1
|
Kim S, Kim HJ. Histone lysine demethylase 1A inhibitors, seclidemstat and tranylcypromine, induce astrocytogenesis in rat neural stem cells. Biochem Biophys Res Commun 2025; 750:151330. [PMID: 39899938 DOI: 10.1016/j.bbrc.2025.151330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Identifying the molecules that control neural stem cell (NSC) fate would revolutionize treatment strategies for neurodegenerative diseases. Histone lysine demethylase 1A (KDM1A) demethylates the mono- and di-methyl groups of histone 3 lysine 4 (H3K4) and H3K9 and plays an essential role in NSC proliferation. In this study, we investigated the effects of Seclidemstat (SP-2577), a reversible KDM1A inhibitor, and tranylcypromine (TCP), a monoamine oxidase inhibitor and recently known as an irreversible histone lysine demethylase 1A inhibitor, on NSCs. SP-2577 and TCP increased glial fibrillary acidic protein expression (GFAP), decreased βIII-tubulin (TUBB3) expression, and phosphorylated signal transducer and activator of transcription 3 (STAT3) in rat NSCs. SP-2577 and TCP enhanced the transcription of Gfap and reduced Tubb3 transcription. Furthermore, SP-2577 increased the transcription levels of interleukin-6 and leukemia inhibitory factor, while TCP induced the transcription level of fibroblast growth factor 2. Therefore, we show that the KDM1A inhibitors, SP-2577 and TCP, induce astrocytogenesis in rat NSCs. These findings suggest that KDM1A is a target for regulating NSCs fate and provide insights into the molecular mechanisms underlying neurodevelopmental processes and epigenetics.
Collapse
Affiliation(s)
- Sohyeon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Namihira M, Inoue N, Watanabe Y, Hayashi T, Murotomi K, Hirayama K, Sato N. Combination of 3 probiotics restores attenuated adult neurogenesis in germ-free mice. Stem Cells 2025; 43:sxae077. [PMID: 39676242 PMCID: PMC11879180 DOI: 10.1093/stmcls/sxae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Gut microbiota plays an important role in regulating brain function and adult neurogenesis. Although probiotics have recently been reported as effective against certain psychiatric disorders, the underlying mechanisms remain unclear. In particular, the combination of 3 probiotic strains, Bacillus subtilis TO-A, Enterococcus faecium T-110, and Clostridium butyricum TO-A, hereafter referred to as ProB3, has been reported to potentially alleviate psychiatric symptoms in patients with schizophrenia. Herein, we show that ProB3 promotes adult neurogenesis in mice and restores its dysregulation in germ-free (GF) mice. ProB3 colonization in GF mice enhanced the proliferation of adult neural stem cells compared to specific-pathogen-free and GF mice. Furthermore, ProB3 colonization was sufficient to ameliorate the arrest of newborn neuron maturation and the diminution of quiescent neural stem cells in GF mice. ProB3 colonization in mice increased the levels of several metabolites in the blood, including theanine and 3-hydroxybutyrate, and imidazole peptides, including anserine, which promoted proliferation, neurogenesis, and maturation of newborn neurons in cultured human fetus neural stem cells, as well as mouse adult hippocampal neural stem cells. Collectively, these results indicate that the essential role of the gut microbiota in adult hippocampal neurogenesis can be effectively complemented by the intake of a specific 3-strain probiotic, ProB3, providing novel insights into the brain-gut axis.
Collapse
Affiliation(s)
- Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Nana Inoue
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| | | | | | - Kazutoshi Murotomi
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Sato
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| |
Collapse
|
3
|
Wang H, Guo B, Guo X. Histone demethylases in neurodevelopment and neurodegenerative diseases. Int J Neurosci 2024; 134:1372-1382. [PMID: 37902510 DOI: 10.1080/00207454.2023.2276656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
Neurodevelopment can be precisely regulated by epigenetic mechanisms, including DNA methylations, noncoding RNAs, and histone modifications. Histone methylation was a reversible modification, catalyzed by histone methyltransferases and demethylases. So far, dozens of histone lysine demethylases (KDMs) have been discovered, and they (members from KDM1 to KDM7 family) are important for neurodevelopment by regulating cellular processes, such as chromatin structure and gene transcription. The role of KDM5C and KDM7B in neural development is particularly important, and mutations in both genes are frequently found in human X-linked mental retardation (XLMR). Functional disorders of specific KDMs, such as KDM1A can lead to the development of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Several KDMs can serve as potential therapeutic targets in the treatment of neurodegenerative diseases. At present, the function of KDMs in neurodegenerative diseases is not fully understood, so more comprehensive and profound studies are needed. Here, the role and mechanism of histone demethylases were summarized in neurodevelopment, and the potential of them was introduced in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Sports Human Sciences, Hebei Social Science Foundation Project Research Group, Hebei Sport University, Shijiazhuang, Hebei, China
| | - Beiyi Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xiaoqiang Guo
- Department of Sports Human Sciences, Hebei Social Science Foundation Project Research Group, Hebei Sport University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Zhao A, Xu W, Han R, Wei J, Yu Q, Wang M, Li H, Li M, Chi G. Role of histone modifications in neurogenesis and neurodegenerative disease development. Ageing Res Rev 2024; 98:102324. [PMID: 38762100 DOI: 10.1016/j.arr.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Progressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation. Finally, we explored the control of neurogenesis and the development of neurodegenerative diseases by artificially modulating histone modifications.
Collapse
Affiliation(s)
- Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Wang Z, Li S, Wu Z, Kang Y, Xie S, Cai Z, Shan X, Li Q. Pulsed electromagnetic field-assisted reduced graphene oxide composite 3D printed nerve scaffold promotes sciatic nerve regeneration in rats. Biofabrication 2024; 16:035013. [PMID: 38604162 DOI: 10.1088/1758-5090/ad3d8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Peripheral nerve injuries can lead to sensory or motor deficits that have a serious impact on a patient's mental health and quality of life. Nevertheless, it remains a major clinical challenge to develop functional nerve conduits as an alternative to autologous grafts. We applied reduced graphene oxide (rGO) as a bioactive conductive material to impart electrophysiological properties to a 3D printed scaffold and the application of a pulsed magnetic field to excite the formation of microcurrents and induce nerve regeneration.In vitrostudies showed that the nerve scaffold and the pulsed magnetic field made no effect on cell survival, increased S-100βprotein expression, enhanced cell adhesion, and increased the expression level of nerve regeneration-related mRNAs.In vivoexperiments suggested that the protocol was effective in promoting nerve regeneration, resulting in functional recovery of sciatic nerves in rats, when they were damaged close to that of the autologous nerve graft, and increased expression of S-100β, NF200, and GAP43. These results indicate that rGO composite nerve scaffolds combined with pulsed magnetic field stimulation have great potential for peripheral nerve rehabilitation.
Collapse
Affiliation(s)
- Zichao Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Shijun Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Zongxi Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510030, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510030, People's Republic of China
| | - Yifan Kang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Zhigang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Xiaofeng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Qing Li
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Center of Digital Dentistry, Second Clinical Division, Peking University School and Hospital of Stomatology and National Center of Stomatology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| |
Collapse
|
7
|
Xu Z, Qin Q, Wang Y, Zhang H, Liu S, Li X, Chen Y, Wang Y, Ruan H, He W, Zhang T, Yan X, Wang C, Xu D, Jiang X. Deubiquitinase Mysm1 regulates neural stem cell proliferation and differentiation by controlling Id4 expression. Cell Death Dis 2024; 15:129. [PMID: 38342917 PMCID: PMC10859383 DOI: 10.1038/s41419-024-06530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Neural stem cells (NSCs) are critical for brain development and maintenance of neurogenesis. However, the molecular mechanisms that regulate NSC proliferation and differentiation remain unclear. Mysm1 is a deubiquitinase and is essential for the self-renewal and differentiation of several stem cells. It is unknown whether Mysm1 plays an important role in NSCs. Here, we found that Mysm1 was expressed in NSCs and its expression was increased with age in mice. Mice with Mysm1 knockdown by crossing Mysm1 floxed mice with Nestin-Cre mice exhibited abnormal brain development with microcephaly. Mysm1 deletion promoted NSC proliferation and apoptosis, resulting in depletion of the stem cell pool. In addition, Mysm1-deficient NSCs skewed toward neurogenesis instead of astrogliogenesis. Mechanistic investigations with RNA sequencing and genome-wide CUT&Tag analysis revealed that Mysm1 epigenetically regulated Id4 transcription by regulating histone modification at the promoter region. After rescuing the expression of Id4, the hyperproliferation and imbalance differentiation of Mysm1-deficient NSCs was reversed. Additionally, knockdown Mysm1 in aged mice could promote NSC proliferation. Collectively, the present study identified a new factor Mysm1 which is essential for NSC homeostasis and Mysm1-Id4 axis may be an ideal target for proper NSC proliferation and differentiation.
