1
|
Chitolina-Rodrigues G, Chandran D, R R, Silva-Neto HA. Recent advances in screen-printed carbon electrodes for food additive analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3613-3628. [PMID: 40270469 DOI: 10.1039/d5ay00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Screen-printed carbon electrodes (SPCEs) are regarded as the actual and future sensing option for additive analysis in food samples; nonetheless, the sample preparation, selectivity, and detectability are key challenges to overcome for its technological development and wide application. In the present review, we inform, discuss, and compare some pivotal aspects associated with the fabrication of SPCEs, the presence of additives in foods, sample preparation, and voltammetric measurements of additives in food samples. Also, the proposed study has indicated that it is possible to develop suitable options for electroanalytical methodologies by using bare or modified SPCEs, which present affordable results in terms of selectivity, linear concentration range, and limit of detection for different classes of additives. Lastly, the review introduces challenging points that can be carefully evaluated for the next generation of SPCEs dedicated to additive analysis.
Collapse
Affiliation(s)
| | - Devu Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| | - Rejithamol R
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| | - Habdias A Silva-Neto
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
2
|
Samanci SN, Ozcelikay-Akyildiz G, Bellur Atici E, Ozkan SA. Advanced sensor technologies for niraparib detection: A comparative study of molecularly imprinted polymer and nanosensor systems. Talanta 2025; 294:128205. [PMID: 40311477 DOI: 10.1016/j.talanta.2025.128205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors are crucial for maintenance therapy in ovarian cancer patients with BRCA mutations, with niraparib (NRB) being a significant example in this class of drugs. This study focuses on developing and comparing two distinct sensor technologies, a molecularly imprinted polymer (MIP)-based sensor and a nanosensor, for the sensitive and selective detection of NRB. The MIP-based electrochemical sensor was constructed using electropolymerization in the presence of aniline (ANI), 3-aminophenyl boronic acid (3-APBA), and NRB as the template molecule. Conversely, the nanosensor incorporated zinc oxide (ZnO) and gold nanoparticles (AuNPs) to enhance signal detection. The sensors were characterized using scanning electron microscopy (SEM) to ensure structural integrity and material composition. The performance of both sensors was optimized, and their analytical capabilities were assessed and compared. The MIP-based sensor demonstrated a concentration range of 2-10 pM with a detection limit (LOD) of 0.408 pM, as measured by differential pulse voltammetry (DPV). The nanosensor, optimized using adsorptive stripping differential pulse voltammetry (AdSDPV), displayed a broader concentration range of 80-600 nM and a LOD of 0.893 nM. This comparison revealed that the MIP-based sensor had superior sensitivity for NRB detection. Both sensors were successfully applied to the analysis of commercial human serum samples, showing excellent repeatability (n = 5) with a relative standard deviation (RSD) below 2.0 %. Recovery rates were highly satisfactory, ranging from 98.83 % to 101.33 %. These findings underscore the effectiveness of both sensors for precise, selective, and sensitive NRB detection, with the MIP-based sensor offering heightened sensitivity.
Collapse
Affiliation(s)
- Seyda Nur Samanci
- Ankara University, Faculty of Pharmacy, Analytical Chemistry Department, Ankara, Türkiye; Ankara University, Graduate School of Health Sciences, Ankara, Türkiye; Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar, Türkiye
| | | | - Esen Bellur Atici
- DEVA Holding A.S. R&D Center, Tekirdag, Türkiye; Gebze Technical University, Department of Chemistry, Kocaeli, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Analytical Chemistry Department, Ankara, Türkiye.
| |
Collapse
|
3
|
Rex Shanlee SS, Ragumoorthy C, Chen SM, Phang XE. Reductive pathway profiling of chemical warfare agent simulant in complex matrices using hydrothermally engineered mixed-valent Y 2NiMnO 6 double perovskite. ENVIRONMENTAL RESEARCH 2025; 279:121721. [PMID: 40311905 DOI: 10.1016/j.envres.2025.121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
The detection of chemical warfare agent (CWA) simulants in complex matrices remains a critical challenge for safeguarding environmental and public health. In this study, we report the development of a highly sensitive and selective electrochemical sensor utilizing hydrothermally engineered Y2NiMnO6 (YNMO), a mixed-valent double perovskite, for the detection of paraoxon ethyl (PXE), a representative CWA simulant. The YNMO-modified glassy carbon electrode (YNMO/GCE) exhibited exceptional electrocatalytic performance, owing to the synergistic redox activity of Ni2+/Ni3+ and Mn3+/Mn4+ redox couples that significantly enhanced interfacial charge transfer kinetics. The sensor achieved an impressively low detection limit of 0.08 nM and a quantification limit of 5 nM, with a wide linear detection range spanning from 0.19 μM to 2147.51 μM. It demonstrated high analytical robustness, with excellent repeatability (relative standard deviation < 2.57 %), reproducibility (inter-electrode variation <1.7 %), and operational stability over a 30-day testing period. Notably, the sensor retained functionality under complex conditions, exhibiting strong anti-interference capability against structurally related organophosphates and coexisting environmental or biological species. Real-sample analyses in diverse matrices including river, pond, and tap water; synthetic saliva and sweat; and various food items yielded high recovery rates (98.6-101.8 %), confirming the sensor's practical applicability.
Collapse
Affiliation(s)
- Santhiyagu Sahayaraj Rex Shanlee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Chandini Ragumoorthy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Xin-Ee Phang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| |
Collapse
|
4
|
Shen J, Zhang C, Cheng D, Huang S, Chen X. Hybridization chain reaction-DNAzyme amplified switch microplate assay for ultrasensitive detection of magnesium ions. J Mater Chem B 2025; 13:4179-4187. [PMID: 40052201 DOI: 10.1039/d5tb00345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
It is well-recognized that metal ion contaminants present in food and the environment pose a serious threat to human health and contribute to huge economic losses. Therefore, the development of simple, rapid, sensitive, and on-site methods for the detection of metal ions has become an urgent need. Herein, we combined the isothermal hybridization chain reaction (HCR) and a DNAzyme to develop a dual-signal amplification sensing assay for ultrasensitive Mg2+ detection on microplates. In this assay, the linker DNA strand (LDNA) that triggered the formation of the HCR structure was immobilized on a microplate via the biotin-streptavidin conjugation. Upon addition of the H5 sequence substrate strand to form a DNAzyme structure, an amplification switch microplate with 2n signaling amplification sites was established. The HCR-DNAzyme switch was activated by capturing Mg2+, and the methylene blue (MB)-labeled H5 was released. It generated an electrochemical signal after being captured by the reporter electrode attached to its complementary sequence (CDNA), accomplishing an efficient detection of Mg2+. Moreover, owing to the 2n signal amplification of the HCR-DNAzyme system with the simple separation and purification processing of the microplate, the Mg2+ detection limit of this strategy was as low as 0.6 fM. Furthermore, this method could be employed for other targets by simply changing the recognition structure of the DNAzyme, revealing the potential practical applications of this strategy in a wide range of fields.
Collapse
Affiliation(s)
- Jianjing Shen
- College of Chemistry and Molecular Engineering, Jiangsu Provincial University key Laboratory of Intelligent Medical Sensing Materials and Devices, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Chengzhou Zhang
- College of Chemistry and Molecular Engineering, Jiangsu Provincial University key Laboratory of Intelligent Medical Sensing Materials and Devices, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Donghao Cheng
- China Academy of Civil Aviation Science and Technology, Beijing, 100028, P. R. China
| | - Shan Huang
- College of Chemistry and Molecular Engineering, Jiangsu Provincial University key Laboratory of Intelligent Medical Sensing Materials and Devices, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Jiangsu Provincial University key Laboratory of Intelligent Medical Sensing Materials and Devices, Nanjing Tech University, Nanjing, 211816, P. R. China.
| |
Collapse
|
5
|
Lima TM, Leal DM, Ferreira ZC, Souza FDJ, de Oliveira DB, Rocha-Vieira E, Martins HR, Pereira AC, Ferreira LF. Development and Optimization of a Cost-Effective Electrochemical Immunosensor for Rapid COVID-19 Diagnosis. BIOSENSORS 2025; 15:67. [PMID: 39996968 PMCID: PMC11853419 DOI: 10.3390/bios15020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
The coronavirus disease (COVID-19) pandemic has created an urgent need for rapid, accurate, and cost-effective diagnostic tools. In this study, an economical electrochemical immunosensor for the rapid diagnosis of COVID-19 was developed and optimized based on charge transfer resistance (Rct) values obtained by electrochemical impedance spectroscopy (EIS) from the interaction between antibodies (anti-SARS-CoV-2) immobilized as a bioreceptor and the virus (SARS-CoV-2). The sensor uses modified pencil graphite electrodes (PGE) coated with poly(4-hydroxybenzoic acid), anti-SARS-CoV-2, and silver nanoparticles. The immobilization of anti-SARS-CoV-2 antibodies was optimized at a concentration of 1:250 for 30 min, followed by blocking the surface with 0.01% bovine serum albumin for 10 min. The optimal conditions for virus detection in clinical samples were a 1:10 dilution with a response time of 20 min. The immunosensor responded linearly in the range of 0.2-2.5 × 106 particles/μL. From the relationship between the obtained signal and the concentration of the analyzed sample, the limit of detection (LOD) and limit of quantification (LOQ) obtained were 1.21 × 106 and 4.04 × 106 particles/μL, respectively. The device did not cross-react with other viruses, including Influenza A and B, HIV, and Vaccinia virus. The relative standard deviation (RSD) of the six immunosensors prepared using the shared-pool sample was 3.87. Decreases of 22.3% and 12.4% were observed in the response values of the ten immunosensors stored at 25 °C and 4.0 °C, respectively. The sensor provides timely and accurate results with high sensitivity and specificity, offering a cost-effective alternative to the existing diagnostic methods.
