1
|
Niu X, Huang F, Lyu H, Liu J, Zhang X, Bian J, Gao Z, Liu B. The Deficiency of the ASD-Related Gene CHD8 Disrupts Behavioral Patterns and Inhibits Hippocampal Neurogenesis in Mice. J Mol Neurosci 2024; 74:103. [PMID: 39480606 DOI: 10.1007/s12031-024-02283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Chromodomain helicase DNA-binding 8 (CHD8) is a gene that poses a high risk for autism spectrum disorder (ASD) and neurological development delay. Nevertheless, the impact of CHD8 haploinsufficiency on both hippocampus neurogenesis and behavior remains uncertain. Here, we performed behavioral assessments on male and female CHD8 heterozygous mice. The study discovered that both male and female CHD8 heterozygous mice displayed an impairment in preference for social novelty. Concurrently, CHD8 heterozygous mice exhibited anxiety-like behavior. However, its cognitive capacity for learning and memory is within the expected range. Furthermore, we discovered a reduction in the number of both immature and mature new neurons in mice with CHD8 heterozygous, resulting in an impeded neurogenesis process in the hippocampus. Taken together, our findings indicate that CHD8 plays a crucial role in the regulation of hippocampal neurogenesis, and further suggest that ASD-like behaviors observed in CHD8 heterozygous mice may be associated with disruptions in hippocampal neurogenesis.
Collapse
Affiliation(s)
- Xiaojie Niu
- Medical College, Shanxi Datong University, Datong, 037009, China.
- Institute of Respiratory Disease and Occupational Disease, Medical College, Shanxi Datong University, Datong, 037009, China.
| | - Feifei Huang
- Shanxi Health Vocational College, Taiyuan, 030000, China
| | - Haizhen Lyu
- Medical College, Shanxi Datong University, Datong, 037009, China
| | - Jiao Liu
- Medical College, Shanxi Datong University, Datong, 037009, China
| | - Xinwei Zhang
- Medical College, Shanxi Datong University, Datong, 037009, China
| | - Jiang Bian
- Medical College, Shanxi Datong University, Datong, 037009, China
- Institute of Brain Science, Medical College, Shanxi Datong University, Datong, 037009, China
| | - Zhijie Gao
- Medical College, Shanxi Datong University, Datong, 037009, China
| | - Binyu Liu
- Medical College, Shanxi Datong University, Datong, 037009, China.
| |
Collapse
|
2
|
Burocziova M, Danek P, Oravetzova A, Chalupova Z, Alberich-Jorda M, Macurek L. Ppm1d truncating mutations promote the development of genotoxic stress-induced AML. Leukemia 2023; 37:2209-2220. [PMID: 37709843 PMCID: PMC10624630 DOI: 10.1038/s41375-023-02030-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Hematopoietic stem cells (HSCs) ensure blood cell production during the life-time of an organism, and to do so they need to balance self-renewal, proliferation, differentiation, and migration in a steady state as well as in response to stress or injury. Importantly, aberrant proliferation of HSCs leads to hematological malignancies, and thus, tight regulation by various tumor suppressor pathways, including p53, is essential. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and promotes cell survival upon induction of genotoxic stress. Truncating mutations in the last exon of PPM1D lead to the production of a stable, enzymatically active protein and are commonly associated with clonal hematopoiesis. Using a transgenic mouse model, we demonstrate that truncated PPM1D reduces self-renewal of HSCs in basal conditions but promotes the development of aggressive AML after exposure to ionizing radiation. Inhibition of PPM1D suppressed the colony growth of leukemic stem and progenitor cells carrying the truncated PPM1D, and remarkably, it provided protection against irradiation-induced cell growth. Altogether, we demonstrate that truncated PPM1D affects HSC maintenance, disrupts normal hematopoiesis, and that its inhibition could be beneficial in the context of therapy-induced AML.
Collapse
Affiliation(s)
- Monika Burocziova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Anna Oravetzova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Zuzana Chalupova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, V Uvalu 84, Praha, 150 06, Czech Republic.
| | - Libor Macurek
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
| |
Collapse
|
3
|
He W, Zhang Y, Cao Z, Ye Z, Lu X, Fan J, Peng W, Li Z. Wild-Type p53-Induced Phosphatase 1 Plays a Positive Role in Hematopoiesis in the Mouse Embryonic Head. Front Cell Dev Biol 2021; 9:732527. [PMID: 34604235 PMCID: PMC8484912 DOI: 10.3389/fcell.2021.732527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
The first adult repopulating hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, which are produced from hemogenic endothelial cells. Embryonic head is the other site for HSC development. Wild-type p53-induced phosphatase 1 (Wip1) is a type-2Cδ family serine/threonine phosphatase involved in various cellular processes such as lymphoid development and differentiation of adult HSCs. Most recently, we have shown that Wip1 modulates the pre-HSC maturation in the AGM region. However, it is not clear whether Wip1 regulates hematopoiesis in the embryonic head. Here we reported that disruption of Wip1 resulted in a decrease of hematopoietic progenitor cell number in the embryonic head. In vivo transplantation assays showed a reduction of HSC function after Wip1 ablation. We established that Wip1 deletion reduced the frequency and cell number of microglia in the embryonic head. Further observations revealed that Wip1 absence enhanced the gene expression of microglia-derived pro-inflammatory factors. Thus, it is likely that Wip1 functions as a positive regulator in HSC development by regulating the function of microglia in the embryonic head.
Collapse
Affiliation(s)
- Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhan Cao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zehua Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xun Lu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Peng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuan Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Eren MK, Kartal NB, Pilevneli H. Oncogenic WIP1 phosphatase attenuates the DNA damage response and sensitizes p53 mutant Jurkat cells to apoptosis. Oncol Lett 2021; 21:479. [PMID: 33968195 PMCID: PMC8100942 DOI: 10.3892/ol.2021.12740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Wild-type (wt) p53-induced phosphatase 1 (Wip1), encoded by the protein phosphatase, Mg2+/Mn2+ dependent 1D (PPM1D) gene, is a serine/threonine phosphatase induced upon genotoxic stress in a p53-dependent manner. Wip1/PPM1D is frequently overexpressed, amplified and mutated in human solid tumors harboring wt p53 and is thus currently recognized as an oncogene. Oncogenic Wip1 dampens cellular stress responses, such as cell cycle checkpoints, apoptosis and senescence, and consequently increases resistance to anticancer therapeutics. Targeting Wip1 has emerged as a therapeutic strategy for tumors harboring wt p53. However, little is known about the efficacy of Wip1-targeted therapies in tumors lacking p53. The present study aimed to investigate the potential role of oncogenic Wip1 in p53 mutant (mt) Jurkat cells. In the present study, it was demonstrated that p53 mt Jurkat cells exhibited PPM1D/Wip1 gene amplification and expressed relatively high levels of Wip1, as confirmed by gene copy number and RNA expression analysis. In addition, Jurkat cells underwent G2 cell cycle arrest, apoptotic cell death and senescence in response to etoposide and doxorubicin, although the phosphorylation levels of DNA damage response (DDR) elements, including ataxia-telangiectasia mutated, ataxia-telangiestasia and Rad3-related, checkpoint kinase (Chk)1 and Chk2 were significantly low. Accordingly, the targeting of Wip1 phosphatase by RNA interference increased the phosphorylation of DDR elements, but decreased the rate of apoptosis in response to etoposide or doxorubicin in Jurkat cells. The induction of senescence or cell cycle arrest was not affected by the knockdown of Wip1. The results suggest that increased Wip1 expression enhances the apoptotic sensitivity of Jurkat cells in response to chemotherapeutic agents by attenuating DDR signaling. The present study highlights the possible pro-apoptotic role of Wip1 in a p53 mt T-cell acute lymphoblastic leukemia cell line. The data suggest the careful consideration of future treatment strategies aiming to manipulate or target Wip1 in human cancers lacking p53.