Collapse
Affiliation(s)
- Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
- Anhui Medical University, Hefei, 230032, Anhui, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiaotong Li
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yue Chen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuqing Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Huaqiang Ruan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Tao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
- Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Xueqing X, Yongcan P, Wei L, Qingling Y, Jie D. Regulation of T cells in the tumor microenvironment by histone methylation: LSD1 inhibition-a new direction for enhancing immunotherapy. Heliyon 2024; 10:e24457. [PMID: 38312620 PMCID: PMC10835161 DOI: 10.1016/j.heliyon.2024.e24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Although immune checkpoint blockade (ICB) has been shown to achieve durable therapeutic responses in various types of tumors, only 20-40 % of patients benefit from this therapy. A growing body of research suggests that epigenetic modulation of the tumor microenvironment may be a promising direction for enhancing the efficacy of immunotherapy, for example, histone methylation plays an important role in the regulation of T cells in the tumor microenvironment (TME). In particular, histone lysine-specific demethylase 1 (LSD1/KDM1A), as an important histone-modifying enzyme in epigenetics, was found to be an important factor in the regulation of T cells. Therefore, this paper will summarize the effects of histone methylation, especially LSD1, on T cells in the TME to enhance the efficacy of anti-PD-1 immunotherapy. To provide a strong theoretical basis for the strategy of combining LSD1 inhibitors with anti-PD-1/PD-L1 immunotherapy, thus adding new possibilities to improve the survival of tumor patients.
Collapse
Affiliation(s)
- Xie Xueqing
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Peng Yongcan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Lu Wei
- Graduate School of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yin Qingling
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Ding Jie
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| |
Collapse
|
9
|
Xiang Q, Tao JS, Fu CJ, Liao LX, Liu LN, Deng J, Li XH. The integrated analysis and underlying mechanisms of FNDC5 on diabetic induced cognitive deficits. Int J Geriatr Psychiatry 2024; 39:e6047. [PMID: 38161286 DOI: 10.1002/gps.6047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Chronic hyperglycemia is considered as an important factor to promote the neurodegenerative process of brain, and the synaptic plasticity as well as heterogeneity of hippocampal cells are thought to be associated with cognitive dysfunction in the early process of neurodegeneration. To date, fibronectin type III domain-containing protein 5 (FNDC5) has been highlighted its protective role in multiple neurodegenerative diseases. However, the potential molecular and cellular mechanisms of FNDC5 on synaptic plasticity regulation in cognitive impairment (CI) induced by diabetics are still need to known. METHODS/DESIGN To investigate the heterogeneity and synaptic plasticity of hippocampus in animals with CI state induced by hyperglycemia, and explore the potential role of FNDC5 involved in this process. Firstly, the single cell sequencing was performed based on the hippocampal tissue from db diabetic mice induced CI and normal health control mice by ex vivo experiments; and then the integrated analysis and observations validation using Quantitative Real-time PCR, western blot as well as other in vitro studies. RESULTS We observed and clarified the sub-cluster of type IC spiral ganglion neurons expressed marker genes as Trmp3 and sub-cluster of astrocytes with marker gene as Atp1a2 in hippocampal cells from diabetic animals induced CI and the effect of those on neuron-glial communication. We also found that FNDC5\BDNF-Trk axis was involved in the synaptic plasticity regulation of hippocampus. In high glucose induced brain injury model in vitro, we investigated that FNDC5 significantly regulates BDNF expression and that over-expression of FNDC5 up-regulated BDNF expression (p < 0.05) and can also significantly increase the expression of synapsin-1 (p < 0.05), which is related to synaptic plasticity, In addition, the unbalanced methylation level between H3K4 and H3K9 in Fndc5 gene promoter correlated with significantly down-regulated expression of FNDC5 (p < 0.05) in the hyperglycemia state. CONCLUSION The current study revealed that the synaptic plasticity of hippocampal cells in hyperglycemia might be regulated by FNDC5\BDNF-Trk axis, playing the protective role in the process of CI induced by hyperglycemia and providing a target for the early treatment of hyperglycemia induced cognitive dysfunction in clinic.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Jia-Sheng Tao
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Chuan-Jun Fu
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Li-Xiu Liao
- Institute of Pharmaceutical Sciences, Jishou University, Jishou, Hunan, China
| | - Li-Ni Liu
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Jing Deng
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Xian-Hui Li
- Institute of Pharmaceutical Sciences, Jishou University, Jishou, Hunan, China
| |
Collapse
|
10
|
Falkenberry E, Reeves M, Scott A, Myrick D, Fallini C, Bassell G, Katz D. LSD1/KDM1A is essential for neural stem cell differentiation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.02.569711. [PMID: 38076951 PMCID: PMC10705553 DOI: 10.1101/2023.12.02.569711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The proper regulation of neural stem cell differentiation is required for the proper specification of the central nervous system. Here we investigated the function of the H3K4me1/2 demethylase LSD1/KDM1A during neural stem differentiation in mice. Conditional deletion of LSD1 in nestin- positive neural stem cells results in 100% perinatal lethality after birth with severe motor coordination deficits, retarded growth and defects in brain morphology. Despite these severe defects, motor neuron progenitors and the initial motor neuron population are specified normally and motor neurons with normal morphology can be cultured from these mice in vitro. However, motor neurons cultured from mice lacking LSD1 in neural stem cells continue to inappropriately maintain critical neural stem cell proteins. Taken together these results suggest that, as in other mouse stem cell populations, LSD1 is required to deactivate the stem cell program to enable normal neural stem cell differentiation. However, unlike in other mouse stem cell populations, the inappropriate maintenance of the stem cell program during neural stem cell differentiation may compromise neuronal function rather than neuronal specification.
Collapse
Affiliation(s)
- E.C. Falkenberry
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - M. Reeves
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | | | | | - C. Fallini
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - G.J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - D.J. Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
11
|
Tamaoki J, Maeda H, Kobayashi I, Takeuchi M, Ohashi K, Gore A, Bonkhofer F, Patient R, Weinstein BM, Kobayashi M. LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Dev Biol 2023; 501:92-103. [PMID: 37353106 PMCID: PMC10393020 DOI: 10.1016/j.ydbio.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.
Collapse
Affiliation(s)
- Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Japan
| | - Hiroki Maeda
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Miki Takeuchi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Ken Ohashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Aniket Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Florian Bonkhofer
- Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Roger Patient
- Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
12
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
13
|
Zhang C, Ye W, Zhao M, Long L, Xia D, Fan Z. KDM6B Negatively Regulates the Neurogenesis Potential of Apical Papilla Stem Cells via HES1. Int J Mol Sci 2023; 24:10608. [PMID: 37445785 PMCID: PMC10341966 DOI: 10.3390/ijms241310608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Stem cells from the apical papilla (SCAPs) are used to regulate the microenvironment of nerve defects. KDM6B, which functions as an H3K27me3 demethylase, is known to play a crucial role in neurogenesis. However, the mechanism by which KDM6B influences the neurogenesis potential of SCAPs remains unclear. We evaluated the expression of neural markers in SCAPs by using real-time RT-PCR and immunofluorescence staining. To assess the effectiveness of SCAP transplantation in the SCI model, we used the BBB scale to evaluate motor function. Additionally, toluidine blue staining and Immunofluorescence staining of NCAM, NEFM, β-III-tubulin, and Nestin were used to assess nerve tissue remodeling. Further analysis was conducted through Microarray analysis and ChIP assay to study the molecular mechanisms. Our results show that KDM6B inhibits the expression of NeuroD, TH, β-III tubulin, and Nestin. In vivo studies indicate that the SCAP-KDM6Bsh group is highly effective in restoring spinal cord structure and motor function in rats suffering from SCI. Our findings suggest that KDM6B directly binds to the HES1 promoter via regulating H3K27me3 and HES1 expression. In conclusion, our study can help understand the regulatory role of KDM6B in neurogenesis and provide more effective treatments for nerve injury.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China;
| | - Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
| | - Mengyao Zhao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
| | - Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
| | - Dengsheng Xia
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China;
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100069, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100069, China
| |
Collapse
|
14
|
Ferdous S, Shelton DA, Getz TE, Chrenek MA, L’Hernault N, Sellers JT, Summers VR, Iuvone PM, Boss JM, Boatright JH, Nickerson JM. Deletion of histone demethylase Lsd1 (Kdm1a) during retinal development leads to defects in retinal function and structure. Front Cell Neurosci 2023; 17:1104592. [PMID: 36846208 PMCID: PMC9950115 DOI: 10.3389/fncel.2023.1104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
Purpose The purpose of this study was to investigate the role of Lysine specific demethylase 1 (Lsd1) in murine retinal development. LSD1 is a histone demethylase that can demethylate mono- and di-methyl groups on H3K4 and H3K9. Using Chx10-Cre and Rho-iCre75 driver lines, we generated novel transgenic mouse lines to delete Lsd1 in most retinal progenitor cells or specifically in rod photoreceptors. We hypothesize that Lsd1 deletion will cause global morphological and functional defects due to its importance in neuronal development. Methods We tested the retinal function of young adult mice by electroretinogram (ERG) and assessed retinal morphology by in vivo imaging by fundus photography and SD-OCT. Afterward, eyes were enucleated, fixed, and sectioned for subsequent hematoxylin and eosin (H&E) or immunofluorescence staining. Other eyes were plastic fixed and sectioned for electron microscopy. Results In adult Chx10-Cre Lsd1fl/fl mice, we observed a marked reduction in a-, b-, and c-wave amplitudes in scotopic conditions compared to age-matched control mice. Photopic and flicker ERG waveforms were even more sharply reduced. Modest reductions in total retinal thickness and outer nuclear layer (ONL) thickness were observed in SD-OCT and H&E images. Lastly, electron microscopy revealed significantly shorter inner and outer segments and immunofluorescence showed modest reductions in specific cell type populations. We did not observe any obvious functional or morphological defects in the adult Rho-iCre75 Lsd1fl/fl animals. Conclusion Lsd1 is necessary for neuronal development in the retina. Adult Chx10-Cre Lsd1fl/fl mice show impaired retinal function and morphology. These effects were fully manifested in young adults (P30), suggesting that Lsd1 affects early retinal development in mice.