Collapse
Affiliation(s)
- Thaís Machado Lima
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Daiane Martins Leal
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Zirlane Coelho Ferreira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Fernando de Jesus Souza
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Danilo Bretas de Oliveira
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Etel Rocha-Vieira
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Helen Rodrigues Martins
- Pharmacy Department, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil;
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João del-Rei (UFSJ), São João del-Rei 36307-352, Minas Gerais, Brazil;
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| |
Collapse
|
6
|
Felix MAJ, Ragumoorthy C, Chen TW, Chen SM, Kiruthiga G, Singh A, Ghazaryan K, Al-Mohaimeed AM, Elshikh MS. Fluid-specific detection of environmental pollutant moxifloxacin hydrochloride utilizing a rare-earth niobate decorated functionalized carbon nanofiber sensor platform. ENVIRONMENTAL RESEARCH 2025; 264:120349. [PMID: 39542161 DOI: 10.1016/j.envres.2024.120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The development of precise and efficient detection methods is essential for the real-time monitoring of antibiotics, especially in environmental and biological matrices. This study aims to address this challenge by introducing a novel electrochemical sensor for the targeted detection of moxifloxacin hydrochloride (MFN), a fourth-generation fluoroquinolone. The sensor is based on a holmium niobate (HNO) and functionalized carbon nanofiber (f-CNF) nanocomposite, synthesized via a hydrothermal approach and subsequently characterized for its structural and electrochemical properties. When deposited onto a glassy carbon electrode (GCE), the HNO/f-CNF nanocomposite demonstrated exceptional electrochemical performance, as assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The sensor exhibited remarkable sensitivity, with a detection limit of 0.034 μM, a quantification limit of 0.11 μM, and a sensitivity of 0.69 μA μM-1 cm-2. It also achieved a broad linear detection range from 0.001 μM to 1166.11 μM, making it highly effective for MFN detection across various complex matrices, including environmental waters, biological fluids, and artificial saliva, with recovery rates between 98.15% and 101.75%. The novelty of this work lies in the unique combination of HNO's catalytic properties and f-CNF's enhanced electron transport, establishing a highly selective and sensitive platform for MFN detection. This sensor not only advances the field of electrochemical sensing but also offers a promising tool for real-time environmental and pharmaceutical monitoring.
Collapse
Affiliation(s)
- Mariya Antony John Felix
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Chandini Ragumoorthy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - G Kiruthiga
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Tamil Nadu, Coimbatore, 641 043, India
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan, 0025, Armenia
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan, 0025, Armenia
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Hensel RC, Di Vizio B, Materòn EM, Shimizu FM, Angelim MKSC, de Souza GF, Módena JLP, Moraes-Vieira PMM, de Azevedo RB, Litti L, Agnoli S, Casalini S, Oliveira ON. Enhanced performance of impedimetric immunosensors to detect SARS-CoV-2 with bare gold nanoparticles and graphene acetic acid. Talanta 2025; 281:126903. [PMID: 39326119 DOI: 10.1016/j.talanta.2024.126903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immunosensors based on electrical impedance spectroscopy allow for label-free, real-time detection of biologically relevant molecules and pathogens, without requiring electro-active materials. Here, we investigate the influence of bare gold nanoparticles (AuNPs), synthesized via laser ablation in solution, on the performance of an impedimetric immunosensor for detecting severe acute respiratory syndrome coronavirus (SARS-CoV-2). Graphene acetic acid (GAA) was used in the active layer for immobilizing anti-SARS-CoV-2 antibodies, owing to its high density of carboxylic groups. Immunosensors incorporating AuNPs exhibited superior performance compared to those relying solely on GAA, achieving a limit of detection (LoD) of 3 x 10-20 g/mL to detect the Spike Receptor Binding Domain (RBD) protein of SARS-CoV-2 and of 2 PFU/mL for inactivated virus. Moreover, these immunosensors presented high selectivity against the H1N1 influenza virus. We anticipate that this platform will be versatile and applicable in the early diagnosis of various diseases and viral infections, thereby facilitating Point-of-Care testing.
Collapse
Affiliation(s)
- Rafael C Hensel
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil.
| | - Biagio Di Vizio
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Elsa M Materòn
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil; Sao Carlos Institute of Chemistry, University of Sao Paulo, São Carlos, Brazil
| | - Flávio M Shimizu
- Institute of Physics Gleb Wataghin, University of Campinas, Campinas, Brazil
| | - Monara Kaelle S C Angelim
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela F de Souza
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology - University of Campinas, Campinas, Brazil
| | - José L P Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology - University of Campinas, Campinas, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Lucio Litti
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Stefano Casalini
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil.
| |
Collapse
|
8
|
Martins de Oliveira A, Matias Silva R, Dias da Silva A, Silva TA. Electroanalysis of Statin Drugs: A Review on the Electrochemical Sensor Architectures Ranging from Classical to Modern Systems. Crit Rev Anal Chem 2024:1-20. [PMID: 39499262 DOI: 10.1080/10408347.2024.2420820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
An overview of the latest advances in the design of electrochemical sensor architectures dedicated to the determination of drugs from the statin class is presented in this review. Statins are drugs widely consumed for cholesterol control, and their determination in different matrices through the application of electroanalysis is growing considering advantages such as operational simplicity, lower cost and ease of sample preparation. Within the context of statins, electrochemical sensor architectures can be subdivided into conventional/classical electrodes such as glassy carbon electrodes, carbon paste electrodes, pencil graphite electrodes, boron-doped diamond electrodes and metallic electrodes, and more modern electrode systems, including the screen-printed electrodes and 3D-printed electrodes. Thus, different aspects related to the preparation of these electrochemical sensors and analytical performance are presented, also reflecting advances in terms of designs of new architectures and possible improvements not previously reviewed. Analyzed samples, advantages and disadvantages of different implemented sensor's modification strategies and perspectives for the electroanalysis of statins are also included throughout the work.
Collapse
|
9
|
Zhou S, Chino Y, Kasama T, Miyake R, Mitsuzawa S, Luan Y, Ahmad NB, Hibino H, Takai M. Biocompatible Core-Shell Microneedle Sensor Filled with Zwitterionic Polymer Hydrogel for Rapid Continuous Transdermal Monitoring. ACS NANO 2024; 18:26541-26559. [PMID: 39297515 PMCID: PMC11447902 DOI: 10.1021/acsnano.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 10/02/2024]
Abstract
Microneedle (MN)-based electrochemical biosensors hold promising potential for noninvasive continuous monitoring of interstitial fluid biomarkers. However, challenges, such as instability and biofouling, exist. This study proposes a design employing hollow MN to encapsulate a zwitterionic polymer hydrogel sensing layer with excellent biocompatibility and antifouling properties to address these issues. MN shell isolates the internal microporous sensing layer from subcutaneous friction, and the hydrogel filling leverages the MNs' three-dimensional structures, enabling high-dense loading of biorecognition elements. The hollow MNs are successfully fabricated from high-molecular-weight polylactic acid via drawing lithography, exhibiting sufficient strength for effective epidermis penetration. Additionally, a high-performance gold nanoconductive layer is successfully deposited inside the MN hollow channel, establishing a stable electrical connection between the polymer MN and the hydrogel sensing layer. To support the design, numerical simulations of position-based diffusive analyte solutes reveal fast-responsive electrochemical signals attributed to the high diffusion coefficient of the hydrogel and the concentrated structure of the hollow channel encapsulation. Experimental results and numerical simulations underscore the advantages of this design, showcasing rapid response, high sensitivity, long-term stability, and excellent antifouling properties. Fabricated MN sensors exhibited biosafety, feasibility, and effectiveness, with accurate and rapid in vivo glucose monitoring ability. This study emphasizes the significance of rational design, structural utilization, and micro-nanofabrication to unlock the untapped potential of MN biosensors.
Collapse
Affiliation(s)
- Shicheng Zhou
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yutaro Chino
- Sanyo
Chemical Industries, Ltd., Kyoto 605-0995, Japan
| | - Toshihiro Kasama
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society,
Nagoya University, Nagoya 236-0027, Japan
| | - Ryo Miyake
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | | | - Yinan Luan
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Norzahirah Binti Ahmad
- Division
of Glocal Pharmacology, Department of Pharmacology, Graduate School
of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Hibino
- Division
of Glocal Pharmacology, Department of Pharmacology, Graduate School
of Medicine, Osaka University, Osaka 565-0871, Japan
- AMED-CREST,
AMED, Osaka 565-0871, Japan
| | - Madoka Takai
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
10
|
Kaçar Selvi C, Şenceol B, Erden PE. Disposable glutamate biosensor based on platinum nanoparticles, carbon quantum dots and poly-L-aspartic acid. Prep Biochem Biotechnol 2024; 55:309-317. [PMID: 39264049 DOI: 10.1080/10826068.2024.2402340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This study reports the design and development of a disposable amperometric biosensor for the determination of L-glutamate. Glutamate oxidase (GlOx) was immobilized onto a screen-printed carbon electrode (SPE) modified with poly-L-Aspartic acid (PAsp), carbon quantum dots (CQD), and platinum nanoparticles (PtNP) for the construction of the biosensor. The surface composition of the modified SPE was optimized using the one variable at a time method. The morphological properties of the biosensor were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The electrochemical behavior of the modified electrodes was studied by cyclic voltammetry. Under the optimized experimental conditions the linear working range, detection limit and sensitivity of the GlOx/PtNP/CQD/PAsp/SPE were found to be 1.0 - 140 µM, 0.3 µM and 0.002 µA µM-1, respectively. The GlOx/PtNP/CQD/PAsp/SPE biosensor also exhibited good measurement repeatability. The as-developed biosensor was applied for the determination of L-glutamate in spiked serum samples and the average analytical recovery of added glutamate was 98.9 ± 3.9%.