Collapse
Affiliation(s)
- Mehtap Kilic Eren
- Department of Medical Biology, Faculty of Medicine, University of Aydin Adnan Menderes, 09010 Aydin, Turkey
| | - Nur Betül Kartal
- Department of Medical Biochemistry, Institute of Health Sciences, University of Aydin Adnan Menderes, 09010 Aydin, Turkey
| | - Hatice Pilevneli
- Department of Medical Biology, Institute of Health Sciences, University of Aydin Adnan Menderes, 09010 Aydin, Turkey
| |
Collapse
|
5
|
Liu SC, Zhang M, Gan P, Yu HF, Ding CF, Zhang RP, He ZY, Hu WY. Wip1 phosphatase deficiency impairs spatial learning and memory. Biochem Biophys Res Commun 2020; 533:1309-1314. [PMID: 33051059 DOI: 10.1016/j.bbrc.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Spatial learning and memory are typically assessed to evaluate hippocampus-dependent cognitive and memory functions in vivo. Protein phosphorylation and dephosphorylation by kinases and phosphatases play critical roles in spatial learning and memory. Here we report that the Wip1 phosphatase is essential for spatial learning, with knockout mice lacking Wip1 phosphatase exhibiting dysfunctional spatial cognition. Aberrant phosphorylation of the Wip1 substrates p38, ATM, and p53 were observed in the hippocampi of Wip1-/- mice, but only p38 inhibition reversed impairments in long-term potentiation in Wip1-knockout mice. p38 inhibition consistently ameliorated the spatial learning dysfunction caused by Wip1 deficiency. Our results demonstrate that deletion of Wip1 phosphatase impairs hippocampus-dependent spatial learning and memory, with aberrant downstream p38 phosphorylation involved in this process and providing a potential therapeutic target.
Collapse
Affiliation(s)
- Si-Cheng Liu
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China; Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ming Zhang
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China
| | - Ping Gan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Hao-Fei Yu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Cai-Feng Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Rong-Ping Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhi-Yong He
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China.
| | - Wei-Yan Hu
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
6
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
7
|
Wild-type p53-induced phosphatase 1 promotes vascular smooth muscle cell proliferation and neointima hyperplasia after vascular injury via p-adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin complex 1 pathway. J Hypertens 2020; 37:2256-2268. [PMID: 31136458 PMCID: PMC6784764 DOI: 10.1097/hjh.0000000000002159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Vascular smooth muscle cell (VSMC) proliferation is a crucial cause of vascular neointima hyperplasia and restenosis, thus limiting the long-term efficacy of percutaneous vascular intervention. We explored the role of wild-type p53-induced phosphatase 1 (Wip1), a potent regulator of tumorigenesis and atherosclerosis, in VSMC proliferation and neointima hyperplasia. METHODS AND RESULTS Animal model of vascular restenosis was established in wild type C57BL/6J and VSMC-specific Tuberous Sclerosis 1 (TSC1)-knockdown mice by wire injury. We observed increased protein levels of Wip1, phospho (p)-S6 Ribosomal Protein (S6), p-4EBP1 but decreased p-adenosine 5'-monophosphate-activated protein kinase (AMPK)α both in carotid artery at day 28 after injury and in VSMCs after 48 h of platelet derived growth factor-BB (PDGF-BB) treatment. By using hematoxylin-eosin staining, Ki-67 immunohistochemical staining, cell counting kit-8 assay and Ki-67 immunofluorescence staining, we found Wip1 antagonist GSK2830371 (GSK) or mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin both obviously reversed the neointima formation and VSMC proliferation induced by wire injury and PDGF-BB, respectively. GSK also reversed the increase in mRNA level of Collagen I after wire injury. However, GSK had no obvious effects on VSMC migration induced by PDGF-BB. Simultaneously, TSC1 knockdown as well as AMPK inhibition by Compound C abolished the vascular protective and anti-proliferative effects of Wip1 inhibition. Additionally, suppression of AMPK also reversed the declined mTORC1 activity by GSK. CONCLUSION Wip1 promotes VSMC proliferation and neointima hyperplasia after wire injury via affecting AMPK/mTORC1 pathway.
Collapse
|
8
|
Jia J, Zhu J, Yang Q, Wang Y, Zhang Z, Chen C. The Role of Histone Acetylation in the Sevoflurane-induced Inhibition of Neurogenesis in the Hippocampi of Young Mice. Neuroscience 2020; 432:73-83. [DOI: 10.1016/j.neuroscience.2020.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
|
9
|
Mendez FM, Núñez FJ, Garcia-Fabiani MB, Haase S, Carney S, Gauss JC, Becher OJ, Lowenstein PR, Castro MG. Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro Oncol 2020; 22:195-206. [PMID: 32078691 PMCID: PMC7032633 DOI: 10.1093/neuonc/noz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but deadly pediatric brainstem tumor. To date, there is no effective therapy for DIPG. Transcriptomic analyses have revealed DIPGs have a distinct profile from other pediatric high-grade gliomas occurring in the cerebral hemispheres. These unique genomic characteristics coupled with the younger median age group suggest that DIPG has a developmental origin. The most frequent mutation in DIPG is a lysine to methionine (K27M) mutation that occurs on H3F3A and HIST1H3B/C, genes encoding histone variants. The K27M mutation disrupts methylation by polycomb repressive complex 2 on histone H3 at lysine 27, leading to global hypomethylation. Histone 3 lysine 27 trimethylation is an important developmental regulator controlling gene expression. This review discusses the developmental and epigenetic mechanisms driving disease progression in DIPG, as well as the profound therapeutic implications of epigenetic programming.
Collapse
Affiliation(s)
- Flor M Mendez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria B Garcia-Fabiani
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen Carney
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jessica C Gauss
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, Illinois
- Ann & Robert Lurie Children’s Hospital of Chicago, Division of Hematology-Oncology and Stem Cell Transplant, Chicago, Illinois
| | - Pedro R Lowenstein
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
10
|
Niu X, Zhao Y, Yang N, Zhao X, Zhang W, Bai X, Li A, Yang W, Lu L. Proteasome activation by insulin-like growth factor-1/nuclear factor erythroid 2-related factor 2 signaling promotes exercise-induced neurogenesis. Stem Cells 2020; 38:246-260. [PMID: 31648402 DOI: 10.1002/stem.3102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022]
Abstract
Physical exercise-induced enhancement of learning and memory and alleviation of age-related cognitive decline in humans have been widely acknowledged. However, the mechanistic relationship between exercise and cognitive improvement remains largely unknown. In this study, we found that exercise-elicited cognitive benefits were accompanied by adaptive hippocampal proteasome activation. Voluntary wheel running increased hippocampal proteasome activity in adult and middle-aged mice, contributing to an acceleration of neurogenesis that could be reversed by intrahippocampal injection of the proteasome inhibitor MG132. We further found that increased levels of insulin-like growth factor-1 (IGF-1) in both serum and hippocampus may be essential for exercise-induced proteasome activation. Our in vitro study demonstrated that IGF-1 stimulated proteasome activity in cultured adult neural progenitor cells (NPCs) by promoting nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), followed by elevated expressions of proteasome subunits such as PSMB5. In contrast, pretreating adult mice with the selective IGF-1R inhibitor picropodophyllin diminished exercise-induced neurogenesis, concurrent with reduced Nrf2 nuclear translocation and proteasome activity. Likewise, lowering Nrf2 expression by RNA interference with bilateral intrahippocampal injections of recombinant adeno-associated viral particles significantly suppressed exercise-induced proteasome activation and attenuated cognitive function. Collectively, our work demonstrates that proteasome activation in hippocampus through IGF-1/Nrf2 signaling is a key adaptive mechanism underlying exercise-related neurogenesis, which may serve as a potential targetable pathway in neurodegeneration.