Collapse
Affiliation(s)
- Salma Ferdous
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | | | - Tatiana E. Getz
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Nancy L’Hernault
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Jana T. Sellers
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Vivian R. Summers
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
15
|
Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: Focus on multi-target agents and compounds in clinical trials. Front Pharmacol 2023; 14:1120911. [PMID: 36817147 PMCID: PMC9932783 DOI: 10.3389/fphar.2023.1120911] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) was first identified in 2004 as an epigenetic enzyme able to demethylate specific lysine residues of histone H3, namely H3K4me1/2 and H3K9me1/2, using FAD as the cofactor. It is ubiquitously overexpressed in many types of cancers (breast, gastric, prostate, hepatocellular, and esophageal cancer, acute myeloid leukemia, and others) leading to block of differentiation and increase of proliferation, migration and invasiveness at cellular level. LSD1 inhibitors can be grouped in covalent and non-covalent agents. Each group includes some hybrid compounds, able to inhibit LSD1 in addition to other target(s) at the same time (dual or multitargeting compounds). To date, 9 LSD1 inhibitors have entered clinical trials, for hematological and/or solid cancers. Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC-90011) and seclidemstat (SP-2577)]. Another TCP-based LSD1/MAO-B dual inhibitor, vafidemstat (ORY-2001), is in clinical trial for Alzheimer's diseases and personality disorders. The present review summarizes the structure and functions of LSD1, its pathological implications in cancer and non-cancer diseases, and the identification of LSD1 covalent and non-covalent inhibitors with different chemical scaffolds, including those involved in clinical trials, highlighting their potential as potent and selective anticancer agents.
Collapse
Affiliation(s)
- Beatrice Noce
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Di Bello
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,*Correspondence: Rossella Fioravanti,
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Dreher RD, Theisen ER. Lysine specific demethylase 1 is a molecular driver and therapeutic target in sarcoma. Front Oncol 2023; 12:1076581. [PMID: 36686841 PMCID: PMC9846348 DOI: 10.3389/fonc.2022.1076581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Sarcomas are a diverse group of tumors with numerous oncogenic drivers, and display varied clinical behaviors and prognoses. This complexity makes diagnosis and the development of new and effective treatments challenging. An incomplete understanding of both cell of origin and the biological drivers of sarcomas complicates efforts to develop clinically relevant model systems and find new molecular targets. Notably, the histone lysine specific demethylase 1 (LSD1) is overexpressed in a number of different sarcomas and is a potential therapeutic target in these malignancies. With the ability to modify histone marks, LSD1 is a key player in many protein complexes that epigenetically regulate gene expression. It is a largely context dependent enzyme, having vastly different and often opposing roles depending on the cellular environment and which interaction partners are involved. LSD1 has been implicated in the development of many different types of cancer, but its role in bone and soft tissue sarcomas remains poorly understood. In this review, we compiled what is known about the LSD1 function in various sarcomas, to determine where knowledge is lacking and to find what theme emerge to characterize how LSD1 is a key molecular driver in bone and soft tissue sarcoma. We further discuss the current clinical landscape for the development of LSD1 inhibitors and where sarcomas have been included in early clinical trials.
Collapse
Affiliation(s)
- Rachel D. Dreher
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
| | - Emily R. Theisen
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
19
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
20
|
Zhang M, Liu Y, Shi L, Fang L, Xu L, Cao Y. Neural stemness unifies cell tumorigenicity and pluripotent differentiation potential. J Biol Chem 2022; 298:102106. [PMID: 35671824 PMCID: PMC9254501 DOI: 10.1016/j.jbc.2022.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Neural stemness is suggested to be the ground state of tumorigenicity and pluripotent differentiation potential. However, the relationship between these cell properties is unclear. Here, by disrupting the neural regulatory network in neural stem and cancer cells and by serial transplantation of cancer cells, we show that tumorigenicity and pluripotent differentiation potential are coupled cell properties unified by neural stemness. We show that loss of neural stemness via inhibition of SETDB1, an oncoprotein with enriched expression in embryonic neural cells during vertebrate embryogenesis, led to neuronal differentiation with reduced tumorigenicity and pluripotent differentiation potential in neural stem and cancer cells, whereas enhancement of neural stemness by SETDB1 overexpression caused the opposite effects. SETDB1 maintains a regulatory network comprising proteins involved in developmental programs and basic cellular functional machineries, including epigenetic modifications (EZH2), ribosome biogenesis (RPS3), translation initiation (EIF4G), and spliceosome assembly (SF3B1); all of these proteins are enriched in embryonic neural cells and play active roles in cancers. In addition, SETDB1 represses the transcription of genes promoting differentiation and cell cycle and growth arrest. Serial transplantation of cancer cells showed that neural stemness, tumorigenicity, and pluripotent differentiation potential were simultaneously enhanced; these effects were accompanied by increased expression of proteins involved in developmental programs and basic machineries, including SETDB1 and the abovementioned proteins, as well as by increased alternative splicing events. These results indicate that basic machineries work together to define a highly proliferative state with pluripotent differentiation potential and also suggest that neural stemness unifies tumorigenicity and differentiation potential.
Collapse
Affiliation(s)
- Min Zhang
- Shenzhen Research Institute of Nanjing University, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School
| | - Yang Liu
- Shenzhen Research Institute of Nanjing University, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School
| | - Lihua Shi
- MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Liyang Xu
- MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School
| | - Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School.
| |
Collapse
|
21
|
The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles’ Heel. Biomedicines 2022; 10:biomedicines10061311. [PMID: 35740334 PMCID: PMC9219798 DOI: 10.3390/biomedicines10061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are a deadly and heterogenous subgroup of gliomas for which the development of innovative treatments is urgent. Advances in high-throughput molecular techniques have shed light on key epigenetic components of these diseases, such as K27M and G34R/V mutations on histone 3. However, modification of DNA compaction is not sufficient by itself to drive those tumors. Here, we review molecular specificities of pHGGs subcategories in the context of epigenomic rewiring caused by H3 mutations and the subsequent oncogenic interplay with transcriptional signaling pathways co-opted from developmental programs that ultimately leads to gliomagenesis. Understanding how transcriptional and epigenetic alterations synergize in each cellular context in these tumors could allow the identification of new Achilles’ heels, thereby highlighting new levers to improve their therapeutic management.
