target, Hes1, maintained their multipotent colony-forming capacity in semisolid medium. Moreover, cells stimulated by NOTCH1 ligand, Jagged1, or Delta-like protein 1, had the capacity to form multilineage colonies. Conversely, knockdown of Notch1 and Hes1 led to a reduction of their multipotent colony-forming capacity. These results suggest that the Sox17-Notch1-Hes1 pathway is critical for maintaining the undifferentiated state of IAHCs.
Collapse
Affiliation(s)
- Kiyoka Saito
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Kaho Harada
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satomi Takahashi
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maha Anani
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Department of Clinical Pathology, Suez Canal University, 4.5 km the Ring Road, Ismailia 41522, Egypt
| | - Heiko Lickert
- Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113 - 8510, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
31
|
Honda M, Nakashima K, Katada S. Epigenetic Regulation of Human Neural Stem Cell Differentiation. Results Probl Cell Differ 2018; 66:125-136. [PMID: 30209657 DOI: 10.1007/978-3-319-93485-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emerging evidence has demonstrated that epigenetic programs influence many aspects of neural stem cell (NSC) behavior, including proliferation and differentiation. It is becoming apparent that epigenetic mechanisms, such as DNA methylation, histone modifications, and noncoding RNA expression, are spatiotemporally regulated and that these intracellular programs, in concert with extracellular signals, ensure appropriate gene activation. Here we summarize recent advances in understanding of the epigenetic regulation of human NSCs directly isolated from the brain or produced from pluripotent stem cells (embryonic and induced pluripotent stem cells, respectively).
Collapse
Affiliation(s)
- Mizuki Honda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
32
|
Kagey MH, He X. Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br J Pharmacol 2017; 174:4637-4650. [PMID: 28574171 PMCID: PMC5727329 DOI: 10.1111/bph.13894] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
Wnt signalling is a fundamental pathway involved in embryonic development and adult tissue homeostasis. Mutations in the pathway frequently lead to developmental defects and cancer. As such, therapeutic intervention of this pathway has generated tremendous interest. Dickkopf-1 (DKK1) is a secreted inhibitor of β-catenin-dependent Wnt signalling and was originally characterized as a tumour suppressor based on the prevailing view that Wnt signalling promotes cancer pathogenesis. However, DKK1 appears to increase tumour growth and metastasis in preclinical models and its elevated expression correlates with a poor prognosis in a range of cancers, indicating that DKK1 has more complex cellular and biological functions than originally appreciated. Here, we review current evidence for the cancer-promoting activity of DKK1 and recent insights into the effects of DKK1 on signalling pathways in both cancer and immune cells. We discuss the rationale and promise of targeting DKK1 for oncology. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Department of NeurologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
33
|
Jang S, Cho HH, Park JS, Jeong HS. Non-canonical Wnt mediated neurogenic differentiation of human bone marrow-derived mesenchymal stem cells. Neurosci Lett 2017; 660:68-73. [PMID: 28916299 DOI: 10.1016/j.neulet.2017.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs), which are characterized by multipotency and self-renewal, are responsible for tissue regeneration and repair. We have previously reported in adipose tissue-derived MSCs that only Wnt5a is enhanced at neurogenic differentiation, and the mechanism of differentiation is dependent on the Wnt5a/JNK pathway; however, the role of Wnt/MAPK pathway is yet to be investigated in neurogenic differentiation in BM-MSCs. We compared the transcriptional expression of Wnt in neurogenic induced-hBM-MSCs (NI-hBM-MSCs) with that in primary hBM-MSCs, using RT-PCR, qPCR, and western blotting. Although the expression of Wnt1 and Wnt2 was unchanged, the expression of Wnt4, Wnt5a, and Wnt11 increased after neurogenic differentiation. In addition, only the expression of frizzled class receptor (Fzd) 3 gene was increased, but not of most of the Fzds and Wnt ligands in NI-hBM-MSCs. Interestingly, Wnt4, Wnt5a, and Wnt11 gene expressions significantly increased in NI-hBM-MSCs by qPCR. In addition, the protein expression level of Wnt4 and Wnt5a, but not Wnt3, increased after neurogenic induction. Furthermore, the expressions of phosphorylated-GSK-3β, ERK1/2, and PKC decreased; however, JNK was activated after neurogenic differentiation. Thus, non-canonical Wnts, i.e., Wnt4, Wnt5a, and Wnt11, regulate neurogenic differentiation through Fzd3 activation and the increase in downstream targets of JNK, which is one of the non-canonical pathways, in hBM-MSCs.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Research Institute of Medical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Research Institute of Medical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jong-Seong Park
- Department of Physiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Research Institute of Medical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Research Institute of Medical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
34
|
Palluzzi F, Ferrari R, Graziano F, Novelli V, Rossi G, Galimberti D, Rainero I, Benussi L, Nacmias B, Bruni AC, Cusi D, Salvi E, Borroni B, Grassi M. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia. PLoS One 2017; 12:e0185797. [PMID: 29020091 PMCID: PMC5636111 DOI: 10.1371/journal.pone.0185797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023] Open
Abstract
Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies.
