1
|
Wang S, Wan L, Zhang X, Fang H, Zhang M, Li F, Yan D. ETS-1 in tumor immunology: implications for novel anti-cancer strategies. Front Immunol 2025; 16:1526368. [PMID: 40181983 PMCID: PMC11965117 DOI: 10.3389/fimmu.2025.1526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
ETS-1, a key member of the Erythroblast Transformation-Specific (ETS) transcription factor family, plays an important role in cell biology and medical research due to its wide expression profile and strong transcriptional regulation ability. It regulates fundamental biological processes, including cell proliferation, differentiation, and apoptosis, and is involved in tumorigenesis and metastasis, promoting malignant behaviors such as angiogenesis, matrix degradation, and cell migration. Given the association between ETS-1 overexpression and the aggressive characteristics of multiple malignancies, it represents a promising therapeutic target in cancer treatment. This study aims to systematically analyze the role of ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in cancer initiation, progression, and metastasis. It also investigates the differential expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its potential as a molecular marker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- SiYu Wang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - XiaoJun Zhang
- Academic Affairs Office, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - HaoXiang Fang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - MengYu Zhang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Feng Li
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - DaWei Yan
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| |
Collapse
|
2
|
Abdullayeva G, Liu H, Liu TC, Simmons A, Novelli M, Huseynova I, Lastun VL, Bodmer W. Goblet cell differentiation subgroups in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2414213121. [PMID: 39401352 PMCID: PMC11513979 DOI: 10.1073/pnas.2414213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
The poor prognosis of relatively undifferentiated cancers has long been recognized, suggesting that selection against differentiation and in favor of uncontrolled growth is one of the most powerful drivers of cancer progression. Goblet cells provide the mucous surface of the gut, and when present in colorectal cancers (CRC), the cancers are called mucinous. We have used the presence of MUC2, the main mucous product of goblet cells, and an associated gene product, TFF3, to classify a large panel of nearly 80 CRC-derived cell lines into five categories based on their levels of MUC2 and TFF3 expression. We have then shown that these five patterns of expression can be easily identified in the direct analysis of tumor specimens allowing a much finer characterization of CRCs with respect to the presence of goblet cell differentiation. In particular, about 30% of all CRCs fall into the category of expressing TFF3 but not MUC2, which has not previously been acknowledged. Using the cell line data, we suggest that there are up to 12 genes (MUC2, TFF3, ATOH1, SPDEF, CDX1, CDX2, GATA6, HES1, ETS2, OLFM4, TOX3, and LGR5) that may be involved in selection against goblet cell differentiation in CRC by changes in methylation rather than mutations. Of these, LGR5, which is particularly associated with lack of goblet cell features, may function in the control of differentiation rather than direct control of cell growth, as has so far mostly been assumed. These results emphasize the importance of methylation changes in driving cancer progression.
Collapse
Affiliation(s)
- Gulnar Abdullayeva
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, BakuAZ1073, Azerbaijan
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, OX3 7TY, United Kingdom
| | - Haoyu Liu
- Tencent Technology (Shenzhen) Co. Ltd., Shenzhen City518000, China
| | - Ta-Chun Liu
- Hayawaka Building, OxfordOX4 4GA, United Kingdom
| | - Alison Simmons
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, OxfordOX3 9DS, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Marco Novelli
- University College London Department of Pathology, LondonWC1E 6HX, United Kingdom
| | - Irada Huseynova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, BakuAZ1073, Azerbaijan
| | - Viorica L. Lastun
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
| | - Walter Bodmer
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
| |
Collapse
|
3
|
Choi Y, Lee Y, Kim JS, Zhang P, Kim J. USP39-Mediated Non-Proteolytic Control of ETS2 Suppresses Nuclear Localization and Activity. Biomolecules 2023; 13:1475. [PMID: 37892157 PMCID: PMC10604658 DOI: 10.3390/biom13101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
ETS2 is a member of the ETS family of transcription factors and has been implicated in the regulation of cell proliferation, differentiation, apoptosis, and tumorigenesis. The aberrant activation of ETS2 is associated with various human cancers, highlighting its importance as a therapeutic target. Understanding the regulatory mechanisms and interacting partners of ETS2 is crucial for elucidating its precise role in cellular processes and developing novel strategies to modulate its activity. In this study, we conducted binding assays using a human deubiquitinase (DUB) library and identified USP39 as a novel ETS2-binding DUB. USP39 interacts with ETS2 through their respective amino-terminal regions, and the zinc finger and PNT domains are not required for this binding. USP39 deubiquitinates ETS2 without affecting its protein stability. Interestingly, however, USP39 significantly suppresses the transcriptional activity of ETS2. Furthermore, we demonstrated that USP39 leads to a reduction in the nuclear localization of ETS2. Our findings provide valuable insights into the intricate regulatory mechanisms governing ETS2 function. Understanding the interplay between USP39 and ETS2 may have implications for therapeutic interventions targeting ETS2-related diseases, including cancer, where the dysregulation of ETS2 is frequently observed.
