1
|
Shi J, Fan Y, Zhang Q, Huang Y, Yang M. Harnessing Photo-Energy Conversion in Nanomaterials for Precision Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501623. [PMID: 40376855 DOI: 10.1002/adma.202501623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Indexed: 05/18/2025]
Abstract
The rapidly advancing field of theranostics aims to integrate therapeutic and diagnostic functionalities into a single platform for precision medicine, enabling the simultaneous treatment and monitoring of diseases. Photo-energy conversion-based nanomaterials have emerged as a versatile platform that utilizes the unique properties of light to activate theranostics with high spatial and temporal precision. This review provides a comprehensive overview of recent developments in photo-energy conversion using nanomaterials, highlighting their applications in disease theranostics. The discussion begins by exploring the fundamental principles of photo-energy conversion in nanomaterials, including the types of materials used and various light-triggered mechanisms, such as photoluminescence, photothermal, photoelectric, photoacoustic, photo-triggered SERS, and photodynamic processes. Following this, the review delves into the broad spectrum of applications of photo-energy conversion in nanomaterials, emphasizing their role in the diagnosis and treatment of major diseases, including cancer, neurodegenerative disorders, retinal degeneration, and osteoarthritis. Finally, the challenges and opportunities of photo-energy conversion-based technologies for precision theranostics are discussed, aiming to advance personalized medicine.
Collapse
Affiliation(s)
- Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
2
|
Cheng T, Xiang Y, He X, Pang J, Zhu W, Luo L, Cao Y, Pei R. Nanostructured conductive polymers: synthesis and application in biomedicine. J Mater Chem B 2025; 13:4739-4769. [PMID: 40171665 DOI: 10.1039/d4tb02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Conductive polymers (CPs), distinguished by their sp2-hybridized carbon backbone, offer remarkable electrical conductivity while maintaining the advantageous mechanical flexibility and processing characteristics typical of organic polymers. Compared to their bulk counterparts, nanostructured CPs exhibit unique physicochemical properties, such as large surface areas and shortened charge/mass transport pathways, making them promising candidates for various applications. This mini review explores various synthesis methodologies for nanostructured CPs, including electrospinning, hard templating, and soft templating techniques, while elucidating their advantages and disadvantages. Additionally, the burgeoning biomedical applications of nanostructured CPs are highlighted, including drug delivery, neural electrodes and interfaces, nerve regeneration, and biosensing, demonstrating their potential to significantly advance contemporary biomedical science.
Collapse
Affiliation(s)
- Tingting Cheng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Ying Xiang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xuan He
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Ji Pang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Weihao Zhu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Wei H, Cui X, Yang H, Si F, Zhang Y. Combining WO 3@AuNPs with Poly(amidoamine) Allows Sensitive Electrochemical Detection of DR1 Based on Dual Signal Amplification. Chempluschem 2024; 89:e202400119. [PMID: 38619207 DOI: 10.1002/cplu.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Down-regulator of transcription 1 (DR1) is considered as a biomarker of hashimoto's thyroiditis (HT), which is a risk factor for thyroid cancer. Here, a label-free electrochemical biosensor for DR1 detection was constructed based on polyamidoamine (PAMAM) polymer and the nanocomposite (WO3@AuNPs) composed of tungsten trioxide (WO3) and gold nanoparticles (AuNPs). WO3@AuNPs was obtained by combining monolayer WO3 nanosheets, which has high conductivity, and AuNPs. The modification of WO3@AuNPs can not only increase the conductivity of the electrode but also provide more active sites for signaling units, thus greatly improve the sensitivity of the sensor. The polymer PAMAM is biocompatible and non-immunogenic, and its end functional group can bind to the target molecules, providing them with more binding sites and thus improving the sensitivity of the sensor. Under optimal conditions, the label-free biosensor showed a good linear relationship between the logarithm of DR1 concentration and the impedance in the range of 10 fg ⋅ mL-1 to 100 ng ⋅ mL-1, with a detection limit as low as 0.3 fg ⋅ mL-1. Besides, this label-free electrochemical platform exhibited satisfactory selectivity and anti-interference capability in human serum samples. Therefore, this method has considerable potential in clinical detection of DR1.
Collapse
Affiliation(s)
- Haiyan Wei
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Xiaojing Cui
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Fuchun Si
- Academy of Chinese Medical Sciences, Henan Key Laboratory of TCM Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yaping Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| |
Collapse
|
4
|
Kalashgrani MY, Mousavi SM, Akmal MH, Gholami A, Omidifar N, Chiang WH, Lai CW, Ripaj Uddin M, Althomali RH, Rahman MM. Biosensors for metastatic cancer cell detection. Clin Chim Acta 2024; 559:119685. [PMID: 38663472 DOI: 10.1016/j.cca.2024.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Early detection and effective cancer treatment are critical to improving metastatic cancer cell diagnosis and management today. In particular, accurate qualitative diagnosis of metastatic cancer cell represents an important step in the diagnosis of cancer. Today, biosensors have been widely developed due to the daily need to measure different chemical and biological species. Biosensors are utilized to quantify chemical and biological phenomena by generating signals that are directly proportional to the quantity of the analyte present in the reaction. Biosensors are widely used in disease control, drug delivery, infection detection, detection of pathogenic microorganisms, and markers that indicate a specific disease in the body. These devices have been especially popular in the field of metastatic cancer cell diagnosis and treatment due to their portability, high sensitivity, high specificity, ease of use and short response time. This article examines biosensors for metastatic cancer cells. It also studies metastatic cancer cells and the mechanism of metastasis. Finally, the function of biosensors and biomarkers in metastatic cancer cells is investigated.
Collapse
Affiliation(s)
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), 50603 Kuala Lumpur, Malaysia
| | - Md Ripaj Uddin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Zhang C, Li S, Tang L, Li S, Hu C, Zhang D, Chao L, Liu X, Tan Y, Deng Y. Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers. BIOSENSORS 2024; 14:121. [PMID: 38534228 DOI: 10.3390/bios14030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Development of an efficient technique for accurate and sensitive dibutyl phthalate (DBP) determination is crucial for food safety and environment protection. An ultrasensitive molecularly imprinted polymers (MIP) voltammetric sensor was herein engineered for the specific determination of DBP using poly-l-lysine/poly(3,4-ethylenedioxythiophene)/porous graphene nanocomposite (PLL/PEDOT-PG) and poly(o-phenylenediamine)-imprinted film as a label-free and sensing platform. Fabrication of PEDOT-PG nanocomposites was achieved through a simple liquid-liquid interfacial polymerization. Subsequently, poly-l-lysine (PLL) functionalization was employed to enhance the dispersibility and stability of the prepared PEDOT-PG, as well as promote its adhesion on the sensor surface. In the presence of DBP, the imprinted poly(o-phenylenediamine) film was formed on the surface of PLL/PEDOT-PG. Investigation of the physical properties and electrochemical behavior of the MIP/PLL/PEDOT-PG indicates that the incorporation of PG into PEDOT, with PLL uniformly wrapping its surface, significantly enhanced conductivity, carrier mobility, stability, and provided a larger surface area for specific recognition sites. Under optimal experimental conditions, the electrochemical response exhibited a linear relationship with a logarithm of DBP concentration within the range of 1 fM to 5 µM, with the detection limit as low as 0.88 fM. The method demonstrated exceptional stability and repeatability and has been successfully applied to quantify DBP in plastic packaging materials.