Collapse
Affiliation(s)
- Fernando Palluzzi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
- * E-mail:
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Francesca Graziano
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Valeria Novelli
- Department of Genetics, Fondazione Policlinico A. Gemelli, Roma, Italy
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Daniela Galimberti
- Department of Neurological Sciences, Dino Ferrari Institute, University of Milan, Milano, Italy
| | - Innocenzo Rainero
- Department of Neuroscience, Neurology I, University of Torino and Città della Salute e della Scienza di Torino, Torino, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Amalia C. Bruni
- Neurogenetic Regional Centre ASPCZ Lamezia Terme, Lamezia Terme (CZ), Italy
| | - Daniele Cusi
- Department of Health Sciences, University of Milan at San Paolo Hospital, Milano, Italy
- Institute of Biomedical Technologies, Italian National Research Council, Milano, Italy
| | - Erika Salvi
- Institute of Biomedical Technologies, Italian National Research Council, Milano, Italy
| | - Barbara Borroni
- Department of Medical Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
Yang XT, Huang GH, Li HJ, Sun ZL, Xu NJ, Feng DF. Rac1 Guides Porf-2 to Wnt Pathway to Mediate Neural Stem Cell Proliferation. Front Mol Neurosci 2017. [PMID: 28626389 PMCID: PMC5454044 DOI: 10.3389/fnmol.2017.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The molecular and cellular mechanisms underlying the anti-proliferative effects of preoptic regulator factor 2 (Porf-2) on neural stem cells (NSCs) remain largely unknown. Here, we found that Porf-2 inhibits the activity of ras-related C3 botulinum toxin substrate 1 (Rac1) protein in hippocampus-derived rat NSCs. Reduced Rac1 activity impaired the nuclear translocation of β-catenin, ultimately causing a repression of NSCs proliferation. Porf-2 knockdown enhanced NSCs proliferation but not in the presence of small molecule inhibitors of Rac1 or Wnt. At the same time, the repression of NSCs proliferation caused by Porf-2 overexpression was counteracted by small molecule activators of Rac1 or Wnt. By using a rat optic nerve crush model, we observed that Porf-2 knockdown enhanced the recovery of visual function. In particular, optic nerve injury in rats led to increased Wnt family member 3a (Wnt3a) protein expression, which we found responsible for enhancing Porf-2 knockdown-induced NSCs proliferation. These findings suggest that Porf-2 exerts its inhibitory effect on NSCs proliferation via Rac1-Wnt/β-catenin pathway. Porf-2 may therefore represent and interesting target for optic nerve injury recovery and therapy.
