1
|
Gurung S, Restrepo NK, Chestnut B, Klimkaite L, Sumanas S. Single-cell transcriptomic analysis of vascular endothelial cells in zebrafish embryos. Sci Rep 2022; 12:13065. [PMID: 35906287 PMCID: PMC9338088 DOI: 10.1038/s41598-022-17127-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial cells exhibit substantial phenotypic and transcriptional heterogeneity which is established during early embryogenesis. However, the molecular mechanisms involved in establishing endothelial cell diversity are still not well understood. Zebrafish has emerged as an advantageous model to study vascular development. Despite its importance, the single-cell transcriptomic profile of vascular endothelial cells during zebrafish development is still missing. To address this, we applied single-cell RNA-sequencing (scRNA-seq) of vascular endothelial cells isolated from zebrafish embryos at the 24 hpf stage. Six distinct clusters or subclusters related to vascular endothelial cells were identified which include arterial, two venous, cranial, endocardial and endothelial progenitor cell subtypes. Furthermore, we validated our findings by characterizing novel markers for arterial, venous, and endocardial cells. We experimentally confirmed the presence of two transcriptionally different venous cell subtypes, demonstrating heterogeneity among venous endothelial cells at this early developmental stage. This dataset will be a valuable resource for future functional characterization of vascular endothelial cells and interrogation of molecular mechanisms involved in the establishment of their heterogeneity and cell-fate decisions.
Collapse
Affiliation(s)
- Suman Gurung
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laurita Klimkaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA.
| |
Collapse
|
2
|
Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med 2022; 9:896782. [PMID: 35677696 PMCID: PMC9167961 DOI: 10.3389/fcvm.2022.896782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. Ischemia and hypoxia following myocardial infarction (MI) cause subsequent cardiomyocyte (CM) loss, cardiac remodeling, and heart failure. Endothelial progenitor cells (EPCs) are involved in vasculogenesis, angiogenesis and paracrine effects and thus have important clinical value in alternative processes for repairing damaged hearts. In fact, this study showed that the endogenous repair of EPCs may not be limited to a single cell type. EPC interactions with cardiac cell populations and mesenchymal stem cells (MSCs) in ischemic heart disease can attenuate cardiac inflammation and oxidative stress in a microenvironment, regulate cell survival and apoptosis, nourish CMs, enhance mature neovascularization, alleviate adverse ventricular remodeling after infarction and enhance ventricular function. In this review, we introduce the definition and discuss the origin and biological characteristics of EPCs and summarize the mechanisms of EPC recruitment in ischemic heart disease. We focus on the crosstalk between EPCs and endothelial cells (ECs), smooth muscle cells (SMCs), CMs, cardiac fibroblasts (CFs), cardiac progenitor cells (CPCs), and MSCs during cardiac remodeling and repair. Finally, we discuss the translation of EPC therapy to the clinic and treatment strategies.
Collapse
|
3
|
Pei W, Chen J, Wu W, Wei W, Yu Y, Feng Y. Comparison of the rabbit and human corneal endothelial proteomes regarding proliferative capacity. Exp Eye Res 2021; 209:108629. [PMID: 34029595 DOI: 10.1016/j.exer.2021.108629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 02/05/2023]
Abstract
The shortage of human donor corneas has raised important concerns about engineering of corneal endothelial cells (CECs) for clinical use. However, due to the limited proliferative capacity of human CECs, driving them into proliferation and regeneration may be difficult. Unlike human CECs, rabbit CECs have a marked proliferative capacity. To clarify the potential reason for this difference, we analysed the proteomes of four human corneal endothelium samples and four rabbit corneal endothelium samples with quantitative label-free proteomics and downstream analysis. We discovered that vitamin and selenocompound metabolism and some signaling pathways such as NF-kappa B signaling pathway differed between the samples. Moreover, TGFβ, PITX2 and keratocan were distinctively expressed in rabbit samples, which might be associated with active proliferation in rabbit CECs. This study illustrates the proteomic differences between human and rabbit CECs and might promote CEC engineering strategies.