Collapse
Affiliation(s)
- Chuanxiang Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Lingxiao Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Dan Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
6
|
Patra S, Pareek D, Gupta PS, Wasnik K, Singh G, Yadav DD, Mastai Y, Paik P. Progress in Treatment and Diagnostics of Infectious Disease with Polymers. ACS Infect Dis 2024; 10:287-316. [PMID: 38237146 DOI: 10.1021/acsinfecdis.3c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In this era of advanced technology and innovation, infectious diseases still cause significant morbidity and mortality, which need to be addressed. Despite overwhelming success in the development of vaccines, transmittable diseases such as tuberculosis and AIDS remain unprotected, and the treatment is challenging due to frequent mutations of the pathogens. Formulations of new or existing drugs with polymeric materials have been explored as a promising new approach. Variations in shape, size, surface charge, internal morphology, and functionalization position polymer particles as a revolutionary material in healthcare. Here, an overview is provided of major diseases along with statistics on infection and death rates, focusing on polymer-based treatments and modes of action. Key issues are discussed in this review pertaining to current challenges and future perspectives.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Yitzhak Mastai
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| |
Collapse
|
7
|
Ali SA, Ayalew H, Gautam B, Selvaraj B, She JW, Janardhanan JA, Yu HH. Detection of SARS-CoV-2 Spike Protein Using Micropatterned 3D Poly(3,4-Ethylenedioxythiophene) Nanorods Decorated with Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38193284 DOI: 10.1021/acsami.3c12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The sensitivity and fabrication process of the detection platform are important for developing viral disease diagnosis. Recently, the outbreak of SARS-CoV-2 compelled us to develop a new detection platform to control such diseases in the future. We present an electrochemical-based assay that employs the unique properties of gold nanoparticles (AuNPs) deposited on 3D carboxyl-functionalized poly(3,4-ethylenedioxythiophene) (PEDOTAc) nanorods for specific and sensitive detection of SARS-CoV-2 spike protein (S1). The 3D-shaped PEDOTAc nanorods offer an ample surface area for receptor immobilization grown on indium-tin oxide surfaces through transfer-printing technology. Characterization via electrochemical, fluorescence, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques confirmed the structural and morphological properties of the AuNPs-decorated PEDOTAc. In contrast to antibody-based assays, our platform employs ACE2 receptors for spike protein binding. Differential pulse voltammetry records current responses, showing linear sensitivity from 100 ng to 10 pg/mL of S1. In addition, the SARS-CoV-2 assay (CoVPNs) also exhibited excellent selectivity against nonspecific target proteins (H9N2, IL-6, and Escherichia coli). Furthermore, the developed surface maintained good stability for up to 7 consecutive days without losing performance. The results provide new insight into effective 3D conductive nanostructure formation, which is promising in the development of versatile sensory devices.
Collapse
Affiliation(s)
- Syed Atif Ali
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Bhaskarchand Gautam
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Baskar Selvaraj
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Jia-Wei She
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30010, Taiwan
| | | | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
8
|
Meshesha M, Sardar A, Supekar R, Bhattacharjee L, Chatterjee S, Halder N, Mohanta K, Bhattacharyya TK, Pal B. Development and Analytical Evaluation of a Point-of-Care Electrochemical Biosensor for Rapid and Accurate SARS-CoV-2 Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:8000. [PMID: 37766054 PMCID: PMC10534802 DOI: 10.3390/s23188000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The COVID-19 pandemic has underscored the critical need for rapid and accurate screening and diagnostic methods for potential respiratory viruses. Existing COVID-19 diagnostic approaches face limitations either in terms of turnaround time or accuracy. In this study, we present an electrochemical biosensor that offers nearly instantaneous and precise SARS-CoV-2 detection, suitable for point-of-care and environmental monitoring applications. The biosensor employs a stapled hACE-2 N-terminal alpha helix peptide to functionalize an in situ grown polypyrrole conductive polymer on a nitrocellulose membrane backbone through a chemical process. We assessed the biosensor's analytical performance using heat-inactivated omicron and delta variants of the SARS-CoV-2 virus in artificial saliva (AS) and nasal swab (NS) samples diluted in a strong ionic solution, as well as clinical specimens with known Ct values. Virus identification was achieved through electrochemical impedance spectroscopy (EIS) and frequency analyses. The assay demonstrated a limit of detection (LoD) of 40 TCID50/mL, with 95% sensitivity and 100% specificity. Notably, the biosensor exhibited no cross-reactivity when tested against the influenza virus. The entire testing process using the biosensor takes less than a minute. In summary, our biosensor exhibits promising potential in the battle against pandemic respiratory viruses, offering a platform for the development of rapid, compact, portable, and point-of-care devices capable of multiplexing various viruses. The biosensor has the capacity to significantly bolster our readiness and response to future viral outbreaks.
Collapse
Affiliation(s)
- Mesfin Meshesha
- Department of Virology, Opteev Technologies Inc., Baltimore, MD 21225, USA;
| | - Anik Sardar
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Ruchi Supekar
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Lopamudra Bhattacharjee
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Soumyo Chatterjee
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Nyancy Halder
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Kallol Mohanta
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Tarun Kanti Bhattacharyya
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Biplab Pal
- Department of Virology, Opteev Technologies Inc., Baltimore, MD 21225, USA;
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| |
Collapse
|
9
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
10
|
Obisesan OS, Ajiboye TO, Mhlanga SD, Mufhandu HT. Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites. Colloids Surf B Biointerfaces 2023; 227:113342. [PMID: 37224613 DOI: 10.1016/j.colsurfb.2023.113342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention among several nanoscale materials during the last decade due to their unique properties. These properties make them successful nanofillers for drug delivery and a number of new biomedical applications. MNPs are more useful when combined with biodegradable polymers. In this review, we discussed the synthesis of polycaprolactones (PCL) and the various methods of synthesizing magnetic iron oxide nanoparticles. Then, the synthesis of composites that is made of PCL and magnetic materials (with special focus on iron oxide nanoparticles) were highlighted. In addition, we comprehensively reviewed their application in drug delivery, cancer treatment, wound healing, hyperthermia, and bone tissue engineering. Other biomedical applications of the magnetic PCL such as mitochondria targeting are highlighted. Moreover, biomedical applications of magnetic nanoparticles incorporated into other synthetic polymers apart from PCL are also discussed. Thus, great progress and better outcome with functionalized MNPs enhanced with polycaprolactone has been recorded with the biomedical applications of drug delivery and recovery of bone tissues.