Collapse
Affiliation(s)
- Ceren Kaçar Selvi
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Türkiye
| | - Barış Şenceol
- Department of Chemistry, Polatlı Faculty of Science and Letters, Ankara Haci Bayram Veli University, Ankara, Türkiye
| | - Pınar Esra Erden
- Department of Chemistry, Polatlı Faculty of Science and Letters, Ankara Haci Bayram Veli University, Ankara, Türkiye
| |
Collapse
|
11
|
Utzinger B, Dixit DD, Lillehoj PB. Microfluidic finger-actuated mixer for ultrasensitive electrochemical measurements of protein biomarkers for point-of-care testing. LAB ON A CHIP 2024; 24:3802-3809. [PMID: 38979726 DOI: 10.1039/d4lc00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Current diagnostic tests for high sensitivity detection of protein biomarkers involve long incubation times or require bulky/expensive instrumentation, hindering their use for point-of-care testing. Here, we report a microfluidic electrochemical immunosensor that employs a unique finger-actuated mixer for rapid, ultrasensitive measurements of protein biomarkers. Mixing was implemented during the incubation steps, which accelerated biomolecular transport and promoted immunocomplex formation, leading to enhanced analytical sensitivity and a shortened detection time. Electrochemical measurements were performed using a handheld diagnostic device consisting of a smartphone and miniature potentiostat. Proof of principle was demonstrated by using this platform for quantitative measurements of C-X-C motif chemokine ligand 9 (CXCL9), a serological biomarker for autoimmune and inflammatory diseases, which could be detected in human plasma at concentrations as low as 4.7 pg mL-1 in <25 min. The ability to rapidly detect protein biomarkers with high sensitivity in a point-of-care format makes this device a promising tool for diagnostic testing, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Benjamin Utzinger
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
12
|
Ashraf S, Hussain T, Bajwa SZ, Mujahid A, Afzal A. Portable smartphone-enabled dydrogesterone sensors based on biomimetic polymers for personalized gynecological care. J Mater Chem B 2024; 12:6905-6916. [PMID: 38919127 DOI: 10.1039/d4tb00657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Dydrogesterone, a frequently prescribed synthetic hormone integral to the treatment of diverse gynecological conditions, necessitates precise quantification in complex human plasma. In this study, the development of a portable, smartphone-based electrochemical sensor employing screen-printed gold electrodes (SPAuEs) modified with a biomimetic, molecularly imprinted poly(methacrylic acid-co-methyl methacrylate) (MIP) is presented for dydrogesterone detection in human plasma. FTIR spectroscopy illustrates the transformation of a pre-polymer mixture into a polymerized matrix, while SEM reveals a uniform MIP/SPAuE surface morphology. The sensor fabrication protocol, encompassing MIP/SPAuE composition, polymerization solvent, incubation time, and scan rate, is optimized to achieve enhanced sensitivity. The MIP/SPAuEs sensor exhibits a linear sensor response to dydrogesterone within the concentration range of 1-500 nM, as evidenced by cyclic and differential pulse voltammetry. The MIP/SPAuE sensor demonstrates exceptional sensitivity, recording 8.2 × 10-3 μA nM-1, with a sub-nanomolar limit of detection (LOD = 370 pM), and low limit of quantification (LOQ = 1.12 nM), along with appreciable selectivity over common interferents. In real-world clinical applications, the designed sensor is effectively employed for the rapid and precise determination of dydrogesterone in human blood plasma, achieving a remarkable recovery of 81%. Furthermore, MIP/SPAuE coatings possess suitable stability over 15 days, indicating the robustness of the sensor material for multiple rounds of analysis. The developed sensor provides a sensitive, selective, and cost-effective solution for monitoring dydrogesterone in plasma during various gynecological disorders, allowing for personalized healthcare applications.
Collapse
Affiliation(s)
- Sobia Ashraf
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Tajamal Hussain
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, 44000, Pakistan
| | - Adnan Mujahid
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
13
|
López-Sánchez C, de Andrés F, Ríos Á. Implications of analytical nanoscience in pharmaceutical and biomedical fields: A critical view. J Pharm Biomed Anal 2024; 243:116118. [PMID: 38513499 DOI: 10.1016/j.jpba.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
This review summarizes recent progress performed in the design and application of analytical tools and methodologies using nanomaterials for pharmaceutical analysis, and specifically new nanomedicines at distinct phases of development and translation from preclinical to clinical stages. Over the last 10-15 years, a growing number of studies have utilized various nanomaterials, including carbon-based, metallic nanoparticles, polymeric nanomaterials, materials based on biological molecules, and composite nanomaterials as tools for improving the analysis of pharmaceutical products. New and more complex nanomaterials are currently being explored to influence different stages of the analytical process. These materials provide unique properties to support the extraction of analytes in complex samples, increase the selectivity and efficiency of chromatographic separations, and improve the analytical properties of many sensor applications. Indeed, nanomaterials, including electrochemical detection approaches and biosensing, are expanding at a remarkable rate. Furthermore, the analytical performance of numerous approaches to determine drugs in different matrices can be significantly improved in terms of precision, detection limits, selectivity, and time of analysis. However, the quality control and metrological characterization of the currently synthesized nanomaterials still depend on the development of new and improved analytical methodologies, and the application of specific and improved instrumentation. Therefore, there is still much to explore about the properties of nanomaterials which need to be determined even more precisely and accurately.
Collapse
Affiliation(s)
- Claudia López-Sánchez
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Dr. José María Sánchez Ibáñez Av. s/n, Albacete 02071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain.
| |
Collapse
|
14
|
Gayathri J, Roniboss A, Sivalingam S, Sangeetha Selvan K. Electrochemical sensing of Hg(ii) in chicken liver and snail shell extract samples using novel modified SDA/MWCNT electrodes. RSC Adv 2024; 14:16056-16068. [PMID: 38769970 PMCID: PMC11103563 DOI: 10.1039/d4ra00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Heavy metal ions (Hg(ii)) were detected in fresh chicken liver and snail shell extract samples using novel synthesised SDA/MWCNT-modified electrodes. The synthesized N,N'-bis(salicylaldehyde)-1,2-diaminobenzene (SDA) ligand was characterized via FT-IR, 1H-NMR, and 13C-NMR spectroscopy. The hydroxyl and imine functional groups present in SDA act as active sites and bind to the MWCNT surface. The surface morphology of the modified SDA/MWCNT electrode exhibited a star-like crystal structure and the preconcentration of Hg(ii)-SDA/MWCNTs lead to a crystal cloud structure, as characterized by SEM with EDX. The enhancement of current and conductance of the SDA/MWCNT- and MWCNT-modified electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The conductance (σ) values for the MWCNT- and SDA/MWCNT-modified electrodes are 234.1 × 10-5 S cm-1 and 358.4 × 10-5 S cm-1, respectively, as determined by electrochemical impedance spectroscopy. Consequently, an electrochemical sensor with outstanding performance in terms of reproducibility, stability and anti-interference ability was fabricated. The stripping analysis of Hg(ii) was performed using square wave anodic stripping voltammetry (SWASV) and cyclic voltammetry (CV). Using SWASV, a linear range of Hg(ii) response was found to be 1.3 to 158 μg L-1, and the limit of detection (LOD) was 0.24 μg L-1. Finally, the results of the recovered value of Hg(ii) in freshly prepared chicken liver and snail shell extract samples by SWASV were compared with the atomic absorption spectroscopy (AAS) results.
Collapse
Affiliation(s)
- Jayagopi Gayathri
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - A Roniboss
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - Sivakumar Sivalingam
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - Kumar Sangeetha Selvan
- Department of Chemistry, Anna Adarsh College for Women Anna Nagar Chennai Tamil Nadu 600040 India
| |
Collapse
|
15
|
Moço ACR, Gomide JAL, Flauzino JMR, Brussasco JG, Luz LFG, Soares MMCN, Madurro JM, Brito-Madurro AG. Fentogram electrochemical detection of HIV RNA based on graphene quantum dots and gold nanoparticles. J Pharm Biomed Anal 2024; 242:116025. [PMID: 38422670 DOI: 10.1016/j.jpba.2024.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
This work reports the construction of an HIV-specific genosensor through the modification of carbon screen-printed electrodes (CSPE) with graphene quantum dots decorated with L-cysteine and gold nanoparticles (cys-GQDs/AuNps). Cys-GQDs were characterized by FT-IR and UV-vis spectra and electronic properties of the modified electrodes were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The modification of the electrode surface with cys-GQDs and AuNps increased the electrochemical performance of the electrode, improving the electron transfer of the anionic redox probe [Fe(CN)6]3-/4- on the electrochemical platform. When compared to the bare surface, the modified electrode showed a 1.7 times increase in effective electrode area and a 29 times decrease in charge transfer resistance. The genosensor response was performed by differential pulse voltammetry, monitoring the current response of the anionic redox probe, confirmed with real genomic RNA samples, making it possible to detect 1 fg/mL. In addition, the genosensor maintained its response for 60 days at room temperature. This new genosensor platform for early detection of HIV, based on the modification of the electrode surface with cys-GQDs and AuNps, discriminates between HIV-negative and positive samples, showing a low detection limit, as well as good specificity and stability, which are relevant properties for commercial application of biosensors.