Collapse
|
22
|
Rummukainen P, Tarkkonen K, Dudakovic A, Al-Majidi R, Nieminen-Pihala V, Valensisi C, Hawkins RD, van Wijnen AJ, Kiviranta R. Lysine-Specific Demethylase 1 (LSD1) epigenetically controls osteoblast differentiation. PLoS One 2022; 17:e0265027. [PMID: 35255108 PMCID: PMC8901060 DOI: 10.1371/journal.pone.0265027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 02/03/2023] Open
Abstract
Epigenetic mechanisms regulate osteogenic lineage differentiation of mesenchymal stromal cells. Histone methylation is controlled by multiple lysine demethylases and is an important step in controlling local chromatin structure and gene expression. Here, we show that the lysine-specific histone demethylase Kdm1A/Lsd1 is abundantly expressed in osteoblasts and that its suppression impairs osteoblast differentiation and bone nodule formation in vitro. Although Lsd1 knockdown did not affect global H3K4 methylation levels, genome-wide ChIP-Seq analysis revealed high levels of Lsd1 at gene promoters and its binding was associated with di- and tri-methylation of histone 3 at lysine 4 (H3K4me2 and H3K4me3). Lsd1 binding sites in osteoblastic cells were enriched for the Runx2 consensus motif suggesting a functional link between the two proteins. Importantly, inhibition of Lsd1 activity decreased osteoblast activity in vivo. In support, mesenchymal-targeted knockdown of Lsd1 led to decreased osteoblast activity and disrupted primary spongiosa ossification and reorganization in vivo. Together, our studies demonstrate that Lsd1 occupies Runx2-binding cites at H3K4me2 and H3K4me3 and its activity is required for proper bone formation.
Collapse
Affiliation(s)
| | - Kati Tarkkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Rana Al-Majidi
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Cristina Valensisi
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - R. David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry, University of Vermont, Burlington, VT, United States of America
- * E-mail: (AJW); (RK)
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- * E-mail: (AJW); (RK)
| |
Collapse
|
23
|
Gahan JM, Kouzel IU, Jansen KO, Burkhardt P, Rentzsch F. Histone demethylase Lsd1 is required for the differentiation of neural cells in Nematostella vectensis. Nat Commun 2022; 13:465. [PMID: 35075108 PMCID: PMC8786827 DOI: 10.1038/s41467-022-28107-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Chromatin regulation is a key process in development but its contribution to the evolution of animals is largely unexplored. Chromatin is regulated by a diverse set of proteins, which themselves are tightly regulated in a cell/tissue-specific manner. Using the cnidarian Nematostella vectensis as a basal metazoan model, we explore the function of one such chromatin regulator, Lysine specific demethylase 1 (Lsd1). We generated an endogenously tagged allele and show that NvLsd1 expression is developmentally regulated and higher in differentiated neural cells than their progenitors. We further show, using a CRISPR/Cas9 generated mutant that loss of NvLsd1 leads to developmental abnormalities. This includes the almost complete loss of differentiated cnidocytes, cnidarian-specific neural cells, as a result of a cell-autonomous requirement for NvLsd1. Together this suggests that the integration of chromatin modifying proteins into developmental regulation predates the split of the cnidarian and bilaterian lineages and constitutes an ancient feature of animal development. The evolutionary point where chromatin modifier function integrated into regulation of specific cell types is unclear. In the cnidarian Nematostella vectensis, the authors here show that lysine specific demethylase Lsd1 is developmentally regulated and required for normal development including cnidocyte differentiation.
Collapse
Affiliation(s)
- James M Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway.
| | - Ian U Kouzel
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway
| | - Kamilla Ormevik Jansen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway. .,Department for Biological Sciences, University of Bergen, Thormøhlensgt 53, 5006, Bergen, Norway.
| |
Collapse
|
24
|
Rajan A, Ostgaard CM, Lee CY. Regulation of Neural Stem Cell Competency and Commitment during Indirect Neurogenesis. Int J Mol Sci 2021; 22:12871. [PMID: 34884676 PMCID: PMC8657492 DOI: 10.3390/ijms222312871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Indirect neurogenesis, during which neural stem cells generate neurons through intermediate progenitors, drives the evolution of lissencephalic brains to gyrencephalic brains. The mechanisms that specify intermediate progenitor identity and that regulate stem cell competency to generate intermediate progenitors remain poorly understood despite their roles in indirect neurogenesis. Well-characterized lineage hierarchy and available powerful genetic tools for manipulating gene functions make fruit fly neural stem cell (neuroblast) lineages an excellent in vivo paradigm for investigating the mechanisms that regulate neurogenesis. Type II neuroblasts in fly larval brains repeatedly undergo asymmetric divisions to generate intermediate neural progenitors (INPs) that undergo limited proliferation to increase the number of neurons generated per stem cell division. Here, we review key regulatory genes and the mechanisms by which they promote the specification and generation of INPs, safeguarding the indirect generation of neurons during fly larval brain neurogenesis. Homologs of these regulators of INPs have been shown to play important roles in regulating brain development in vertebrates. Insight into the precise regulation of intermediate progenitors will likely improve our understanding of the control of indirect neurogenesis during brain development and brain evolution.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
| | - Cyrina M. Ostgaard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
The NOTCH3 Downstream Target HEYL Is Required for Efficient Human Airway Basal Cell Differentiation. Cells 2021; 10:cells10113215. [PMID: 34831437 PMCID: PMC8620267 DOI: 10.3390/cells10113215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Basal cells (BCs) are stem/progenitor cells of the mucociliary airway epithelium, and their differentiation is orchestrated by the NOTCH signaling pathway. NOTCH3 receptor signaling regulates BC to club cell differentiation; however, the downstream responses that regulate this process are unknown. Overexpression of the active NOTCH3 intracellular domain (NICD3) in primary human bronchial epithelial cells (HBECs) on in vitro air–liquid interface culture promoted club cell differentiation. Bulk RNA-seq analysis identified 692 NICD3-responsive genes, including the classical NOTCH target HEYL, which increased in response to NICD3 and positively correlated with SCGB1A1 (club cell marker) expression. siRNA knockdown of HEYL decreased tight junction formation and cell proliferation. Further, HEYL knockdown reduced club, goblet and ciliated cell differentiation. In addition, we observed decreased expression of HEYL in HBECs from donors with chronic obstructive pulmonary disease (COPD) vs. normal donors which correlates with the impaired differentiation capacity of COPD cells. Finally, overexpression of HEYL in COPD HBECs promoted differentiation into club, goblet and ciliated cells, suggesting the impaired capacity of COPD cells to generate a normal airway epithelium is a reversible phenotype that can be regulated by HEYL. Overall, our data identify the NOTCH3 downstream target HEYL as a key regulator of airway epithelial differentiation.
Collapse
|
26
|
Tay EXY, Chia K, Ong DST. Epigenetic plasticity and redox regulation of neural stem cell state and fate. Free Radic Biol Med 2021; 170:116-130. [PMID: 33684459 DOI: 10.1016/j.freeradbiomed.2021.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
The neural stem cells (NSCs) are essential for normal brain development and homeostasis. The cell state (i.e. quiescent versus activated) and fate (i.e. the cell lineage of choice upon differentiation) of NSCs are tightly controlled by various redox and epigenetic regulatory mechanisms. There is an increasing appreciation that redox and epigenetic regulations are intimately linked, but how this redox-epigenetics crosstalk affects NSC activity remains poorly understood. Another unresolved topic is whether the NSCs actually contribute to brain ageing and neurodegenerative diseases. In this review, we aim to 1) distill concepts that underlie redox and epigenetic regulation of NSC state and fate; 2) provide examples of the redox-epigenetics crosstalk in NSC biology; and 3) highlight potential redox- and epigenetic-based therapeutic opportunities to rescue NSC dysfunctions in ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmy Xue Yun Tay
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Kimberly Chia
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore; National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
27
|
Ogura C, Hirano K, Mizumoto S, Yamada S, Nishihara S. Dermatan sulphate promotes neuronal differentiation in mouse and human stem cells. J Biochem 2021; 169:55-64. [PMID: 32730567 DOI: 10.1093/jb/mvaa087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Dermatan sulphate (DS), a glycosaminoglycan, is present in the extracellular matrix and on the cell surface. Previously, we showed that heparan sulphate plays a key role in the maintenance of the undifferentiated state in mouse embryonic stem cells (mESCs) and in the regulation of their differentiation. Chondroitin sulphate has also been to be important for pluripotency and differentiation of mESCs. Keratan sulphate is a marker of human pluripotent stem cells. To date, however, the function of DS in mESCs has not been clarified. Dermatan 4 sulfotransferase 1, which transfers sulphate to the C-4 hydroxyl group of N-acetylgalactosamine of DS, contributes to neuronal differentiation of mouse neural progenitor cells. Therefore, we anticipated that neuronal differentiation would be induced in mESCs in culture by the addition of DS. To test this expectation, we investigated neuronal differentiation in mESCs and human neural stem cells (hNSCs) cultures containing DS. In mESCs, DS promoted neuronal differentiation by activation of extracellular signal-regulated kinase 1/2 and also accelerated neurite outgrowth. In hNSCs, DS promoted neuronal differentiation and neuronal migration, but not neurite outgrowth. Thus, DS promotes neuronal differentiation in both mouse and human stem cells, suggesting that it offers a novel method for efficiently inducing neuronal differentiation.