Collapse
Affiliation(s)
| | - Timothy O Ajiboye
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6031, Gqeberha, South Africa.
| | - Sabelo D Mhlanga
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6031, Gqeberha, South Africa
| | - Hazel T Mufhandu
- Department of Microbiology, North-West University, Mafikeng, South Africa.
| |
Collapse
|
11
|
Du M, Zhang K. Nanoporous Conducting Polymer Nanowire Network-Encapsulated MnO 2-Based Flexible Supercapacitor with Enhanced Rate Capability and Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22563-22573. [PMID: 37094246 DOI: 10.1021/acsami.3c03028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transition-metal-oxide-based electrochemical electrodes usually suffer from poor electron and ion transport, leading to deteriorated rate performance and cycling stability. Herein, we address these issues by developing a facile "conducting encapsulation" strategy toward a nanoporous PEDOT nanowire/MnO2 nanoparticle/PEDOT nanowire composite electrode. Through encapsulation of the PEDOT nanowire network, the overall electrochemical performance of the resultant composite electrode is substantially enhanced. Specifically, the rate capability and capacitance retention are improved by ∼48.2 and ∼33%, respectively, which are 89.8% at 0.8-40 mA/cm2 and 93% after 3000 charge/discharge cycles at 2.0 mA/cm2, respectively. Moreover, the specific capacitance is increased by ∼6 times of that of the MnO2@PEDOT NW electrode at ∼200 mA/cm2. We find that a nanoporous conducting nanowire network that encapsulates a MnO2 nanoparticle layer can provide efficient electron and ion transport paths and stabilize the structure of MnO2 from collapse during charge/discharge cycling and mechanical deformation. This strategy can be applied to other pseudocapacitive material-based electrochemical electrodes, such as transition-metal oxides and conducting polymers.
Collapse
Affiliation(s)
- Minzhi Du
- Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Kun Zhang
- Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
12
|
Lv TR, Zhang WH, Yang YQ, Zhang JC, Yin MJ, Yin Z, Yong KT, An QF. Micro/Nano-Fabrication of Flexible Poly(3,4-Ethylenedioxythiophene)-Based Conductive Films for High-Performance Microdevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301071. [PMID: 37069773 DOI: 10.1002/smll.202301071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
With the increasing demands for novel flexible organic electronic devices, conductive polymers are now becoming the rising star for reaching such targets, which has witnessed significant breakthroughs in the fields of thermoelectric devices, solar cells, sensors, and hydrogels during the past decade due to their outstanding conductivity, solution-processing ability, as well as tailorability. However, the commercialization of those devices still lags markedly behind the corresponding research advances, arising from the not high enough performance and limited manufacturing techniques. The conductivity and micro/nano-structure of conductive polymer films are two critical factors for achieving high-performance microdevices. In this review, the state-of-the-art technologies for developing organic devices by using conductive polymers are comprehensively summarized, which will begin with a description of the commonly used synthesis methods and mechanisms for conductive polymers. Next, the current techniques for the fabrication of conductive polymer films will be proffered and discussed. Subsequently, approaches for tailoring the nanostructures and microstructures of conductive polymer films are summarized and discussed. Then, the applications of micro/nano-fabricated conductive films-based devices in various fields are given and the role of the micro/nano-structures on the device performances is highlighted. Finally, the perspectives on future directions in this exciting field are presented.
Collapse
Affiliation(s)
- Tian-Run Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wen-Hai Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Ya-Qiong Yang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jia-Chen Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhigang Yin
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
13
|
Pilvenyte G, Ratautaite V, Boguzaite R, Samukaite-Bubniene U, Plausinaitis D, Ramanaviciene A, Bechelany M, Ramanavicius A. Molecularly imprinted polymers for the recognition of biomarkers of certain neurodegenerative diseases. J Pharm Biomed Anal 2023; 228:115343. [PMID: 36934618 DOI: 10.1016/j.jpba.2023.115343] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
The appearance of the biomarkers in body fluids like blood, urine, saliva, tears, etc. can be used for the identification of many diseases. This article aimed to summarize the studies about electrochemical biosensors with molecularly imprinted polymers as sensitive and selective layers on the electrode to detect protein-based biomarkers of such neurodegenerative diseases as Alzheimer's disease, Parkinson's disease, and stress. The main attention in this article is focused on the detection methods of amyloid-β oligomers and p-Tau which are representative biomarkers for Alzheimer's disease, α-synuclein as the biomarker of Parkinson's disease, and α-amylase and lysozyme as the biomarkers of stress using molecular imprinting technology. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Deivis Plausinaitis
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
14
|
Molecularly Imprinted Polymers for the Determination of Cancer Biomarkers. Int J Mol Sci 2023; 24:ijms24044105. [PMID: 36835517 PMCID: PMC9961774 DOI: 10.3390/ijms24044105] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Biomarkers can provide critical information about cancer and many other diseases; therefore, developing analytical systems for recognising biomarkers is an essential direction in bioanalytical chemistry. Recently molecularly imprinted polymers (MIPs) have been applied in analytical systems to determine biomarkers. This article aims to an overview of MIPs used for the detection of cancer biomarkers, namely: prostate cancer (PSA), breast cancer (CA15-3, HER-2), epithelial ovarian cancer (CA-125), hepatocellular carcinoma (AFP), and small molecule cancer biomarkers (5-HIAA and neopterin). These cancer biomarkers may be found in tumours, blood, urine, faeces, or other body fluids or tissues. The determination of low concentrations of biomarkers in these complex matrices is technically challenging. The overviewed studies used MIP-based biosensors to assess natural or artificial samples such as blood, serum, plasma, or urine. Molecular imprinting technology and MIP-based sensor creation principles are outlined. Analytical signal determination methods and the nature and chemical structure of the imprinted polymers are discussed. Based on the reviewed biosensors, the results are compared, and the most suitable materials for each biomarker are discussed.