Collapse
Affiliation(s)
- Anna C R Moço
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319 Uberlândia, Minas Gerais, Brazil
| | - José A L Gomide
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319 Uberlândia, Minas Gerais, Brazil
| | - Jose M R Flauzino
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319 Uberlândia, Minas Gerais, Brazil
| | - Jéssica G Brussasco
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319 Uberlândia, Minas Gerais, Brazil
| | - Luiz F G Luz
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319 Uberlândia, Minas Gerais, Brazil
| | - Márcia M C N Soares
- Adolfo Lutz Institute, Regional Laboratory, 15061-020 São José do Rio Preto, São Paulo, Brazil
| | - João M Madurro
- Institute of Chemistry, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Ana G Brito-Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319 Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Thenuwara G, Javed B, Singh B, Tian F. Biosensor-Enhanced Organ-on-a-Chip Models for Investigating Glioblastoma Tumor Microenvironment Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:2865. [PMID: 38732975 PMCID: PMC11086276 DOI: 10.3390/s24092865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Bilal Javed
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
17
|
Wang M, Jin L, Hang-Mei Leung P, Wang-Ngai Chow F, Zhao X, Chen H, Pan W, Liu H, Li S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front Bioeng Biotechnol 2024; 12:1393789. [PMID: 38725992 PMCID: PMC11079239 DOI: 10.3389/fbioe.2024.1393789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The significance of point-of-care testing (POCT) in early clinical diagnosis and personalized patient care is increasingly recognized as a crucial tool in reducing disease outbreaks and improving patient survival rates. Within the realm of POCT, biosensors utilizing magnetic nanoparticles (MNPs) have emerged as a subject of substantial interest. This review aims to provide a comprehensive evaluation of the current landscape of POCT, emphasizing its growing significance within clinical practice. Subsequently, the current status of the combination of MNPs in the Biological detection has been presented. Furthermore, it delves into the specific domain of MNP-based biosensors, assessing their potential impact on POCT. By combining existing research and spotlighting pivotal discoveries, this review enhances our comprehension of the advancements and promising prospects offered by MNP-based biosensors in the context of POCT. It seeks to facilitate informed decision-making among healthcare professionals and researchers while also promoting further exploration in this promising field of study.
Collapse
Affiliation(s)
- Miaomiao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoni Zhao
- Guangzhou Wanfu Biotechnology Company, Guangzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wenjing Pan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Hongna Liu
- Hengyang Medical School, University of South China, Hengyang, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
- Hengyang Medical School, University of South China, Hengyang, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, China
| |
Collapse
|
18
|
Pandiyarajan S, Manickaraj SSM, Liao AH, Baskaran G, Selvaraj M, Assiri MA, Zhou H, Chuang HC. Supercritical CO 2 mediated construction of aluminium waste recovered γ-Al 2O 3 impregnated Dracaena trifasciata biomass-derived carbon composite: A robust electrocatalyst for mutagenic pollutant detection. J Colloid Interface Sci 2024; 659:71-81. [PMID: 38157728 DOI: 10.1016/j.jcis.2023.12.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Inspired by the waste-to-wealth concept, we have recovered the gamma phase aluminium oxide nanoparticles (γ-Al2O3 NPs) from waste aluminium (Al) foils and fabricated a composite with Dracaena trifasciata biomass-derived activated carbon matrix (DT-AC) using supercritical carbon-di-oxide (SC-CO2) pathway. The prepared samples are characterized altogether by various micro- and spectroscopic analyses. Based on the results, the recovered γ-Al2O3 NPs are well impregnated in the DT-AC surface by the action of the microbubble effect from the SC-CO2. The higher D-band and ID/IG value of 1.07 in the Al2O3/DT-AC nanocomposite indicate increased defects and the amorphous nature of the carbon materials. The effect of scan rate (ν) demonstrated greater linearity in ν1/2 vs peak current in the electrochemical detection study of the mutagenic pollutant 4-(methylamino) phenol hemi sulfate, showing a quasi-reversible electron transfer process undergoing diffusion-controlled kinetics. Furthermore, the limit of detection is determined to be 3.2 nM L-1 with an extensive linear range, spanning from 0.05 to 618.25 µM/L. The incredible sensitivity of 2.117 μA μM-1 cm-2, along with excellent selectivity, repeatability, and stability, is observed. Further, the respectable recovery percentage of 98.61 % in the environmental water sample is perceived. The observed outcomes suggest that the prepared Al2O3/DT-AC composite performs as an excellent electrocatalyst material, and the processing techniques used are thought to be sustainable in nature.
Collapse
Affiliation(s)
- Sabarison Pandiyarajan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan; Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Shobana Sebastin Mary Manickaraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan; Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei 114201, Taiwan
| | | | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hong Zhou
- Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan.
| |
Collapse
|
19
|
Chaudhari SS, Patil PO, Bari SB, Khan ZG. A comprehensive exploration of tartrazine detection in food products: Leveraging fluorescence nanomaterials and electrochemical sensors: Recent progress and future trends. Food Chem 2024; 433:137425. [PMID: 37690141 DOI: 10.1016/j.foodchem.2023.137425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Azo dyes are widely used as food coloring agents because of their affordability and stability. Examples include brilliant blue, carmoisine, sunset yellow, allura red, and tartrazine (Tar), etc. Notably, Tar is often utilized in hazardous food goods. They are frequently flavoured and combined with food items, raising the likelihood and danger of exposure. Therefore, detecting Tar in food is crucial to prevent health risks. Fluorescence nanomaterials and electrochemical sensors, known for their high sensitivity, affordability, simplicity, and speed, have been widely adopted by researchers for Tar detection. This comprehensive paper delves into the detection of Tar in food products. It extensively covers the utilization of advanced carbon-based nanomaterials, including CDs, doped CDs, and functionalized CDs, for sensitive Tar detection. Additionally, the paper explores the application of electrochemical sensors. The paper concludes by addressing current challenges and prospects, emphasizing efforts to enhance sensitivity, and selectivity for improved food safety.
Collapse
Affiliation(s)
- Sharayu S Chaudhari
- Department of Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Sanjaykumar B Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Zamir G Khan
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India.
| |
Collapse
|
20
|
Anh NT, Tung LM, Vinh LK, Van Quy N, Van Hoang O, Dinh NX, Le AT. An on-site and portable electrochemical sensing platform based on spinel zinc ferrite nanoparticles for the quality control of paracetamol in pharmaceutical samples. NANOSCALE ADVANCES 2023; 6:256-267. [PMID: 38125592 PMCID: PMC10729869 DOI: 10.1039/d3na00749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
In this study, crystalline spinel zinc ferrite nanoparticles (ZnFe2O4 NPs) were successfully prepared and proposed as a high-performance electrode material for the construction of an electrochemical sensing platform for the detection of paracetamol (PCM). By modifying a screen-printed carbon electrode (SPE) with ZnFe2O4 NPs, the electrochemical characteristics of the ZnFe2O4/SPE and the electrochemical oxidation of PCM were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and differential pulse voltammetry (DPV) methods. The calculated electrochemical kinetic parameters from these techniques including electrochemically active surface area (ECSA), peak-to-peak separation (ΔEp), charge transfer resistance (Rct), standard heterogeneous electron-transfer rate constants (k0), electron transfer coefficient (α), catalytic rate constant (kcat), adsorption capacity (Γ), and diffusion coefficient (D) proved that the as-synthesized ZnFe2O4 NPs have rapid electron/mass transfer characteristics, intrinsic electrocatalytic activity, and facilitate the adsorption-diffusion of PCM molecules towards the modified electrode surface. As expected, the ZnFe2O4/SPE offered excellent analytical performance towards sensing of PCM with a detection limit of 0.29 μM, a wide linear range of 0.5-400 μM, and high electrochemical sensitivity of 1.1 μA μM-1 cm-2. Moreover, the proposed ZnFe2O4-based electrochemical nanosensor also exhibited good repeatability, high anti-interference ability, and practical feasibility toward PCM sensing in a pharmaceutical tablet. Based on these observations, the designed electrochemical platform not only provides a high-performance nanosensor for the rapid and highly efficient detection of PCM but also opens a new avenue for routine quality control analysis of pharmaceutical formulations.