Collapse
Affiliation(s)
- Yunsik Choi
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Yuri Lee
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Jin Seo Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Peijing Zhang
- Department of Biological Pharmaceutics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
4
|
Berger M, Guiraud L, Dumas A, Sagnat D, Payros G, Rolland C, Vergnolle N, Deraison C, Cenac N, Racaud-Sultan C. Prenatal stress induces changes in PAR2- and M3-dependent regulation of colon primitive cells. Am J Physiol Gastrointest Liver Physiol 2022; 323:G609-G626. [PMID: 36283083 PMCID: PMC9722261 DOI: 10.1152/ajpgi.00061.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prenatal stress is associated with a high risk of developing adult intestinal pathologies, such as irritable bowel syndrome, chronic inflammation, and cancer. Although epithelial stem cells and progenitors have been implicated in intestinal pathophysiology, how prenatal stress could impact their functions is still unknown. We have investigated the proliferative and differentiation capacities of primitive cells using epithelial crypts isolated from colons of adult male and female mice whose mothers have been stressed during late gestation. Our results show that stem cell/progenitor proliferation and differentiation in vitro are negatively impacted by prenatal stress in male progeny. This is promoted by a reinforcement of the negative proliferative/differentiation control by the protease-activated receptor 2 (PAR2) and the muscarinic receptor 3 (M3), two G protein-coupled receptors present in the crypt. Conversely, prenatal stress does not change in vitro proliferation of colon primitive cells in female progeny. Importantly, this maintenance is associated with a functional switch in the M3 negative control of colonoid growth, becoming proliferative after prenatal stress. In addition, the proliferative role of PAR2 specific to females is maintained under prenatal stress, even though PAR2-targeted stress signals Dusp6 and activated GSK3β are increased, reaching the levels of males. An epithelial serine protease could play a critical role in the activation of the survival kinase GSK3β in colonoids from prenatally stressed female progeny. Altogether, our results show that following prenatal stress, colon primitive cells cope with stress through sexually dimorphic mechanisms that could pave the way to dysregulated crypt regeneration and intestinal pathologies.NEW & NOTEWORTHY Primitive cells isolated from mouse colon following prenatal stress and exposed to additional stress conditions such as in vitro culture, present sexually dimorphic mechanisms based on PAR2- and M3-dependent regulation of proliferation and differentiation. Whereas prenatal stress reinforces the physiological negative control exerted by PAR2 and M3 in crypts from males, in females, it induces a switch in M3- and PAR2-dependent regulation leading to a resistant and proliferative phenotype of progenitor.
Collapse
Affiliation(s)
- Mathieu Berger
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Laura Guiraud
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Alexia Dumas
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - David Sagnat
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Gaëlle Payros
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Corinne Rolland
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Nathalie Vergnolle
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France,2Department of Physiology and Pharmacology, Cumming School of
Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Céline Deraison
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Nicolas Cenac
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Claire Racaud-Sultan
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| |
Collapse
|
5
|
Fang G, Fan J, Ding Z, Li R, Lin K, Fu J, Huang Q, Zeng Y, Liu J. Prognostic and Predictive Value of Transcription Factors Panel for Digestive System Carcinoma. Front Oncol 2021; 11:670129. [PMID: 34745933 PMCID: PMC8566925 DOI: 10.3389/fonc.2021.670129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Digestive system carcinoma is one of the most devastating diseases worldwide. Lack of valid clinicopathological parameters as prognostic factors needs more accurate and effective biomarkers for high-confidence prognosis that guide decision-making for optimal treatment of digestive system carcinoma. The aim of the present study was to establish a novel model to improve prognosis prediction of digestive system carcinoma, with a particular interest in transcription factors (TFs). MATERIALS AND METHODS A TF-related prognosis model of digestive system carcinoma with data from TCGA database successively were processed by univariate and multivariate Cox regression analyses. Then, for evaluating the prognostic prediction value of the model, ROC curve and survival analysis were performed by external data from GEO database. Furthermore, we verified the expression of TFs expression by qPCR in digestive system carcinoma tissue. Finally, we constructed a TF clinical characteristics nomogram to furtherly predict digestive system carcinoma patient survival probability with TCGA database. RESULTS By Cox regression analysis, a panel of 17 TFs (NFIC, YBX2, ZBTB47, ZNF367, CREB3L3, HEYL, FOXD1, TIGD1, SNAI1, HSF4, CENPA, ETS2, FOXM1, ETV4, MYBL2, FOXQ1, ZNF589) was identified to present with powerful predictive performance for overall survival of digestive system carcinoma patients based on TCGA database. A nomogram that integrates TFs was established, allowing efficient prediction of survival probabilities and displaying higher clinical utility. CONCLUSION The 17-TF panel is an independent prognostic factor for digestive system carcinoma, and 17 TFs based nomogram might provide implication an effective approach for digestive system carcinoma patient management and treatment.
Collapse
Affiliation(s)
- Guoxu Fang
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jianhui Fan
- Department of Hepatology for Pregnancy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zongren Ding
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Rong Li
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital of Naval Medical University, Shanghai, China
| | - Kongying Lin
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Fu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Qizhen Huang
- The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiation Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yongyi Zeng
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jingfeng Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
6
|
Madunić K, Zhang T, Mayboroda OA, Holst S, Stavenhagen K, Jin C, Karlsson NG, Lageveen-Kammeijer GSM, Wuhrer M. Colorectal cancer cell lines show striking diversity of their O-glycome reflecting the cellular differentiation phenotype. Cell Mol Life Sci 2021; 78:337-350. [PMID: 32236654 PMCID: PMC7867528 DOI: 10.1007/s00018-020-03504-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Alterations in protein glycosylation in colorectal cancer (CRC) have been extensively studied using cell lines as models. However, little is known about their O-glycome and the differences in glycan biosynthesis in different cell types. To provide a better understanding of the variation in O-glycosylation phenotypes and their association with other molecular features, an in-depth O-glycosylation analysis of 26 different CRC cell lines was performed. The released O-glycans were analysed on porous graphitized carbon nano-liquid chromatography system coupled to a mass spectrometer via electrospray ionization (PGC-nano-LC-ESI-MS/MS) allowing isomeric separation as well as in-depth structural characterization. Associations between the observed glycan phenotypes with previously reported cell line transcriptome signatures were examined by canonical correlation analysis. Striking differences are observed between the O-glycomes of 26 CRC cell lines. Unsupervized principal component analysis reveals a separation between well-differentiated colon-like and undifferentiated cell lines. Colon-like cell lines are characterized by a prevalence of I-branched and sialyl Lewis x/a epitope carrying glycans, while most undifferentiated cell lines show absence of Lewis epitope expression resulting in dominance of truncated α2,6-core sialylated glycans. Moreover, the expression of glycan signatures associates with the expression of glycosyltransferases that are involved in their biosynthesis, providing a deeper insight into the regulation of glycan biosynthesis in different cell types. This untargeted in-depth screening of cell line O-glycomes paves the way for future studies exploring the role of glycosylation in CRC development and drug response leading to discovery of novel targets for the development of anti-cancer antibodies.