Collapse
Affiliation(s)
- Chika Ogura
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.,Glycan & Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
28
|
Kim D, Kim KI, Baek SH. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. J Biomed Sci 2021; 28:41. [PMID: 34082769 PMCID: PMC8175190 DOI: 10.1186/s12929-021-00737-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Lee HR, Ann J, Kim YM, Lee J, Kim HJ. The KDM5 Inhibitor KDM5-C70 Induces Astrocyte Differentiation in Rat Neural Stem Cells. ACS Chem Neurosci 2021; 12:441-446. [PMID: 33482060 DOI: 10.1021/acschemneuro.0c00613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Members of the lysine-specific histone demethylase 5 (KDM5/JARID1) family are known to play important roles in stem cell fate determination. Here, using the KDM5 inhibitor C70 (KDM5-C70), we demonstrated that the histone demethylase activity of the KDM5 enzyme is essential for the repression of astrocytic differentiation of neural stem cells (NSCs). KDM5-C70 treatment activated the glial fibrillary acidic protein (Gfap) gene by increasing the trimethylation of histone H3 lysine 4 in the promoter regions and subsequently induced astrocytogenesis in NSCs. In addition, treatment of NSCs with KDM5-C70 activated Janus kinase-signal transducer and activator of transcription (JAK-STAT3) signaling and increased the mRNA expression of transforming growth factor-beta 1 (Tgf-β1). Our data provide evidence that KDM5 is a promising target for NSC fate modulation and suggest that epigenetic regulation is important for NSC fate determination.
Collapse
Affiliation(s)
- Ha-Rim Lee
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jihyae Ann
- College of Pharmacy, Seoul National University, Seoul151-742, Republic of Korea
| | - Young Min Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Seoul151-742, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
30
|
Zhang M, Zhao J, Lv Y, Wang W, Feng C, Zou W, Su L, Jiao J. Histone Variants and Histone Modifications in Neurogenesis. Trends Cell Biol 2020; 30:869-880. [PMID: 33011018 DOI: 10.1016/j.tcb.2020.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
During embryonic brain development, neurogenesis requires the orchestration of gene expression to regulate neural stem cell (NSC) fate specification. Epigenetic regulation with specific emphasis on the modes of histone variants and histone post-translational modifications are involved in interactive gene regulation of central nervous system (CNS) development. Here, we provide a broad overview of the regulatory system of histone variants and histone modifications that have been linked to neurogenesis and diseases. We also review the crosstalk between different histone modifications and discuss how the 3D genome affects cell fate dynamics during brain development. Understanding the mechanisms of epigenetic regulation in neurogenesis has shifted the paradigm from single gene regulation to synergistic interactions to ensure healthy embryonic neurogenesis.
Collapse
Affiliation(s)
- Mengtian Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Lv
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei 230000, China
| | - Chao Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzheng Zou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Hirano K, Kubo M, Fukuyama Y, Namihira M. Indonesian Ginger (Bangle) Extract Promotes Neurogenesis of Human Neural Stem Cells through WNT Pathway Activation. Int J Mol Sci 2020; 21:E4772. [PMID: 32635647 PMCID: PMC7369972 DOI: 10.3390/ijms21134772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022] Open
Abstract
Indonesian ginger (Zingiber purpureum Rosc.), also known as Bangle, exhibits neurotrophic effects on cultured murine cortical neurons and in the adult mouse brain, but the underlying mechanisms remain unknown. Here, using human fetal neural stem cells (hfNSCs) as a model system for in vitro human neurogenesis, we show that Bangle extracts activate canonical WNT/β-catenin signaling. Bangle extract-treatment of hfNSCs not only promoted neuronal differentiation, but also accelerated neurite outgrowth from immature neurons. Furthermore, Bangle extracts induced expression of neurogenic genes and WNT signaling-target genes, and facilitated the accumulation of β-catenin in nuclei of hfNSC. Interestingly, altered histone modifications were also observed in Bangle-treated hfNSCs. Together, these findings demonstrate that Bangle contributes to hfNSC neurogenesis by WNT pathway and epigenetic regulation.
Collapse
Affiliation(s)
- Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Miwa Kubo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (M.K.); (Y.F.)
| | - Yoshiyasu Fukuyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (M.K.); (Y.F.)
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| |
Collapse
|
32
|
Liu H, Ni S, Wang H, Zhang Q, Weng W. Charactering tumor microenvironment reveals stromal-related transcription factors promote tumor carcinogenesis in gastric cancer. Cancer Med 2020; 9:5247-5257. [PMID: 32463580 PMCID: PMC7367614 DOI: 10.1002/cam4.3133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Transcription factors represent the crucial role of controlling gene transcription in cancer development and progression. However, their functions in gastric cancer have not been thoroughly characterized. For this study, we comprehensively evaluated the correlation between infiltration patterns of tumor microenvironment (TME) cells and TFs expression in the cohort of stomach adenocarcinoma (STAD) from TCGA database. We integrally explored differential expression panel and prognostic value of candidate TFs in TCGA‐STAD cohort. Notably, we found a key transcription factor named HEYL, which its expression level was correlated with stromal component transformation of TME. HEYL was regularly high expressed in gastric cancer and correlated with patients’ poor prognosis. Knockdown of HEYL prominently abrogated the tendency of cell proliferation, migration, and progression in gastric cancer. Consistently, overexpression of HEYL strikingly accelerated the gastric carcinoma development through activating oncogenic signaling pathways and transcriptional activation of cadherin 11 (CDH11). Our findings not only identified the close relationship between TFs and TME phenotype, but also emphasized the crucial importance of TFs, especially HEYL, which could be identified as a candidate biomarker to evaluate prognostic risk and therapeutic effect in gastric cancer.
Collapse
Affiliation(s)
- Haining Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Shujuan Ni
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hanbo Wang
- Jining Medical University, Jining, China
| | - Qiongyan Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiwei Weng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
33
|
He F, Li N, Huang HB, Wang JB, Yang XF, Wang HD, Huang W, Li FR. LSD1 inhibition yields functional insulin-producing cells from human embryonic stem cells. Stem Cell Res Ther 2020; 11:163. [PMID: 32345350 PMCID: PMC7189473 DOI: 10.1186/s13287-020-01674-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/15/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human embryonic stem cells represent a potentially unlimited source of insulin-producing cells for diabetes therapy. While tremendous progress has been made in directed differentiation of human embryonic stem cells into IPCs in vitro, the mechanisms controlling its differentiation and function are not fully understood. Previous studies revealed that lysine-specific demethylase 1(LSD1) balanced the self-renewal and differentiation in human induced pluripotent stem cells and human embryonic stem cells. This study aims to explore the role of LSD1 in directed differentiation of human embryonic stem cells into insulin-producing cells. METHODS Human embryonic stem cell line H9 was induced into insulin-producing cells by a four-step differentiation protocol. Lentivirus transfection was applied to knockdown LSD1 expression. Immunofluorescence assay and flow cytometry were utilized to check differentiation efficiency. Western blot was used to examine signaling pathway proteins and differentiation-associated proteins. Insulin/C-peptide release was assayed by ELISA. Statistical analysis between groups was carried out with one-way ANOVA tests or a student's t test when appropriate. RESULTS Inhibition or silencing LSD1 promotes the specification of pancreatic progenitors and finally the commitment of functional insulin-producing β cells; Moreover, inhibition or silencing LSD1 activated ERK signaling and upregulated pancreatic progenitor associated genes, accelerating pre-maturation of pancreatic progenitors, and conferred the NKX6.1+ population with better proliferation ability. IPCs with LSD1 inhibitor tranylcypromine treatment displayed enhanced insulin secretion in response to glucose stimulation. CONCLUSIONS We identify a novel role of LSD1 inhibition in promoting IPCs differentiation from hESCs, which would be emerged as potential intervention for generation of functional pancreatic β cells to cure diabetes.
Collapse
Affiliation(s)
- Fei He
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Ning Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Jing-Bo Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China
| | - Hua-Dong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China.
