1
|
Chand R, Janarthanan G, Elkhoury K, Vijayavenkataraman S. Digital light processing 3D bioprinting of biomimetic corneal stroma equivalent using gelatin methacryloyl and oxidized carboxymethylcellulose interpenetrating network hydrogel. Biofabrication 2025; 17:025011. [PMID: 39819884 DOI: 10.1088/1758-5090/adab27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties. Using digital light processing (DLP) bioprinting, with tartrazine as a photoabsorber, we successfully biofabricated three-dimensional constructs with improved shape fidelity, high resolution, and excellent reproducibility. The bioprinted constructs mimic the native corneal stroma's curvature, with central and peripheral thicknesses of 478.9 ± 56.5µm and 864.0 ± 79.3µm, respectively. The dual crosslinking strategy, which combines Schiff base reaction and photocrosslinking, showed an improved compressive modulus (106.3 ± 7.7 kPa) that closely matched that of native tissues (115.3 ± 13.6 kPa), without relying on synthetic polymers, toxic crosslinkers, or nanoparticles. Importantly, the optical transparency of tartrazine-containing corneal constructs was comparable to the native cornea following phosphate-buffered saline washing. Morphological analyses using scanning electron microscopy confirmed the improved porosity, interconnected network, and structural integrity of the GelMA-OxiCMC hydrogel, facilitating better nutrient diffusion and cell viability.In vitrobiological assays demonstrated high cell viability (>93%) and desirable proliferation of human corneal keratocytes within the biofabricated constructs. Our findings indicate that the GelMA-OxiCMC hydrogel system for DLP bioprinting presents a promising alternative for corneal tissue engineering, offering a potential solution to the donor cornea shortage and advancing regenerative medicine for corneal repair.
Collapse
Affiliation(s)
- Rashik Chand
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| | - Gopinathan Janarthanan
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kamil Elkhoury
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sanjairaj Vijayavenkataraman
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
- Department of Mechanical & Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| |
Collapse
|
2
|
Vijayaraghavan R, Loganathan S, Valapa RB. Fabrication of GelMA - Agarose Based 3D Bioprinted Photocurable Hydrogel with In Vitro Cytocompatibility and Cells Mirroring Natural Keratocytes for Corneal Stromal Regeneration. Macromol Biosci 2024; 24:e2400136. [PMID: 39096155 DOI: 10.1002/mabi.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Indexed: 08/05/2024]
Abstract
The complex anatomy of the cornea and the subsequent keratocyte-fibroblast transition have always made corneal stromal regeneration difficult. Recently, 3D printing has received considerable attention in terms of fabrication of scaffolds with precise dimension and pattern. In the current work, 3D printable polymer hydrogels made of GelMA/agarose are formulated and its rheological properties are evaluated. Despite the variation in agarose content, both the hydrogels exhibited G'>G'' modulus. A prototype for 3D stromal model is created using Solid Works software, mimicking the anatomy of an adult cornea. The fabrication of 3D-printed hydrogels is performed using pneumatic extrusion. The FTIR analysis speculated that the hydrogel is well crosslinked and established strong hydrogen bonding with each other, thus contributing to improved thermal and structural stability. The MTT analysis revealed a higher rate of cell proliferation on the hydrogels. The optical analysis carried out on the 14th day of incubation revealed that the hydrogels exhibit transparency matching with natural corneal stromal tissue. Specific protein marker expression confirmed the keratocyte phenotype and showed that the cells do not undergo terminal differentiation into stromal fibroblasts. The findings of this work point to the potential of GelMA/A hydrogels as a novel biomaterial for corneal stromal tissue engineering.
Collapse
Affiliation(s)
- Renuka Vijayaraghavan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sravanthi Loganathan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Babu Valapa
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Alioglu MA, Yilmaz YO, Singh YP, Nagamine M, Celik N, Kim MH, Pal V, Gupta D, Ozbolat IT. Nested Biofabrication: Matryoshka-Inspired Intra-Embedded Bioprinting. SMALL METHODS 2024; 8:e2301325. [PMID: 38111377 PMCID: PMC11187694 DOI: 10.1002/smtd.202301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Engineering functional tissues and organs remains a fundamental pursuit in bio-fabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, here a new method called "Intra-Embedded Bioprinting (IEB)" is introduced building upon existing embedded bioprinting methods. a xanthan gum-based material is used which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. IEB's capabilities in organ modeling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite is demonstrated. Further, a head phantom and a Matryoshka doll are 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Toward the use case of IEB and employing an innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity is developed. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.