Collapse
Affiliation(s)
- Wendi Pei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
| | - Jun Chen
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyu Wu
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yun Feng
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
4
|
Decreased Lymphangiogenic Activities and Genes Expression of Cord Blood Lymphatic Endothelial Progenitor Cells (VEGFR3 +/Pod +/CD11b + Cells) in Patient with Preeclampsia. Int J Mol Sci 2021; 22:ijms22084237. [PMID: 33921847 PMCID: PMC8073258 DOI: 10.3390/ijms22084237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The abnormal development or disruption of the lymphatic vasculature has been implicated in metabolic and hypertensive diseases. Recent evidence suggests that the offspring exposed to preeclampsia (PE) in utero are at higher risk of long-term health problems, such as cardiovascular and metabolic diseases in adulthood, owing to in utero fetal programming. We aimed to investigate lymphangiogenic activities in the lymphatic endothelial progenitor cells (LEPCs) of the offspring of PE. Human umbilical cord blood LEPCs from pregnant women with severe PE (n = 10) and gestationally matched normal pregnancies (n = 10) were purified with anti-vascular endothelial growth factor receptor 3 (VEGFR3)/podoplanin/CD11b microbeads using a magnetic cell sorter device. LEPCs from PE displayed significantly delayed differentiation and reduced formation of lymphatic endothelial cell (LEC) colonies compared with the LEPCs from normal pregnancies. LECs differentiated from PE-derived LEPCs exhibited decreased tube formation, migration, proliferation, adhesion, wound healing, and 3D-sprouting activities as well as increased lymphatic permeability through the disorganization of VE-cadherin junctions, compared with the normal pregnancy-derived LECs. In vivo, LEPCs from PE showed significantly reduced lymphatic vessel formation compared to the LEPCs of the normal pregnancy. Gene expression analysis revealed that compared to the normal pregnancy-derived LECs, the PE-derived LECs showed a significant decrease in the expression of pro-lymphangiogenic genes (GREM1, EPHB3, VEGFA, AMOT, THSD7A, ANGPTL4, SEMA5A, FGF2, and GBX2). Collectively, our findings demonstrate, for the first time, that LEPCs from PE have reduced lymphangiogenic activities in vitro and in vivo and show the decreased expression of pro-lymphangiogenic genes. This study opens a new avenue for investigation of the molecular mechanism of LEPC differentiation and lymphangiogenesis in the offspring of PE and subsequently may impact the treatment of long-term health problems such as cardiovascular and metabolic disorders of offspring with abnormal development of lymphatic vasculature.
Collapse
|
5
|
Park HH, Kim HN, Kim H, Yoo Y, Shin H, Choi EY, Bae JS, Lee W. Acetylated K676 TGFBIp as a severity diagnostic blood biomarker for SARS-CoV-2 pneumonia. SCIENCE ADVANCES 2020; 6:eabc1564. [PMID: 32937590 PMCID: PMC10715714 DOI: 10.1126/sciadv.abc1564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 05/23/2023]
Abstract
The outbreak of the highly contagious and deadly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease 2019 (COVID-19), has posed a serious threat to public health across the globe, calling for the development of effective diagnostic markers and therapeutics. Here, we report a highly reliable severity diagnostic biomarker, acetylated 676th lysine transforming growth factor-beta-induced protein (TGFBIp K676Ac). TGFBIp K676Ac was consistently elevated in the blood of patients with SARS-CoV-2 pneumonia (n = 113), especially in patients in the intensive care unit (ICU) compared to non-ICU patients. Patients' blood samples showed increased cytokines and lymphopenia, which are exemplary indicators of SARS-CoV-2 pneumonia. Treatment with TGFBIp neutralizing antibodies suppressed the cytokine storm. The increased level of TGFBIp K676Ac in ICU patients suggests the promise of this protein as a reliable severity diagnostic biomarker for severe SARS-CoV-2 disease.