Collapse
Affiliation(s)
- Xi-Tao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China.,Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Nan-Jie Xu
- Neuroscience Division, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of MedicineShanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
36
|
Liu M, Xu P, O'Brien T, Shen S. Multiple roles of Ulk4 in neurogenesis and brain function. NEUROGENESIS 2017; 4:e1313646. [PMID: 28596978 DOI: 10.1080/23262133.2017.1313646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/27/2016] [Accepted: 01/18/2017] [Indexed: 10/19/2022]
Abstract
Neurogenesis is essential for proper brain formation and function, and abnormal neural proliferation is an underlying neuropathology of many brain disorders. Recent advances on adult neurogenesis demonstrate that neural stem cells (NSCs) at the subventricular zone (SVZ) are largely derived during mid-embryonic neurogenesis from a subset of cells, which slow down in their pace of cell division,1 become quiescent cells and can be reactivated in need.2 The NSCs at birth constitute the stem cell pool for both postnatal oligodendrogenesis3 and adult neurogenesis.1,2 However, little is known about factors that control the size of NSC pool. The article published in Stem Cells on Jun 14, 2016 by Liu and colleagues described a member of the Unc-51-like serine/threonine kinase family, Ulk4, which plays a critical role in regulating the NSC pool size.4 Authors presented evidence of cell cycle-dependent Ulk4 expression in vitro and in vivo, and reduced NSC pool in targetedly disrupted Ulk4 newborn mice, with disturbed pathways of cell cycle regulation and WNT signaling (Fig. 1), suggesting that ULK4 may be associated with neurodevelopmental, neuropsychiatric as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Liu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, China
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| |
Collapse
|
37
|
Han Z, Xu Q, Li C, Zhao H. Effects of sulforaphane on neural stem cell proliferation and differentiation. Genesis 2017; 55. [PMID: 28142224 DOI: 10.1002/dvg.23022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
Sulforaphane (SFN) is a natural organosulfur compound with anti-oxidant and anti-inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki-67 staining. The level of Tuj-1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β-catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK-1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK-1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhenxian Han
- Department of Pharmacy, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, 163001, China
| | - Qian Xu
- Department of Pharmacy, The Third Hospital of Daqing, Daqing, Heilongjiang Province, 163712, China
| | - Changfu Li
- Department of Gastroenterology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, 163001, China
| | - Hong Zhao
- Key Laboratory of Biological Medicine Preparations, Institute of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| |
Collapse
|
38
|
Bengoa-Vergniory N, Gorroño-Etxebarria I, López-Sánchez I, Marra M, Di Chiaro P, Kypta R. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells. Mol Neurobiol 2016; 54:6213-6224. [DOI: 10.1007/s12035-016-0151-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
|
39
|
Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget 2016; 6:31721-39. [PMID: 26372732 PMCID: PMC4741635 DOI: 10.18632/oncotarget.5564] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
The heterogeneous nature of breast cancer is a result of intrinsic tumor complexity and also of the tumor microenvironment, which is known to be hypoxic. We found that hypoxia expands different breast stem/progenitor cell populations (cells with increased aldehyde dehydrogenase activity (Aldefluor+), high mammosphere formation capacity and CD44+CD24−/low cells) both in primary normal epithelial and tumor cells. The presence of the estrogen receptor (ER) limits hypoxia-dependent CD44+CD24−/low cell expansion. We further show that the hypoxia-driven cancer stem-like cell enrichment results from a dedifferentiation process. The enhanced mammosphere formation and Aldefluor+ cell content observed in breast cancer cells relies on hypoxia-inducible factor 1α (HIF1α). In contrast, the CD44+CD24−/low population expansion is HIF1α independent and requires prolyl hydroxylase 3 (PHD3) downregulation, which mimics hypoxic conditions, leading to reduced CD24 expression through activation of NFkB signaling. These studies show that hypoxic conditions expand CSC populations through distinct molecular mechanisms. Thus, potential therapies that combine current treatments for breast cancer with drugs that target CSC should take into account the heterogeneity of the CSC subpopulations.