Collapse
Affiliation(s)
- Nguyen Tuan Anh
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Le Minh Tung
- Department of Physics, Tien Giang University My Tho City Tien Giang Province Vietnam
| | - Le Khanh Vinh
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology (VAST) Ho Chi Minh 70000 Vietnam
| | - Nguyen Van Quy
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) 01 Dai Co Viet Road Hanoi 10000 Vietnam
| | - Ong Van Hoang
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
- University of Transport Technology Trieu Khuc, Thanh Xuan District Hanoi Viet Nam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, PHENIKAA University Hanoi 12116 Vietnam
| |
Collapse
|
21
|
Mustafa FH, Ismail I, Ahmad Munawar AAZ, Abdul Basir B, Shueb RH, Irekeola AA, Wan Ismail WZ, Jamaludin J, Balakrishnan SR, Sahrim M, Yusof NY. A review on current diagnostic tools and potential optical absorption spectroscopy for HFMD detection. Anal Biochem 2023; 683:115368. [PMID: 37890549 DOI: 10.1016/j.ab.2023.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Hand, Foot, and Mouth Disease (HFMD) is an outbreak infectious disease that can easily spread among children under the age of five. The most common causative agents of HFMD are enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), but infection caused by EV71 is more associated with fatalities due to severe neurological disorders. The present diagnosis methods rely on physical examinations by the doctors and further confirmation by laboratories detection methods such as viral culture and polymerase chain reaction. Clinical signs of HFMD infection and other childhood diseases such as chicken pox, and allergies are similar, yet the genetics and pathogenicity of the viruses are substantially different. Thus, there is an urgent need for an early screening of HFMD using an inexpensive and user-friendly device that can directly detect the causative agents of the disease. This paper reviews current HFMD diagnostic methods based on various target types, such as nucleic acid, protein, and whole virus. This was followed by a thorough discussion on the emerging sensing technologies for HFMD detection, including surface plasmon resonance, electrochemical sensor, and surface enhanced Raman spectroscopy. Lastly, optical absorption spectroscopic method was critically discussed and proposed as a promising technology for HFMD screening and detection.
Collapse
Affiliation(s)
- Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu, 81310, Johor, Malaysia; Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| | - Irneza Ismail
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Ahmad Aiman Zuhaily Ahmad Munawar
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Basmah Abdul Basir
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Rafidah Hanim Shueb
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, PMB 4412, Offa Kwara State, Nigeria
| | - Wan Zakiah Wan Ismail
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Juliza Jamaludin
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Sharma Rao Balakrishnan
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Mus'ab Sahrim
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| |
Collapse
|
22
|
Gibi C, Liu CH, Anandan S, Wu JJ. Recent Advances on Electrochemical Sensors for Detection of Contaminants of Emerging Concern (CECs). Molecules 2023; 28:7916. [PMID: 38067644 PMCID: PMC10707923 DOI: 10.3390/molecules28237916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.
Collapse
Affiliation(s)
- Chinchu Gibi
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Cheng-Hua Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Trichy 620015, India;
| | - Jerry J. Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| |
Collapse
|
23
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
24
|
de Lima LF, de Araujo WR. A highly efficient and portable laser-scribed graphene-based electrochemical system for forensic-oriented determination of acepromazine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4467-4476. [PMID: 37644817 DOI: 10.1039/d3ay00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Acepromazine (ACP) is a phenothiazine derivative drug commonly used as a tranquilizer veterinary medication due to its sedative properties. Benefiting from sedative properties, ACP has emerged as a drug of abuse and has been associated with drug-facilitated sexual assaults. Herein, we report, for the first time, the electrochemical behavior of ACP using a miniaturized and environmentally friendly laser-scribed graphene-based (LSG) sensor fabricated on a polyetherimide (PEI) substrate. The LSG device presented high porosity, as demonstrated by scanning electron microscopy (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements of the PEI-LSG electrode confirmed the enhanced electroactive area (3.1-fold increase) caused by the rough surface and revealed a low charge transfer resistance of the electrode material, with a heterogeneous electron transfer rate constant (k0) of 8.66 × 10-3 cm s-1 for potassium ferricyanide redox probe. A simple and accurate method was applied to quantify ACP by using square wave voltammetry (SWV) under optimized experimental conditions, which exhibited high sensitivity (0.686 ± 0.008 A L mol-1 cm-2) and a low limit of detection (LOD) of 7.43 × 10-8 mol L-1, with a linear concentration ranging from 0.5 to 100 μmol L-1 ACP. Aiming for on-site analysis, the PEI-LSG sensor was integrated with a miniaturized potentiostat controlled by using a smartphone and applied as proof of applicability to ACP detection in commercial beverage and synthetic urine samples. These studies demonstrated adequate recoveries, ranging from 95.1% to 115.8%. The analytical parameters highlight the robustness and reliability of the proposed method for analyses of ACP directly at a potential crime scene.
Collapse
Affiliation(s)
- Lucas F de Lima
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| | - William R de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
25
|
Kamalasekaran K, Magesh V, Atchudan R, Arya S, Sundramoorthy AK. Development of Electrochemical Sensor Using Iron (III) Phthalocyanine/Gold Nanoparticle/Graphene Hybrid Film for Highly Selective Determination of Nicotine in Human Salivary Samples. BIOSENSORS 2023; 13:839. [PMID: 37754073 PMCID: PMC10527255 DOI: 10.3390/bios13090839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Abstract
Nicotine is the one of the major addictive substances; the overdose of nicotine (NIC) consumption causes increasing heart rate, blood pressure, stroke, lung cancer, and respiratory illnesses. In this study, we have developed a precise and sensitive electrochemical sensor for nicotine detection in saliva samples. It was built on a glassy carbon electrode (GCE) modified with graphene (Gr), iron (III) phthalocyanine-4,4',4″,4'''-tetrasulfonic acid (Fe(III)Pc), and gold nanoparticles (AuNPs/Fe(III)Pc/Gr/GCE). The AuNPs/Fe(III)Pc/Gr nanocomposite was prepared and characterized by using FE-SEM, EDX, and E-mapping techniques to confirm the composite formation as well as the even distribution of elements. Furthermore, the newly prepared AuNPs/Fe(III)Pc/Gr/GCE-nanocomposite-based sensor was used to detect the nicotine in phosphate-buffered solution (0.1 M PBS, pH 7.4). The AuNPs/Fe(III)Pc/Gr/GCE-based sensor offered a linear response against NIC from 0.5 to 27 µM with a limit of detection (LOD) of 17 nM using the amperometry (i-t curve) technique. This electrochemical sensor demonstrated astounding selectivity and sensitivity during NIC detection in the presence of common interfering molecules in 0.1 M PBS. Moreover, the effect of pH on NIC electro-oxidation was studied, which indicated that PBS with pH 7.4 was the best medium for NIC determination. Finally, the AuNPs/Fe(III)Pc/Gr/GCE sensor was used to accurately determine NIC concentration in human saliva samples, and the recovery percentages were also calculated.
Collapse
Affiliation(s)
- Kavitha Kamalasekaran
- Department of Chemistry, Velammal Engineering College, Chennai 600066, Tamil Nadu, India;
| | - Vasanth Magesh
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India;
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, Jammu and Kashmir, India;
| | - Ashok K. Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India;
| |
Collapse
|
26
|
Garland NT, Schmieder J, Johnson ZT, Hjort RG, Chen B, Andersen C, Sanborn D, Kjeldgaard G, Pola CC, Li J, Gomes C, Smith EA, Angus H, Meyer J, Claussen JC. Wearable Flexible Perspiration Biosensors Using Laser-Induced Graphene and Polymeric Tape Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38201-38213. [PMID: 37526921 DOI: 10.1021/acsami.3c04665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Wearable biosensors promise real-time measurements of chemicals in human sweat, with the potential for dramatic improvements in medical diagnostics and athletic performance through continuous metabolite and electrolyte monitoring. However, sweat sensing is still in its infancy, and questions remain about whether sweat can be used for medical purposes. Wearable sensors are focused on proof-of-concept designs that are not scalable for multisubject trials, which could elucidate the utility of sweat sensing for health monitoring. Moreover, many wearable sensors do not include the microfluidics necessary to protect and channel consistent and clean sweat volumes to the sensor surface or are not designed to be disposable to prevent sensor biofouling and inaccuracies due to repeated use. Hence, there is a need to produce low-cost and single-use wearable sensors with integrated microfluidics to ensure reliable sweat sensing. Herein, we demonstrate the convergence of laser-induced graphene (LIG) based sensors with soft tape polymeric microfluidics to quantify both sweat metabolites (glucose and lactate) and electrolytes (sodium) for potential hydration and fatigue monitoring. Distinct LIG-electrodes were functionalized with glucose oxidase and lactate oxidase for selective sensing of glucose and lactate across physiological ranges found in sweat with sensitivities of 26.2 and 2.47 × 10-3 μA mM-1 cm-2, detection limits of 8 and 220 μM, and linear response ranges of 0-1 mM and 0-32 mM, respectively. LIG-electrodes functionalized with a sodium-ion-selective membrane displayed Nernstian sensitivity of 58.8 mV decade-1 and a linear response over the physiological range in sweat (10-100 mM). The sensors were tested in a simulated sweating skin microfluidic system and on-body during cycling tests in a multisubject trial. Results demonstrate the utility of LIG integrated with microfluidics for real-time, continuous measurements of biological analytes in sweat and help pave the way for the development of personalized wearable diagnostic tools.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jacob Schmieder
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zachary T Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Robert G Hjort
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Bolin Chen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Cole Andersen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Delaney Sanborn
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Gabriel Kjeldgaard
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Cicero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jingzhe Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Carmen Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Hector Angus
- Department of Kinesiology, Iowa State University, Ames, Iowa 50011, United States
| | - Jacob Meyer
- Department of Kinesiology, Iowa State University, Ames, Iowa 50011, United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
27
|
Liu L, Xu Z, Molina Vargas AM, Dollery SJ, Schrlau MG, Cormier D, O'Connell MR, Tobin GJ, Du K. Aerosol Jet Printing-Enabled Dual-Function Electrochemical and Colorimetric Biosensor for SARS-CoV-2 Detection. Anal Chem 2023; 95:11997-12005. [PMID: 37505456 PMCID: PMC11229527 DOI: 10.1021/acs.analchem.3c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
An aerosol jet printing-enabled dual-function biosensor for the sensitive detection of pathogens using SARS-CoV-2 RNA as an example has been developed. A CRISPR-Cas13:guide-RNA complex is activated in the presence of a target RNA, leading to the collateral trans-cleavage of ssRNA probes that contain a horseradish peroxidase (HRP) tag. This, in turn, catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HRP, resulting in a color change and electrochemical signal change. The colorimetric and electrochemical sensing protocol does not require complicated target amplification and probe immobilization and exhibits a detection sensitivity in the femtomolar range. Additionally, our biosensor demonstrates a wide dynamic range of 5 orders of magnitude. This low-cost aerosol inkjet printing technique allows for an amplification-free and integrated dual-function biosensor platform, which operates at physiological temperature and is designed for simple, rapid, and accurate point-of-care (POC) diagnostics in either low-resource settings or hospitals.