Collapse
MESH Headings
- Acetylation
- Antibodies, Neutralizing/pharmacology
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- Biomarkers/blood
- COVID-19
- Case-Control Studies
- Coronavirus Infections/blood
- Coronavirus Infections/diagnosis
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Cytokine Release Syndrome/blood
- Cytokine Release Syndrome/diagnosis
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/pathology
- Extracellular Matrix Proteins/antagonists & inhibitors
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/immunology
- Gene Expression
- Humans
- Intensive Care Units
- Leukocyte Count
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Leukocytes, Mononuclear/virology
- Lung/blood supply
- Lung/drug effects
- Lung/pathology
- Lung/virology
- Lysine/metabolism
- NF-kappa B/genetics
- NF-kappa B/immunology
- Pandemics
- Pneumonia, Viral/blood
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Primary Cell Culture
- Prognosis
- Protein Processing, Post-Translational
- Respiratory Insufficiency/blood
- Respiratory Insufficiency/diagnosis
- Respiratory Insufficiency/immunology
- Respiratory Insufficiency/pathology
- SARS-CoV-2
- Severity of Illness Index
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyelim Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngbum Yoo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyosoo Shin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Eun Young Choi
- Department of Internal Medicine, Yeungnam University Medical Center, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Lee W, Park EJ, Kwon OK, Kim H, Yoo Y, Kim SW, Seo YK, Kim IS, Na DH, Bae JS. Dual peptide-dendrimer conjugate inhibits acetylation of transforming growth factor β-induced protein and improves survival in sepsis. Biomaterials 2020; 246:120000. [PMID: 32247936 DOI: 10.1016/j.biomaterials.2020.120000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Sepsis is a potentially fatal complication of infections and there are currently no effective therapeutic options for severe sepsis. In this study, we revealed the secretion mechanism of transforming growth factor β-induced protein (TGFBIp) that was recently identified as a therapeutic target for sepsis, and designed TGFBIp acetylation inhibitory peptide (TAIP) that suppresses acetylation of lysine 676 in TGFBIp. To improve bioavailability and biodegradation of the peptide, TAIP was conjugated to polyamidoamine (PAMAM) dendrimers. Additionally, the cell-penetrating peptide (CPP) was conjugated to the TAIP-modified PAMAM dendrimers for the intracellular delivery of TGFBIp. The resulting nanostructures, decorated with TAIP and CPP via poly(ethylene glycol) linkage, improved the mortality and organ damage in the septic mouse model and suppressed lipopolysaccharide-activated severe vascular inflammatory responses in endothelial cells. Thus, the dendrimer-based nanostructures for delivery of TAIP using CPP show great promise in practical applications in sepsis therapy.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Eun Ji Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; D&D Pharmatech, Seongnam, Gyeonggi-do, 13486, Republic of Korea.
| | - Oh Kwang Kwon
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyelim Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngbum Yoo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Shin-Woo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Young-Kyo Seo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Putative endothelial progenitor cells do not promote vascular repair but attenuate pericyte-myofibroblast transition in UUO-induced renal fibrosis. Stem Cell Res Ther 2019; 10:104. [PMID: 30898157 PMCID: PMC6429829 DOI: 10.1186/s13287-019-1201-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background Putative endothelial progenitor cells (pEPCs) have been confirmed to participate in alleviation of renal fibrosis in several ischaemic diseases. However, their mechanistic effect on renal fibrosis, which is characterized by vascular regression and further rarefaction-related pathology, remains unknown. Methods To explore the effect and molecular mechanisms by which pEPCs act on unilateral ureteral obstruction (UUO)-induced renal fibrosis, we isolated pEPCs from murine bone marrow. In vivo, pEPCs (2 × 105 cells/day) and pEPC-MVs (microvesicles) were injected into UUO mice via the tail vein. In vitro, pEPCs were co-cultured with renal-derived pericytes. Pericyte-myofibroblast transition was evaluated using the myofibroblast marker α-smooth muscle actin (α-SMA) and pericyte marker platelet-derived growth factor receptor β (PDGFR-β). Results Exogenous supply of bone marrow-derived pEPCs attenuated renal fibrosis by decreasing pericyte-myofibroblast transition without significant vascular repair in the UUO model. Our results indicated that pEPCs regulated pericytes and their transition into myofibroblasts via pEPC-MVs. Co-culture of pericytes with pEPCs in vitro suggested that pEPCs inhibit transforming growth factor-β (TGF-β)-induced