Collapse
Affiliation(s)
- Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Yasar Ozer Yilmaz
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Nazmiye Celik
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Myoung Hwan Kim
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA
| | - Vaibhav Pal
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA
- Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey
| |
Collapse
|
4
|
Li Y, Cheng S, Shi H, Yuan R, Gao C, Wang Y, Zhang Z, Deng Z, Huang J. 3D embedded bioprinting of large-scale intestine with complex structural organization and blood capillaries. Biofabrication 2024; 16:045001. [PMID: 38914075 DOI: 10.1088/1758-5090/ad5b1b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Accurate reproduction of human intestinal structure and functionin vitrois of great significance for understanding the development and disease occurrence of the gut. However, mostin vitrostudies are often confined to 2D models, 2.5D organ chips or 3D organoids, which cannot fully recapitulate the tissue architecture, microenvironment and cell compartmentalization foundin vivo. Herein, a centimeter-scale intestine tissue that contains intestinal features, such as hollow tubular structure, capillaries and tightly connected epithelium with invivo-likering folds, crypt-villi, and microvilli is constructed by 3D embedding bioprinting. In our strategy, a novel photocurable bioink composed of methacrylated gelatin, methacrylated sodium alginate and poly (ethylene glycol) diacrylate is developed for the fabrication of intestinal model. The Caco-2 cells implanted in the lumen are induced by the topological structures of the model to derive microvilli, crypt-villi, and tight junctions, simulating the intestinal epithelial barrier. The human umbilical vein endothelial cells encapsulated within the model gradually form microvessels, mimicking the dense capillary network in the intestine. This intestine-like tissue, which closely resembles the structure and cell arrangement of the human gut, can act as a platform to predict the therapeutic and toxic side effects of new drugs on the intestine.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Haihua Shi
- Department of Gastrointestinal surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215001, People's Republic of China
| | - Renshun Yuan
- Department of Gastrointestinal surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215001, People's Republic of China
| | - Chen Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zongwu Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
5
|
Agrawal P, Tiwari A, Chowdhury SK, Vohra M, Gour A, Waghmare N, Bhutani U, Kamalnath S, Sangwan B, Rajput J, Raj R, Rajendran NP, Kamath AV, Haddadin R, Chandru A, Sangwan VS, Bhowmick T. Kuragel: A biomimetic hydrogel scaffold designed to promote corneal regeneration. iScience 2024; 27:109641. [PMID: 38646166 PMCID: PMC11031829 DOI: 10.1016/j.isci.2024.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration. We have developed a biodegradable hydrogel - Kuragel, with the ability to promote corneal regeneration. Functionalized gelatin and hyaluronic acid form photo-crosslinkable hydrogel with transparency and compressive modulus similar to healthy human cornea. Kuragel composition was tuned to achieve sufficient adhesive strength for sutureless integration to host tissue, with minimal swelling post-administration. Studies in the New Zealand rabbit mechanical injury model affecting corneal epithelium and stroma demonstrate that Kuragel efficiently promotes re-epithelialization within 1 month of administration, while stroma and sub-basal nerve plexus regenerate within 3 months. We propose Kuragel as a regenerative treatment for patients suffering from corneal defects including thinning, by restoration of transparency and thickness.