Collapse
Affiliation(s)
- Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | - Kathrin Stavenhagen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
7
|
Cao Q, Yang S, Lv Q, Liu Y, Li L, Wu X, Qu G, He X, Zhang X, Sun S, Li B, An J, Hu T, Xue J. Five ETS family members, ELF-1, ETV-4, ETV-3L, ETS-1, and ETS-2 upregulate human leukocyte-associated immunoglobulin-like receptor-1 gene basic promoter activity. Aging (Albany NY) 2019; 10:1390-1401. [PMID: 29915163 PMCID: PMC6046229 DOI: 10.18632/aging.101475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
Abstract
Human leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), an immunoinhibitory receptor, is expressed on most types of hematopoietic cells and some tumor cells. LAIR-1 plays an inhibitory role in immune cell maturation, differentiation, and activation. LAIR-1 is also involved in some autoimmune diseases and tumors. However, the mechanism controlling the regulation of the LAIR-1 gene is still unknown. In order to elucidate the molecular mechanisms involved in LAIR-1 regulation, in the present study, we cloned and characterized the promoter region of LAIR-1 gene using a series of truncated promoter plasmids in luciferase reporter assays. Our results show that the basic core promoter of LAIR-1 is located within the region -256/-8 relative to the translational start site. Our further studies indicate that five ETS transcription factors: ELF-1, ETV-4, ETV-3L, ETS-1 and ETS-2, can up-regulate the LAIR-1 basic promoter activity. Of these, ETS-2 is the most effective transcription factor. Moreover, ETS-2 was confirmed to interact directly with the basic promoter of LAIR-1. This study presents the first description of regions/factors capable of up-regulation the promoter activity of LAIR-1. This new knowledge contributes to understanding of the molecular mechanisms involved in LAIR-1 associated immune regulation and diseases.
Collapse
Affiliation(s)
- Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China.,Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China
| | - Shude Yang
- School of Agriculture, Ludong University, Shandong 264003, China
| | - Qing Lv
- Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China.,School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Li Li
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaojie Wu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Guiwu Qu
- Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China.,School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Xiaoli He
- The People's Liberation Army 107 Hospital, Affiliated Hospital of Bin Zhou Medical University, Yantai 264002, China
| | - Xiaoshu Zhang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Shuqin Sun
- School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Boqing Li
- Department of Microbiology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Jing An
- School of Medicine, University of California - San Diego, La Jolla, CA 92037, USA
| | - Tao Hu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Jiangnan Xue
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| |
Collapse
|
8
|
Yang L, Zhu Y, Kong D, Gong J, Yu W, Liang Y, Nie Y, Teng CB. EGF suppresses the expression of miR-124a in pancreatic β cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int J Biol Sci 2019; 15:2561-2575. [PMID: 31754329 PMCID: PMC6854373 DOI: 10.7150/ijbs.34985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is characterized by pancreatic β cell dysfunction. Previous studies have indicated that epidermal growth factor (EGF) and microRNA-124a (miR-124a) play opposite roles in insulin biosynthesis and secretion by beta cells. However, the underlying mechanisms remain poorly understood. In the present study, we demonstrated that EGF could inhibit miR-124a expression in beta cell lines through downstream signaling pathways, including mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) cascades. Further, the transcription factor ETS2, a member of the ETS (E26 transformation-specific) family, was identified to be responsible for the EGF-mediated suppression of miR-124a expression, which was dependent on ETS2 phosphorylation at threonine 72. Activation of ETS2 decreased miR-124a promoter transcriptional activity through the putative conserved binding sites AGGAANA/TN in three miR-124a promoters located in different chromosomes. Of note, ETS2 played a positive role in regulating beta cell function-related genes, including miR-124a targets, Forkhead box a2 (FOXA2) and Neurogenic differentiation 1 (NEUROD1), which may have partly been through the inhibition of miR-124 expression. Knockdown and overexpression of ETS2 led to the prevention and promotion of insulin biosynthesis respectively, while barely affecting the secretion ability. These results suggest that EGF may induce the activation of ETS2 to inhibit miR-124a expression to maintain proper beta cell functions and that ETS2, as a novel regulator of insulin production, is a potential therapeutic target for diabetes mellitus treatment.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuansen Zhu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Delin Kong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiawei Gong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wen Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuzhe Nie
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, Quist M, Nowak JA, Nishihara R, Qian ZR, Inamura K, Morikawa T, Nosho K, Abril-Rodriguez G, Connolly C, Escuin-Ordinas H, Geybels MS, Grady WM, Hsu L, Hu-Lieskovan S, Huyghe JR, Kim YJ, Krystofinski P, Leiserson MDM, Montoya DJ, Nadel BB, Pellegrini M, Pritchard CC, Puig-Saus C, Quist EH, Raphael BJ, Salipante SJ, Shin DS, Shinbrot E, Shirts B, Shukla S, Stanford JL, Sun W, Tsoi J, Upfill-Brown A, Wheeler DA, Wu CJ, Yu M, Zaidi SH, Zaretsky JM, Gabriel SB, Lander ES, Garraway LA, Hudson TJ, Fuchs CS, Ribas A, Ogino S, Peters U. Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discov 2018; 8:730-749. [PMID: 29510987 DOI: 10.1158/2159-8290.cd-17-1327] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion.Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 663.