pericyte–myofibroblast transition via a paracrine pathway. Conclusion pEPCs effectively attenuated UUO-induced renal fibrosis by inhibiting pericyte–myofibroblast transition via a paracrine pathway, without promoting vascular repair. Electronic supplementary material The online version of this article (10.1186/s13287-019-1201-5) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Kim EK, Kim S, Maeng YS. Generation of TGFBI knockout ABCG2+/ABCB5+ double-positive limbal epithelial stem cells by CRISPR/Cas9-mediated genome editing. PLoS One 2019; 14:e0211864. [PMID: 30753226 PMCID: PMC6372159 DOI: 10.1371/journal.pone.0211864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Corneal dystrophy is an autosomal dominant disorder caused by mutations of the transforming growth factor β-induced (TGFBI) gene on chromosome 5q31.8. This disease is therefore ideally suited for gene therapy using genome-editing technology. Here, we isolated human limbal epithelial stem cells (ABCG2+/ABCB5+ double-positive LESCs) and established a TGFBI knockout using RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing. An LESC clone generated with a single-guide RNA (sgRNA) targeting exon 4 of the TGFBI gene was sequenced in order to identify potential genomic insertions and deletions near the Cas9/sgRNA-target sites. A detailed analysis of the differences between wild type LESCs and the single LESC clone modified by the TGFBI-targeting sgRNA revealed two distinct mutations, an 8 bp deletion and a 14 bp deletion flanked by a single point mutation. These mutations each lead to a frameshift missense mutation and generate premature stop codons downstream in exon 4. To validate the TGFBI knockout LESC clone, we used single cell culture to isolate four individual sub-clones, each of which was found to possess both mutations present in the parent clone, indicating that the population is homogenous. Furthermore, we confirmed that TGFBI protein expression is abolished in the TGFBI knockout LESC clone using western blot analysis. Collectively, our results suggest that genome editing of TGFBI in LESCs by CRISPR/Cas9 may be useful strategy to treat corneal dystrophy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- CRISPR-Cas Systems/genetics
- Corneal Dystrophies, Hereditary/genetics
- Corneal Dystrophies, Hereditary/pathology
- Corneal Dystrophies, Hereditary/therapy
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Extracellular Matrix Proteins/genetics
- Extremities/growth & development
- Extremities/pathology
- Gene Editing
- Gene Expression Regulation/genetics
- Gene Knockout Techniques
- Genetic Therapy
- Humans
- Primary Cell Culture
- RNA, Guide, CRISPR-Cas Systems/genetics
- Sequence Deletion/genetics
- Single-Cell Analysis
- Stem Cells/metabolism
- Transforming Growth Factor beta/genetics
Collapse
Affiliation(s)
- Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Seunghyuk Kim
- Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
CD133+/C-kit+Lin - endothelial progenitor cells in fetal circulation demonstrate impaired differentiation potency in severe preeclampsia. Pregnancy Hypertens 2018; 15:146-153. [PMID: 30825912 DOI: 10.1016/j.preghy.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Individuals delivered from preeclamptic pregnancies exhibit a long-term increased risk of developing cardiovascular and metabolic diseases, likely caused by aberrant fetal cell reprogramming incurred in utero. The present study investigated the functional impairment and epigenetic changes exhibited by endothelial progenitor cells derived from offspring born to preeclamptic pregnancies. STUDY DESIGN The capacity of CD133+/C-kit+/Lin- (CKL-) human umbilical cord blood endothelial progenitor cells (EPCs) derived from gestationally matched normal and preeclamptic (n = 10 each) pregnancies to differentiate to form outgrowth endothelial cells (OECs) was assessed by observing both their morphology, and the number and size of generated OECs colonies. Likewise, OECs angiogenic function was evaluated via migration, adhesion, and tube-formation assays. EPCs from preeclampsia were cultured in normal-, and preeclampsia-derived serum-conditioned media to assess the effects of environmental factors on EPC differentiation potency and OEC angiogenic function, and finally, EPCs H3K4, H3K9, and H3K27 trimethylation levels were assayed. RESULTS The preeclampsia-derived CKL- EPCs exhibited decreased H3K4 and H3K9 trimethylation levels, significantly delayed differentiation times, and a significant reduction in both their number of generated OECs colonies, and exhibited reduced OECs migration, adhesion, and tube formation activities compared to those achieved by the normal-derived EPCs. Interestingly, the reduced differentiation potency of the preeclampsia-derived EPCs was not rescued via exposure to normal serum. CONCLUSIONS Exposure to preeclampsia significantly and irreversibly reduced CKL- EPC differentiation potency and OEC angiogenic function, likely reflecting incurred irreversible epigenetic changes.