Collapse
Affiliation(s)
- Xiaojie Niu
- Department of Anatomy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yunhe Zhao
- Department of Anatomy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Na Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xuechun Zhao
- Department of Anatomy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wei Zhang
- Department of Anatomy, Shanxi Medical University, Taiyuan, People's Republic of China
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Jinan University, Guangzhou, People's Republic of China
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Jinan University, Guangzhou, People's Republic of China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
11
|
Lupo G, Gioia R, Nisi PS, Biagioni S, Cacci E. Molecular Mechanisms of Neurogenic Aging in the Adult Mouse Subventricular Zone. J Exp Neurosci 2019; 13:1179069519829040. [PMID: 30814846 PMCID: PMC6381424 DOI: 10.1177/1179069519829040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
In the adult rodent brain, the continuous production of new neurons by neural stem/progenitor cells (NSPCs) residing in specialized neurogenic niches and their subsequent integration into pre-existing cerebral circuitries supports odour discrimination, spatial learning, and contextual memory capabilities. Aging is recognized as the most potent negative regulator of adult neurogenesis. The neurogenic process markedly declines in the aged brain, due to the reduction of the NSPC pool and the functional impairment of the remaining NSPCs. This decline has been linked to the progressive cognitive deficits of elderly individuals and it may also be involved in the onset/progression of neurological disorders. Since the human lifespan has been dramatically extended, the incidence of age-associated neuropsychiatric conditions in the human population has increased. This has prompted efforts to shed light on the mechanisms underpinning the age-related decline of adult neurogenesis, whose knowledge may foster therapeutic approaches to prevent or delay cognitive alterations in elderly patients. In this review, we summarize recent progress in elucidating the molecular causes of neurogenic aging in the most abundant NSPC niche of the adult mouse brain: the subventricular zone (SVZ). We discuss the age-associated changes occurring both in the intrinsic NSPC molecular networks and in the extrinsic signalling pathways acting in the complex environment of the SVZ niche, and how all these changes may steer young NSPCs towards an aged phenotype.
Collapse
Affiliation(s)
- Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Paola Serena Nisi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Ogasawara S, Chuman Y, Michiba T, Kamada R, Imagawa T, Sakaguchi K. Inhibition of protein phosphatase PPM1D enhances retinoic acid-induced differentiation in human embryonic carcinoma cell line. J Biochem 2018; 165:471-477. [PMID: 30576481 DOI: 10.1093/jb/mvy119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sari Ogasawara
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Yoshiro Chuman
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Takahiro Michiba
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Toshiaki Imagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| |
Collapse
|
13
|
Li K, Liu Y, Xu S, Wang J. PPM1D Functions as Oncogene and is Associated with Poor Prognosis in Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2018; 26:387-395. [PMID: 30374621 DOI: 10.1007/s12253-018-0518-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Mounting evidence has demonstrated that PPM1D participates in the development and progression of a wide variety of tumors. However, its precise roles in esophageal squamous cell carcinoma (ESCC) remain under investigation. Here, UALCAN, an interactive web-portal to perform the expression analyses of PPM1D using TCGA gene expression data, and PPM1D high expression was exhibited in primary esophageal cancer. Further investigation revealed that PPM1D expression was obviously higher in ESCC tissues than in normal tissues (P < 0.01), which was consistent with the results from real-time qPCR and Western blotting in ESCC tissues and paired normal esophageal tissues. Besides, PPM1D expression was closely correlated with TNM staging, tumor differentiation and lymph node metastasis (P < 0.01), but not related to the patients' gender and age (P > 0.05). Notably, PPM1D expression in metastatic ESCC patients was markedly higher than that in non-metastatic ESCC patients (P < 0.01), and the ESCC patients with high PPM1D expression predicted poor prognosis. Multivariate assay demonstrated that PPM1D and lymph node metastasis were considered as independent prognostic factors for the ESCC patients. These findings suggest PPM1D plays a pivotal important role in onset and progression of ESCC, and may be a new biomarker for metastasis and prognosis of the ESCC patients.
Collapse
Affiliation(s)
- Ke Li
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127th Dongming Rd, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Ying Liu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127th Dongming Rd, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Shuning Xu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127th Dongming Rd, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Jufeng Wang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127th Dongming Rd, Zhengzhou, Henan Province, 450008, People's Republic of China.
| |
Collapse
|
14
|
Pesce M, Tatangelo R, La Fratta I, Rizzuto A, Campagna G, Turli C, Ferrone A, Franceschelli S, Speranza L, Verrocchio MC, De Lutiis MA, Felaco M, Grilli A. Memory Training Program Decreases the Circulating Level of Cortisol and Pro-inflammatory Cytokines in Healthy Older Adults. Front Mol Neurosci 2017; 10:233. [PMID: 28790890 PMCID: PMC5522887 DOI: 10.3389/fnmol.2017.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Aging cognitive decline has been associated to impairment of the Hypothalamus Pituitary Adrenals (HPA) axis activity and a higher level of the systemic inflammation. However, little is known about the molecules driving this process at peripheral level. In addition, the cognitive function is to some extent modifiable with Memory Training (MT) programs, even among older adults and beyond. The study aims to evaluate whether MT could contribute to ameliorate cognitive performance and modulate the HPA axis activity as well the low level inflammation in the aging phenotype. Whether the phosphatase WIP-1, a negative regulator for inflammation, is involved in this process was also investigated. We recruited 31 young adults (19-28, years of age) and 62 older adults aged over 60. Thirty-two older adults were submitted to 6-months of MT program (EG), and 28 older adults were no treated and used as Control Group (CG). Global cognitive functioning (MMSE score), verbal and visual memory, and attention were assessed at baseline (T0) and after 6-months (T1). At the same time, plasmatic level of Cortisol (C), IL-1β, IL-18, IL-6, and the expression of WIP-1 mRNA and protein in ex vivo Peripheral Blood Mononuclear Cells were analyzed in young adults at T0, as well in older adults at T0 and T1. Together, the results suggest that MT improves the global cognitive functionality, verbal and visual memory, as well as the level of attention. At the same time we observed a decrease of the plasmatic level of C, of the cytokines, and an increase of the expression of mRNA and protein of WIP-1. The analysis of correlations highlighted that the level of the mRNA of WIP-1 was positively associated to the MMSE score, and negatively to the C and cytokine levels. In conclusion, we purpose the MT as tool that could help support successful aging through the improving of memory, attention and global cognitive function performance. Furthermore, this approach could participate to maintain lower the peripheral levels of the C and pro-inflammatory cytokines. The WIP-1 as a potential new target of the pathophysiology of aging is theorized.