Collapse
Affiliation(s)
| | - Anil Tiwari
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | - Mehak Vohra
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Abha Gour
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | | | - S. Kamalnath
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Jyoti Rajput
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Ritu Raj
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | | | - Ramez Haddadin
- Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Arun Chandru
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Tuhin Bhowmick
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Pandorum International Inc, San Francisco, CA, USA
| |
Collapse
|
6
|
Vijayaraghavan R, Loganathan S, Valapa RB. 3D bioprinted photo crosslinkable GelMA/methylcellulose hydrogel mimicking native corneal model with enhanced in vitro cytocompatibility and sustained keratocyte phenotype for stromal regeneration. Int J Biol Macromol 2024; 264:130472. [PMID: 38428773 DOI: 10.1016/j.ijbiomac.2024.130472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Corneal transplantation serves as the standard clinical therapy for serious corneal disorders. However, rejection of grafts, significant expenditures, and most crucially, the global donor shortage, may affect the outcome. Recently, 3D bioprinting using biodegradable polymeric materials has become a suitable method for creating tissue replicas with identical architecture. One such most renowned material is GelMA, for its scaffold's three-dimensional structure, biocompatibility, robust mechanics, and favourable optical transmittance. However, GelMA's inadequate viscosity to print at body temperature with better form integrity remains an obstacle. The aim of this work is to create 3D printed GelMA/MC hydrogels for corneal stroma tissue engineering using MC's printability at room temperature and GelMA's irreversible photo cross-linking with UV irradiation. The print speed and pressure conditions for 3D GelMA/MC hydrogels were tuned. Thermal, morphological and physicochemical characteristics were studied for two distinct concentrations of GelMA/MC hydrogels. The hydrogels achieved a transparency of ~78 % (at 700 nm), which was on par with that of the normal cornea (80 %). The in vitro studies conducted using goat corneal stromal cells demonstrated the ability of both hydrogels to promote cell adhesion and proliferation. Expression of Vimentin and keratan sulphate validated the phenotype of keratocytes in the hydrogel. This 3D printed GelMA/MC hydrogel model mimics biophysical characteristics of the native corneal stroma, which may hold promise for clinical corneal stromal tissue engineering.
Collapse
Affiliation(s)
- Renuka Vijayaraghavan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sravanthi Loganathan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ravi Babu Valapa
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Bektas C, Mao Y. Hydrogel Microparticles for Bone Regeneration. Gels 2023; 10:28. [PMID: 38247752 PMCID: PMC10815488 DOI: 10.3390/gels10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogel microparticles (HMPs) stand out as promising entities in the realm of bone tissue regeneration, primarily due to their versatile capabilities in delivering cells and bioactive molecules/drugs. Their significance is underscored by distinct attributes such as injectability, biodegradability, high porosity, and mechanical tunability. These characteristics play a pivotal role in fostering vasculature formation, facilitating mineral deposition, and contributing to the overall regeneration of bone tissue. Fabricated through diverse techniques (batch emulsion, microfluidics, lithography, and electrohydrodynamic spraying), HMPs exhibit multifunctionality, serving as vehicles for drug and cell delivery, providing structural scaffolding, and functioning as bioinks for advanced 3D-printing applications. Distinguishing themselves from other scaffolds like bulk hydrogels, cryogels, foams, meshes, and fibers, HMPs provide a higher surface-area-to-volume ratio, promoting improved interactions with the surrounding tissues and facilitating the efficient delivery of cells and bioactive molecules. Notably, their minimally invasive injectability and modular properties, offering various designs and configurations, contribute to their attractiveness for biomedical applications. This comprehensive review aims to delve into the progressive advancements in HMPs, specifically for bone regeneration. The exploration encompasses synthesis and functionalization techniques, providing an understanding of their diverse applications, as documented in the existing literature. The overarching goal is to shed light on the advantages and potential of HMPs within the field of engineering bone tissue.
Collapse
Affiliation(s)
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA;
| |
Collapse
|
8
|
Soykan MN, Altug B, Bas H, Ghorbanpoor H, Avci H, Eroglu S, Butun Sengel S, Eker Sariboyaci A, Gunes Bagis S, Uysal O, Atalay E. Developing a Novel Platelet-Rich Plasma-Laden Bioadhesive Hydrogel Contact Lens for the Treatment of Ocular Surface Chemical Injuries. Macromol Biosci 2023; 23:e2300204. [PMID: 37532233 DOI: 10.1002/mabi.202300204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Permanent injury to corneal limbal stem cells after ocular surface chemical and thermal injuries is a major cause of corneal blindness. In this study, a PRP-laden GelMA hydrogel contact lens is manufactured which is aimed to support the limbal niche after ocular surface insults thereby preventing limbal stem cell failure. GelMA with varying platelet-rich plasma (PRP) concentrations (5%, 10%, and 20%) is photopolymerized using a visible light crosslinking system followed by characterizations of mechanical properties, growth factor release, enzymatic degradation, and in vitro cytotoxicity. The addition of 10% PRP into 10% GelMA hydrogel precursor solution results in the highest tensile and compressive modulus (38 and 110 kPa, respectively) and burst pressure (251±37.66 mmHg). Degradation time varies according to the concentration of the collagenase enzyme tested (0, 2.5, 5, and 40 µg/mL) and is most prolonged with 20% PRP. EGF and TGF-β release profiles suggest an initial burst release followed by sustained release, most consistent in the 10% PRP sample. Although cell viability decreases on day 1, rapid recovery is observed and is approximately 120% after day 21. PRP-laden GelMA in the form of a contact lens may be a promising biomaterial-based treatment approach for the maintenance of limbal epithelial stem cells after ocular surface insults.