Collapse
Affiliation(s)
- Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521-9800, United States
| | - Zhiheng Xu
- Department of Industrial & Systems Engineering, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Adrian Moises Molina Vargas
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, United States
| | - Stephen J Dollery
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, Maryland 21702-8717, United States
| | - Michael G Schrlau
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Denis Cormier
- Department of Industrial & Systems Engineering, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Mitchell R O'Connell
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, United States
| | - Gregory J Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, Maryland 21702-8717, United States
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521-9800, United States
| |
Collapse
|
28
|
Rybak D, Su YC, Li Y, Ding B, Lv X, Li Z, Yeh YC, Nakielski P, Rinoldi C, Pierini F, Dodda JM. Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications. NANOSCALE 2023; 15:8044-8083. [PMID: 37070933 DOI: 10.1039/d3nr00807j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.
Collapse
Affiliation(s)
- Daniel Rybak
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Yu-Chia Su
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yang Li
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Xiaoshuang Lv
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhaoling Li
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Pawel Nakielski
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Chiara Rinoldi
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Filippo Pierini
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| |
Collapse
|
29
|
Liu L, Xu Z, Molina Vargas AM, Dollery SJ, Schrlau MG, Cormier D, O'Connell MR, Tobin GJ, Du K. Aerosol Jet Printing Enabled Dual-Function Electrochemical and Colorimetric Biosensor for SARS-CoV-2 Detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.20.23288904. [PMID: 37163082 PMCID: PMC10168408 DOI: 10.1101/2023.04.20.23288904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An aerosol jet printing enabled dual-function biosensor for the sensitive detection of pathogens using SARS-CoV-2 RNA as an example has been developed. A CRISPR-Cas13: guide-RNA complex is activated in the presence of a target RNA, leading to the collateral trans-cleavage of ssRNA probes that contain a horseradish peroxidase (HRP) tag. This, in turn, catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HRP, resulting in a color change and electrochemical signal change. The colorimetric and electrochemical sensing protocol does not require complicated target amplification and probe immobilization and exhibits a detection sensitivity in the femtomolar range. Additionally, our biosensor demonstrates a wide dynamic range of 5 orders of magnitude. This low-cost aerosol inkjet printing technique allows for an amplification-free and integrated dual-function biosensor platform, which operates at physiological temperature and is designed for simple, rapid, and accurate point-of-care (POC) diagnostics in either low-resource settings or hospitals.
Collapse
|
30
|
Silva RM, da Silva AD, Camargo JR, de Castro BS, Meireles LM, Silva PS, Janegitz BC, Silva TA. Carbon Nanomaterials-Based Screen-Printed Electrodes for Sensing Applications. BIOSENSORS 2023; 13:bios13040453. [PMID: 37185528 PMCID: PMC10136782 DOI: 10.3390/bios13040453] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical sensors consisting of screen-printed electrodes (SPEs) are recurrent devices in the recent literature for applications in different fields of interest and contribute to the expanding electroanalytical chemistry field. This is due to inherent characteristics that can be better (or only) achieved with the use of SPEs, including miniaturization, cost reduction, lower sample consumption, compatibility with portable equipment, and disposability. SPEs are also quite versatile; they can be manufactured using different formulations of conductive inks and substrates, and are of varied designs. Naturally, the analytical performance of SPEs is directly affected by the quality of the material used for printing and modifying the electrodes. In this sense, the most varied carbon nanomaterials have been explored for the preparation and modification of SPEs, providing devices with an enhanced electrochemical response and greater sensitivity, in addition to functionalized surfaces that can immobilize biological agents for the manufacture of biosensors. Considering the relevance and timeliness of the topic, this review aimed to provide an overview of the current scenario of the use of carbonaceous nanomaterials in the context of making electrochemical SPE sensors, from which different approaches will be presented, exploring materials traditionally investigated in electrochemistry, such as graphene, carbon nanotubes, carbon black, and those more recently investigated for this (carbon quantum dots, graphitic carbon nitride, and biochar). Perspectives on the use and expansion of these devices are also considered.
Collapse
Affiliation(s)
- Rafael Matias Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | - Jéssica Rocha Camargo
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | | | - Laís Muniz Meireles
- Federal Center for Technological Education of Minas Gerais, Timóteo 35180-008, MG, Brazil
| | | | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
31
|
Paschoarelli MV, Kavai MS, de Lima LF, de Araujo WR. Laser-scribing fabrication of a disposable electrochemical device for forensic detection of crime facilitating drugs in beverage samples. Talanta 2023; 255:124214. [PMID: 36577326 DOI: 10.1016/j.talanta.2022.124214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A portable and disposable laser-scribed graphene (LSG) device was fabricated on polyetherimide (PEI) substrate for electrochemical detection of benzodiazepines (BZ) drugs such as diazepam (DZ) and midazolam (MZ) in commercial beverage samples. Morphological characterizations of the LSG material recorded by scanning electron microscopy (SEM) revealed the porous nature of the proposed electrochemical device, which contributed to the enhancement of the electroactive area. Besides, the structural and electrochemical characterizations performed by Raman spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements revealed that the PEI-LSG material presents highly disordered graphene-like structures and high electron transfer features, respectively. The electrochemical detection of DZ and MZ was carried out by Square Wave Voltammetry (SWV), whose analytical curves exhibited two linear intervals in concentrations ranging from 2.5 μmol L-1 to 25.0 μmol L-1 and from 25.0 μmol L-1 to 100.0 μmol L-1 for both BZ. We obtained limits of detection (LOD) and quantification (LOQ) of 0.66 and 2.18 μmol L-1 for DZ and 0.61 μmol L-1 and 2.01 μmol L-1 for MZ, respectively. The developed sensor was applied to detect DZ and MZ in commercial beverages such as juice, whisky, and sugarcane spirit samples to mimic potential forensic evidence of drug-facilitated crimes. The recoveries ranged from 97.1% to 117.2% for DZ and from 92.2% to 114.3% for MZ. In addition, the proposed method presented high manufacturing reproducibility (relative standard deviation (RSD) = 2.18% for DZ and RSD = 3.82% for MZ, n = 8 sensors) and adequate selectivity, highlighting the potential of PEI-LSG sensor as an excellent alternative method for forensic detection of crime facilitating drugs in commercial beverage samples.
Collapse
Affiliation(s)
- Mayra V Paschoarelli
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Mathias S Kavai
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Lucas F de Lima
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - William R de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
32
|
Pellé J, Longo M, Le Poul N, Hellio C, Rioual S, Lescop B. Electrochemical monitoring of the Pseudomonas aeruginosa growth and the formation of a biofilm in TSB media. Bioelectrochemistry 2023; 150:108344. [PMID: 36509018 DOI: 10.1016/j.bioelechem.2022.108344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Understanding and sensing microbial biofilm formation onto surfaces remains highly challenging for preventing corrosion and biofouling processes. For that purpose, we have thoroughly investigated biofilm formation onto glassy carbon electrode surfaces by using electrochemical technics. Pseudomonas aeruginosa was studied because of its remarkable ability to form biofilms in many environments. The modification of the electrode-solution interface during biofilm growth was monitored by in-situ measurement of the open-circuit potential and correlated with results obtained by electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy and bioassays. The sensing of the biofilm formation hence suggests a multi-steps mechanism, which may include pre-formation of an insulating layer onto the surface prior to the bacteria adhesion and biofilm formation.