Collapse
Affiliation(s)
| | - Raffaella Tatangelo
- School of Medicine and Health Science, University G. D’AnnunzioChieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu KM, Zhang HH, Wang YN, Wang LM, Chen HY, Long CF, Zhang LF, Zhang HB, Yan HB. Wild-type p53-induced Phosphatase 1 Deficiency Exacerbates Myocardial Infarction-induced Ischemic Injury. Chin Med J (Engl) 2017; 130:1333-1341. [PMID: 28524834 PMCID: PMC5455044 DOI: 10.4103/0366-6999.206353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a major disease burden. Wild-type p53-induced phosphatase 1 (Wip1) has been studied extensively in the context of cancer and the regulation of different types of stem cells, but the role of Wip1 in cardiac adaptation to MI is unknown. We investigated the significance of Wip1 in a mouse model of MI. METHODS The study began in June 2014 and was completed in July 2016. We compared Wip1-knockout (Wip1-KO) mice and wild-type (WT) mice to determine changes in cardiac function and survival in response to MI. The heart weight/body weight (HW/BW) ratio and cardiac function were measured before MI. Mouse MI was established by ligating the left anterior descending (LAD) coronary artery under 1.5% isoflurane anesthesia. After MI, survival of the mice was observed for 4 weeks. Cardiac function was examined by echocardiography. The HW/BW ratio was analyzed, and cardiac hypertrophy was measured by wheat germ agglutinin staining. Hematoxylin and eosin (H&E) staining was used to determine the infarct size. Gene expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) was assessed by quantitative real-time polymerase chain reaction (qPCR), and the levels of signal transducers and activators of transcription 3 (stat3) and phosphor-stat3 (p-stat3) were also analyzed by Western blotting. Kaplan-Meier survival analysis, log-rank test, unpaired t-test, and one-way analysis of variance (ANOVA) were used for statistical analyses. RESULTS Wip1-KO mice had a marginally increased HW/BW ratio and slightly impaired cardiac function before LAD ligation. After MI, Wip1-deficient mice exhibited increased mortality (57.14% vs. 29.17%; n = 24 [WT], n = 35 [Wip1-KO], P< 0.05), increased cardiac hypertrophy (HW/BW ratio: 7 days: 7.25 ± 0.36 vs. 5.84 ± 0.18, n = 10, P< 0.01, and 4 weeks: 6.05 ± 0.17 vs. 5.87 ± 0.24, n = 10, P > 0.05; cross-sectional area: 7 days: 311.80 ± 8.29 vs. 268.90 ± 11.15, n = 6, P< 0.05, and 4 weeks: 308.80 ± 11.26 vs. 317.00 ± 13.55, n = 6, P > 0.05), and reduced cardiac function (ejection fraction: 7 days: 29.37 ± 1.38 vs. 34.72 ± 1.81, P< 0.05, and 4 weeks: 19.06 ± 2.07 vs. 26.37 ± 2.95, P< 0.05; fractional shortening: 7 days: 13.72 ± 0.71 vs. 16.50 ± 0.94, P< 0.05, and 4 weeks: 8.79 ± 1.00 vs. 12.48 ± 1.48, P< 0.05; n = 10 [WT], n = 15 [Wip1-KO]). H&E staining revealed a larger infarct size in Wip1-KO mice than in WT mice (34.79% ± 2.44% vs. 19.55% ± 1.48%, n = 6, P< 0.01). The expression of IL-6 and p-stat3 was downregulated in Wip1-KO mice (IL-6: 1.71 ± 0.27 vs. 4.46 ± 0.79, n = 6, P< 0.01; and p-stat3/stat3: 1.15 ± 0.15 vs. 1.97 ± 0.23, n = 6, P< 0.05). CONCLUSION The results suggest that Wip1 could protect the heart from MI-induced ischemic injury.
Collapse
Affiliation(s)
- Ke-Mei Liu
- Department of Coronary Artery Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hai-Hong Zhang
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ya-Nan Wang
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lian-Mei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100029, China
| | - Hong-Yu Chen
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Cai-Feng Long
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Hong-Bing Zhang
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hong-Bing Yan
- Department of Coronary Artery Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
16
|
Li D, Zhang L, Xu L, Liu L, He Y, Zhang Y, Huang X, Zhao T, Wu L, Zhao Y, Wu K, Li H, Yu X, Zhao T, Gong S, Fan M, Zhu L. WIP1 phosphatase is a critical regulator of adipogenesis through dephosphorylating PPARγ serine 112. Cell Mol Life Sci 2017; 74:2067-2079. [PMID: 28180926 PMCID: PMC11107755 DOI: 10.1007/s00018-016-2450-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/07/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022]
Abstract
WIP1, as a critical phosphatase, plays many important roles in various physiological and pathological processes through dephosphorylating different substrate proteins. However, the functions of WIP1 in adipogenesis and fat accumulation are not clear. Here, we report that WIP1-deficient mice show impaired body weight growth, dramatically decreased fat mass, and significantly reduced triglyceride and leptin levels in circulation. This dysregulation of adipose development caused by the deletion of WIP1 occurs as early as adipogenesis. In contrast, lentivirus-mediated WIP1 phosphatase overexpression significantly increases the adipogenesis of pre-adipocytes via an enzymatic activity-dependent mechanism. PPARγ is a master gene of adipogenesis, and the phosphorylation of PPARγ at serine 112 strongly inhibits adipogenesis; however, very little is known about the negative regulation of this phosphorylation. Here, we show that WIP1 phosphatase plays a pro-adipogenic role by interacting directly with PPARγ and dephosphorylating p-PPARγ S112 in vitro and in vivo.
Collapse
Affiliation(s)
- Dahu Li
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Lijun Zhang
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Lun Xu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Lili Liu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
- Navy General Hospital of PLA, Beijing, 100048, China
| | - Yunling He
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yiyao Zhang
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
- Air Force General Hospital of PLA, Beijing, 100142, China
| | - Xin Huang
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tong Zhao
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Liying Wu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yongqi Zhao
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Kuiwu Wu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hui Li
- Department of Physiology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Taiyun Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shenghui Gong
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ming Fan
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Lingling Zhu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
17
|
Wang WW, Han JH, Wang L, Bao TH. Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:272-279. [PMID: 28392899 PMCID: PMC5378964 DOI: 10.22038/ijbms.2017.8355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitive impairment in the two groups was assessed using the Morris water maze test, cell proliferation in the hippocampus was compared using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry, and hippocampal levels of nestin and neuronal class III β-tubulin (Tuj-1) were measured using Western blotting. These results were validated in vitro by treating cultured neural stem cells (NSCs) with scutellarin (30 μM). Results: Treating mice with scutellarin shortened escape times and increased the number of platform crossings, it increased the number of BrdU-positive proliferating cells in the hippocampus, and it up-regulated expression of nestin and Tuj-1. Treating NSC cultures with scutellarin increased the number of proliferating cells and the proportion of cells differentiating into neurons instead of astrocytes. The increase in NSC proliferation was associated with phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, while neuronal differentiation was associated with altered expression of differentiation-related genes. Conclusion: Scutellarin may alleviate cognitive impairment in a mouse model of hypoxia by promo-ting proliferation and neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China; Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, Yunnan, PR China; Department of Anatomy and Development Biology, Monash University, Clayton, vic 3800, Australia
| | - Jian-Hong Han
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - Lin Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - Tian-Hao Bao
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China; Mental Health Center of Kunming Medical University, Kunming City, Yunnan Province, PR China
| |
Collapse
|
18
|
Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1013-1022. [DOI: 10.1016/j.bbadis.2017.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/28/2016] [Accepted: 01/28/2017] [Indexed: 12/26/2022]
|
19
|
WIP1 Phosphatase Plays a Critical Neuroprotective Role in Brain Injury Induced by High-Altitude Hypoxic Inflammation. Neurosci Bull 2017; 33:292-298. [PMID: 28097612 DOI: 10.1007/s12264-016-0095-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022] Open
Abstract
The hypobaric hypoxic environment in high-altitude areas often aggravates the severity of inflammation and induces brain injury as a consequence. However, the critical genes regulating this process remain largely unknown. The phosphatase wild-type p53-induced phosphatase 1 (WIP1) plays important roles in various physiological and pathological processes, including the regulation of inflammation in normoxia, but its functions in hypoxic inflammation-induced brain injury remain unclear. Here, we established a mouse model of this type of injury and found that WIP1 deficiency augmented the release of inflammatory cytokines in the peripheral circulation and brain tissue, increased the numbers of activated microglia/macrophages in the brain, aggravated cerebral histological lesions, and exacerbated the impairment of motor and cognitive abilities. Collectively, these results provide the first in vivo evidence that WIP1 is a critical neuroprotector against hypoxic inflammation-induced brain injury.