Collapse
Affiliation(s)
- Merve Nur Soykan
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Burcugul Altug
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Harun Bas
- Department of Polymer Science and Technology, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Faculty of Engineering and Architecture, Department of Metallurgical and Material Engineering, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Translational Medicine Application and Research Center (TATUM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Sertac Eroglu
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Sultan Butun Sengel
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Ayla Eker Sariboyaci
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Vocational School of Health Services, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Sibel Gunes Bagis
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Vocational School of Health Services, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Vocational School of Health Services, Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
| | - Eray Atalay
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Türkiye
- Department of Ophthalmology, Faculty of Medicine, Eskişehir Osmangazi University, Eskisehir, 26040, Türkiye
| |
Collapse
|
9
|
Alioglu MA, Yilmaz YO, Singh YP, Nagamine M, Celik N, Kim MH, Pal V, Gupta D, Ozbolat IT. Nested biofabrication: Matryoshka-inspired Intra-embedded Bioprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560028. [PMID: 37808743 PMCID: PMC10557751 DOI: 10.1101/2023.09.28.560028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Engineering functional tissues and organs remains a fundamental pursuit in biofabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, we here introduce a new method called 'Intra-Embedded Bioprinting (IEB),' building upon existing embedded bioprinting methods. We used a xanthan gum-based material, which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. We demonstrated IEB's capabilities in organ modelling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite. Further, a head phantom and a Matryoshka doll were 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Towards the use case of IEB and employing innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, we developed a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.
Collapse
|
10
|
Pablos JL, Jiménez-Holguín J, Salcedo SS, Salinas AJ, Corrales T, Vallet-Regí M. New Photocrosslinked 3D Foamed Scaffolds Based on GelMA Copolymers: Potential Application in Bone Tissue Engineering. Gels 2023; 9:gels9050403. [PMID: 37232995 DOI: 10.3390/gels9050403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The production of customized polymeric hydrogels in the form of 3D scaffolds with application in bone tissue engineering is currently a topic of great interest. Based on gelatin methacryloyl (GelMa) as one of the most popular used biomaterials, GelMa with two different methacryloylation degrees (DM) was obtained, to achieve crosslinked polymer networks by photoinitiated radical polymerization. In this work, we present the obtention of new 3D foamed scaffolds based on ternary copolymers of GelMa with vinylpyrrolidone (VP) and 2-hydroxyethylmethacrylate (HEMA). All biopolymers obtained in this work were characterized by infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), whose results confirm the presence of all copolymers in the crosslinked biomaterial. In addition, scanning electron microscopy (SEM) pictures were obtained verifying the presence of the porosity created by freeze-drying process. In addition, the variation in its swelling degree and its enzymatic degradation in vitro was analyzed as a function of the different copolymers obtained. This has allowed us to observe good control of the variation in these properties described above in a simple way by varying the composition of the different comonomers used. Finally, with these concepts in mind, biopolymers obtained were tested through assessment of several biological parameters such as cell viability and differentiation with MC3T3-E1 pre-osteoblastic cell line. Results obtained show that these biopolymers maintain good results in terms of cell viability and differentiation, along with tunable properties in terms of hydrophilic character, mechanical properties and enzymatic degradation.
Collapse
Affiliation(s)
- Jesús L Pablos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Javier Jiménez-Holguín
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Sandra Sánchez Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Antonio J Salinas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Teresa Corrales
- Grupo de Fotoquímica, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| |
Collapse
|
11
|
de Souza MF, da Silva HN, Rodrigues JFB, Macêdo MDM, de Sousa WJB, Barbosa RC, Fook MVL. Chitosan/Gelatin Scaffolds Loaded with Jatropha mollissima Extract as Potential Skin Tissue Engineering Materials. Polymers (Basel) 2023; 15:polym15030603. [PMID: 36771903 PMCID: PMC9921636 DOI: 10.3390/polym15030603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
This work aimed to develop chitosan/gelatin scaffolds loaded with ethanolic extract of Jatropha mollissima (EEJM) to evaluate the influence of its content on the properties of these structures. The scaffolds were prepared by freeze-drying, with different EEJM contents (0-10% (w/w)) and crosslinked with genipin (0.5% (w/w)). The EEJM were characterized through High Performance Liquid Chromatography coupled to a Diode Array Detector (HPLC-DAD), and the determination of three secondary metabolites contents was accomplished. The physical, chemical and biological properties of the scaffolds were investigated. From the HPLC-DAD, six main substances were evidenced, and from the quantification of the total concentration, the condensed tannins were the highest (431.68 ± 33.43 mg·g-1). Spectroscopy showed good mixing between the scaffolds' components. Adding and increasing the EEJM content did not significantly influence the properties of swelling and porosity, but did affect the biodegradation and average pore size. The enzymatic biodegradation test showed a maximum weight loss of 42.89 within 28 days and reinforced the efficiency of genipin in crosslinking chitosan-based materials. The addition of the extract promoted the average pore sizes at a range of 138.44-227.67 µm, which is compatible with those reported for skin regeneration. All of the scaffolds proved to be biocompatible for L929 cells, supporting their potential application as skin tissue engineering materials.