Collapse
Affiliation(s)
- Catherine S Grasso
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California. .,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Daniel K Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xinmeng Jasmine Mu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael Quist
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kentaro Inamura
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Teppei Morikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Katsuhiko Nosho
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Gabriel Abril-Rodriguez
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Charles Connolly
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Helena Escuin-Ordinas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Milan S Geybels
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Siwen Hu-Lieskovan
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yeon Joo Kim
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Paige Krystofinski
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Mark D M Leiserson
- Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Dennis J Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Brian B Nadel
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Cristina Puig-Saus
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Elleanor H Quist
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Ben J Raphael
- Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Stephen J Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Eve Shinbrot
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Brian Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Sachet Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Statistics, Iowa State University, Ames, Iowa
| | - Janet L Stanford
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Alexander Upfill-Brown
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Jesse M Zaretsky
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada.,AbbVie Inc., Redwood City, California
| | - Charles S Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Yale Cancer Center, New Haven, Connecticut.,Department of Medicine, Yale School of Medicine, New Haven, Connecticut.,Smilow Cancer Hospital, New Haven, Connecticut
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Hong MJ, Lee SY, Choi JE, Jin CC, Kang HJ, Baek SA, Lee SY, Shin KM, Jeong JY, Lee WK, Yoo SS, Lee J, Cha SI, Kim CH, Son JW, Park JY. A genetic variation in microRNA target site of ETS2 is associated with clinical outcomes of paclitaxel-cisplatin chemotherapy in non-small cell lung cancer. Oncotarget 2017; 7:15948-58. [PMID: 26893365 PMCID: PMC4941289 DOI: 10.18632/oncotarget.7433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/06/2016] [Indexed: 11/25/2022] Open
Abstract
The present study was performed to investigate the association of single nucleotide polymorphisms (SNPs) located in the miRNA target sites with the clinical outcomes of first line paclitaxel-cisplatin chemotherapy in advanced NSCLC. Eighty SNPs in miRNA binding sites of cancer related genes selected from 18,500 miRNA:target bindings in crosslinking, ligation, and sequencing of hybrids (CLASH) data were investigated in 379 advanced NSCLC patients using a sequenom mass spectrometry-based genotype assay. qRT-PCR and luciferase assay were conducted to examine functional relevance of potentially functional SNPs in miRNA binding sites. Of the 80 SNPs analyzed, 16 SNPs were significantly associated with the clinical outcomes after chemotherapy. Among these, ANAPC1 rs3814026C>T, ETS2 rs461155A>G, SORBS1 rs7081076C>A and POLR2A rs2071504C>T could predict both chemotherapy response and survival. Notably, ETS2 rs461155A>G was significantly associated with decreased ETS2 mRNA expression in both tumor and paired normal lung tissues (Ptrend = 4 × 10−7, and 3 × 10−4, respectively). Consistently, a decreased expression of the reporter gene for the G allele of rs461155 compared with the A allele was observed by luciferase assay. These findings suggest that the four SNPs, especially ETS2 rs461155A>G, could be used as biomarkers predicting the clinical outcomes of NSCLC patients treated with first-line paclitaxel-cisplatin chemotherapy.
Collapse
Affiliation(s)
- Mi Jeong Hong
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jin Eun Choi
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Cheng Cheng Jin
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Hyo Jung Kang
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Sun Ah Baek
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - So Yeon Lee
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Won Kee Lee
- Biostatistics Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Jae Yong Park
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
11
|
Plotnik JP, Hollenhorst PC. Interaction with ZMYND11 mediates opposing roles of Ras-responsive transcription factors ETS1 and ETS2. Nucleic Acids Res 2017; 45:4452-4462. [PMID: 28119415 PMCID: PMC5416753 DOI: 10.1093/nar/gkx039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of RAS/MAPK signaling is a driver of over one third of all human carcinomas. The homologous transcription factors ETS1 and ETS2 mediate activation of gene expression programs downstream of RAS/MAPK signaling. ETS1 is important for oncogenesis in many tumor types. However, ETS2 can act as an oncogene in some cellular backgrounds, and as a tumor suppressor in others, and the molecular mechanism responsible for this cell-type specific function remains unknown. Here, we show that ETS1 and ETS2 can regulate a cell migration gene expression program in opposite directions, and provide the first comparison of the ETS1 and ETS2 cistromes. This genomic data and an ETS1 deletion line reveal that the opposite function of ETS2 is a result of binding site competition and transcriptional attenuation due to weaker transcriptional activation by ETS2 compared to ETS1. This weaker activation was mapped to the ETS2 N-terminus and a specific interaction with the co-repressor ZMYND11 (BS69). Furthermore, ZMYND11 expression levels in patient tumors correlated with oncogenic versus tumor suppressive roles of ETS2. Therefore, these data indicate a novel and specific mechanism allowing ETS2 to switch between oncogenic and tumor suppressive functions in a cell-type specific manner.
Collapse
Affiliation(s)
- Joshua P Plotnik
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Genomic analysis of adult B-ALL identifies potential markers of shorter survival. Leuk Res 2017; 56:44-51. [DOI: 10.1016/j.leukres.2017.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/02/2017] [Accepted: 01/29/2017] [Indexed: 11/17/2022]
|
13
|
Li Q, Yang L, Han K, Zhu L, Zhang Y, Ma S, Zhang K, Yang B, Guan F. Ets2 knockdown inhibits tumorigenesis in esophageal squamous cell carcinoma in vivo and in vitro. Oncotarget 2016; 7:61458-61468. [PMID: 27556183 PMCID: PMC5308664 DOI: 10.18632/oncotarget.11369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/08/2016] [Indexed: 01/13/2023] Open
Abstract
Increased expression of Ets2 is reported upregulated in esophageal squamous cell carcinoma tissue. However, the function of Ets2 in carcinogenesis of ESCC is poorly understood. Here, the rise of Ets2 was confirmed in ESCC cells and Ets2 depletion by RNA interference promotes cell apoptosis, inhibits cell proliferation, attenuates cell invasion and induces cell cycle G0/G1 arrest in vitro. Moreover, in vivo, Xenograft mouse model studies showed Ets2 knockdown inhibits tumor formation and metastasis significantly. Furthermore, Ets2 depletion inactivates the mTOR/p70S6K signaling pathway both in vitro and in vivo. Taken together, these findings strongly suggest that a critical role of Ets2 in human ESCC pathogenesis via the inactivation of the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Qinghua Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kang Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liqiang Zhu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fangxia Guan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
14
|
Linn DE, Penney KL, Bronson RT, Mucci LA, Li Z. Deletion of Interstitial Genes between TMPRSS2 and ERG Promotes Prostate Cancer Progression. Cancer Res 2016; 76:1869-81. [PMID: 26880803 DOI: 10.1158/0008-5472.can-15-1911] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/23/2016] [Indexed: 11/16/2022]
Abstract
TMPRSS2-ERG gene fusions that occur frequently in human prostate cancers can be generated either through insertional chromosomal rearrangement or by intrachromosomal deletion. Genetically, a key difference between these two mechanisms is that the latter results in deletion of a ∼3-Mb interstitial region containing genes with unexplored roles in prostate cancer. In this study, we characterized two mouse models recapitulating TMPRSS2-ERG insertion or deletion events in the background of prostate-specific PTEN deficiency. We found that only the mice that lacked the interstitial region developed prostate adenocarcinomas marked by poor differentiation and epithelial-to-mesenchymal transition. Mechanistic investigations identified several interstitial genes, including Ets2 and Bace2, whose reduced expression correlated in the gene homologs in human prostate cancer with biochemical relapse and lethal disease. Accordingly, PTEN-deficient mice with prostate-specific knockout of Ets2 exhibited marked progression of prostate adenocarcinomas that was partly attributed to activation of MAPK signaling. Collectively, our findings established that Ets2 is a tumor suppressor gene in prostate cancer, and its loss along with other genes within the TMPRSS2-ERG interstitial region contributes to disease progression. Cancer Res; 76(7); 1869-81. ©2016 AACR.