Collapse
|
15
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
16
|
Gashu M, Aragaw BA, Tefera M. Voltammetric Determination of Oxytetracycline in Milk and Pharmaceuticals samples using Polyurea Modified Glassy Carbon Electrode. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Zhang J, Lei J, Liu Z, Chu Z, Jin W. Nanomaterial-based electrochemical enzymatic biosensors for recognizing phenolic compounds in aqueous effluents. ENVIRONMENTAL RESEARCH 2022; 214:113858. [PMID: 35952740 DOI: 10.1016/j.envres.2022.113858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of industrial society, phenolic pollutants already identified in water are severe threats to human health. Traditional detection techniques like chromatography are poor in the ability of cost-effectiveness and on-site detection. In recent years, electrochemical enzymatic biosensors have attracted increasing attention for use in the recognition of phenolic compounds, which is considered an effective strategy for the product transfer of portable analytical devices. Although electrochemical enzymatic biosensors provide a fast, accurate on-site detection technique, the difficulties of enzyme deactivation, poor stability and low sensitivity remain to be solved. Thus, effective immobilization methods of enzymes and nanomaterials with excellent properties have been extensively researched to obtain a high-sensitivity and high-stability biosensing platform. Simultaneous detection of multiple phenols may become the focus of further research. In this review, we provide an overview of recent progress toward electrochemical enzymatic biosensors for the detection of phenolic compounds, including enzyme immobilization approaches and advanced nanomaterials, especially nanocomposites with attractive properties such as good conductivity, high specific surface area, and porous structure. We will comprehensively discuss the features and mechanisms of the main enzymes adopted in the construction of different phenolic biosensors, as well as traditional methods (e.g., adsorption, covalent bonding, entrapment, encapsulation, cross-linking) of enzyme immobilization. The most effective method is based on the properties of enzymes, supports and application objective because there is no one-size-fits-all method of enzymatic immobilization. The emphasis will be given to various advanced nanomaterials, including their special nanostructures, preparation methods and performance. Finally, the main challenges in future research on electrochemical phenolic biosensors will be discussed to provide further perspectives for practical applications in dynamic and on-site monitoring. We believe this review will deliver an important inspiration for the construction of novel and high-performance electrochemical biosensors from enzyme selection to nanomaterial design for the detection of various hazardous materials. We believe this review will deliver an important inspiration on the construction of novel and high-performance electrochemical biosensors from the enzyme selection to the nanomaterial design for detections of various hazardous materials.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jing Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhengkun Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
18
|
Tran VV. Conjugated Polymers-Based Biosensors for Virus Detection: Lessons from COVID-19. BIOSENSORS 2022; 12:748. [PMID: 36140133 PMCID: PMC9496581 DOI: 10.3390/bios12090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Human beings continue to endure the coronavirus disease (COVID-19) pandemic, which has spread throughout the world and significantly affected all countries and territories, causing a socioeconomic crunch. Human pathogenic viruses are considered a global burden for public health, both in the present and the future. Therefore, the early and accurate diagnosis of viruses has been and still is critical and should be accorded a degree of priority that is equivalent to vaccinations and drugs. We have opened a Special Issue titled "Conjugated polymers-based biosensors for virus detection". This editorial seeks to emphasize the importance and potential of conjugated polymers in the design and development of biosensors. Furthermore, we briefly provide an overview, scientific evidence, and opinions on promising strategies for the development of CP-based electrochemical biosensors for virus detection.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
19
|
Ullah S, Zahra QUA, Mansoorianfar M, Hussain Z, Ullah I, Li W, Kamya E, Mehmood S, Pei R, Wang J. Heavy Metal Ions Detection Using Nanomaterials-Based Aptasensors. Crit Rev Anal Chem 2022; 54:1399-1415. [PMID: 36018260 DOI: 10.1080/10408347.2022.2115287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Heavy metals ions as metallic pollutants are a growing global issue due to their adverse effects on the aquatic ecosystem, and human health. Unfortunately, conventional detection methods such as atomic absorption spectrometry exhibit a relatively low limit of detection and hold numerous disadvantages, and therefore, the development of an efficient method for in-situ and real-time detection of heavy metal residues is of great importance. The aptamer-based sensors offer distinct advantages over antibodies and emerged as a robust sensing platform against various heavy metals due to their high sensitivity, ease of production, simple operations, excellent specificity, better stability, low immunogenicity, and cost-effectiveness. The nucleic acid aptamers in conjugation with nanomaterials can bind to the metal ions with good specificity/selectivity and can be used for on-site monitoring of metal ion residues. This review aimed to provide background information about nanomaterials-based aptasensor, recent advancements in aptamer conjunction on nanomaterials surface, the role of nanomaterials in improving signal transduction, recent progress of nanomaterials-based aptasening procedures (from 2010 to 2022), and future perspectives toward the practical applications of nanomaterials-based aptasensors against hazardous metal ions for food safety and environmental monitoring.
Collapse
Affiliation(s)
- Salim Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Zahid Hussain
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Ismat Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Edward Kamya
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Shah Mehmood
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| |
Collapse
|
20
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
21
|
Modeling of the Electrotransport Process in PP-Based and PLA-Based Composite Fibers Filled with Carbon Nanofibers. Polymers (Basel) 2022; 14:polym14122362. [PMID: 35745938 PMCID: PMC9229486 DOI: 10.3390/polym14122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Polypropylene and polylactide-based composite fibers have been produced by a melt technology. Long vapor-grown carbon fibers (CNFs) have been used as electrical conductivity fillers. It is clearly shown by experimental methods that the CNFs are evenly distributed in the polymer matrix, orienting themselves along the direction of fiber extrusion and retaining their initial dimensions. It is shown that for composites fibers based on crystallizing (polypropylene) and amorphous (polylactide acid) polymer matrix, the dependence of electrical resistance on the filler concentration is percolation character and can be described as a double Boltzmann function. Four sections are identified on the dependences of the electrical resistance on the filler concentration for composite fibers, and the reasons for this character of this dependence on the formation of electrically conductive circuits are analyzed. Investigated in this work are the PP-based and PLA-based composites filled with carbon nanofibers that can be used as antistatic, shielding materials, or as sensors.
Collapse
|
22
|
Hryniewicz BM, Volpe J, Bach-Toledo L, Kurpel KC, Deller AE, Soares AL, Nardin JM, Marchesi LF, Simas FF, Oliveira CC, Huergo L, Souto DEP, Vidotti M. Development of polypyrrole (nano)structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. MATERIALS TODAY. CHEMISTRY 2022; 24:100817. [PMID: 35155879 PMCID: PMC8818392 DOI: 10.1016/j.mtchem.2022.100817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 05/20/2023]
Abstract
The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity. In this work, we reported the analytical comparison of two different conducting polymers morphologies for the development of an impedimetric biosensor to monitor SARS-CoV-2 seroconversion in humans. Biosensors based on polypyrrole (PPy), synthesized in both globular and nanotubular (NT) morphology, and gold nanoparticles are reported, using a self-assembly monolayer of 3-mercaptopropionic acid and covalently linked SARS-CoV-2 Nucleocapsid protein. First, the novel hybrid materials were characterized by electron microscopy and electrochemical measurements, and the biosensor step-by-step construction was characterized by electrochemical and spectroscopic techniques. As a proof of concept, the biosensor was used for the impedimetric detection of anti-SARS-CoV-2 Nucleocapsid protein monoclonal antibodies. The results showed a linear response for different antibody concentrations, good sensibility and possibility to quantify 7.442 and 0.4 ng/mL of monoclonal antibody for PPy in the globular and NT morphology, respectively. The PPy-NTs biosensor was able to discriminate serum obtained from COVID-19 positive versus negative clinical samples and is a promising tool for COVID-19 immunodiagnostic, which can contribute to further studies concerning rapid, efficient, and reliable detections.