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China.
| |
Collapse
|
34
|
Yang H, Liang Y, Cao Y, Cao Y, Fan Z. Homeobox C8 inhibited the osteo-/dentinogenic differentiation and migration ability of stem cells of the apical papilla via activating KDM1A. J Cell Physiol 2020; 235:8432-8445. [PMID: 32246725 DOI: 10.1002/jcp.29687] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
Enhancing the functions of mesenchymal stem cells (MSCs) is considered a potential approach for promoting tissue regeneration. In the present study, we investigate the role of HOXC8 in regulating differentiation and migration by using stem cells of the apical papilla (SCAPs). Our results showed that overexpression of HOXC8 suppressed the osteo-/dentinogenic differentiation, as detected by measuring alkaline phosphatase activity, in vitro mineralization, and the expressions of dentin sialophosphoprotein, dentin matrix acidic phosphoprotein 1, bone sialoprotein, runt-related transcription factor 2, and osterix in SCAPs, and inhibited in vivo osteo-/dentinogenesis of SCAPs. In addition, knockdown of HOXC8 promoted the osteo-/dentinogenic differentiation potentials of SCAPs. Mechanically, HOXC8 enhanced KDM1A transcription by directly binding to its promoter. HOXC8 and KDM1A also inhibited the migration and chemotaxis abilities of SCAPs. To sum up, HOXC8 negatively regulated the osteo-/dentinogenic differentiation and migration abilities of SCAPs by directly enhancing KDM1A transcription and indicated that HOXC8 and KDM1A could serve as potential targets for enhancing dental MSC mediated tissue regeneration.
Collapse
Affiliation(s)
- Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatology Hospital, Capital Medical University, Beijing, China
| | - Yuncun Liang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatology Hospital, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatology Hospital, Capital Medical University, Beijing, China
| | - Yu Cao
- Department of General Dentistry, School of Stomatology, Beijing Stomatology Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Liu Z, Zhang G, Deng M, Yang H, Pang J, Cai Y, Wan Y, Wang F. Inhibition of lysine-specific histone demethylase 1A results in meiotic aberration during oocyte maturation in vitro in goats. Theriogenology 2019; 143:168-178. [PMID: 31881434 DOI: 10.1016/j.theriogenology.2019.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
Histone methylation is associated with oocyte maturation in several species and is also expected in goat oocytes, while the mechanism is still unclear. Therefore, single-cell RNA sequencing (scRNA-seq) was performed on goat germinal vesicle (GV) and metaphase II (MII) oocytes, and the functions of lysine-specific histone demethylase 1A (LSD1), one of the differentially expressed genes (DEGs) were investigated during in vitro maturation (IVM) of goat oocytes. Through scRNA-seq, 4516 DEGs were identified from GV oocytes and MII oocytes in goats, among which there were 16 histone methyltransferase and demethylase DEGs (including LSD1). The functions of LSD1 during IVM of goat oocytes were investigated through its inhibitor, GSK-LSD1. We found that the first polar body extrusion rate of goat oocytes significantly reduced with an increase in GSK-LSD1 concentration supplemented into IVM medium (0 μM: 58.84 ± 0.95%; 2.5 μM: 52.14 ± 0.51%, P < 0.01; 50 μM: 41.22 ± 0.42%, P < 0.001; 100 μM: 29.78 ± 1.78%, P < 0.001). Moreover, compared with the control group, the level of H3K4me2 methylation and p-H2AX in goat oocytes significantly increased (P < 0.001 and P < 0.01, respectively) upon 50-μM GSK-LSD1 treatment for 12 h. Furthermore, abnormalities in spindle assembly (25.94 ± 1.02% vs. 71.15 ± 3.32%; P < 0.01) and chromosome alignment (22.93 ± 1.11% vs. 76.03 ± 3.25%; P < 0.01) were observed, and cytoskeletal organization (15.31 ± 1.60% vs. 67.50 ± 3.09%; P < 0.001) was disrupted upon treatment with 50-μM GSK-LSD1 for 12 h, which compared with that in the control group. Additionally, the ratio of BCL2:BAX significantly higher (P < 0.01) in oocytes with 50-μM GSK-LSD1 treatment than that in control group. Collectively, these results indicate the important role of LSD1 in meiotic maturation of goat oocytes. Our data not only clarify dynamic changes in mRNA during oocyte maturation but also provide a theoretical basis and technical means for further studies of meiotic maturation of goat oocytes.
Collapse
Affiliation(s)
- Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
36
|
LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target. Cancers (Basel) 2019; 11:cancers11121821. [PMID: 31756917 PMCID: PMC6966601 DOI: 10.3390/cancers11121821] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
A new exciting area in cancer research is the study of cancer stem cells (CSCs) and the translational implications for putative epigenetic therapies targeted against them. Accumulating evidence of the effects of epigenetic modulating agents has revealed their dramatic consequences on cellular reprogramming and, particularly, reversing cancer stemness characteristics, such as self-renewal and chemoresistance. Lysine specific demethylase 1 (LSD1/KDM1A) plays a well-established role in the normal hematopoietic and neuronal stem cells. Overexpression of LSD1 has been documented in a variety of cancers, where the enzyme is, usually, associated with the more aggressive types of the disease. Interestingly, recent studies have implicated LSD1 in the regulation of the pool of CSCs in different leukemias and solid tumors. However, the precise mechanisms that LSD1 uses to mediate its effects on cancer stemness are largely unknown. Herein, we review the literature on LSD1's role in normal and cancer stem cells, highlighting the analogies of its mode of action in the two biological settings. Given its potential as a pharmacological target, we, also, discuss current advances in the design of novel therapeutic regimes in cancer that incorporate LSD1 inhibitors, as well as their future perspectives.
Collapse
|
37
|
Fawal MA, Davy A. Impact of Metabolic Pathways and Epigenetics on Neural Stem Cells. Epigenet Insights 2018; 11:2516865718820946. [PMID: 30627699 PMCID: PMC6311566 DOI: 10.1177/2516865718820946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Balancing self-renewal with differentiation is crucial for neural stem cells (NSC) functions to ensure tissue development and homeostasis. Over the last years, multiple studies have highlighted the coupling of either metabolic or epigenetic reprogramming to NSC fate decisions. Metabolites are essential as they provide the energy and building blocks for proper cell function. Moreover, metabolites can also function as substrates and/or cofactors for epigenetic modifiers. It is becoming more evident that metabolic alterations and epigenetics rewiring are highly intertwined; however, their relation regarding determining NSC fate is not well understood. In this review, we summarize the major metabolic pathways and epigenetic modifications that play a role in NSC. We then focus on the notion that nutrients availability can function as a switch to modify the epigenetic machinery and drive NSC sequential differentiation during embryonic neurogenesis.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI) and Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI) and Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
38
|
Duan Y, Qin W, Suo F, Zhai X, Guan Y, Wang X, Zheng Y, Liu H. Design, synthesis and in vitro evaluation of stilbene derivatives as novel LSD1 inhibitors for AML therapy. Bioorg Med Chem 2018; 26:6000-6014. [PMID: 30448189 DOI: 10.1016/j.bmc.2018.10.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
LSD1 is implicated in a number of malignancies and has emerged as an exciting target. As part of our sustained efforts to develop novel reversible LSD1 inhibitors for epigenetic therapy of cancers, in this study, we reported a series of stilbene derivatives and evaluated their LSD1 inhibitory activities, obtaining several compounds as potent LSD1 inhibitors with IC50 values in submicromolar range. Enzyme kinetics studies and SPR assay suggested that compound 8c, the most active LSD1 inhibitor (IC50 = 283 nM), potently inhibited LSD1 in a reversible and FAD competitive manner. Consistent with the kinetics data, molecular docking showed that compound 8c can be well docked into the FAD binding site of LSD1. Flow cytometry analysis showed that compound 8c was capable of up-regulating the expression of the surrogate cellular biomarker CD86 in THP-1 human leukemia cells, suggesting the ability to block LSD1 activity in cells. Compound 8c showed good inhibition against THP-1 and MOLM-13 cells with IC50 values of 5.76 and 8.34 μM, respectively. Moreover, compound 8c significantly inhibited colony formation of THP-1 cells dose dependently.