Collapse
|
40
|
Kadir R, Harel T, Markus B, Perez Y, Bakhrat A, Cohen I, Volodarsky M, Feintsein-Linial M, Chervinski E, Zlotogora J, Sivan S, Birnbaum RY, Abdu U, Shalev S, Birk OS. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size. PLoS Genet 2016; 12:e1005919. [PMID: 27008544 PMCID: PMC4805177 DOI: 10.1371/journal.pgen.1005919] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/15/2016] [Indexed: 12/15/2022] Open
Abstract
Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size. One of the major events in human evolution is the significant increase in brain volume in the transition from primates to humans. The molecular pathways determining the larger size of the human brain are not fully understood. Hereditary primary microcephaly, a neurodevelopmental disorder in which infants are born with small head circumference and reduced brain volume with intellectual disability, offers insights to the embryonic molecular pathways determining human brain size. Previous studies have shown that human microcephaly can be caused by mutations in genes affecting cell division processes, such as cell cycle regulation, DNA replication, primary cilia formation and centriole and centrosome duplication. We now show a novel molecular pathway determining human brain size: human primary microcephaly can be caused by a mutation in ALFY, a gene that encodes an autophagy scaffold protein. In fact, transgenic flies over expressing the mutant form of human ALFY recapitulate the human disease phenotype of microcephaly. We show the molecular pathway through which ALFY regulates cell division and differentiation: we demonstrate that ALFY normally controls removal of aggregate of DVL3, and through this regulates Wnt signaling, a major molecular pathway in embryogenesis. Thus, Wnt signaling, controlled by ALFY-mediated aggregate removal of DVL3, determines human brain size and human microcephaly.
Collapse
Affiliation(s)
- Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Tamar Harel
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Barak Markus
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Idan Cohen
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Michael Volodarsky
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Miora Feintsein-Linial
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | | | - Joel Zlotogora
- Department of Community Genetics, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Sara Sivan
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Ramon Y Birnbaum
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Stavit Shalev
- Genetics Institute, HaEmek Medical Center, Afula, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel.,Genetics Institute, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel
| |
Collapse
|
41
|
Motono M, Ioroi Y, Ogura T, Takahashi J. WNT-C59, a Small-Molecule WNT Inhibitor, Efficiently Induces Anterior Cortex That Includes Cortical Motor Neurons From Human Pluripotent Stem Cells. Stem Cells Transl Med 2016; 5:552-60. [PMID: 26941358 DOI: 10.5966/sctm.2015-0261] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/16/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The recapitulation of human neural development in a controlled, defined manner from pluripotent stem cells (PSCs) has considerable potential for studies of human neural development, circuit formation and function, and the construction of in vitro models of neurological diseases. The inhibition of Wnt signaling, often by the recombinant protein DKK1, is important for the induction of cortical neurons. Here, we report a novel differentiation method using a small-molecule WNT inhibitor, WNT-C59 (C59), to efficiently induce human anterior cortex. We compared two types of small molecules, C59 and XAV939 (XAV), as substitutes for DKK1 to induce cortical neurons from PSCs in serum-free embryoid body-like aggregate culture. DKK1 and XAV inhibited only the canonical pathway of Wnt signaling, whereas C59 inhibited both the canonical and noncanonical pathways. C59 efficiently induced CTIP2+/COUP-TF1- cells, which are characteristic of the cells found in the anterior cortex. In addition, when grafted into the cortex of adult mice, the C59-induced cells showed abundant axonal fiber extension toward the spinal cord. These results raise the possibility of C59 contributing to cell replacement therapy for motor neuron diseases or insults. SIGNIFICANCE For a cell therapy against damaged corticospinal tract caused by neurodegenerative diseases or insults, cortical motor neurons are needed. Currently, their induction from pluripotent stem cells is considered very promising; however, an efficient protocol to induce motor neurons is not available. For efficient induction of anterior cortex, where motor neurons are located, various WNT inhibitors were investigated. It was found that one of them could induce anterior cortical cells efficiently. In addition, when grafted into the cortex of adult mice, the induced cells showed more abundant axonal fiber extension toward spinal cord. These results raise the possibility that this inhibitor contributes to a cell-replacement therapy for motor neuron diseases or insults.