Collapse
Affiliation(s)
- B M Hryniewicz
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - J Volpe
- Laboratório de Espectrometria, Sensores e Biossensores, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - L Bach-Toledo
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - K C Kurpel
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A E Deller
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A L Soares
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - J M Nardin
- Hospital Erasto Gaertner, 81520-290, Curitiba, PR, Brazil
| | - L F Marchesi
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
- Universidade Tecnológica Federal Do Paraná, Av. Monteiro Lobato S/n Km 04, CEP, 84016-210, Ponta Grossa, PR, Brazil
| | - F F Simas
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - C C Oliveira
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - L Huergo
- Setor Litoral, Universidade Federal Do Paraná (UFPR), 83260-000, Matinhos, PR, Brazil
| | - D E P Souto
- Laboratório de Espectrometria, Sensores e Biossensores, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - M Vidotti
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
23
|
Motshakeri M, Sharma M, Phillips ARJ, Kilmartin PA. Electrochemical Methods for the Analysis of Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2427-2449. [PMID: 35188762 DOI: 10.1021/acs.jafc.1c06350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The milk and dairy industries are some of the most profitable sectors in many countries. This business requires close control of product quality and continuous testing to ensure the safety of the consumers. The potential risk of contaminants or degradation products and undesirable chemicals necessitates the use of fast, reliable detection tools to make immediate production decisions. This review covers studies on the application of electrochemical methods to milk (i.e., voltammetric and amperometric) to quantify different analytes, as reported over the last 10 to 15 years. The review covers a wide range of analytes, including allergens, antioxidants, organic compounds, nitrogen- and aldehyde containing compounds, biochemicals, heavy metals, hydrogen peroxide, nitrite, and endocrine disruptors. The review also examines pretreatment procedures applied to milk samples and the use of novel sensor materials. Final perspectives are provided on the future of cost-effective and easy-to-use electrochemical sensors and their advantages over conventional methods.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Anthony R J Phillips
- School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Paul A Kilmartin
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
24
|
Ramanavicius S, Samukaite-Bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J Pharm Biomed Anal 2022; 215:114739. [DOI: 10.1016/j.jpba.2022.114739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
25
|
Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1282. [PMID: 35162027 PMCID: PMC8838766 DOI: 10.3390/s22031282] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
Collapse
Affiliation(s)
- Simonas Ramanavičius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urtė Samukaitė-Bubnienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaitė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Plikusienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
27
|
The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective. Acta Biomater 2022; 139:259-279. [PMID: 34111518 DOI: 10.1016/j.actbio.2021.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Conducting polymers (CPs) possess unique electrical and electrochemical properties and hold great potential for different applications in the field of bioelectronics. However, the widespread implementation of CPs in this field has been critically hindered by their poor processibility. There are four key elements that determine the processibility of CPs, which are thermal tunability, chemical stability, solvent compatibility and mechanical robustness. Recent research efforts have focused on enhancing the processibility of these materials through pre- or post-synthesis chemical modifications, the fabrication of CP-based complexes and composites, and the adoption of additive manufacturing techniques. In this review, the physicochemical and structural properties that underlie the performance and processibility of CPs are examined. In addition, current research efforts to overcome technical limitations and broaden the potential applications of CPs in bioelectronics are discussed. STATEMENT OF SIGNIFICANCE: This review details the inherent properties of CPs that have hindered their use in additive manufacturing for the creation of 3D bioelectronics. A fundamental approach is presented with consideration of the chemical structure and how this contributes to their electrical, thermal and mechanical properties. The review then considers how manipulation of these properties has been addressed in the literature including areas where improvements can be made. Finally, the review details the use of CPs in additive manufacturing and the future scope for the use of CPs and their composites in the development of 3D bioelectronics.
Collapse
|
28
|
Lorenzen AL, dos Santos AM, dos Santos LP, da Silva Pinto L, Conceição FR, Wolfart F. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochim Acta 2022; 404:139757. [PMID: 34955549 PMCID: PMC8684030 DOI: 10.1016/j.electacta.2021.139757] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Electrochemical sensors and biosensors are useful techniques for fast, inexpensive, sensitive, and easy detection of innumerous specimen. In face of COVID-19 pandemic, it became evident the necessity of a rapid and accurate diagnostic test, so the impedimetric immunosensor approach can be a good alternative to replace the conventional tests due to the specific antibody-antigen binding interaction and the fast response in comparison to traditional methods. In this work, a modified electrode with electrosynthesized PEDOT and gold nanoparticles followed by the immobilization of truncated nucleoprotein (N aa160-406aa) was used for a fast and reliable detection of antibodies against COVID-19 in human serum sample. The method consists in analyzing the charge-transfer resistance (RCT) variation before and after the modified electrode comes into contact with the positive and negative serum sample for COVID-19, using [Fe(CN)6]3-/4- as a probe. The results show a linear and selective response for serum samples diluted in a range of 2.5 × 103 to 20 × 103. Also, the electrode material was fully characterized by Raman spectroscopy, transmission electron microscopy and scanning electron microscopy coupled with EDS, indicating that the gold nanoparticles were well distributed around the polymer matrix and the presence of the biological sample was confirmed by EDS analysis. EIS measurements allowed to differentiate the negative and positive samples by the difference in the RCT magnitude, proving that the material developed here has potential properties to be applied in impedimetric immunosensors for the detection of SARS-CoV-2 antibodies in about 30 min.
Collapse
Affiliation(s)
- Ana Luiza Lorenzen
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Ariane Moraes dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luâni Poll dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luciano da Silva Pinto
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Franciele Wolfart
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil,Corresponding author
| |
Collapse
|
29
|
Zhang Z, Li M, Zuo Y, Chen S, Zhuo Y, Lu M, Shi G, Gu H. In Vivo Monitoring of pH in Subacute PD Mouse Brains with a Ratiometric Electrochemical Microsensor Based on Poly(melamine) Films. ACS Sens 2022; 7:235-244. [PMID: 34936337 DOI: 10.1021/acssensors.1c02051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In vivo monitoring of cerebral pH is of great significance because its disturbance is related to some pathological processes such as neurodegenerative diseases, for example, Parkinson's disease (PD). In this study, we developed an electrochemical microsensor based on poly(melamine) (PMel) films for ratiometric monitoring of pH in subacute PD mouse brains. In this microsensor, PMel films were prepared from a simple electropolymerization approach in a melamine-containing solution, serving as the selective pH recognition membrane undergoing a 2H+/2e- process. Meanwhile, electrochemically oxidized graphene oxide (EOGO) produced a built-in correction signal which helped avoid the environmental interference of the complicated brain systems. The potential difference between the peaks generated from EOGO and PMel gradually decreased with the aqueous pH increasing from 4.0 to 9.0, constituting the detection foundation of the ratiometric electrochemical microsensor (REM). The in vitro studies demonstrated that this proposed method exhibited a high sensitivity (a Nernstian response of -61.35 mV/pH) and remarkable selectivity against amino acids, anions, cations, and biochemical and reactive oxygen species coexisting in the brain. Coupled with its excellent stability and reproducibility and good antibiofouling based on short-term detection, the developed REM could serve as a disposable sensor for the determination of cerebral pH in vivo. Its following successful application in the real-time measurement of pH in the striatum, hippocampus, and cortex of rat brains in the events of global cerebral ischemia/reperfusion verified the reliability of this method. Finally, we adopted this robust REM to systematically analyze and compare the average pH in different regions of normal and subacute PD mouse brains.