Collapse
|
20
|
Gamma-H2AX upregulation caused by Wip1 deficiency increases depression-related cellular senescence in hippocampus. Sci Rep 2016; 6:34558. [PMID: 27686532 PMCID: PMC5043360 DOI: 10.1038/srep34558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
The PP2C family member Wild-type p53-induced phosphatase 1 (Wip1) critically regulates DNA damage response (DDR) under stressful situations. In the present study, we investigated whether Wip1 expression was involved in the regulation of DDR-induced and depression-related cellular senescence in mouse hippocampus. We found that Wip1 gene knockout (KO) mice showed aberrant elevation of hippocampal cellular senescence and of γ-H2AX activity, which is known as a biomarker of DDR and cellular senescence, indicating that the lack of Wip1-mediated γ-H2AX dephosphorylation facilitates cellular senescence in hippocampus. Administration of the antidepressant fluoxetine had no significant effects on the increased depression-like behaviors, enriched cellular senescence, and aberrantly upregulated hippocampal γ-H2AX activity in Wip1 KO mice. After wildtype C57BL/6 mice were exposed to the procedure of chronic unpredictable mild stress (CUMS), cellular senescence and γ-H2AX activity in hippocampus were also elevated, accompanied by the suppression of Wip1 expression in hippocampus when compared to the control group without CUMS experience. These CUMS-induced symptoms were effectively prevented following fluoxetine administration in wildtype C57BL/6 mice, with the normalization of depression-like behaviors. Our data demonstrate that Wip1-mediated γ-H2AX dephosphorylation may play an important role in the occurrence of depression-related cellular senescence.
Collapse
|
21
|
Wang P, Ye JA, Hou CX, Zhou D, Zhan SQ. Combination of lentivirus-mediated silencing of PPM1D and temozolomide chemotherapy eradicates malignant glioma through cell apoptosis and cell cycle arrest. Oncol Rep 2016; 36:2544-2552. [PMID: 27633132 PMCID: PMC5055212 DOI: 10.3892/or.2016.5089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
Temozolomide (TMZ) is approved for use as first-line treatment for glioblastoma multiforme (GBM). However, GBM shows chemoresistance shortly after the initiation of treatment. In order to detect whether silencing of human protein phosphatase 1D magnesium dependent (PPM1D) gene could increase the effects of TMZ in glioma cells, glioma cells U87-MG were infected with lentiviral shRNA vector targeting PPM1D silencing. After PPM1D silencing was established, cells were treated with TMZ. The multiple functions of human glioma cells after PPM1D silencing and TMZ chemotherapy were detected by flow cytometry and MTT assay. Significantly differentially expressed genes were distinguished by microarray-based gene expression profiling and analyzed by gene pathway enrichment analysis and ontology assessment. Western blotting was used to establish the protein expression of the core genes. PPM1D gene silencing improves TMZ induced cell proliferation and induces cell apoptosis and cell cycle arrest. When PPM1D gene silencing combined with TMZ was performed in glioma cells, 367 genes were upregulated and 444 genes were downregulated compared with negative control. The most significant differential expression pathway was pathway in cancer and IGFR1R, PIK3R1, MAPK8 and EP300 are core genes in the network. Western blotting showed that MAPK8 and PIK3R1 protein expression levels were upregulated and RB1 protein expression was decreased. It was consistent with that detected in gene expression profiling. In conclusion, PPM1D gene silencing combined with TMZ eradicates glioma cells through cell apoptosis and cell cycle arrest. PIK3R1/AKT pathway plays a role in the multiple functions of glioma cells after PPM1D silencing and TMZ chemotherapy.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jing-An Ye
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Chong-Xian Hou
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng-Quan Zhan
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
22
|
Noelanders R, Vleminckx K. How Wnt Signaling Builds the Brain: Bridging Development and Disease. Neuroscientist 2016; 23:314-329. [DOI: 10.1177/1073858416667270] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wnt/β-catenin signaling plays a crucial role throughout all stages of brain development and remains important in the adult brain. Accordingly, many neurological disorders have been linked to Wnt signaling. Defects in Wnt signaling during neural development can give rise to birth defects or lead to neurological dysfunction later in life. Developmental signaling events can also be hijacked in the adult and result in disease. Moreover, knowledge about the physiological role of Wnt signaling in the brain might lead to new therapeutic strategies for neurological diseases. Especially, the important role for Wnt signaling in neural differentiation of pluripotent stem cells has received much attention as this might provide a cure for neurodegenerative disorders. In this review, we summarize the versatile role of Wnt/β-catenin signaling during neural development and discuss some recent studies linking Wnt signaling to neurological disorders.
Collapse
Affiliation(s)
- Rivka Noelanders
- Unit of Developmental Biology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kris Vleminckx
- Unit of Developmental Biology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
23
|
Cho SJ, Koo J, Chun KH, Cha HJ. Control of stress signaling in stem cells: crossroads of stem cells and cancer. Tumour Biol 2016; 37:12983-12990. [PMID: 27460084 DOI: 10.1007/s13277-016-5249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
Abstract
Tumorigenesis is a relatively rare event in the human body considering the enormous number of cells composing our body and the frequent occurrence of genetic mutations in each cell. Nevertheless, the cells that happen to meet the minimum requirements can be transformed when stressed by a variety of oncogenic stimulations, then progress to form tumors. The vigorous competition between oncogenic signaling and tumor-suppressor defense is a critical determinant of cellular fate, which can be either tumorigenic transformation or cellular senescence/apoptosis depending on "who wins the battle." Recently, a number of cancers have been reported to originate from stem cells, whose self-renewing properties are normally reduced by innate tumor suppressors. Therefore, exploring the innate mechanism by which stem cells modulate tumor suppressors to maintain their "stemness" may provide valuable clues to characterize the distinctive oncogenic susceptibility of stem cells. This review is focused on the recent advances in the field of tumorigenesis of stem cells and on the associated molecular mechanisms.
Collapse
Affiliation(s)
- Seung-Ju Cho
- Department of Life Sciences, Sogang University, Seoul, 04107, South Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Hyuk-Jin Cha
- Department of Life Sciences, Sogang University, Seoul, 04107, South Korea.
| |
Collapse
|
24
|
Zhao Y, Liu X, He Z, Niu X, Shi W, Ding JM, Zhang L, Yuan T, Li A, Yang W, Lu L. Essential role of proteasomes in maintaining self-renewal in neural progenitor cells. Sci Rep 2016; 6:19752. [PMID: 26804982 PMCID: PMC4726439 DOI: 10.1038/srep19752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
Protein turnover and homeostasis are regulated by the proteasomal system, which is critical for cell function and viability. Pluripotency of stem cells also relies on normal proteasomal activity that mitigates senescent phenotypes induced by intensive cell replications, as previously demonstrated in human bone marrow stromal cells. In this study, we investigated the role of proteasomes in self-renewal of neural progenitor cells (NPCs). Through both in vivo and in vitro analyses, we found that the expression of proteasomes was progressively decreased during aging. Likewise, proliferation and self-renewal of NPCs were also impaired in aged mice, suggesting that the down-regulation of proteasomes might be responsible for this senescent phenotype. Lowering proteasomal activity by loss-of-function manipulations mimicked the senescence of NPCs both in vitro and in vivo; conversely, enhancing proteasomal activity restored and improved self-renewal in aged NPCs. These results collectively indicate that proteasomes work as a key regulator in promoting self-renewal of NPCs. This potentially provides a promising therapeutic target for age-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunhe Zhao
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xueqin Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Zebin He
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaojie Niu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Weijun Shi
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Jian M. Ding
- Department of Physiology, East Carolina University Medical School, Greenville, 27834, USA
| | - Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China
| | - Tifei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, 210097, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China
| | - Wulin Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
25
|
Scutellarin Alleviates Behavioral Deficits in a Mouse Model of Multiple Sclerosis, Possibly Through Protecting Neural Stem Cells. J Mol Neurosci 2015; 58:210-20. [PMID: 26514969 DOI: 10.1007/s12031-015-0660-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022]
Abstract
Scutellarin, a flavonoid extracted from an herbal medication (Erigeron breviscapus Hand-Mazz), has been shown to protect neurons against damage and to promote neurogenesis, and thus has therapeutic potential in the treatment of a variety of neurodegenerative diseases. Since neural stem cells (NSCs) could differentiate into myelin-producing oligodendrocytes, we speculate that scutellarin could also be used to treat multiple sclerosis (MS). In the current study, we examined potential effects of scutellarin using a mouse model of MS. Briefly, adult C57BL/6 mice exposed to cuprizone (8 mg/day through diet, for 6 consecutive weeks) randomly received scutellarin (50 mg/kg/day) or vehicle for 10 consecutive days. In the scutellarin-treated group, rotarod testing at the end of the treatment showed significant improvement of motor function (increased time to fall); myelin basic protein (MBP) staining of the corpus callosum revealed decreased demyelination; TUNEL staining followed by Nestin or Sox2 staining revealed increased number of NSCs and decreased rate of NSC apoptosis in the subventricular zone (SVZ) of the lateral ventricles (LV). In a series of experiments using cultured NSCs subjected to cuprizone injury, we confirmed the protective effects of scutellarin. At 30 μM, scutellarin increased the commitment of NSCs to the oligodendrocyte and neuronal lineages, as evidenced by NG2 chondroitin sulfate proteoglycan (NG2) and doublecortin (DCX) staining. Differentiation into astrocytes (as revealed by glial fibrillary acidic protein (GFAP) staining) was decreased. Maturation of the NSCs committed to the oligodendrocyte lineage, as evidenced by oligodendrocyte marker O4 antibody (O4) staining and MBP staining, was also promoted by scutellarin. Further analysis revealed that scutellarin might suppress the phosphorylation of p38 in cuprizone-induced NSCs. In summary, scutellarin could alleviate motor deficits in a mouse model for MS, possibly by inhibiting NSC apoptosis and promoting differentiation of NSCs to myelin-producing oligodendrocytes.