Collapse
Affiliation(s)
- Makoto Motono
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yoshihiko Ioroi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takenori Ogura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Comprehensive profiling reveals mechanisms of SOX2-mediated cell fate specification in human ESCs and NPCs. Cell Res 2016; 26:171-89. [PMID: 26809499 DOI: 10.1038/cr.2016.15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022] Open
Abstract
SOX2 is a key regulator of multiple types of stem cells, especially embryonic stem cells (ESCs) and neural progenitor cells (NPCs). Understanding the mechanism underlying the function of SOX2 is of great importance for realizing the full potential of ESCs and NPCs. Here, through genome-wide comparative studies, we show that SOX2 executes its distinct functions in human ESCs (hESCs) and hESC-derived NPCs (hNPCs) through cell type- and stage-dependent transcription programs. Importantly, SOX2 suppresses non-neural lineages in hESCs and regulates neurogenesis from hNPCs by inhibiting canonical Wnt signaling. In hESCs, SOX2 achieves such inhibition by direct transcriptional regulation of important Wnt signaling modulators, WLS and SFRP2. Moreover, SOX2 ensures pluripotent epigenetic landscapes via interacting with histone variant H2A.Z and recruiting polycomb repressor complex 2 to poise developmental genes in hESCs. Together, our results advance our understanding of the mechanism by which cell type-specific transcription factors control lineage-specific gene expression programs and specify cell fate.
Collapse
|
43
|
Bain LJ, Liu JT, League RE. Arsenic inhibits stem cell differentiation by altering the interplay between the Wnt3a and Notch signaling pathways. Toxicol Rep 2016; 3:405-413. [PMID: 27158593 PMCID: PMC4855706 DOI: 10.1016/j.toxrep.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
data indicates that arsenic exposure inhibits stem cell differentiation. This study investigated whether arsenic disrupted the Wnt3a signaling pathway, critical in the formation of myotubes and neurons, during the differentiation in P19 mouse embryonic stem cells. Cells were exposed to 0, 0.1, or 0.5 μM arsenite, with or without exogenous Wnt3a, for up to 9 days of differentiation. Arsenic exposure alone inhibits the differentiation of stem cells into neurons and skeletal myotubes, and reduces the expression of both β-catenin and GSK3β mRNA to ~55% of control levels. Co-culture of the arsenic-exposed cells with exogenous Wnt3a rescues the morphological phenotype, but does not alter transcript, protein, or phosphorylation status of GSK3β or β-catenin. However, arsenic exposure maintains high levels of Hes5 and decreases the expression of MASH1 by 2.2-fold, which are anti- and pro-myogenic and neurogenic genes, respectively, in the Notch signaling pathway. While rescue with exogenous Wnt3a reduced Hes5 levels, MASH1 levels stay repressed. Thus, while Wnt3a can partially rescue the inhibition of differentiation from arsenic, it does so by also modulating Notch target genes rather than only working through the canonical Wnt signaling pathway. These results indicate that arsenic alters the interplay between multiple signaling pathways, leading to reduced stem cell differentiation.
Collapse
Affiliation(s)
- Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 23964, USA
| | - Jui-Tung Liu
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Ryan E League
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| |
Collapse
|
44
|
Yuan LL, Guan YJ, Ma DD, Du HM. Optimal concentration and time window for proliferation and differentiation of neural stem cells from embryonic cerebral cortex: 5% oxygen preconditioning for 72 hours. Neural Regen Res 2015; 10:1516-22. [PMID: 26604915 PMCID: PMC4625520 DOI: 10.4103/1673-5374.165526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypoxia promotes proliferation and differentiation of neural stem cells from embryonic day 12 rat brain tissue, but the concentration and time of hypoxic preconditioning are controversial. To address this, we cultured neural stem cells isolated from embryonic day 14 rat cerebral cortex in 5% and 10% oxygen in vitro. MTT assay, neurosphere number, and immunofluorescent staining found that 5% or 10% oxygen preconditioning for 72 hours improved neural stem cell viability and proliferation. With prolonged hypoxic duration (120 hours), the proportion of apoptotic cells increased. Thus, 5% oxygen preconditioning for 72 hours promotes neural stem cell proliferation and neuronal differentiation. Our findings indicate that the optimal concentration and duration of hypoxic preconditioning for promoting proliferation and differentiation of neural stem cells from the cerebral cortex are 5% oxygen for 72 hours.