Collapse
Affiliation(s)
- Ziyi Zhang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Mengyin Li
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
30
|
Fabrication of Polyaniline Ni-Complex Catalytic Electrode by Plasma Deposition for Electrochemical Detection of Phosphate through Glucose Redox Reaction as Mediator. Catalysts 2022. [DOI: 10.3390/catal12020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report here the preparation and characterization of polyaniline Ni-complex catalytic electrode by one-pot plasma deposition for the electrochemical detection of phosphate via the redox reaction of glucose. We first prepared a precursory solution by combining NiCl2 and 3-aminobenzoic acid in a mixed solution of methanol (MeOH) and water, and adding aniline as a conductive polymeric precursor for increasing the electron transfer potential. We then synthesized the catalytic electrode in a one-step cold plasma process by preparing the precursors on ITO glass. We characterized the obtained Ni-coordinate catalytic electrode via X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), and electrochemical methods. Electrochemical characterization produced stable redox properties of Ni3+/Ni2+ couples in a 0.1 M NaOH solution. Cyclic voltametric experiments have drastically increased electrocatalytic oxidation and reduction of glucose by increasing the concentration of phosphate (PO43−) ions using the prepared Ni-modified catalytic electrodes. From these results, the prepared catalytic electrode could be used as the electrochemical sensor for phosphate in actual water.
Collapse
|
31
|
Zhang M, Han S, Niu X, Li H, Zhang D, Fan H, Wang K. Innovative Synthesis of PANI/Cu
2
O Nanocomposite and Its Antibacterial Properties**. ChemistrySelect 2021. [DOI: 10.1002/slct.202103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengmeng Zhang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Sha Han
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Xiaohui Niu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Hongxia Li
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Deyi Zhang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Haiyan Fan
- Chemistry Department Nazarbayev University Astana 010000 Kazakhstan
| | - Kunjie Wang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province Lanzhou 730050 China
| |
Collapse
|
32
|
Raza S, Li X, Soyekwo F, Liao D, Xiang Y, Liu C. A comprehensive overview of common conducting polymer-based nanocomposites; Recent advances in design and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Martinazzo J, Brezolin AN, Paschoalin RT, Soares AC, Steffens J, Steffens C. Sexual pheromone detection using PANI·Ag nanohybrid and PANI/PSS nanocomposite nanosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3900-3908. [PMID: 34558574 DOI: 10.1039/d1ay00987g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, polyaniline/poly(styrene sulfonate) (PANI/PSS) nanocomposite and polyaniline·silver (PANI·Ag) nanohybrid thin films were obtained in cantilever nanosensors surface. The developed films were characterized in relation to topography, roughness, thickness, height, and structural properties. The topography study revealed that both films have a globular morphology, thickness and height in nanoscale. The gas sensing performance was investigated for sexual pheromone from the neotropical brown stink bug, Euschistus heros (F.). The sensitivities of both nanosensors based on PANI/PSS nanocomposite and PANI·Ag nanohybrid films were similar. The PANI·Ag nanohybrid nanosensor had a limit of detection of less than 3.1 ppq and limit of quantification of 10.05 ppq. The nanosensor layers were analyzed by UV-vis and FTIR showing the incorporation of Ag nanoparticles in the nanohybrid. We found that pheromone compound was adsorbed in sensing layer resulting in a reduction in the resonance frequency. The detection mechanism help us understand the good results of LOD, LOQ, sensitivity, selectivity and repeatability. The presented device has great potential for detection of the sexual pheromone from E. heros.
Collapse
Affiliation(s)
- Janine Martinazzo
- Food Engineering, URI - Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | | | - Rafaella Takehara Paschoalin
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics, University of São Paulo (USP), PO Box 369, 13566-590 São Carlos, SP, Brazil
| | - Juliana Steffens
- Food Engineering, URI - Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | - Clarice Steffens
- Food Engineering, URI - Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| |
Collapse
|
34
|
Polypyrrole-coated carbon fibre electrodes for paracetamol and clozapine drug sensing. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Poddar AK, Patel SS, Patel HD. Synthesis, characterization and applications of conductive polymers: A brief review. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Siddharth S. Patel
- Department of Chemistry, School of Science Gujarat University Ahmedabad India
| | - Hitesh D. Patel
- Department of Chemistry, School of Science Gujarat University Ahmedabad India
| |
Collapse
|
36
|
Kim E, Han J, Ryu S, Choi Y, Yoo J. Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4000. [PMID: 34300918 PMCID: PMC8308040 DOI: 10.3390/ma14144000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/04/2023]
Abstract
For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.
Collapse
Affiliation(s)
| | | | | | | | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Korea; (E.K.); (J.H.); (S.R.); (Y.C.)
| |
Collapse
|
37
|
Tran VV, Tran NHT, Hwang HS, Chang M. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: Potential for rapid COVID-19 detection. Biosens Bioelectron 2021; 182:113192. [PMID: 33819902 PMCID: PMC7992312 DOI: 10.1016/j.bios.2021.113192] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Rapid, accurate, portable, and large-scale diagnostic technologies for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) are crucial for controlling the coronavirus disease (COVID-19). The current standard technologies, i.e., reverse-transcription polymerase chain reaction, serological assays, and computed tomography (CT) exhibit practical limitations and challenges in case of massive and rapid testing. Biosensors, particularly electrochemical conducting polymer (CP)-based biosensors, are considered as potential alternatives owing to their large advantages such as high selectivity and sensitivity, rapid detection, low cost, simplicity, flexibility, long self-life, and ease of use. Therefore, CP-based biosensors can serve as multisensors, mobile biosensors, and wearable biosensors, facilitating the development of point-of-care (POC) systems and home-use biosensors for COVID-19 detection. However, the application of these biosensors for COVID-19 entails several challenges related to their degradation, low crystallinity, charge transport properties, and weak interaction with biomarkers. To overcome these problems, this study provides scientific evidence for the potential applications of CP-based electrochemical biosensors in COVID-19 detection based on their applications for the detection of various biomarkers such as DNA/RNA, proteins, whole viruses, and antigens. We then propose promising strategies for the development of CP-based electrochemical biosensors for COVID-19 detection.
Collapse
Affiliation(s)
- Vinh Van Tran
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City 700000, Viet Nam; Vietnam National University, HoChiMinh City 700000, Viet Nam
| | - Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea.
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea; Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
38
|
Brahma B, Sen S, Sarkar P, Sarkar U. Interference-free electrocatalysis of p-chloro meta xylenol (PCMX) on uniquely designed optimized polymeric nanohybrid of P(EDOT-co-OPD) and fMWCNT modified glassy carbon electrode. Anal Chim Acta 2021; 1168:338595. [PMID: 34052000 DOI: 10.1016/j.aca.2021.338595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
p-Chloro-meta-Xylenol (PCMX) is an environmentally hazardous phenolic compound having biocidal and antiseptic activity. Very few research publications addressed monitoring this contaminant. This paper presents a rapid sensing system to quantify it in waste water samples. The electrochemical activity of PCMX was exploited through a unique polymeric nanocomposite modified transducer for its quantification. Poly[(3,4-Ethylenedioxythiophene)-co-(o-phenylenediamine)] [P(EDOT-co-OPD)] was deposited through one-step electropolymerization technique on the glassy carbon electrode (GCE) modified by functionalized multi-wall carbon nanotubes (fMWCNTs). An optimized combination of these constituents was evaluated using response surface methodology (RSM) based Box-Behnken experimental design. This maximized the response for PCMX using differential pulse voltammetry (DPV). The sensing matrix was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The structural and morphological study of the modified film was conducted by Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), and field emission scanning electron microscope (FESEM). The anodic peak current could be read from a wide range of 0.5-225 μM calibration curve with a detection limit of 0.2545 μmol L-1. Interestingly this work did not use any biomaterial in the modification but achieved interference-free response with excellent selectivity, sensitivity (0.4668 μA μM-1 cm-2), reproducibility (RSD = 2.2%), and repeatability. The sensing platform showed good stability (85.7%) of 3 months even after 150 times repetitive use. Its applicability for real samples was established by good correlation with standard methods.