Collapse
|
26
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
27
|
Bax modulates neuronal survival while p53 is unaltered after Cytochrome C induced oxidative stress in the adult olfactory bulb in vivo. Ann Neurosci 2015; 22:19-25. [PMID: 26124546 PMCID: PMC4410523 DOI: 10.5214/ans.0972.7531.220105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/24/2014] [Accepted: 01/21/2015] [Indexed: 12/24/2022] Open
Abstract
Background The granule and periglomerular cells of the olfactory bulb migrate from the sub-ventricular zone (SVZ) as progenitor cell forming the neuronal stream of the rostral olfactory bulb. These cells are characterized by their ability to divide while expressing adult proteins; a phenomenon attributed to the prolonged cell cycle and the regulatory activities of proteins which modulates apoptosis and proliferation in the developing nervous system. Of interest are the proteins concerned with tumor suppression (p53) and cell cycle exit (Bax) and how they regulate survivability of these neurons in the adult system after an induced oxidative stress. Purpose This study sets to investigate the interplay between p53 and Bax in the adult olfactory bulb (periglomerular and granule cell layer), and how these proteins determine proliferation and neuronal survival after Cytochrome C induced-oxidative stress. Also, we demonstrate the effect of the induced-stress threshold on such regulation in vivo. Methods Adult Wistar rats were segregated into three groups. 10 and 20 mg/Kg BW of potassium cyanide (KCN) was administered to the treatment groups for 15 days while the control received normal saline for the same duration. The olfactory bulb was dissected and processed for general histology and immunohistochemistry of p53/Bax in the periglomerular and granule cell layers. Total (Histology) and immunopositive (p53 and Bax) cell count was done using Image J. Subsequently, we determined the analysis of variance with significance set at *P<0.05. Results We observed an increase in cell count for the 10 mg/KgBW treatment; this was characterized by a significant decrease in Bax expression and no change in p53 expression when this treatment group was compared to the control. However, no change was observed in the total cell count for 20 mg/Kg BW treatment for the same duration of exposure. Interestingly, there was also no significant change in Bax and p53 for this treatment when compared with the control. Conclusion Although p53 plays an important role in development of the olfactory bulb neurons, our findings suggests it has little contribution in neuronal cell viability and proliferation in the adult olfactory bulb. No significant change in p53 was observed irrespective of treatment dose and cell count while Bax expression was reduced at 10 mg/Kg BW treatment and was associated with an increased cell count. We conclude that regulation of survival of neurons in the adult olfactory bulb, following induced-oxidative stress was more dependent of the expression of Bax and the threshold of the induced stress rather than p53 expression.
Collapse
|
28
|
Zhang L, Liu L, He Z, Li G, Liu J, Song Z, Jin H, Rudolph KL, Yang H, Mao Y, Zhang L, Zhang H, Xiao Z, Ju Z. Inhibition of wild-type p53-induced phosphatase 1 promotes liver regeneration in mice by direct activation of mammalian target of rapamycin. Hepatology 2015; 61:2030-41. [PMID: 25704606 DOI: 10.1002/hep.27755] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/14/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED The liver possesses extraordinary regenerative capacity in response to injury. However, liver regeneration (LR) is often impaired in disease conditions. Wild-type p53-induced phosphatase 1 (Wip1) is known as a tumor promoter and enhances cell proliferation, mainly by deactivating antioncogenes. However, in this work, we identified an unexpected role of Wip1 in LR. In contrast to its known role in promoting cell proliferation in extrahepatic tissue, we found that Wip1 suppressed hepatocyte proliferation after partial hepatectomy (PHx). Deletion of Wip1 increased the rate of LR after PHx. Enhanced LR in Wip1-deficient mice was a result of the activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway. Furthermore, we showed that Wip1 physically interacted with and dephosphorylated mTOR. Interestingly, inhibition of Wip1 also activated the p53 pathway during LR. Disruption of the p53 pathway further enhanced LR in Wip1-deficient mice. Therefore, inhibition of Wip1 has a dual role in LR, i.e., promoting hepatocyte proliferation through activation of the mTORC1 pathway, meanwhile suppressing LR through activation of the p53 pathway. However, the proregenerative role of mTORC1 overwhelms the antiproliferative role of p53. Furthermore, CCT007093, a Wip1 inhibitor, enhanced LR and increased the survival rate of mice after major hepatectomy. CONCLUSION mTOR is a new direct target of Wip1. Wip1 inhibition can activate the mTORC1 pathway and enhance hepatocyte proliferation after hepatectomy. These findings have clinical applications in cases where LR is critical, including acute liver failure, cirrhosis, or small-for-size liver transplantations.
Collapse
Affiliation(s)
- Lingling Zhang
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Leiming Liu
- Sir Runrun Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Zhiyong He
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Guangbing Li
- Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Junping Liu
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhangfa Song
- Sir Runrun Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- Sir Runrun Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | | | - Huayu Yang
- Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Zhang
- Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhicheng Xiao
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Zhenyu Ju
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
29
|
Mice deficient for wild-type p53-induced phosphatase 1 display elevated anxiety- and depression-like behaviors. Neuroscience 2015; 293:12-22. [DOI: 10.1016/j.neuroscience.2015.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 02/02/2023]
|
30
|
Chen Z, Yi W, Morita Y, Wang H, Cong Y, Liu JP, Xiao Z, Rudolph KL, Cheng T, Ju Z. Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways. Nat Commun 2015; 6:6808. [DOI: 10.1038/ncomms7808] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/27/2015] [Indexed: 12/15/2022] Open
|
31
|
Tang Y, Liu L, Sheng M, Xiong K, Huang L, Gao Q, Wei J, Wu T, Yang S, Liu H, Mu Y, Li K. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells. Exp Cell Res 2015; 334:310-22. [PMID: 25839408 DOI: 10.1016/j.yexcr.2015.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/12/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1(-/-) MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1(-/-) MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1(-/-) MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs.
Collapse
Affiliation(s)
- Yiting Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Liu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Xiong
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
| | - Lei Huang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qian Gao
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingliang Wei
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
32
|
Richter M, Dayaram T, Gilmartin AG, Ganji G, Pemmasani SK, Van Der Key H, Shohet JM, Donehower LA, Kumar R. WIP1 phosphatase as a potential therapeutic target in neuroblastoma. PLoS One 2015; 10:e0115635. [PMID: 25658463 PMCID: PMC4319922 DOI: 10.1371/journal.pone.0115635] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022] Open
Abstract
The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with current chemotherapeutic approaches.