Collapse
|
10
|
Sheng Z, Ju C, Li B, Chen Z, Pan X, Yan G, He Y, Yao Y, Ma G. TWEAK promotes endothelial progenitor cell vasculogenesis to alleviate acute myocardial infarction via the Fn14-NF-κB signaling pathway. Exp Ther Med 2018; 16:4019-4029. [PMID: 30344680 PMCID: PMC6176210 DOI: 10.3892/etm.2018.6703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) remains one of the leading causes of mortality worldwide; however, endothelial progenitor cell (EPC) transplantation has been proposed as a promising treatment strategy for EPC. High levels of tumor necrosis factor-related weak inducer of apoptosis (TWEAK) have been reported in AMI, although its effect on EPCs has not been reported. In the present study, immunofluorescence and flow cytometry were performed to assess the effect of TWEAK in isolated mouse EPCs. Echocardiography was used to evaluate the cardiac function of murine hearts following EPC treatment in the AMI model, while collagen synthesis within the heart tissue was assessed using Masson's trichrome staining. A tube formation assay and Transwell migration assay were performed to investigate the effects of TWEAK on vessel formation and EPC migration in vitro. Angiogenesis and arteriogenesis were assessed in vivo using immunohistochemistry and western blotting was performed to determine the effect of TWEAK-mediated nuclear factor (NF)-κB pathway activation in EPCs. The results revealed that TWEAK promotes EPC migration, tube formation and viability in vitro. Furthermore, TWEAK treatment resulted in improved cardiac function, decreased heart collagen and vasculogenesis in mice with AMI, which was mediated by the TWEAK- fibroblast growth factor-inducible 14 (Fn14)-NF-κB signaling pathway, as determined using Fn14 small interfering (si)RNA and Bay 11–7082 (an NF-κB inhibitor). In summary, the results of the present study suggest that activation of the TWEAK-Fn14-NF-κB signaling pathway exerts a beneficial effect on EPCs for the treatment of AMI.
Collapse
Affiliation(s)
- Zulong Sheng
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chenwei Ju
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bing Li
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhongpu Chen
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaodong Pan
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yanru He
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
The role of the Notch signaling pathway in liver injury and repair. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Seifert GJ. Fascinating Fasciclins: A Surprisingly Widespread Family of Proteins that Mediate Interactions between the Cell Exterior and the Cell Surface. Int J Mol Sci 2018; 19:E1628. [PMID: 29857505 PMCID: PMC6032426 DOI: 10.3390/ijms19061628] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
The Fasciclin 1 (FAS1) domain is an ancient structural motif in extracellular proteins present in all kingdoms of life and particularly abundant in plants. The FAS1 domain accommodates multiple interaction surfaces, enabling it to bind different ligands. The frequently observed tandem FAS1 arrangement might both positively and negatively regulate ligand binding. Additional protein domains and post-translational modifications are partially conserved between different evolutionary clades. Human FAS1 family members are associated with multiple aspects of health and disease. At the cellular level, mammalian FAS1 proteins are implicated in extracellular matrix structure, cell to extracellular matrix and cell to cell adhesion, paracrine signaling, intracellular trafficking and endocytosis. Mammalian FAS1 proteins bind to the integrin family of receptors and to protein and carbohydrate components of the extracellular matrix. FAS1 protein encoding plant genes exert effects on cellulosic and non-cellulosic cell wall structure and cellular signaling but to establish the modes of action for any plant FAS1 protein still requires biochemical experimentation. In fungi, eubacteria and archaea, the differential presence of FAS1 proteins in closely related organisms and isolated biochemical data suggest functions in pathogenicity and symbiosis. The inter-kingdom comparison of FAS1 proteins suggests that molecular mechanisms mediating interactions between cells and their environment may have evolved at the earliest known stages of evolution.
Collapse
Affiliation(s)
- Georg J Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
13
|
Ex Vivo Expansion of Human Limbal Epithelial Cells Using Human Placenta-Derived and Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:4206187. [PMID: 28894469 PMCID: PMC5574311 DOI: 10.1155/2017/4206187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022] Open
Abstract
Ex vivo culture of human limbal epithelial cells (LECs) is used to treat limbal stem cell (LSC) deficiency, a vision loss condition, and suitable culture systems using feeder cells or serum without animal elements have been developed. This study evaluated the use of human umbilical cord or placenta mesenchymal stem cells (C-MSCs or P-MSCs, resp.) as feeder cells in an animal/serum-free coculture system with human LECs. C-/P-MSCs stimulated LEC colony formation of the stem cell markers (p63, ABCG2) and secreted known LEC clonal growth factors (keratinocyte growth factor, β-nerve growth factor). Transforming growth factor-β-induced protein (TGFBIp), an extracellular matrix (ECM) protein, was produced by C-/P-MSCs and resulted in an increase in p63+ ABCG2+ LEC colonies. TGFBIp-activated integrin signaling molecules (FAK, Src, and ERK) were expressed in LECs, and TGFBIp-induced LEC proliferation was effectively blocked by a FAK inhibitor. In conclusion, C-/P-MSCs enhanced LEC culture by increasing growth of the LSC population by secreting growth factors and the ECM protein TGFBIp, which is suggested to be a novel factor for promoting the growth of LECs in culture. C-/P-MSCs may be useful for the generation of animal-free culture systems for the treatment of LSC deficiency.