Collapse
Affiliation(s)
- Bhanupriya Brahma
- Biosensor Laboratory, Department of Polymer Science and Technology, University of Calcutta, A.P.C. Road, Kolkata, 700009, West Bengal, India; Pollution Control Laboratory, Department of Chemical Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Kolkata, 700032, West Bengal, India.
| | - Sarani Sen
- Biosensor Laboratory, Department of Polymer Science and Technology, University of Calcutta, A.P.C. Road, Kolkata, 700009, West Bengal, India.
| | - Priyabrata Sarkar
- Biosensor Laboratory, Department of Polymer Science and Technology, University of Calcutta, A.P.C. Road, Kolkata, 700009, West Bengal, India; Calcutta Institute of Technology, Uluberia, Howrah, 711316, India.
| | - Ujjaini Sarkar
- Pollution Control Laboratory, Department of Chemical Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
39
|
Bounegru AV, Apetrei C. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids. Int J Mol Sci 2021; 22:4811. [PMID: 34062799 PMCID: PMC8125614 DOI: 10.3390/ijms22094811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, researchers have focused on developing simple and efficient methods based on electrochemical biosensors to determine hydroxycinnamic acids from various real samples (wine, beer, propolis, tea, and coffee). Enzymatic biosensors represent a promising, low-cost technology for the direct monitoring of these biologically important compounds, which implies a fast response and simple sample processing procedures. The present review aims at highlighting the structural features of this class of compounds and the importance of hydroxycinnamic acids for the human body, as well as presenting a series of enzymatic biosensors commonly used to quantify these phenolic compounds. Enzyme immobilization techniques on support electrodes are very important for their stability and for obtaining adequate results. The following sections of this review will briefly describe some of the laccase (Lac) and tyrosinase (Tyr) biosensors used for determining the main hydroxycinnamic acids of interest in the food or cosmetics industry. Considering relevant studies in the field, the fact has been noticed that there is a greater number of studies on laccase-based biosensors as compared to those based on tyrosinase for the detection of hydroxycinnamic acids. Significant progress has been made in relation to using the synergy of nanomaterials and nanocomposites for more stable and efficient enzyme immobilization. These nanomaterials are mainly carbon- and/or polymer-based nanostructures and metallic nanoparticles which provide a suitable environment for maintaining the biocatalytic activity of the enzyme and for increasing the rate of electron transport.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
40
|
Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021; 13:974. [PMID: 33810074 PMCID: PMC8004762 DOI: 10.3390/polym13060974] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Jagminas
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
41
|
Song K, Chen W. An electrochemical sensor for high sensitive determination of lysozyme based on the aptamer competition approach. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Protein is a kind of basic substance that constitutes a life body. The determination of protein is very important for the research of biology, medicine, and other fields. Lysozyme is relatively small and simple in structure among all kinds of proteins, so it is often used as a standard target detector in the study of aptamer sensor for protein detection. In this paper, a lysozyme electrochemical sensor based on aptamer competition mechanism is proposed. We have successfully prepared a signal weakening electrochemical sensor based on the lysozyme aptamer competition mechanism. The carboxylated multi-walled carbon nanotubes (MWCNTs) were modified on the glassy carbon electrode, and the complementary aptamer DNA with amino group was connected to MWCNTs. Because of the complementary DNA of daunomycin into the electrode, the electrochemical signal is generated. When there is a target, the aptamer binds to lysozyme with higher binding power, and the original complementary chain breaks down, resulting in the loss of daunomycin inserted into the double chain and the weakening of electrochemical signal. Differential pulse voltammetry was used to determine lysozyme, the response range was 1–500 nM, the correlation coefficient was 0.9995, and the detection limit was 0.5 nM. In addition, the proposed sensor has good selectivity and anti-interference.
Collapse
Affiliation(s)
- Kai Song
- School of Drug and Food, Xuzhou Vocational College of Bioengineering , Xuzhou 221006 , China
| | - Wenwu Chen
- School of Drug and Food, Xuzhou Vocational College of Bioengineering , Xuzhou 221006 , China
| |
Collapse
|
42
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
43
|
Idumah CI. Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1857384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
44
|
Kazemi F, Naghib SM, Zare Y, Rhee KY. Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A Review. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1858871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatemeh Kazemi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
45
|
Kaur G, Kaur A, Kaur H. Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1844233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gagandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, India
| | - Anupreet Kaur
- Basic and Applied Sciences Department, Punjabi University, Patiala, India
| | - Harpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, India
| |
Collapse
|
46
|
Hou X, Xu H, Zhen T, Wu W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Koçer MB, Aydoğdu Tığ G, Pekyardımcı Ş. Selective determination of non-organophosphorus insecticide using DNA aptamer-based single-use biosensors. Biotechnol Appl Biochem 2020; 68:1174-1184. [PMID: 32969502 DOI: 10.1002/bab.2039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
In the present study, we developed a disposable aptamer-based biosensor for rapid, sensitive, and reliable detection of acetamiprid (ACE). To improve the sensitivity of the aptasensor, poly-5-amino-2-mercapto-1,3,4-thiadiazole [P(AMT)] and gold nanoparticles (AuNPs) were progressively electrodeposited on the screen-printed electrode (SPE) surface by using cyclic voltammetry (CV) technique. For the determination of ACE, thiol-modified primary aptamer (Apt1) was selected by using the SELEX method and immobilized on the surface of the P(AMT) and AuNPs-modified SPE (SPE/P(AMT)/AuNPs) via AuS bonding. Then, the surface-bound aptamer was incubated with ACE for 45 Min. After that, the biotin-labeled aptamer 2 (Apt2) was interacted with the ACE, then the enzyme-labeled step was performed. In this step, alkaline phosphatase (ALP) was bound to the surface through the interaction between Apt2 labeled with biotin and streptavidin (strep)-ALP conjugate. The determination of ACE was achieved by measuring the oxidation signal of α-naphthol, which is formed on the electrode surface through the interaction of ALP with α-naphthyl phosphate. The working range of the developed aptasensor was determined as 5 × 10-12 -5 × 10-10 mol L-1 with a low limit of detection (1.5 pmol L-1 ). It was also found that the proposed aptasensor possessed great advantages such as low cost, good selectivity, and good reproducibility.