Collapse
Affiliation(s)
- Mark Richter
- Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
| | - Tajhal Dayaram
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aidan G. Gilmartin
- Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
| | - Gopinath Ganji
- Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
| | | | - Harjeet Van Der Key
- Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
| | - Jason M. Shohet
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lawrence A. Donehower
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (LAD); (RK)
| | - Rakesh Kumar
- Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
- * E-mail: (LAD); (RK)
| |
Collapse
|
33
|
Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF). PLoS One 2014; 9:e109977. [PMID: 25299676 PMCID: PMC4192587 DOI: 10.1371/journal.pone.0109977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022] Open
Abstract
Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2’-dexoxyuridine (BrdU)-positive cells, BrdU- positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.
Collapse
|
34
|
Zhu Y, Demidov ON, Goh AM, Virshup DM, Lane DP, Bulavin DV. Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. J Clin Invest 2014; 124:3263-73. [PMID: 24911145 DOI: 10.1172/jci73015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/29/2014] [Indexed: 12/21/2022] Open
Abstract
The number of newly formed neurons declines rapidly during aging, and this decrease in neurogenesis is associated with decreased function of neural stem/progenitor cells (NPCs). Here, we determined that a WIP1-dependent pathway regulates NPC differentiation and contributes to the age-associated decline of neurogenesis. Specifically, we found that WIP1 is expressed in NPCs of the mouse subventricular zone (SVZ) and aged animals with genetically enhanced WIP1 expression exhibited higher NPC numbers and neuronal differentiation compared with aged WT animals. Additionally, augmenting WIP1 expression in aged animals markedly improved neuron formation and rescued a functional defect in fine odor discrimination in aged mice. We identified the WNT signaling pathway inhibitor DKK3 as a key downstream target of WIP1 and found that expression of DKK3 in the SVZ is restricted to NPCs. Using murine reporter strains, we determined that DKK3 inhibits neuroblast formation by suppressing WNT signaling and Dkk3 deletion or pharmacological activation of the WNT pathway improved neuron formation and olfactory function in aged mice. We propose that WIP1 controls DKK3-dependent inhibition of neuronal differentiation during aging and suggest that regulating WIP1 levels could prevent certain aspects of functional decline of the aging brain.
Collapse
|
35
|
Huang YF, Wee S, Gunaratne J, Lane DP, Bulavin DV. Isg15 controls p53 stability and functions. Cell Cycle 2014; 13:2200-10. [PMID: 24844324 DOI: 10.4161/cc.29209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Degradation of p53 is a cornerstone in the control of its functions as a tumor suppressor. This process is attributed to ubiquitin-dependent modification of p53. In addition to polyubiquitination, we found that p53 is targeted for degradation through ISGylation. Isg15, a ubiquitin-like protein, covalently modifies p53 at 2 sites in the N and C terminus, and ISGylated p53 can be degraded by the 20S proteasome. ISGylation primarily targets a misfolded, dominant-negative p53, and Isg15 deletion in normal cells results in suppression of p53 activity and functions. We propose that Isg15-dependent degradation of p53 represents an alternative mechanism of controlling p53 protein levels, and, thus, it is an attractive pathway for drug discovery.
Collapse
Affiliation(s)
- Yi-Fu Huang
- Institute of Molecular and Cell Biology; A*STAR; Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology; A*STAR; Singapore
| | | | | | - Dmitry V Bulavin
- Institute of Molecular and Cell Biology; A*STAR; Singapore; Institute for Research on Cancer and Ageing of Nice (IRCAN); INSERM; U1081-UMR CNRS 7284; University of Nice - Sophia Antipolis; Centre Antoine Lacassagne; Nice, France
| |
Collapse
|
36
|
Cha BH, Lee JS, Kim SW, Cha HJ, Lee SH. The modulation of the oxidative stress response in chondrocytes by Wip1 and its effect on senescence and dedifferentiation during in vitro expansion. Biomaterials 2013; 34:2380-8. [PMID: 23306038 DOI: 10.1016/j.biomaterials.2012.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/13/2012] [Indexed: 01/31/2023]
Abstract
Obtaining a sufficient number of cells ex vivo for tissue regeneration, which are appropriate for cartilage repair, requires improved techniques for the continuous expansion of chondrocytes in a manner that does not change their innate characteristics. Rapid senescence or dedifferentiation during in vitro expansion results in loss of chondrocyte phenotype and the formation of fibrous cartilage replacement tissue, rather than hyaluronic cartilage, after transplantation. As demonstrated in the current study, wild-type p53-inducible phosphatase (Wip1), a well-established stress modulator, was highly expressed in early-passage chondrocytes, but declined rapidly during in vitro expansion. Stable Wip1-expressing chondrocytes generated by microporation were less susceptible to the onset of senescence and dedifferentiation, and were more resistant to oxidative stress. The increased resistance of Wip1 chondrocytes to oxidative stress was due to modulation of p38 mitogen-activated protein kinase (MAPK) activity. Importantly, chondrocytes expressing Wip1 maintained their innate chondrogenic properties for a longer period of time, resulting in improvements in cartilage regeneration after transplantation. Chondrocytes from Wip1 knockout (Wip1(-/-)) mice were defective in cartilage regeneration compared with those from wild-type mice. Thus, Wip1 expression represents a potentially useful mechanism by which a chondrocyte phenotype can be retained during in vitro expansion through modulation of cellular stress responses.
Collapse
Affiliation(s)
- Byung-Hyun Cha
- Department of Biomedical Sciences, CHA University, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
WIP1 phosphatase modulates the Hedgehog signaling by enhancing GLI1 function. Oncogene 2012; 32:4737-47. [PMID: 23146903 DOI: 10.1038/onc.2012.502] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 02/06/2023]
Abstract
The Hedgehog-GLI (HH-GLI) signaling plays a critical role in controlling growth and tissue patterning during embryogenesis and is implicated in a variety of human malignancies, including those of the skin. Phosphorylation events have been shown to regulate the activity of the GLI transcription factors, the final effectors of the HH-GLI signaling pathway. Here, we show that WIP1 (or PPM1D), an oncogenic phosphatase amplified/overexpressed in several types of human cancer, is a positive modulator of the HH signaling. Mechanistically, WIP1 enhances the function of GLI1 by increasing its transcriptional activity, nuclear localization and protein stability, but not of GLI2 nor GLI3. We also find that WIP1 and GLI1 are in a complex. Modulation of the transcriptional activity of GLI1 by WIP1 depends on the latter's phosphatase activity and, remarkably, does not require p53, a known WIP1 target. Functionally, we find that WIP1 is required for melanoma and breast cancer cell proliferation and self-renewal in vitro and melanoma xenograft growth induced by activation of the HH signaling. Pharmacological blockade of the HH pathway with the SMOOTHENED antagonist cyclopamine acts synergistically with inhibition of WIP1 in reducing growth of melanoma and breast cancer cells in vitro. Overall, our data uncover a role for WIP1 in modulating the activity of GLI1 and in sustaining cancer cell growth and cancer stem cell self-renewal induced by activation of the HH pathway. These findings open a novel therapeutic approach for human melanomas and, possibly, other cancer types expressing WIP1 and with activated HH pathway.