Collapse
|
14
|
Norum HM, Broch K, Michelsen AE, Lunde IG, Lekva T, Abraityte A, Dahl CP, Fiane AE, Andreassen AK, Christensen G, Aakhus S, Aukrust P, Gullestad L, Ueland T. The Notch Ligands DLL1 and Periostin Are Associated with Symptom Severity and Diastolic Function in Dilated Cardiomyopathy. J Cardiovasc Transl Res 2017; 10:401-410. [PMID: 28474304 DOI: 10.1007/s12265-017-9748-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023]
Abstract
In dilated cardiomyopathy (DCM), adverse myocardial remodeling is essential, potentially involving Notch signaling. We hypothesized that secreted Notch ligands would be dysregulated in DCM. We measured plasma levels of the canonical Delta-like Notch ligand 1 (DLL1) and non-canonical Notch ligands Delta-like 1 homologue (DLK1) and periostin (POSN) in 102 DCM patients and 32 matched controls. Myocardial mRNA and protein levels of DLL1, DLK1, and POSN were measured in 25 explanted hearts. Our main findings were: (i) Circulating levels of DLL1 and POSN were higher in patients with severe DCM and correlated with the degree of diastolic dysfunction and (ii) right ventricular tissue expressions of DLL1, DLK1, and POSN were oppositely associated with cardiac function indices, as high DLL1 and DLK1 expression corresponded to more preserved and high POSN expression to more deteriorated cardiac function. DLL1, DLK1, and POSN are dysregulated in end-stage DCM, possibly mediating different effects on cardiac function.
Collapse
Affiliation(s)
- Hilde M Norum
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway. .,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida G Lunde
- Center for Heart Failure Research, University of Oslo, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Aurelija Abraityte
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Christen P Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Arnt E Fiane
- Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Arne K Andreassen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Geir Christensen
- Center for Heart Failure Research, University of Oslo, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Svend Aakhus
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Circulation and Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Lars Gullestad
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
15
|
Hao D, Xiao W, Liu R, Kumar P, Li Y, Zhou P, Guo F, Farmer DL, Lam KS, Wang F, Wang A. Discovery and Characterization of a Potent and Specific Peptide Ligand Targeting Endothelial Progenitor Cells and Endothelial Cells for Tissue Regeneration. ACS Chem Biol 2017; 12:1075-1086. [PMID: 28195700 PMCID: PMC5875449 DOI: 10.1021/acschembio.7b00118] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial progenitor cells (EPCs) and endothelial cells (ECs) play a vital role in endothelialization and vascularization for tissue regeneration. Various EPC/EC targeting biomolecules have been investigated to improve tissue regeneration with limited success often due to their limited functional specificity and structural stability. One-bead one-compound (OBOC) combinatorial technology is an ultrahigh throughput chemical library synthesis and screening method suitable for ligand discovery against a wide range of biological targets, such as integrins. In this study, using primary human EPCs/ECs as living probes, we identified an αvβ3 integrin ligand LXW7 discovered by OBOC combinatorial technology as a potent and specific EPC/EC targeting ligand. LXW7 overcomes the major barriers of other functional biomolecules that have previously been used to improve vascularization for tissue regeneration and possesses optimal stability, EPC/EC specificity, and functionality. LXW7 is a disulfide cyclic octa-peptide (cGRGDdvc) containing unnatural amino acids flanking both sides of the main functional motif; therefore it will be more resistant to proteolysis and more stable in vivo compared to linear peptides and peptides consisting of only natural amino acids. Compared with the conventional αvβ3 integrin ligand GRGD peptide, LXW7 showed stronger binding affinity to primary EPCs/ECs but weaker binding to platelets and no binding to THP-1 monocytes. In addition, ECs bound to the LXW7 treated culture surface exhibited enhanced biological functions such as proliferation, likely due to increased phosphorylation of VEGF receptor 2 (VEGF-R2) and activation of mitogen-activated protein kinase (MAPK) ERK1/2. Surface modification of electrospun microfibrous PLLA/PCL biomaterial scaffolds with LXW7 via Click chemistry resulted in significantly improved endothelial coverage. LXW7 and its derivatives hold great promise for EPC/EC recruitment and delivery and can be widely applied to functionalize various biological and medical materials to improve endothelialization and vascularization for tissue regeneration applications.