Collapse
Affiliation(s)
- Li-Li Yuan
- Department of Histology and Embryology, Academy of Basic Medicine, Jining Medical University, Jining, Shandong Province, China ; Department of Histology and Embryology, Academy of Basic Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Ying-Jun Guan
- Department of Histology and Embryology, Academy of Basic Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Deng-Dian Ma
- Department of Otorhinolaryngology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Hong-Mei Du
- Department of Histology and Embryology, Academy of Basic Medicine, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
45
|
You Z, Zhou Y, Guo Y, Chen W, Chen S, Wang X. Activating transcription factor 2 expression mediates cell proliferation and is associated with poor prognosis in human non-small cell lung carcinoma. Oncol Lett 2015; 11:760-766. [PMID: 26870280 DOI: 10.3892/ol.2015.3922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the cAMP response element binding protein family that heterodimerizes and activates other transcription factors involved in stress and DNA damage responses, growth, differentiation and apoptosis. ATF2 has been investigated as a potential carcinogenic biomarker in certain types of cancer, such as melanoma. However, its function and clinical significance in non-small cell lung cancer (NSCLC) has not been well studied. Therefore, the present study aimed to analyze the association between ATF2/phosphorylated (p)-ATF2 expression and NSCLC malignant behavior, and discuss its clinical significance. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the expression of ATF2 in NSCLC cell lines and fresh NSCLC tissue samples. In addition, immunohistochemistry (IHC) was performed to identify the location and expression of ATF2 and p-ATF2 (threonine 71) in paraffin-embedded sections of NSCLC and adjacent normal tissue. The results demonstrated that ATF2 was markedly overexpressed in the NSCLC cells and significantly overexpressed in the fresh NSCLC tissues compared with the control cells and samples (86 paraffin-embedded tissue sections), respectively (P<0.01). Further data demonstrated that ATF2 expression levels were significantly increased in tumor tissues compared to normal tissues and ATF2 was located in the cytoplasm and nucleus. ATF2 expression was closely associated with adverse clinical characteristics such as TNM stage (P=0.002), tumor size (P=0.018) and metastasis (P=0.027). In addition, nuclear p-ATF2 staining was positive in 65/86 samples of NSCLC. Furthermore, the Kaplan-Meier analysis indicated that patients with high levels of ATF2 and p-ATF2 expression had a significantly shorter overall survival compared with patients exhibiting a low expression (P<0.01 and P<0.05, respectively). Subsequent in vitro experiments revealed that cell growth decreased following knockdown of ATF2 expression using RNA interference, indicating that ATF2 may suppress cell proliferation. Taken together, the results of the present study demonstrated that ATF2 and p-ATF2 were significantly overexpressed in NSCLC tissues, and ATF2 and p-ATF2 overexpression predicted significantly worse outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Zhenyu You
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Zhou
- Department of Pharmacy, Peking University, Beijing 100083, P.R. China
| | - Yuling Guo
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenyan Chen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shaoqing Chen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaolang Wang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
46
|
Bengoa-Vergniory N, Kypta RM. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 2015; 72:4157-72. [PMID: 26306936 PMCID: PMC11113751 DOI: 10.1007/s00018-015-2028-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/17/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023]
Abstract
The first mammalian Wnt to be discovered, Wnt-1, was found to be essential for the development of a large part of the mouse brain over 25 years ago. We have since learned that Wnt family secreted glycolipoproteins, of which there are nineteen, which activate a diverse network of signals that are particularly important during embryonic development and tissue regeneration. Wnt signals in the developing and adult brain can drive neural stem cell self-renewal, expansion, asymmetric cell division, maturation and differentiation. The molecular events taking place after a Wnt binds to its cell-surface receptors are complex and, at times, controversial. A deeper understanding of these events is anticipated to lead to improvements in the treatment of neurodegenerative diseases and stem cell-based replacement therapies. Here, we review the roles played by Wnts in neural stem cells in the developing mouse brain, at neurogenic sites of the adult mouse and in neural stem cell culture models.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bilbao, Spain.