Collapse
|
38
|
Fernandez F, Soon I, Li Z, Kuan TC, Min DH, Wong ESM, Demidov ON, Paterson MC, Dawe G, Bulavin DV, Xiao ZC. Wip1 phosphatase positively modulates dendritic spine morphology and memory processes through the p38MAPK signaling pathway. Cell Adh Migr 2012; 6:333-43. [PMID: 22983193 DOI: 10.4161/cam.20892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dendritic spine morphology is modulated by protein kinase p38, a mitogen-activated protein (MAPK), in the hippocampus. Protein p38MAPK is a substrate of wip1, a protein phosphatase. The role of wip1 in the central nervous system (CNS) has never been explored. Here, we report a novel function of wip1 in dendritic spine morphology and memory processes. Wip1 deficiency decreases dendritic spine size and density in pyramidal neurons of the hippocampal CA1 region. Simultaneously, impairments in object recognition tasks and contextual memory occur in wip1 deficient mice, but are reversed in wip1/p38 double mutant mice. Thus, our findings demonstrate that wip1 modulates dendritic morphology and memory processes through the p38MAPK signaling pathway. In addition to the well-characterized role of the wip1/p38MAPK in cell death and differentiation, we revealed the novel contribution of wip1 to cognition and dendritic spine morphology, which may suggest new approaches to treating neurodegenerative disorders.
Collapse
|
39
|
Lu L, Song HF, Zhang WG, Liu XQ, Zhu Q, Cheng XL, Yang GJ, Li A, Xiao ZC. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion. Biochem Biophys Res Commun 2012; 422:121-7. [PMID: 22564728 DOI: 10.1016/j.bbrc.2012.04.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/22/2012] [Indexed: 11/25/2022]
Abstract
Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18α-glycyrrhetinic acid (18α-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.
Collapse
Affiliation(s)
- Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Oncogenic challenges in stem cells and the link to cancer initiation. Arch Pharm Res 2012; 35:235-44. [DOI: 10.1007/s12272-012-0204-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/16/2022]
|
41
|
Macurek L, Benada J, Müllers E, Halim VA, Krejčíková K, Burdová K, Pecháčková S, Hodný Z, Lindqvist A, Medema RH, Bartek J. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis. Cell Cycle 2012; 12:251-62. [PMID: 23255129 DOI: 10.4161/cc.23057] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G(1) phase to G(2) and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G(1) cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression.
Collapse
Affiliation(s)
- Libor Macurek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhu YH, Bulavin DV. Wip1-dependent signaling pathways in health and diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:307-25. [PMID: 22340722 DOI: 10.1016/b978-0-12-396456-4.00001-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spatial and temporal regulation of protein phosphorylation is key to the control of different molecular networks. This regulation is achieved in part through dephosphorylation of numerous signaling molecules, and emerging evidence highlights the importance of a new member of the PP2C family of phosphatase, Wild-type p53 induced phosphatase 1 (Wip1), in regulating stress-induced and DNA damage-induced networks. In recent years, analysis of Wip1 has focused primarily on its role in tumorigenesis because of its overexpression in human tumors and a profound tumor-resistant phenotype of Wip1-deficient mice. Recently, Wip1 has also been shown to play an important role in several physiological processes including adult neurogenesis and organismal aging. This review addresses how Wip1 phosphatase regulates different signaling networks in a spatial and temporal manner and how these differences contribute to various biological outcomes in the context of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Cell Cycle Control and Tumorigenesis Group, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | |
Collapse
|
43
|
Abstract
Cellular senescence is a specialized form of growth arrest, confined to mitotic cells, induced by various stressful stimuli and characterized by a permanent growth arrest, resistance to apoptosis, an altered pattern of gene expression and the expression of some markers that are characteristic, although not exclusive, to the senescent state. Senescent cells profoundly modify neighboring and remote cells through the production of an altered secretome, eventually leading to inflammation, fibrosis and possibly growth of neoplastic cells. Mammalian aging has been defined as a reduction in the capacity to adequately maintain tissue homeostasis or to repair tissues after injury. Tissue homeostasis and regenerative capacity are nowadays considered to be related to the stem cell pool present in every tissue. For this reason, pathological and patho-physiological conditions characterized by altered tissue homeostasis and impaired regenerative capacity can be viewed as a consequence of the reduction in stem cell number and/or function. Last, cellular senescence is a double-edged sword, since it may inhibit the growth of transformed cells, preventing the occurrence of cancer, while it may facilitate growth of preneoplastic lesions in a paracrine fashion; therefore, interventions targeting this cell response to stress may have a profound impact on many age-related pathologies, ranging from cardiovascular disease to oncology. Aim of this review is to discuss both molecular mechanisms associated with stem cell senescence and interventions that may attenuate or reverse this process.
Collapse
|
44
|
Le Guezennec X, Bulavin DV. WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 2009; 35:109-14. [PMID: 19879149 DOI: 10.1016/j.tibs.2009.09.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 01/07/2023]
Abstract
The PP2C family serine/threonine phosphatase WIP1 is characterized by distinctive oncogenic properties mediated by inhibitory functions on several tumor suppressor pathways, including ATM, CHK2, p38MAPK and p53. PPM1D, the gene encoding WIP1, is aberrantly amplified in different types of human primary cancers, and its deletion in mice results in a profound tumor-resistant phenotype. Numerous downstream targets of WIP1 have been identified, and genetic studies confirm that some play a part in tumorigenesis. Recent evidence highlights a new role for WIP1 in the regulation of a cell-autonomous decline in proliferation of certain self-renewing cell types, including pancreatic beta-cells, with advancing age. These emerging functions of WIP1 make it a potent therapeutic target against cancer and aging.
Collapse
Affiliation(s)
- Xavier Le Guezennec
- Institute of Molecular and Cell Biology, Cell Cycle Control and Tumorigenesis Group, 61 Biopolis Drive, Proteos, Singapore
| | | |
Collapse
|
45
|
Lindqvist A, de Bruijn M, Macurek L, Brás A, Mensinga A, Bruinsma W, Voets O, Kranenburg O, Medema RH. Wip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression. EMBO J 2009; 28:3196-206. [PMID: 19713933 PMCID: PMC2771084 DOI: 10.1038/emboj.2009.246] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 07/29/2009] [Indexed: 01/07/2023] Open
Abstract
Activation of the DNA damage checkpoint causes a cell-cycle arrest through inhibition of cyclin-dependent kinases (cdks). To successfully recover from the arrest, a cell should somehow be maintained in its proper cell-cycle phase. This problem is particularly eminent when a cell arrests in G2, as cdk activity is important to establish a G2 state. Here, we identify the phosphatase Wip1 (PPM1D) as a factor that maintains a cell competent for cell-cycle re-entry during an ongoing DNA damage response in G2. We show that Wip1 function is required throughout the arrest, and that Wip1 acts by antagonizing p53-dependent repression of crucial mitotic inducers, such as Cyclin B and Plk1. Our data show that the primary function of Wip1 is to retain cellular competence to divide, rather than to silence the checkpoint to promote recovery. Our findings uncover Wip1 as a first in class recovery competence gene, and suggest that the principal function of Wip1 in cellular transformation is to retain proliferative capacity in the face of oncogene-induced stress.
Collapse
Affiliation(s)
- Arne Lindqvist
- Department of Medical Oncology and Cancer Genomics Center, Utrecht, Netherlands
| | - Menno de Bruijn
- Department of Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Libor Macurek
- Department of Medical Oncology and Cancer Genomics Center, Utrecht, Netherlands
| | - Alexandra Brás
- Genomic Instability Group, CNIO, C/Melchor Fernández Almagro, Madrid, Spain
| | - Anneloes Mensinga
- Department of Medical Oncology and Cancer Genomics Center, Utrecht, Netherlands
| | - Wytse Bruinsma
- Department of Medical Oncology and Cancer Genomics Center, Utrecht, Netherlands
| | - Olaf Voets
- Department of Medical Oncology and Cancer Genomics Center, Utrecht, Netherlands
| | - Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - René H Medema
- Department of Medical Oncology and Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
46
|
Wip1, an oncogene targeting tumor suppressors expressed in intestinal stem cells. CURRENT COLORECTAL CANCER REPORTS 2009. [DOI: 10.1007/s11888-009-0027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|