Collapse
Affiliation(s)
- Dake Hao
- Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, Shandong 250012, China
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Ping Zhou
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California 95817, United States
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817, United States
| | - Diana L. Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Fengshan Wang
- Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, Shandong 250012, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
16
|
Maeng YS, Lee GH, Lee B, Choi SI, Kim TI, Kim EK. Role of TGFBIp in Wound Healing and Mucin Expression in Corneal Epithelial Cells. Yonsei Med J 2017; 58:423-431. [PMID: 28120575 PMCID: PMC5290024 DOI: 10.3349/ymj.2017.58.2.423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Transforming growth factor-β-induced protein (TGFBIp) is highly expressed in the cornea, and mutant TGFBIp induces corneal diseases. However, the function of TGFBIp in cornea epithelium is not fully investigated. Here, we tested the importance of TGFBIp in regulation of gene expression and corneal epithelial cell (CEC) activity. MATERIALS AND METHODS The effect of TGFBIp on CEC activity was analyzed by cell migration, adhesion, proliferation and wound healing assay. Analysis of gene expression was examined by western blot and quantitative reverse transcription PCR. RESULTS The results demonstrated that TGFBIp increased adhesion, migration, proliferation, and wound healing of CECs. Analysis of gene expression presented that TGFBIp-stimulated CECs exhibited increased expression of mucin family genes, such as MUC1, -4, -5AC, and -16. Furthermore, TGFBIp treatment increased the expression of MUC1, -4, -5AC, -7, and -16 in conjunctival epithelial cells. TGFBIp also increased the activity of intracellular signaling molecules ERK and AKT in CECs. Using pharmacologic inhibitors of ERK and AKT, we showed that the expression of mucin genes by TGFBIp is mediated by the activation of ERK and AKT signaling. CONCLUSION Our findings demonstrate that the locally generated TGFBIp in the cornea may contribute to wound healing of CECs by enhancing the migration, adhesion, and proliferation of CECs. In addition, our results suggest that TGFBIp has a protective effect on ocular surfaces by inducing the expression of mucin genes in corneal and conjunctival epithelial cells. These data suggest that TGFBIp is a useful therapeutic target for patients with corneal wounds.
Collapse
Affiliation(s)
- Yong Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ga Hyun Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Boram Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Im Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Human Cord Blood-Derived CD133 +/C-Kit +/Lin - Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells. Stem Cells Int 2016; 2016:7162160. [PMID: 28074098 PMCID: PMC5203918 DOI: 10.1155/2016/7162160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs or are a mixture of cell lineage-determined progenitors of MSCs or OECs. Here, using CD133+/C-kit+/Lin− mononuclear cells (CKL− cells) isolated from human umbilical cord blood using magnetic cell sorting, we characterized the potency of MNC differentiation. We first found that CKL− cells cultured with conditioned medium of OECs or MSCs differentiated into OECs or MSCs and this differentiation was also induced by cell-to-cell contact. When we cultured single CKL− cells on OEC- or MSC-conditioned medium, the cells differentiated morphologically and genetically into OEC- or MSC-like cells, respectively. Moreover, we confirmed that OECs or MSCs differentiated from CKL− cells had the ability to form capillary-like structures in Matrigel and differentiate into osteoblasts, chondrocytes, and adipocytes. Finally, using microarray analysis, we identified specific factors of OECs or MSCs that could potentially be involved in the differentiation fate of CKL− cells. Together, these results suggest that cord blood-derived CKL− cells possess at least bipotential differentiation capacity toward MSCs or OECs.