Collapse
Affiliation(s)
- Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wenping Qin
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fengzhi Suo
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiaoyu Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yuanyuan Guan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaojuan Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Yichao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
39
|
Wang L, Yang H, Lin X, Cao Y, Gao P, Zheng Y, Fan Z. KDM1A regulated the osteo/dentinogenic differentiation process of the stem cells of the apical papilla via binding with PLOD2. Cell Prolif 2018; 51. [DOI: 15.doi: 10.1111/cpr.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/14/2018] [Indexed: 05/19/2025] Open
Abstract
AbstractObjectivesDental tissue‐derived mesenchymal stem cells (MSCs)‐mediated pulp‐dentin regeneration is considered a potential approach for the regeneration of damaged teeth. Enhancing MSC‐mediated pulp‐dentin regeneration is based on an understanding of the molecular mechanisms underlying directed cell differentiation process. Histone demethylation enzyme, lysine demethylase 1A (KDM1A) can regulate the differentiation of some MSCs, but its role in dental tissue‐derived MSCs is unclear.Material and MethodsWe obtained SCAPs from immature teeth. Alkaline phosphatase (ALP) activity assay, Alizarin red staining, quantitative calcium analysis, osteogenesis‐related genes expression and in vivo transplantation experiment were used to explore the osteo/dentinogenic differentiation. Co‐immunoprecipitation (Co‐IP) assay was used to investigate the binding protein.ResultsKnock‐down of KDM1A reduced ALP activity and mineralization, promoted the expressions of osteo/dentinogenic differentiation markers DSPP, DMP1, BSP and key transcript factors, RUNX2, OSX, DLX2 in SCAPs, and also enhanced the osteo/dentinogenesis in vivo. In addition, KDM1A could associate with PLOD2 to form protein complex. And knock‐down of PLOD2 inhibited ALP activity and mineralization, and promoted the expressions of DSPP, DMP1, BSP, RUNX2, OSX and DLX2 in SCAPs.ConclusionsKDM1A might have different role in different stages of osteo/dentinogenic differentiation process by binding partner with PLOD2, and finally resulted in the inhibited function for the osteo/dentinogenesis in SCAPs. Our studies provided a further understanding of the regulatory mechanisms of dynamic osteo/dentinogenic differentiation process in dental tissue MSCs.
Collapse
Affiliation(s)
- Lijun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Department of Endodontics Capital Medical University School of Stomatology Beijing China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Department of Implant Dentistry Capital Medical University School of Stomatology Beijing China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Peipei Gao
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Ying Zheng
- Department of Endodontics Capital Medical University School of Stomatology Beijing China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| |
Collapse
|
40
|
Wu D, Xu Y, Zou Y, Zuo Q, Huang S, Wang S, Lu X, He X, Wang J, Wang T, Sun L. Long Noncoding RNA 00473 Is Involved in Preeclampsia by LSD1 Binding-Regulated TFPI2 Transcription in Trophoblast Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:381-392. [PMID: 30195776 PMCID: PMC6036867 DOI: 10.1016/j.omtn.2018.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 11/25/2022]
Abstract
Preeclampsia (PE) is a syndrome manifested by high blood pressure that could develop in the latter half of pregnancy; however, the underlying mechanisms are not understood. Recent evidence points to the function of noncoding RNAs (ncRNAs) as novel regulators of the invasion, migration, proliferation, and apoptosis of trophoblasts involved in the development of placental vasculature. Here, we investigated the role of long intergenic ncRNA 00473 (linc00473) in PE and the associated molecular mechanisms. The expression of linc00473 was downregulated in the placenta of patients with severe PE as revealed by qRT-PCR analysis. In vitro, linc00473 knockdown in trophoblast cell lines HTR-8/SVneo, JAR, and JEG3 significantly inhibited cell proliferation and promoted apoptosis, whereas linc00473 overexpression stimulated trophoblast proliferation. The mechanistic insights were provided by RNA-seq and qRT-PCR, which revealed that linc00473 could regulate the transcription of genes relevant to cell growth, migration, and apoptosis. In particular, linc00473 inhibited the expression of tissue factor pathway inhibitor 2 (TFPI2) through binding to lysine-specific demethylase 1 (LSD1). These results indicate that linc00473 could be involved in the pathogenesis and development of PE and may be a candidate biomarker as well as therapeutic target for this disease.
Collapse
Affiliation(s)
- Dan Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yanfen Zou
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, 20 Yuhuangding East Road, Shandong Province, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shiyun Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Sailan Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiyi Lu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Jing Wang
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Tianjun Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
41
|
Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. ENVIRONMENTAL RESEARCH 2018; 164:45-52. [PMID: 29476947 PMCID: PMC8085909 DOI: 10.1016/j.envres.2018.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 06/01/2023]
Abstract
In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As food intake/appetite is one of the critical elements contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we studied the effects of BPA on NPC proliferation and differentiation, including putative signal and appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) protein expression. With NPC differentiation, BPA exposure increased appetite peptide and reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-mediated endocrine disruption by BPA during early life.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Monica G Ferrini
- Department of Health and Life Sciences Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA, USA
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Juanita K Jellyman
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Michael G Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA, USA
| |
Collapse
|
42
|
Ankam S, Teo BKK, Pohan G, Ho SWL, Lim CK, Yim EKF. Temporal Changes in Nucleus Morphology, Lamin A/C and Histone Methylation During Nanotopography-Induced Neuronal Differentiation of Stem Cells. Front Bioeng Biotechnol 2018; 6:69. [PMID: 29904629 PMCID: PMC5990852 DOI: 10.3389/fbioe.2018.00069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/14/2023] Open
Abstract
Stem cell differentiation can be regulated by biophysical cues such as nanotopography. It involves sensing and integration of these biophysical cues into their transcriptome with a mechanism that is yet to be discovered. In addition to the cytoskeletal and focal adhesion remodeling, nanotopography has also been shown to modulate nucleus morphology. Here, we studied the effect of nanotopography on the temporal changes in nuclei of human embryonic stem cells (hESCs) and human mesenchymal stem cells (hMSCs). Using a high throughput Multi-architecture (MARC) chip analysis, the circularity of the stem cell nuclei changed significantly on different patterns. Human ESCs and MSCs showed different temporal changes in nucleus morphology, lamin A/C expression and histone methylation during topography-induced neuronal differentiation. In hESCs, the expression of nuclear matrix protein, lamin A/C during neuronal differentiation of hESCs on PDMS samples were weakly detected in the first 7 days of differentiation. The histone 3 trimethylation on Lysine 9 (H3K9me3) decreased after differentiation initiated and showed temporal changes in their expression and organization during neuronal differentiation. In hMSCs, the expression of lamin A/C was significantly increased after the first 24 h of cell culture. The quantitative analysis of histone methylation also showed a significant increase in hMSCs histone methylation on 250 nm anisotropic nanogratings within the first 24 h of seeding. This reiterates the importance of cell-substrate sensing within the first 24 h for adult stem cells. The lamin A/C expression and histone methylation shows a correlation of epigenetic changes in early events of differentiation, giving an insight on how extracellular nanotopographical cues are transduced into nuclear biochemical signals. Collectively, these results provide more understanding into the nuclear regulation of the mechanotransduction of nanotopographical cues in stem cell differentiation.
Collapse
Affiliation(s)
- Soneela Ankam
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Benjamin K K Teo
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Grace Pohan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Shawn W L Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon K Lim
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Evelyn K F Yim
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore.,Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada.,Department of Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
43
|
Wang L, Yang H, Lin X, Cao Y, Gao P, Zheng Y, Fan Z. KDM1A regulated the osteo/dentinogenic differentiation process of the stem cells of the apical papilla via binding with PLOD2. Cell Prolif 2018; 51:e12459. [PMID: 29656462 DOI: 10.1111/cpr.12459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/14/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Dental tissue-derived mesenchymal stem cells (MSCs)-mediated pulp-dentin regeneration is considered a potential approach for the regeneration of damaged teeth. Enhancing MSC-mediated pulp-dentin regeneration is based on an understanding of the molecular mechanisms underlying directed cell differentiation process. Histone demethylation enzyme, lysine demethylase 1A (KDM1A) can regulate the differentiation of some MSCs, but its role in dental tissue-derived MSCs is unclear. MATERIAL AND METHODS We obtained SCAPs from immature teeth. Alkaline phosphatase (ALP) activity assay, Alizarin red staining, quantitative calcium analysis, osteogenesis-related genes expression and in vivo transplantation experiment were used to explore the osteo/dentinogenic differentiation. Co-immunoprecipitation (Co-IP) assay was used to investigate the binding protein. RESULTS Knock-down of KDM1A reduced ALP activity and mineralization, promoted the expressions of osteo/dentinogenic differentiation markers DSPP, DMP1, BSP and key transcript factors, RUNX2, OSX, DLX2 in SCAPs, and also enhanced the osteo/dentinogenesis in vivo. In addition, KDM1A could associate with PLOD2 to form protein complex. And knock-down of PLOD2 inhibited ALP activity and mineralization, and promoted the expressions of DSPP, DMP1, BSP, RUNX2, OSX and DLX2 in SCAPs. CONCLUSIONS KDM1A might have different role in different stages of osteo/dentinogenic differentiation process by binding partner with PLOD2, and finally resulted in the inhibited function for the osteo/dentinogenesis in SCAPs. Our studies provided a further understanding of the regulatory mechanisms of dynamic osteo/dentinogenic differentiation process in dental tissue MSCs.