Collapse
Affiliation(s)
- Douglas E Linn
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kathryn L Penney
- Channing Division of Network Medicine, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | | | - Lorelei A Mucci
- Channing Division of Network Medicine, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Yasuda M, Hatanaka T, Shirato H, Nishioka T. Involvement of UTR-dependent gene expression in the maintenance of cancer stem cell like phenotypes. Oncol Lett 2016; 10:3171-3176. [PMID: 26722307 DOI: 10.3892/ol.2015.3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
The present study demonstrated the acquisition of additional malignant characteristics in irradiated mouse fibrosarcoma cells compared with the parent cells. Several reporter assays indicated that hypoxia-inducible factor (HIF)-1α, activator protein-1 and Ets-dependent transcription were activated in irradiated cells. The cis-elements in the 5'-untranslated region (UTR) of these transcription factors plays a major role in their expression in surviving irradiated cancer cells. By contrast, there were no evident differences between the 3'-UTR-dependent repression demonstrated by parent cells and irradiated cells. A small population of parental fibrosarcoma cells was also found to exhibit the same enhanced 5'-UTR-dependent HIF-1α expression as that demonstrated by irradiated cells. These observations may indicate that high-dose X-ray irradiation affects the majority of proliferating cancer cells, but not the cancer stem cells (CSCs), and an increased CSC population may explain the progressive phenotypes of the irradiated cells. It appears likely that the transcription factors that maintain stemness are regulated by the same 5'-UTR-dependent mechanism.
Collapse
Affiliation(s)
- Motoaki Yasuda
- Department of Oral Pathobiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586, Japan
| | - Tomoyuki Hatanaka
- Department of Oral Pathobiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586, Japan
| | - Hiroki Shirato
- Department of Radiology and Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Takeshi Nishioka
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
16
|
Roche M, Wierinckx A, Croze S, Rey C, Legras-Lachuer C, Morel AP, Fusco A, Raverot G, Trouillas J, Lachuer J. Deregulation of miR-183 and KIAA0101 in Aggressive and Malignant Pituitary Tumors. Front Med (Lausanne) 2015; 2:54. [PMID: 26322309 PMCID: PMC4530307 DOI: 10.3389/fmed.2015.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/22/2015] [Indexed: 01/15/2023] Open
Abstract
Changes in microRNAs (miRNAs) expression in many types of cancer suggest that they may be involved in crucial steps during tumor progression. Indeed, miRNAs deregulation has been described in pituitary tumorigenesis, but few studies have described their role in pituitary tumor progression toward aggressiveness and malignancy. To assess the role of miRNAs within the hierarchical cascade of events in prolactin (PRL) tumors during progression, we used an integrative genomic approach to associate clinical-pathological features, global miRNA expression, and transcriptomic profiles of the same human tumors. We describe the specific down-regulation of one principal miRNA, miR-183, in the 8 aggressive (A, grade 2b) compared to the 18 non-aggressive (NA, grades 1a, 2a) PRL tumors. We demonstrate that it acts as an anti-proliferative gene by directly targeting KIAA0101, which is involved in cell cycle activation and inhibition of p53-p21-mediated cell cycle arrest. Moreover, we show that miR-183 and KIAA0101 expression significantly correlate with the main markers of pituitary tumors aggressiveness, Ki-67 and p53. These results confirm the activation of proliferation in aggressive and malignant PRL tumors compared to non-aggressive ones. Importantly, these data also demonstrate the ability of such an integrative genomic strategy, applied in the same human tumors, to identify the molecular mechanisms responsible for tumoral progression even from a small cohort of patients.