Collapse
Affiliation(s)
- J Pellé
- Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
| | - M Longo
- Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France; Univ Brest, BIODIMAR/LEMAR, CNRS, UMR 6539, F-29200 Brest, France
| | - N Le Poul
- Univ Brest, CEMCA, CNRS, UMR 6521, F-29200 Brest, France
| | - C Hellio
- Univ Brest, BIODIMAR/LEMAR, CNRS, UMR 6539, F-29200 Brest, France
| | - S Rioual
- Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
| | - B Lescop
- Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
| |
Collapse
|
33
|
Li G, Zhou Z, Wang Z, Chen S, Liang J, Yao X, Li L. An Efficient Electrochemical Biosensor to Determine 1,5-Anhydroglucitol with Persimmon-Tannin-Reduced Graphene Oxide-PtPd Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2786. [PMID: 37049081 PMCID: PMC10095622 DOI: 10.3390/ma16072786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
1,5-Anhydroglucitol (1,5-AG) is a sensitive biomarker for real-time detection of diabetes mellitus. In this study, an electrochemical biosensor to specifically detect 1,5-AG levels based on persimmon-tannin-reduced graphene oxide-PtPd nanocomposites (PT-rGO-PtPd NCs), which were modified onto the surface of a screen-printed carbon electrode (SPCE), was designed. The PT-rGO-PtPd NCs were prepared by using PT as the film-forming material and ascorbic acid as the reducing agent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), and X-ray diffraction (XRD) spectroscopy analysis were used to characterise the newly synthesised materials. PT-rGO-PtPd NCs present a synergistic effect not only to increase the active surface area to bio-capture more targets, but also to exhibit electrocatalytic efficiency to catalyze the decomposition of hydrogen peroxide (H2O2). A sensitive layer is formed by pyranose oxidase (PROD) attached to the surface of PT-rGO-PtPd NC/SPCE. In the presence of 1,5-AG, PROD catalyzes the oxidization of 1,5-AG to generate 1,5-anhydrofuctose (1,5-AF) and H2O2 which can be decomposed into H2O under the synergistic catalysis of PT-rGO-PtPd NCs. The redox reaction between PT and its oxidative product (quinones, PTox) can be enhanced simultaneously by PT-rGO-PtPd NCs, and the current signal was recorded by the differential pulse voltammetry (DPV) method. Under optimal conditions, our biosensor shows a wide range (0.1-2.0 mg/mL) for 1,5-AG detection with a detection limit of 30 μg/mL (S/N = 3). Moreover, our electrochemical biosensor exhibits acceptable applicability with recoveries from 99.80 to 106.80%. In summary, our study provides an electrochemical method for the determination of 1,5-AG with simple procedures, lower costs, good reproducibility, and acceptable stability.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, China
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhongmin Wang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Shiwei Chen
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoqing Yao
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, China
| | - Liuxun Li
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
34
|
Gao Q, Jin D, Xu J, Huang H, Cheng H, Xue H. Determination of ribavirin by molecularly imprinted electrochemical sensors using pyrro-1-propionyl-alaninoyl-chitooligosaccharide and pyrrole as bifunctional monomers on Prussian blue-gold nanocomposite films. J Pharm Biomed Anal 2023; 230:115378. [PMID: 37044006 DOI: 10.1016/j.jpba.2023.115378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Herein, we developed a highly sensitive imprinted electrochemical sensor for the trace detection of ribavirin (RBV) using pyrrole (PYR) and pyrro-1-propionyl-alaninoyl-chitooligosaccharides (PPACO) as bifunctional monomers on Prussian blue-gold nanocomposite films. PPACO had strong molecular effect on RBV molecule and was selected by quantitative calculations. After the deposition of the Prussian blue-gold nanocomposite on a glassy carbon electrode (GCE) surface, a 4-aminothiophenol layer successfully self-assembled on the surface. Subsequently, the molecularly imprinted membrane (MIM) was subjected to electrochemical polymerization on the electrode surface using RBV as the template and PPACO and PYR as the two monomers. After eluting the RBV molecules from the MIM, the fabricated RBV-MIM/Fn-Au-PB/GCE exhibited the specific adsorption of RBV. Under optimal conditions, differential pulse voltammetry (DPV) was used to measure the performance of the synthesized sensor, which exhibited a linear relationship between the decreasing peak current and RBV concentration from 0.015 to 3.5 μM with a low detection limit of 3 nM (S/N = 3). As a proof of concept, RBV-MIM/Fn-Au-PB/GCE was also applied to monitor the RBV content in RBV granules. It showed a satisfactory recovery (96.5-99.2%) with a relative standard deviation of less than 3.5% (n = 5), and thus, we believe it has potential for practical applications.
Collapse
Affiliation(s)
- Qing Gao
- Yangzhou Polytechnic institue, Yangzhou, Jiangsu 225127, PR China.
| | - Dangqin Jin
- Yangzhou Polytechnic institue, Yangzhou, Jiangsu 225127, PR China.
| | - Jiaqi Xu
- Yangzhou Polytechnic institue, Yangzhou, Jiangsu 225127, PR China
| | - Hao Huang
- Yangzhou Polytechnic institue, Yangzhou, Jiangsu 225127, PR China
| | - Huanren Cheng
- Yangzhou Polytechnic institue, Yangzhou, Jiangsu 225127, PR China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| |
Collapse
|
35
|
Aaryashree, Choudhary AK, Yoshimi Y. Disposable Sensor Chips with Molecularly Imprinted Carbon Paste Electrodes for Monitoring Anti-Epileptic Drugs. SENSORS (BASEL, SWITZERLAND) 2023; 23:3271. [PMID: 36991982 PMCID: PMC10059048 DOI: 10.3390/s23063271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 08/12/2023]
Abstract
Epilepsy is a neurological disorder that affects millions of people worldwide. Anti-epileptic drugs (AEDs) are critical for their management. However, the therapeutic window is narrow, and traditional laboratory-based therapeutic drug monitoring (TDM) methods can be time consuming and unsuitable for point-of-care testing. To address this issue, we developed a disposable sensor chip based on molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPs) for the TDM of AEDs such as phenobarbital (PB), carbamazepine (CBZ), and levetiracetam (LEV). In this work, functional monomers (methacrylic acid) and crosslinking monomers (methylene bisacrylamide and ethylene glycol dimethacrylate) were copolymerized in the presence of the AED template and grafted on the graphite particles by simple radical photopolymerization. The grafted particles were mixed with silicon oil, dissolving ferrocene as a redox marker to make the MIP-carbon paste (CP). Disposable sensor chips were fabricated by packing the MIP-CP into the base made of poly (ethylene glycol terephthalate) (PET) film. The sensor's sensitivity was determined using differential pulse voltammetry (DPV), carried out on a single sensor chip for each operation. Linearity was obtained from 0-60 μg/mL in PB and LEV and 0-12 μg/mL in CBZ, covering their respective therapeutic range. The time taken for each measurement was around 2 min. The experiment using whole bovine blood and bovine plasma indicated that the existence of species that interfered had a negligible effect on the test's sensitivity. This disposable MIP sensor provides a promising approach for point-of-care testing and facilitating the management of epilepsy. Compared with existing tests, this sensor offers a faster and more accurate way to monitor AEDs, which is crucial for optimizing therapy and improving patient outcomes. Overall, the proposed disposable sensor chip based on MIP-CPs represents a significant advancement in AED monitoring, with the potential for rapid, accurate, and convenient point-of-care testing.
Collapse
Affiliation(s)
- Aaryashree
- Innovative Global Program, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan;
| | - Ashish Kumar Choudhary
- Department Applied Chemistry, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan
| | - Yasuo Yoshimi
- Department Applied Chemistry, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan
| |
Collapse
|
36
|
Mehmandoust M, Tiris G, Pourhakkak P, Erk N, Soylak M, Kanberoglu GS, Zahmakiran M. An electrochemical sensing platform with a molecularly imprinted polymer based on chitosan-stabilized metal@metal-organic frameworks for topotecan detection. Mikrochim Acta 2023; 190:142. [PMID: 36933052 DOI: 10.1007/s00604-023-05722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
The present study aims to develop an electroanalytical method to determine one of the most significant antineoplastic agents, topotecan (TPT), using a novel and selective molecular imprinted polymer (MIP) method for the first time. The MIP was synthesized using the electropolymerization method using TPT as a template molecule and pyrrole (Pyr) as the functional monomer on a metal-organic framework decorated with chitosan-stabilized gold nanoparticles (Au-CH@MOF-5). The materials' morphological and physical characteristics were characterized using various physical techniques. The analytical characteristics of the obtained sensors were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). After all characterizations and optimizing the experimental conditions, MIP-Au-CH@MOF-5 and NIP-Au-CH@MOF-5 were evaluated on the glassy carbon electrode (GCE). MIP-Au-CH@MOF-5/GCE indicated a wide linear response of 0.4-70.0 nM and a low detection limit (LOD) of 0.298 nM. The developed sensor also showed excellent recovery in human plasma and nasal samples with recoveries of 94.41-106.16 % and 95.1-107.0 %, respectively, confirming its potential for future on-site monitoring of TPT in real samples. This methodology offers a different approach to electroanalytical procedures using MIP methods. Moreover, the high sensitivity and selectivity of the developed sensor were illustrated by the ability to recognize TPT over potentially interfering agents. Hence, it can be speculated that the fabricated MIP-Au-CH@MOF-5/GCE may be utilized in a multitude of areas, including public health and food quality.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Department of Life Sciences and Chemistry, Constructor University, 28719, Bremen, Germany.