Collapse
Affiliation(s)
- Mustafa Barış Koçer
- Department of Chemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Gözde Aydoğdu Tığ
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Şule Pekyardımcı
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
48
|
Elgiddawy N, Ren S, Yassar A, Louis-Joseph A, Sauriat-Dorizon H, El Rouby WMA, El-Gendy AO, Farghali AA, Korri-Youssoufi H. Dispersible Conjugated Polymer Nanoparticles as Biointerface Materials for Label-Free Bacteria Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39979-39990. [PMID: 32805819 DOI: 10.1021/acsami.0c08305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fast and efficient identification of bacterial pathogens in water and biological fluids is an important issue in medical, food safety, and public health concerns that requires low-cost and efficient sensing strategies. Impedimetric sensors are promising tools for monitoring bacteria detection because of their reliability and ease-of-use. We herein report a study on new biointerface-based amphiphilic poly(3-hexylthiophene)-b-poly(3-triethylene-glycol-thiophene), P3HT-b-P3TEGT, for label-free impedimetric detection of Escherichia coli (E. coli). This biointerface is fabricated by the self-assembly of P3HT-b-P3TEGT into core-shell nanoparticles, which was further decorated with mannose, leading to an easy-to-use solution-processable nanoparticle material for biosensing. The hydrophilic block P3TEGT promotes antifouling and prevents nonspecific interactions, while improving the ionic and electronic transport properties, thus enhancing the electrochemical-sensing capability in aqueous solution. Self-assembly and micelle formation of P3HT-b-P3TEGT were analyzed by 2D-NMR, Fourier transform infrared, dynamic light scattering, contact angle, and microscopy characterizations. Detection of E. coli was characterized and evaluated using electrochemical impedance spectroscopy and optical and scanning electron microscopy techniques. The sensing layer based on the mannose-functionalized P3HT-b-P3TEGT nanoparticles demonstrates targeting ability toward E. coli pili protein with a detection range from 103 to 107 cfu/mL, and its selectivity was studied with Gram(+) bacteria. Application to real samples was performed by detection of bacteria in tap and the Nile water. The approach developed here shows that water/alcohol-processable-functionalized conjugated polymer nanoparticles are suitable for use as electrode materials, which have potential application in fabrication of a low-cost, label-free impedimetric biosensor for the detection of bacteria in water.
Collapse
Affiliation(s)
- Nada Elgiddawy
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62 511 Beni-Suef, Egypt
| | - Shiwei Ren
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Abderrahim Yassar
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Alain Louis-Joseph
- PMC, CNRS, UMR 7643, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Hélène Sauriat-Dorizon
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France
| | - Waleed M A El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62 511 Beni-Suef, Egypt
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, 62 511 Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62 511 Beni-Suef, Egypt
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France
| |
Collapse
|
49
|
Gursoy SS, Yildiz A, Cogal GC, Gursoy O. A novel lactose biosensor based on electrochemically synthesized 3,4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractIn this study, a new lactose biosensor has been developed in which the 3,4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer is used as a transducer. The EDOT/Th copolymer was deposited on the glassy carbon electrode to be used as the working electrode. In addition to the working electrode, the three-electrode system was used in both the electrochemical synthesis and in the biosensor measurements. Lactase (β-galactosidase) that catalyzes the breakdown of lactose into monosaccharides (glucose and galactose) and galactose oxidase that catalyzes the oxidation of the resulting galactose were attached to the copolymer by a cross-linker on the modified working electrode. The response of the enzyme electrode to lactose was determined by cyclic voltammetry (CV) at +0.12 V. Enzyme electrode optimization parameters (pH, temperature, enzyme concentration, etc.) were performed. Fourier transform infrared spectroscopy, scanning electron microscopy and CV methods were used to support copolymer formation. In addition, the characteristics of the enzyme electrode prepared in this study (Km, 0.02 mM; activation energy Ea, 38 kJ/mol; linear working range, up to 1.72 mM; limit of detection, 1.9 × 10−5 M and effects of interferents [uric acid and ascorbic acid]) were determined.
Collapse
Affiliation(s)
- Songul Sen Gursoy
- Department of Chemistry, Burdur Mehmet Akif Ersoy University, Faculty of Arts and Sciences, TR-15030, Burdur, Turkey
| | - Abdulkerim Yildiz
- Department of Material Technology Engineering, Burdur Mehmet Akif Ersoy University, Institute of Applied and Natural Sciences, TR-15030, Burdur, Turkey
| | - Gamze Celik Cogal
- Department of Chemistry, Süleyman Demirel University, Institute of Applied and Natural Sciences, TR-32260, Isparta, Turkey
| | - Oguz Gursoy
- Department of Food Engineering, Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, TR-15030, Burdur, Turkey
| |
Collapse
|
50
|
Sapountzi E, Chateaux JF, Lagarde F. Combining Electrospinning and Vapor-Phase Polymerization for the Production of Polyacrylonitrile/ Polypyrrole Core-Shell Nanofibers and Glucose Biosensor Application. Front Chem 2020; 8:678. [PMID: 32850678 PMCID: PMC7417620 DOI: 10.3389/fchem.2020.00678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
In this work, polyacrylonitrile (PAN) nanofiber mats coated with conductive polypyrrole layers were produced at the surface of gold electrodes by a two-step approach combining electrospinning and vapor phase polymerization. In the first step, smooth and uniform PAN fibers exhibiting an average diameter of 650 ± 10 nm were generated through electrospinning of 12 wt% PAN solutions. The electrospun PAN fibers were impregnated with iron(III)tosylate (FeTos), annealed at 70°C and used as a robust and stable template for the growth of a thin layer of conductive polymer by co-polymerizing pyrrole (Py) and pyrrole-3-carboyxylic acid (Py3COOH) vapors under nitrogen atmosphere. The carboxyl groups introduced in polypyrrole coatings enabled further covalent binding of a model enzyme, glucose oxidase. The effect of different parameters (concentration of FeTos into the immersion solution, time of polymerization, Py/Py3COOH molar ratio) on the PAN/PPy/PPy3COOH/GOx impedimetric biosensor response was investigated. In the best conditions tested (immersion of the PAN fibers into 20 wt% FeTos solution, polymerization time: 30 min, 1:2 Py/Py3COOH ratio), the biosensor response was linear in a wide range of glucose concentration (20 nM−2μM) and selective toward ascorbic and uric acids. A very low limit of detection (2 nM) compared to those already reported in the literature was achieved. This value enables the determination of glucose in human serum after a large dilution of the sample (normal concentrations: 3.6 mM−6.1 mM range).
Collapse
Affiliation(s)
- Eleni Sapountzi
- Univ Lyon, CNRS, Univ Claude Bernard Lyon 1, Institute of Analytical Sciences, Villeurbanne, France
| | - Jean-François Chateaux
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut des Nanotechnologies de Lyon, Villeurbanne, France
| | - Florence Lagarde
- Univ Lyon, CNRS, Univ Claude Bernard Lyon 1, Institute of Analytical Sciences, Villeurbanne, France
| |
Collapse
|