Collapse
|
18
|
Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol 2016; 83:10-6. [DOI: 10.1016/j.vph.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 11/23/2022]
|
19
|
Pathogenesis and treatments of TGFBI corneal dystrophies. Prog Retin Eye Res 2015; 50:67-88. [PMID: 26612778 DOI: 10.1016/j.preteyeres.2015.11.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022]
Abstract
Transforming growth factor beta-induced (TGFBI) corneal dystrophies are a group of inherited progressive corneal diseases. Accumulation of transforming growth factor beta-induced protein (TGFBIp) is involved in the pathogenesis of TGFBI corneal dystrophies; however, the exact molecular mechanisms are not fully elucidated. In this review article, we summarize the current knowledge of TGFBI corneal dystrophies including clinical manifestations, epidemiology, most common and recently reported associated mutations for each disease, and treatment modalities. We review our current understanding of the molecular mechanisms of granular corneal dystrophy type 2 (GCD2) and studies of other TGFBI corneal dystrophies. In GCD2 corneal fibroblasts, alterations of morphological characteristics of corneal fibroblasts, increased susceptibility to intracellular oxidative stress, dysfunctional and fragmented mitochondria, defective autophagy, and alterations of cell cycle were observed. Other studies of mutated TGFBIp show changes in conformational structure, stability and proteolytic properties in lattice and granular corneal dystrophies. Future research should be directed toward elucidation of the biochemical mechanism of deposit formation, the relationship between the mutated TGFBIp and the other materials in the extracellular matrix, and the development of gene therapy and pharmaceutical agents.
Collapse
|
20
|
Allaman-Pillet N, Oberson A, Bustamante M, Tasinato A, Hummler E, Schorderet DF. Tgfbi/Bigh3 silencing activates ERK in mouse retina. Exp Eye Res 2015; 140:159-170. [PMID: 26387839 DOI: 10.1016/j.exer.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/06/2023]
Abstract
BIGH3 is a secreted protein, part of the extracellular matrix where it interacts with collagen and integrins on the cell surface. BIGH3 can play opposing roles in cancer, acting as either tumor suppressor or promoter, and its mutations lead to different forms of corneal dystrophy. Although many studies have been carried out, little is known about the physiological role of BIGH3. Using the cre-loxP system, we generated a mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing did not result in any apparent phenotype modifications, the mice remained viable and fertile. We were able to determine the presence of BIGH3 in the retinal pigment epithelium (RPE). In the absence of BIGH3, a transient decrease in the apoptotic process involved in retina maturation was observed, leading to a transient increase in the INL thickness at P15. This phenomenon was accompanied by an increased activity of the pro-survival ERK pathway.
Collapse
Affiliation(s)
| | - Anne Oberson
- Institut de Recherche en Ophtalmologie, Sion, Switzerland
| | | | | | - Edith Hummler
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Université de Lausanne, Lausanne, Switzerland
| | - Daniel F Schorderet
- Institut de Recherche en Ophtalmologie, Sion, Switzerland; Ecole polytechnique fédérale de Lausanne, Faculté des Sciences de la vie, Lausanne, Switzerland
| |
Collapse
|
21
|
Li WD, Du XL, Qian AM, Hu N, Kong LS, Wei S, Li CL, Li XQ. Metformin regulates differentiation of bone marrow-derived endothelial progenitor cells via multiple mechanisms. Biochem Biophys Res Commun 2015; 465:803-9. [PMID: 26319555 DOI: 10.1016/j.bbrc.2015.08.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of metformin on endothelial progenitor cells (EPCs) differentiation and the possible mechanisms. METHODS EPCs were treated with metformin and differentiation, migration and tube formation of EPCs were evaluated. Moreover, we also assessed the AMPK-mTOR-p70S6K pathway, AMPK related autophagy pathway and eNOS-NO pathway to explore the mechanisms. RESULTS Metformin treatment could significantly increase differentiation of EPCs. On the mechanisms, increased level of AMPKand eNOS phosphorylation, LC3 expression and NO production, and decreased mTOR, p70 S6K as well as TGF-β expression were found in EPCs. The AMPK inhibitor compound C, Atg5 knocking-down and eNOS inhibitor l-NAME could reverse the effect exerted by metformin. CONCLUSIONS Our results here showed that metformin could regulate the differentiation of EPCs. Autophagy related pathway and AMPK-eNOS-NO pathway were involved in the mechanisms.
Collapse
Affiliation(s)
- Wen-Dong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Long Du
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ai-Min Qian
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling-Shang Kong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sen Wei
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Long Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|