Collapse
Affiliation(s)
- Lijun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Peipei Gao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Ying Zheng
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
44
|
Kong SY, Kim W, Lee HR, Kim HJ. The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells. FASEB J 2018; 32:1108-1119. [PMID: 29212818 PMCID: PMC6266631 DOI: 10.1096/fj.201700780r] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/27/2017] [Indexed: 01/20/2023]
Abstract
Histone demethylases are known to play important roles in the determination of the fate of stem cells and in cancer progression. In this study, we show that the lysine 4 of histone H3 (H3K4), lysine-specific demethylase 5A (KDM5A) is essential for the repression of astrocyte differentiation in neural progenitor cells (NPCs), and its expression is regulated by translational machinery. Knockdown of KDM5A in NPCs increased astrocytogenesis, and conversely, KDM5A overexpression reduced the transcriptional activity of the Gfap promoter. Induction of astrocytogenesis by ciliary neurotrophic factor (CNTF) or small interfering RNA-induced knockdown of KDM5A decreased KDM5A recruitment to the Gfap promoter and increased H3K4 methylation. The transcript level of Kdm5a was high, whereas KDM5A protein level was low in CNTF induced astrocytes. During astroglial differentiation, translational activity indicated by the phosphorylation of eukaryotic translation initiation factor (eIF)4E was decreased. Treatment of NPCs with the cercosporamide, a MAPK-interacting kinases inhibitor, reduced eIF4E phosphorylation and KDM5A protein expression, increased GFAP levels, and enhanced astrocytogenesis. These data suggest that KDM5A is a key regulator that maintains NPCs in an undifferentiated state by repressing astrocytogenesis and that its expression is translationally controlled during astrocyte differentiation. Thus, KDM5A is a promising target for the modulation of NPC fate.-Kong, S.-Y., Kim, W., Lee, H.-R., Kim, H.-J. The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells.
Collapse
Affiliation(s)
- Sun-Young Kong
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy,
Chung-Ang University, Seoul, South Korea
| | - Woosuk Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy,
Chung-Ang University, Seoul, South Korea
| | - Ha-Rim Lee
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy,
Chung-Ang University, Seoul, South Korea
| | - Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy,
Chung-Ang University, Seoul, South Korea
| |
Collapse
|
45
|
Honda M, Nakashima K, Katada S. Epigenetic Regulation of Human Neural Stem Cell Differentiation. Results Probl Cell Differ 2018; 66:125-136. [PMID: 30209657 DOI: 10.1007/978-3-319-93485-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emerging evidence has demonstrated that epigenetic programs influence many aspects of neural stem cell (NSC) behavior, including proliferation and differentiation. It is becoming apparent that epigenetic mechanisms, such as DNA methylation, histone modifications, and noncoding RNA expression, are spatiotemporally regulated and that these intracellular programs, in concert with extracellular signals, ensure appropriate gene activation. Here we summarize recent advances in understanding of the epigenetic regulation of human NSCs directly isolated from the brain or produced from pluripotent stem cells (embryonic and induced pluripotent stem cells, respectively).
Collapse
Affiliation(s)
- Mizuki Honda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
46
|
Hirano K, Namihira M. FAD influx enhances neuronal differentiation of human neural stem cells by facilitating nuclear localization of LSD1. FEBS Open Bio 2017; 7:1932-1942. [PMID: 29226080 PMCID: PMC5715241 DOI: 10.1002/2211-5463.12331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/07/2017] [Accepted: 09/30/2017] [Indexed: 01/09/2023] Open
Abstract
Flavin adenine dinucleotide (FAD), synthesized from riboflavin, is redox cofactor in energy production and plays an important role in cell survival. More recently, riboflavin deficiency has been linked to developmental disorders, but its role in stem cell differentiation remains unclear. Here, we show that FAD treatment, using DMSO as a solvent, enabled an increase in the amount of intracellular FAD and promoted neuronal differentiation of human neural stem cells (NSCs) derived not only from fetal brain, but also from induced pluripotent stem cells. Depression of FAD‐dependent histone demethylase, lysine‐specific demethylase‐1 (LSD1), prevented FAD‐induced neuronal differentiation. Furthermore, FAD influx facilitated nuclear localization of LSD1 and its enzymatic activity. Together, these findings led us to propose that FAD contributes to proper neuronal production from NSCs in the human fetal brain during development.
Collapse
Affiliation(s)
- Kazumi Hirano
- Molecular Neurophysiology Research Group Biomedical Research Institute The National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group Biomedical Research Institute The National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| |
Collapse
|
47
|
Niwa H, Umehara T. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics 2017; 12:340-352. [PMID: 28277979 PMCID: PMC5453194 DOI: 10.1080/15592294.2017.1290032] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until 2004, many researchers believed that protein methylation in eukaryotic cells was an irreversible reaction. However, the discovery of lysine-specific demethylase 1 in 2004 drastically changed this view and the concept of chromatin regulation. Since then, the enzymes responsible for lysine demethylation and their cellular substrates, biological significance, and selective regulation have become major research topics in epigenetics and chromatin biology. Many cell-permeable inhibitors for lysine demethylases have been developed, including both target-specific and nonspecific inhibitors. Structural understanding of how these inhibitors bind to lysine demethylases is crucial both for validation of the inhibitors as chemical probes and for the rational design of more potent, target-specific inhibitors. This review focuses on published small-molecule inhibitors targeted at the two flavin adenine dinucleotide-dependent lysine demethylases, lysine-specific demethylases 1 and 2, and how the inhibitors interact with the tertiary structures of the enzymes.
Collapse
Affiliation(s)
- Hideaki Niwa
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan
| | - Takashi Umehara
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan.,b PRESTO, Japan Science and Technology Agency (JST) , Honcho, Kawaguchi , Saitama , Japan
| |
Collapse
|
48
|
Hirano K, Namihira M. New insight into LSD1 function in human cortical neurogenesis. NEUROGENESIS 2016; 3:e1249195. [PMID: 27900345 DOI: 10.1080/23262133.2016.1249195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
The cerebral cortex of primates has evolved massively and intricately in comparison to that of other species. Accumulating evidence indicates that this is caused by changes in cell biological features of neural stem cells (NSCs), which differentiate into neurons and glial cells during development. The fate of NSCs during rodent cortical development is stringently regulated by epigenetic factors, such as histone modification enzymes, but the role of these factors in human corticogenesis is largely unknown. We have recently discovered that a lysine-specific demethylase 1 (LSD1), which catalyzes the demethylation of methyl groups in the histone tail, plays a unique role in human fetal NSCs (hfNSCs). We show that, unlike the role previously reported in mice, LSD1 in hfNSCs is necessary for neuronal differentiation and controls the expression of HEYL, one of the NOTCH target genes, by modulating the methylation level of histones on its promoter region. Interestingly, LSD1-regulation of Heyl expression is not observed in mouse NSCs. Furthermore, we first demonstrated that HEYL is able to maintain the undifferentiated state of hfNSCs. Our findings provide a new insight indicating that LSD1 may be a key player in the development and characterization of the evolved cerebral cortex.
Collapse
Affiliation(s)
- Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST) , Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST) , Japan
| |
Collapse
|
49
|
Hino S, Kohrogi K, Nakao M. Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells. Cancer Sci 2016; 107:1187-92. [PMID: 27375009 PMCID: PMC5021031 DOI: 10.1111/cas.13004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms underlie the phenotypic plasticity of cells, while aberrant epigenetic regulation through genetic mutations and/or misregulated expression of epigenetic factors leads to aberrant cell fate determination, which provides a foundation for oncogenic transformation. Lysine‐specific demethylase‐1 (LSD1, KDM1A) removes methyl groups from methylated proteins, including histone H3, and is frequently overexpressed in various types of solid tumors and hematopoietic neoplasms. While LSD1 is involved in a wide variety of normal physiological processes, including stem cell maintenance and differentiation, it is also a key player in oncogenic processes, including compromised differentiation, enhanced cell motility and metabolic reprogramming. Here, we present an overview of how LSD1 epigenetically regulates cellular plasticity through distinct molecular mechanisms in different biological contexts. Targeted inhibition of the context‐dependent activities of LSD1 may provide a highly selective means to eliminate cancer cells.
Collapse
Affiliation(s)
- Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| | - Kensaku Kohrogi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|