Collapse
Affiliation(s)
- Magali Roche
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ViroScan3D , Trévoux , France
| | - Anne Wierinckx
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Séverine Croze
- Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Catherine Rey
- ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon , Lyon , France ; ViroScan3D , Trévoux , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France ; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale , Lyon , France
| | - Anne-Pierre Morel
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France
| | - Alfredo Fusco
- Instituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli "Federico II" , Naples , Italy ; Instituto Nacional de Câncer (INCA) , Rio de Janeiro , Brazil
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon , Lyon , France ; UMR 5292, Centre de Neurosciences de Lyon, CNRS, INSERM S1028 , Lyon , France ; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon , Lyon , France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon , Lyon , France ; UMR 5292, Centre de Neurosciences de Lyon, CNRS, INSERM S1028 , Lyon , France ; Centre de Pathologie Est, Groupement Hospitalier Est, Hospice Civils de Lyon , Bron , France
| | - Joel Lachuer
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| |
Collapse
|
17
|
Plotnik JP, Budka JA, Ferris MW, Hollenhorst PC. ETS1 is a genome-wide effector of RAS/ERK signaling in epithelial cells. Nucleic Acids Res 2014; 42:11928-40. [PMID: 25294825 PMCID: PMC4231772 DOI: 10.1093/nar/gku929] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The RAS/ERK pathway is commonly activated in carcinomas and promotes oncogenesis by altering transcriptional programs. However, the array of cis-regulatory elements and trans-acting factors that mediate these transcriptional changes is still unclear. Our genome-wide analysis determined that a sequence consisting of neighboring ETS and AP-1 transcription factor binding sites is enriched near cell migration genes activated by RAS/ERK signaling in epithelial cells. In vivo screening of candidate ETS proteins revealed that ETS1 is specifically required for migration of RAS/ERK activated cells. Furthermore, both migration and transcriptional activation through ETS/AP-1 required ERK phosphorylation of ETS1. Genome-wide mapping of multiple ETS proteins demonstrated that ETS1 binds specifically to enhancer ETS/AP-1 sequences. ETS1 occupancy, and its role in cell migration, was conserved in epithelial cells derived from multiple tissues, consistent with a chromatin organization common to epithelial cell lines. Genome-wide expression analysis showed that ETS1 was required for activation of RAS-regulated cell migration genes, but also identified a surprising role for ETS1 in the repression of genes such as DUSP4, DUSP6 and SPRY4 that provide negative feedback to the RAS/ERK pathway. Consistently, ETS1 was required for robust RAS/ERK pathway activation. Therefore, ETS1 has dual roles in mediating epithelial-specific RAS/ERK transcriptional functions.
Collapse
Affiliation(s)
- Joshua P Plotnik
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Justin A Budka
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Mary W Ferris
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| |
Collapse
|
18
|
Fancy SPJ, Harrington EP, Baranzini SE, Silbereis JC, Shiow LR, Yuen TJ, Huang EJ, Lomvardas S, Rowitch DH. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nat Neurosci 2014; 17:506-12. [PMID: 24609463 PMCID: PMC3975168 DOI: 10.1038/nn.3676] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/13/2014] [Indexed: 02/07/2023]
Abstract
In colon cancer, mutation of the Wnt repressor Adenomatous polyposis coli (APC) leads to a state of aberrant and unrestricted “high-activity” signaling. However, relevance of high Wnt tone in non-genetic human disease is unknown. Here we demonstrate that distinct Wnt activity functional states determine oligodendrocyte precursor (OPC) differentiation and myelination. Murine OPCs with genetic Wnt dysregulation (high tone) express multiple genes in common with colon cancer including Lef1, SP5, Ets2, Rnf43 and Dusp4. Surprisingly, we find that OPCs in lesions of hypoxic human neonatal white matter injury upregulate markers of high Wnt activity and lack expression of APC. Finally, we show lack of Wnt repressor tone promotes permanent white matter injury after mild hypoxic insult. These findings suggest a state of pathological high-activity Wnt signaling in human disease tissues that lack pre-disposing genetic mutation.
Collapse
Affiliation(s)
- Stephen P J Fancy
- 1] Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, California, USA. [2] Department of Neurology, UCSF, San Francisco, California, USA. [3] Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, UCSF, San Francisco, California, USA. [4]
| | - Emily P Harrington
- 1] Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, California, USA. [2] Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, UCSF, San Francisco, California, USA. [3] Medical Scientist Training Program, UCSF, San Francisco, California, USA. [4]
| | | | - John C Silbereis
- 1] Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, California, USA. [2] Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, UCSF, San Francisco, California, USA
| | - Lawrence R Shiow
- 1] Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, California, USA. [2] Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, UCSF, San Francisco, California, USA
| | - Tracy J Yuen
- 1] Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, California, USA. [2] Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, UCSF, San Francisco, California, USA
| | - Eric J Huang
- Department of Pathology, UCSF, San Francisco, California, USA
| | | | - David H Rowitch
- 1] Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, California, USA. [2] Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, UCSF, San Francisco, California, USA
| |
Collapse
|
19
|
Heffler M, Golubovskaya VM, Conroy J, Liu S, Wang D, Cance WG, Dunn KB. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes. Anticancer Agents Med Chem 2014; 13:584-94. [PMID: 22934709 DOI: 10.2174/1871520611313040008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 12/19/2022]
Abstract
Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways.
Collapse
Affiliation(s)
- Melissa Heffler
- Department of Surgical Oncology, Roswell Park Cancer Institute and the University at Buffalo/State University of New York, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bartley AN, Parikh N, Hsu CH, Roe DJ, Buckmeier JA, Corley L, Phipps RA, Gallick G, Lance P, Thompson PA, Hamilton SR. Colorectal adenoma stem-like cell populations: associations with adenoma characteristics and metachronous colorectal neoplasia. Cancer Prev Res (Phila) 2013; 6:1162-70. [PMID: 24008128 DOI: 10.1158/1940-6207.capr-13-0113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cancer stem cells have tumor-initiation and tumor-maintenance capabilities. Stem-like cells are present in colorectal adenomas, but their relationship to adenoma pathology and patient characteristics, including metachronous development of an additional adenoma ("recurrence"), has not been studied extensively. We evaluated the expression of aldehyde dehydrogenase isoform 1A1 (ALDH1A1), a putative stem cell marker, in baseline adenomas from the placebo arm of chemoprevention trial participants with colonoscopic follow-up. An exploratory set of 20 baseline adenomas was analyzed by ALDH1A1 immunohistochemistry with morphometry, and a replication set of 89 adenomas from 76 high-risk participants was evaluated by computerized image analysis. ALDH1A1-labeling indices (ALI) were similar across patient characteristics and in advanced and nonadvanced adenomas. There was a trend toward higher ALIs in adenomas occurring in the right than left colon (P = 0.09). ALIs of synchronous adenomas were correlated (intraclass correlation coefficient 0.67). Participants in both sample sets who developed a metachronous adenoma had significantly higher ALIs in their baseline adenoma than participants who remained adenoma free. In the replication set, the adjusted odds for metachronous adenoma increased 1.46 for each 10% increase in ALIs (P = 0.03). A best-fit algorithm-based cutoff point of 22.4% had specificity of 75.0% and positive predictive value of 70.0% for metachronous adenoma development. A larger population of ALDH1A1-expressing cells in an adenoma is associated with a higher risk for metachronous adenoma, independent of adenoma size or histopathology. If confirmed, ALDH1A1 has potential as a novel biomarker in risk assessment and as a potential stem cell target for chemoprevention.