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| | - Gizem Tiris
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | | | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| | - Gulsah S Kanberoglu
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Zahmakiran
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| |
Collapse
|
37
|
Adiraju A, Munjal R, Viehweger C, Al-Hamry A, Brahem A, Hussain J, Kommisetty S, Jalasutram A, Tegenkamp C, Kanoun O. Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:2961. [PMID: 36991672 PMCID: PMC10054825 DOI: 10.3390/s23062961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The transition of electrochemical sensors from lab-based measurements to real-time analysis requires special attention to different aspects in addition to the classical development of new sensing materials. Several critical challenges need to be addressed including a reproducible fabrication procedure, stability, lifetime, and development of cost-effective sensor electronics. In this paper, we address these aspects exemplarily for a nitrite sensor. An electrochemical sensor has been developed using one-step electrodeposited (Ed) gold nanoparticles (EdAu) for the detection of nitrite in water, which shows a low limit of detection of 0.38 µM and excellent analytical capabilities in groundwater. Experimental investigations with 10 realized sensors show a very high reproducibility enabling mass production. A comprehensive investigation of the sensor drift by calendar and cyclic aging was carried out for 160 cycles to assess the stability of the electrodes. Electrochemical impedance spectroscopy (EIS) shows significant changes with increasing aging inferring the deterioration of the electrode surface. To enable on-site measurements outside the laboratory, a compact and cost-effective wireless potentiostat combining cyclic and square wave voltammetry, and EIS capabilities has been designed and validated. The implemented methodology in this study builds a basis for the development of further on-site distributed electrochemical sensor networks.
Collapse
Affiliation(s)
- Anurag Adiraju
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Rohan Munjal
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christian Viehweger
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Ammar Al-Hamry
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Amina Brahem
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Jawaid Hussain
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Sanhith Kommisetty
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Aditya Jalasutram
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christoph Tegenkamp
- Analysis of Solid Surfaces, Institute for Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Olfa Kanoun
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
38
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
39
|
Khan MA, Ramzan F, Ali M, Zubair M, Mehmood MQ, Massoud Y. Emerging Two-Dimensional Materials-Based Electrochemical Sensors for Human Health and Environment Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040780. [PMID: 36839148 PMCID: PMC9964193 DOI: 10.3390/nano13040780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/27/2023]
Abstract
Two-dimensional materials (2DMs) have been vastly studied for various electrochemical sensors. Among these, the sensors that are directly related to human life and health are extremely important. Owing to their exclusive properties, 2DMs are vastly studied for electrochemical sensing. Here we have provided a selective overview of 2DMs-based electrochemical sensors that directly affect human life and health. We have explored graphene and its derivatives, transition metal dichalcogenide and MXenes-based electrochemical sensors for applications such as glucose detection in human blood, detection of nitrates and nitrites, and sensing of pesticides. We believe that the areas discussed here are extremely important and we have summarized the prominent reports on these significant areas together. We believe that our work will be able to provide guidelines for the evolution of electrochemical sensors in the future.
Collapse
|
40
|
Fenech-Salerno B, Holicky M, Yao C, Cass AEG, Torrisi F. A sprayed graphene transistor platform for rapid and low-cost chemical sensing. NANOSCALE 2023; 15:3243-3254. [PMID: 36723120 DOI: 10.1039/d2nr05838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate a novel and versatile sensing platform, based on electrolyte-gated graphene field-effect transistors, for easy, low-cost and scalable production of chemical sensor test strips. The Lab-on-PCB platform is enabled by low-boiling, low-surface-tension sprayable graphene ink deposited on a substrate manufactured using a commercial printed circuit board process. We demonstrate the versatility of the platform by sensing pH and Na+ concentrations in an aqueous solution, achieving a sensitivity of 143 ± 4 μA per pH and 131 ± 5 μA per log10Na+, respectively, in line with state-of-the-art graphene chemical sensing performance.
Collapse
Affiliation(s)
- Benji Fenech-Salerno
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Martin Holicky
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Chengning Yao
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Anthony E G Cass
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Felice Torrisi
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
- Dipartimento di Fisica e Astronomia, Universita' di Catania & CNR-IMM (Catania Università), Via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
41
|
Negahdary M, Akira Ameku W, Gomes Santos B, dos Santos Lima I, Gomes de Oliveira T, Carvalho França M, Angnes L. Recent electrochemical sensors and biosensors for toxic agents based on screen-printed electrodes equipped with nanomaterials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Liu Y, Zhang Z, Li Y, Shi F, Ai Y, Wang B, Zhang S, Zhang X, Sun W. Electrochemical detection of hydroquinone based on marine biomass carbon from shrimp shells as electrode modifier. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
43
|
Shao B, Ai Y, Yan L, Wang B, Huang Y, Zou Q, Fu H, Niu X, Sun W. Wireless electrochemical sensor for the detection of phytoregulator indole-3-acetic acid using gold nanoparticles and three-dimensional reduced graphene oxide modified screen printed carbon electrode. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Pathiraja G, Bonner CDJ, Obare SO. Recent Advances of Enzyme-Free Electrochemical Sensors for Flexible Electronics in the Detection of Organophosphorus Compounds: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031226. [PMID: 36772265 PMCID: PMC9918968 DOI: 10.3390/s23031226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/10/2023]
Abstract
Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life.
Collapse
Affiliation(s)
- Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Chartanay D. J. Bonner
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Sherine O. Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| |
Collapse
|
45
|
Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy. VIEW 2023. [DOI: 10.1002/viw.20220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuqing Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Shurong Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Lanting Li
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Yan Zou
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Baohong Liu
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Xiaoni Fang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
46
|
Highly Sensitive Amperometric Determination of Chlorpromazine Hydrochloride in Blood Serum sample employing Antimony Vanadate Nanospheres as Electrode Modifier. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Epitope-imprinted Polydopamine and Reduced Graphene Oxide-Based Sensing Interface for Label-free Detection of Gliadin. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Fang X, Wang Y, Wang S, Liu B. Nanomaterials assisted exosomes isolation and analysis towards liquid biopsy. Mater Today Bio 2022; 16:100371. [PMID: 35937576 PMCID: PMC9352971 DOI: 10.1016/j.mtbio.2022.100371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes has attracted tremendous research interests as they are emerging as a new paradigm of liquid biopsy. Although the concentration of exosomes in blood is relatively abundant, there still exists various vesicle-like nanoparticles, such as microvesicles, apoptotic bodies. It's an urgent need to isolate and enrich exosomes from the complex contaminants in biofluid samples. Moreover, the expressing level of exosomal biomarkers varies a lot, which make the sensitive molecular detection of exosomes in high demand. Unfortunately, the efficient isolation and sensitive molecular quantification of exosomes is still a major obstacle hindering the further development and clinical application of exosome-based liquid biopsy. Nanomaterials, with unique physiochemical properties, have been widely used in biosensing and analysis aspects, thus they are thought as powerful tools for effective purification and molecular analysis of exosomes. In this review, we summarized the most recent progresses in nanomaterials assisted exosome isolation and analysis towards liquid biopsy. On the one hand, nanomaterials can be used as capture substrates to afford large binding area and specific affinity to exosomes. Meanwhile, nanomaterials can also be served as promising signal transducers and amplifiers for molecular detection of exosomes. Furthermore, we also pointed out several potential and promising research directions in nanomaterials assisted exosome analysis. It's envisioned that this review will give the audience a complete outline of nanomaterials in exosome study, and further promote the intersection of nanotechnology and bio-analysis.
Collapse
Affiliation(s)
- Xiaoni Fang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yuqing Wang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Shurong Wang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Baohong Liu
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
49
|
Alizadeh M, Asrami PN, Altuner EE, Gulbagca F, Tiri RNE, Aygun A, Kaynak İ, Sen F, Cheraghi S. An ultra-sensitive rifampicin electrochemical sensor based on Fe 3O 4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode. CHEMOSPHERE 2022; 309:136566. [PMID: 36152837 DOI: 10.1016/j.chemosphere.2022.136566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to guide future sensor studies against other pharmaceutical drugs by synthesizing Fe3O4NPs@MWCNT metallic nanoparticles (NPs). Side damage caused by excessive accumulation of tuberculosis drugs in the body can cause clots in the organs, and cause serious damage such as heart attack and respiratory failure, and threaten human life. Therefore, the development of sensors sensitive to various antibiotics in this study is important for human health. In this study, the sensitivity of Fe3O4 NPs to tuberculosis drug (rifampicin) was evaluated by catalytic reaction using bare/GCE, MWCNT/GCE, and Fe3O4NPs@MWCNT/GCE electrodes. First of all, Fe3O4 NPs were successfully synthesized for the study and MWCNT/GCE and Fe3O4 NPs@MWCNT/GCE electrodes were formed with the modification of the MWCNT support material. It was observed that the Fe3O4 NPs@MWCNT/GCE electrode gave the highest signal against the other electrodes. The morphological structure of Fe3O4 NPs was determined by various characterization techniques such as Transmission Electron Microscopy (TEM), Fourier Transmission Infrared Spectroscopy (FTIR), ultraviolet-visible (UV-Vis), and X-ray differential (XRD) and the obtained NPs were used for sensor studies, and it was observed that the current intensity increased as the scanning speed of each electrode increased in CV and DPV measurements. The average size of Fe3O4 NPs was found to be 7.32 ± 3.2 nm. Anodic current peaks occurred in the linear range of 2-25 μM. According to the results obtained from the measurements, the limit of detection (LOD) value was calculated as 0.64 μM limit of quantification (LOQ) 1.92 μM.
Collapse
Affiliation(s)
- Marzie Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Elif Esra Altuner
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Fulya Gulbagca
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Aysenur Aygun
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - İdris Kaynak
- Department of Machinery and Metal Technologies, University of Usak, 64000, Usak, Turkiye
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye.
| | - Somaye Cheraghi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
50
|
de Lima LF, de Araujo WR. Laser-scribed graphene on polyetherimide substrate: an electrochemical sensor platform for forensic determination of xylazine in urine and beverage samples. Mikrochim Acta 2022; 189:465. [DOI: 10.1007/s00604-022-05566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022]
|