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
| | - Robert M Kypta
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bilbao, Spain.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
47
|
Romero D, Al-Shareef Z, Gorroño-Etxebarria I, Atkins S, Turrell F, Chhetri J, Bengoa-Vergniory N, Zenzmaier C, Berger P, Waxman J, Kypta R. Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases. Carcinogenesis 2015; 37:18-29. [DOI: 10.1093/carcin/bgv153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
|
48
|
Han W, He X, Zhang M, Hu S, Sun F, Ren L, Hua J, Peng S. Establishment of a porcine pancreatic stem cell line using T-REx(™) system-inducible Wnt3a expression. Cell Prolif 2015; 48:301-10. [PMID: 25894737 PMCID: PMC6496436 DOI: 10.1111/cpr.12188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Porcine pancreatic stem cells (PSCs) are highly valuable in transplantation applications for type II diabetes. However, there are still many problems to be solved before they can be used in the clinic, such as insufficient cell number availability and low secretion level of insulin. It has been reported that Wnt3a plays pivotal roles during cell proliferation and differentiation. Here, we have aimed to establish an ideal research platform using the T-REx(™) system, to study mechanisms of Wnt3a during PSC proliferation and differentiation. MATERIALS AND METHODS Construction of the recombinant plasmid and cell transfection were used for establishment of a porcine PSC line. Related gene expressions were examined using quantitative real-time PCR (QRT-PCR), western blotting, immunostaining and flow cytometry. BrdU incorporation assay and cell cycle analysis were used to investigate Wnt3a roles in PSCs. RESULTS Wnt3a-expressing clones regulated by T-REx(™) were successfully obtained. Wnt3a and GFP expression were strictly regulated by Dox in a time- and dose-dependent manner. Furthermore, we found that Wnt3a-expressing porcine PSCs induced by Dox exhibited raised proliferative potential. After Dox stimulation, expression of PCNA, C-MYC and active β-catenin were higher, but were down-regulated after Dkk1 addition. CONCLUSION We established a porcine PSC line that dynamically expressed Wnt3a, and we found that Wnt3a promoted PSC proliferative potential. This inducible expression system thus provides an important tool for further study on porcine PSC development and differentiation.
Collapse
Affiliation(s)
- Wei Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A& F University, Yangling, 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Shaker MR, Kim JY, Kim H, Sun W. Identification and characterization of secondary neural tube-derived embryonic neural stem cells in vitro. Stem Cells Dev 2015; 24:1171-81. [PMID: 25706228 DOI: 10.1089/scd.2014.0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Secondary neurulation is an embryonic progress that gives rise to the secondary neural tube, the precursor of the lower spinal cord region. The secondary neural tube is derived from aggregated Sox2-expressing neural cells at the dorsal region of the tail bud, which eventually forms rosette or tube-like structures to give rise to neural tissues in the tail bud. We addressed whether the embryonic tail contains neural stem cells (NSCs), namely secondary NSCs (sNSCs), with the potential for self-renewal in vitro. Using in vitro neurosphere assays, neurospheres readily formed at the rosette and neural-tube levels, but less frequently at the tail bud tip level. Furthermore, we identified that sNSC-generated neurospheres were significantly smaller in size compared with cortical neurospheres. Interestingly, various cell cycle analyses revealed that this difference was not due to a reduction in the proliferation rate of NSCs, but rather the neuronal commitment of sNSCs, as sNSC-derived neurospheres contain more committed neuronal progenitor cells, even in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). These results suggest that the higher tendency for sNSCs to spontaneously differentiate into progenitor cells may explain the limited expansion of the secondary neural tube during embryonic development.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Department of Anatomy, Brain Korea 21 Program, Korea University College of Medicine , Seoul, Korea
| | | | | | | |
Collapse
|