Collapse
Affiliation(s)
- Angela N Bartley
- University of Arizona Cancer Center, 1515 Campbell Avenue, Tucson, AZ 85724.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wallace JA, Li F, Balakrishnan S, Cantemir-Stone CZ, Pecot T, Martin C, Kladney RD, Sharma SM, Trimboli AJ, Fernandez SA, Yu L, Rosol TJ, Stromberg PC, Lesurf R, Hallett M, Park M, Leone G, Ostrowski MC. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer. PLoS One 2013; 8:e71533. [PMID: 23977064 PMCID: PMC3745457 DOI: 10.1371/journal.pone.0071533] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/28/2013] [Indexed: 01/20/2023] Open
Abstract
Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.
Collapse
Affiliation(s)
- Julie A. Wallace
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Fu Li
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Subhasree Balakrishnan
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Carmen Z. Cantemir-Stone
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Thierry Pecot
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Computer Science and Engineering, The Ohio State University Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Chelsea Martin
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Raleigh D. Kladney
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sudarshana M. Sharma
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anthony J. Trimboli
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Soledad A. Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Paul C. Stromberg
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Robert Lesurf
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
| | - Michael Hallett
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
- McGill Centre for Bioinformatics, McGill University, Québec, Canada
| | - Morag Park
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
- Department of Oncology, McGill University, Québec, Canada
| | - Gustavo Leone
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Tumor Microenvironment Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael C. Ostrowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Tumor Microenvironment Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kabbout M, Garcia MM, Fujimoto J, Liu DD, Woods D, Chow CW, Mendoza G, Momin AA, James BP, Solis L, Behrens C, Lee JJ, Wistuba II, Kadara H. ETS2 mediated tumor suppressive function and MET oncogene inhibition in human non-small cell lung cancer. Clin Cancer Res 2013; 19:3383-95. [PMID: 23659968 DOI: 10.1158/1078-0432.ccr-13-0341] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The ETS2 transcription factor is an evolutionarily conserved gene that is deregulated in cancer. We analyzed the transcriptome of lung adenocarcinomas and normal lung tissue by expression profiling and found that ETS2 was significantly downregulated in adenocarcinomas. In this study, we probed the yet unknown functional role of ETS2 in lung cancer pathogenesis. EXPERIMENTAL DESIGN Lung adenocarcinomas (n = 80) and normal lung tissues (n = 30) were profiled using the Affymetrix Human Gene 1.0 ST platform. Immunohistochemical (IHC) analysis was conducted to determine ETS2 protein expression in non-small cell lung cancer (NSCLC) histologic tissue specimens (n = 201). Patient clinical outcome, based on ETS2 IHC expression, was statistically assessed using the log-rank and Kaplan-Meier tests. RNA interference and overexpression strategies were used to assess the effects of ETS2 expression on the transcriptome and on various malignant phenotypes. RESULTS ETS2 expression was significantly reduced in lung adenocarcinomas compared with normal lung (P < 0.001). Low ETS2 IHC expression was a significant predictor of shorter time to recurrence in NSCLC (P = 0.009, HR = 1.89) and adenocarcinoma (P = 0.03, HR = 1.86). Moreover, ETS2 was found to significantly inhibit lung cancer cell growth, migration, and invasion (P < 0.05), and microarray and pathways analysis revealed significant (P < 0.001) activation of the HGF pathway following ETS2 knockdown. In addition, ETS2 was found to suppress MET phosphorylation and knockdown of MET expression significantly attenuated (P < 0.05) cell invasion mediated by ETS2-specific siRNA. Furthermore, knockdown of ETS2 augmented HGF-induced MET phosphorylation, cell migration, and invasion. CONCLUSION(S) Our findings point to a tumor suppressor role for ETS2 in human NSCLC pathogenesis through inhibition of the MET proto-oncogene.
Collapse
Affiliation(s)
- Mohamed Kabbout
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melinda M Garcia
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diane D Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denise Woods
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi-Wan Chow
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriela Mendoza
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amin A Momin
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian P James
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Solis
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Asai T, Morrison SL. The SRC family tyrosine kinase HCK and the ETS family transcription factors SPIB and EHF regulate transcytosis across a human follicle-associated epithelium model. J Biol Chem 2013; 288:10395-405. [PMID: 23439650 DOI: 10.1074/jbc.m112.437475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A critical step in the induction of adaptive mucosal immunity is antigen transcytosis, in which luminal antigens are transported to organized lymphoid tissues across the follicle-associated epithelium (FAE) of Peyer's patches. However, virtually nothing is known about intracellular signaling proteins and transcription factors that regulate apical-to-basolateral transcytosis. The FAE can transcytose a variety of luminal contents, including inert particles, in the absence of specific opsonins. Furthermore, it expresses receptors for secretory immunoglobulin A (SIgA), the main antibody in mucosal secretions, and uses them to efficiently transcytose SIgA-opsonized particles present in the lumen. Using a human FAE model, we show that the tyrosine kinase HCK regulates apical-to-basolateral transcytosis of non-opsonized and SIgA-opsonized particles. We also show that, in cultured intestinal epithelial cells, ectopic expression of the transcription factor SPIB or EHF is sufficient to activate HCK-dependent apical-to-basolateral transcytosis of these particles. Our results provide the first molecular insights into the intracellular regulation of antigen sampling at mucosal surfaces.
Collapse
Affiliation(s)
- Tsuneaki Asai
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California 90095, USA.
| | | |
Collapse
|
24
|
Novotny GW, Belling KC, Bramsen JB, Nielsen JE, Bork-Jensen J, Almstrup K, Sonne SB, Kjems J, Rajpert-De Meyts E, Leffers H. MicroRNA expression profiling of carcinoma in situ cells of the testis. Endocr Relat Cancer 2012; 19:365-79. [PMID: 22420006 DOI: 10.1530/erc-11-0271] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Testicular germ cell tumours, seminoma (SE) and non-seminoma (NS), of young adult men develop from a precursor cell, carcinoma in situ (CIS), which resembles foetal gonocytes and retains embryonic pluripotency. We used microarrays to analyse microRNA (miRNA) expression in 12 human testis samples with CIS cells and compared it with miRNA expression profiles of normal adult testis, testis with Sertoli-cell-only that lacks germ cells, testis tumours (SE and embryonal carcinoma (EC), an undifferentiated component of NS) and foetal male and female gonads. Principal components analysis revealed distinct miRNA expression profiles characteristic for each of the different tissue types. We identified several miRNAs that were unique to testis with CIS cells, foetal gonads and testis tumours. These included miRNAs from the hsa-miR-371-373 and -302-367 clusters that have previously been reported in germ cell tumours and three miRNAs (hsa-miR-96, -141 and -200c) that were also expressed in human epididymis. We found several miRNAs that were upregulated in testis tumours: hsa-miR-9, -105 and -182-183-96 clusters were highly expressed in SE, while the hsa-miR-515-526 cluster was high in EC. We conclude that the miRNA expression profile changes during testis development and that the miRNA profile of adult testis with CIS cells shares characteristic similarities with the expression in foetal gonocytes.
Collapse
Affiliation(s)
- Guy Wayne Novotny
- Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liao YL, Hu LY, Tsai KW, Wu CW, Chan WC, Li SC, Lai CH, Ho MR, Fang WL, Huang KH, Lin WC. Transcriptional regulation of miR-196b by ETS2 in gastric cancer cells. Carcinogenesis 2012; 33:760-9. [PMID: 22298639 PMCID: PMC3324441 DOI: 10.1093/carcin/bgs023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
E26 transformation-specific sequence (ETS)-2 is a transcriptional modulator located on chromosome 21, alterations in its expression have been implicated with a reduced incidence of solid tumors in Down syndrome patients. MicroRNAs (miRNAs) are thought to participate in diverse biological functions; however, the regulation of miRNAs is not well characterized. Recently, we reported that miR-196b is highly expressed in gastric cancers. Herein, we demonstrate that miR-196b expression was significantly repressed by ETS2 during gastric cancer oncogenesis. We demonstrate that knockdown of endogenous ETS2 expression increases miR-196b expression. A genomic region between −751 and −824 bp upstream of the miR-196b transcriptional start site was found to be critical for the repression activity. This putative regulatory promoter region contains three potential ETS2-binding motifs. Mutations within the ETS2 binding sites blocked the repression activity of ETS2. Furthermore, knockdown of ETS2 or overexpression of miR-196b significantly induced migration and invasion in gastric cancer cells. In addition, alterations in ETS2 and miR-196b expression in gastric cancer cell lines affected the expression of epithelial–mesenchymal transition-related genes. The levels of vimentin, matrix metalloproteinase (MMP)-2 and MMP9 were drastically induced, but levels of E-cadherin were decreased in shETS2- or miR-196b-transfected cells. Our data indicate that ETS2 plays a key role in controlling the expression of miR-196b, and miR-196b may mediate the tumor suppressor effects of ETS2. We demonstrated that miR-196b was transcriptionally regulated by ETS2 and there was an inverse expression profile between miR-196b and ETS2 in clinical samples. This finding could be beneficial for the development of effective cancer diagnostic and alternative therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Lun Liao
- Institute of Biomedical Sciences, Academic Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sipos F, Valcz G, Molnár B. Physiological and pathological role of local and immigrating colonic stem cells. World J Gastroenterol 2012; 18:295-301. [PMID: 22294835 PMCID: PMC3261524 DOI: 10.3748/wjg.v18.i4.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/27/2011] [Accepted: 07/04/2011] [Indexed: 02/06/2023] Open
Abstract
The latest avenue of research is revealing the existence of and role for the colonic stem cells in the physiological renewal of the mucosa and in pathological circumstances where they have both positive and negative effects. In the case of human colon, different levels of stem cell compartments exist. First, the crypt epithelial stem cells, which have a role in the normal crypt epithelial cell dynamics and in colorectal carcinogenesis. Close to the crypts, the second layer of stem cells can be found; the local subepithelial stem cell niche, including the pericryptic subepithelial myofibroblasts that regulate the epithelial cell differentiation and have a crucial role in cancer progression and chronic inflammation-related fibrosis. The third level of stem cell compartment is the immigrating bone-marrow-derived stem cells, which have an important role in wound healing after severe mucosal inflammation, but are also involved in cancer invasion. This paper focuses on stem cell biology in the context of physiological and pathological processes in the human colon.
Collapse
Affiliation(s)
- Ferenc Sipos
- Ferenc Sipos, Gábor Valcz, 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary.
| | | | | |
Collapse
|
27
|
Emanuele MJ, Elia AEH, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PWC, Yen HCS, Elledge SJ. Global identification of modular cullin-RING ligase substrates. Cell 2011; 147:459-74. [PMID: 21963094 DOI: 10.1016/j.cell.2011.09.019] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/29/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Cullin-RING ligases (CRLs) represent the largest E3 ubiquitin ligase family in eukaryotes, and the identification of their substrates is critical to understanding regulation of the proteome. Using genetic and pharmacologic Cullin inactivation coupled with genetic (GPS) and proteomic (QUAINT) assays, we have identified hundreds of proteins whose stabilities or ubiquitylation status are regulated by CRLs. Together, these approaches yielded many known CRL substrates as well as a multitude of previously unknown putative substrates. We demonstrate that one substrate, NUSAP1, is an SCF(Cyclin F) substrate during S and G2 phases of the cell cycle and is also degraded in response to DNA damage. This collection of regulated substrates is highly enriched for nodes in protein interaction networks, representing critical connections between regulatory pathways. This demonstrates the broad role of CRL ubiquitylation in all aspects of cellular biology and provides a set of proteins likely to be key indicators of cellular physiology.
Collapse
Affiliation(s)
- Michael J Emanuele
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|