Collapse
Affiliation(s)
- Matheus Ferreira de Souza
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Henrique Nunes da Silva
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - José Filipe Bacalhau Rodrigues
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maria Dennise Medeiros Macêdo
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | | | - Rossemberg Cardoso Barbosa
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Marcus Vinícius Lia Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
- Correspondence: ; Tel.: +55-(83)-2101-1841
| |
Collapse
|
12
|
Alves AL, Carvalho AC, Machado I, Diogo GS, Fernandes EM, Castro VIB, Pires RA, Vázquez JA, Pérez-Martín RI, Alaminos M, Reis RL, Silva TH. Cell-Laden Marine Gelatin Methacryloyl Hydrogels Enriched with Ascorbic Acid for Corneal Stroma Regeneration. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010062. [PMID: 36671634 PMCID: PMC9854711 DOI: 10.3390/bioengineering10010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Corneal pathologies from infectious or noninfectious origin have a significant impact on the daily lives of millions of people worldwide. Despite the risk of organ rejection or infection, corneal transplantation is currently the only effective treatment. Finding safe and innovative strategies is the main goal of tissue-engineering-based approaches. In this study, the potential of gelatin methacryloyl (GelMA) hydrogels produced from marine-derived gelatin and loaded with ascorbic acid (as an enhancer of the biological activity of cells) was evaluated for corneal stromal applications. Marine GelMA was synthesized with a methacrylation degree of 75%, enabling effective photocrosslinking, and hydrogels with or without ascorbic acid were produced, encompassing human keratocytes. All the produced formulations exhibited excellent optical and swelling properties with easy handling as well as structural stability and adequate degradation rates that may allow proper extracellular matrix remodeling by corneal stromal cells. Formulations loaded with 0.5 mg/mL of ascorbic acid enhanced the biological performance of keratocytes and induced collagen production. These results suggest that, in addition to marine-derived gelatin being suitable for the synthesis of GelMA, the hydrogels produced are promising biomaterials for corneal regeneration applications.
Collapse
Affiliation(s)
- Ana L. Alves
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana C. Carvalho
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Inês Machado
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Gabriela S. Diogo
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Vânia I. B. Castro
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ricardo A. Pires
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - José A. Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Spain
| | - Ricardo I. Pérez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Spain
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria (ibs.GRANADA), E18016 Granada, Spain
| | - Rui L. Reis
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
13
|
Sun X, Qiao Y, Zhao L, Shi Z, Zhang X, Cao R, Zhou Q, Shi W. Application of Decellularized Porcine Sclera in Repairing Corneal Perforations and Lamellar Injuries. ACS Biomater Sci Eng 2022; 8:5295-5306. [PMID: 36454184 DOI: 10.1021/acsbiomaterials.2c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Scleras are mainly used for the treatment of glaucoma, eyelid damage, and scleral ulcers. Given that the sclera and cornea collectively constitute the complete external structure of the eyeball and both have the same tissue and cell origin, we attempted to identify scleral materials to treat lamellar and penetrating corneal injuries. Based on research in our center, antigenic components in decellularized porcine sclera (DPS) were removed using a simplified decellularization method, leaving the collagen structure and active components undamaged. DPS preserved the mechanical properties and did not significantly inhibit the proliferation and replication of human corneal epithelial cells. In vivo, the graft epithelium healed well after lamellar and penetrating scleral grafting, and the graft thickness did not change evidently. DPS can resist suture traction during scleral transplantation and maintain anterior chamber stability until day 28 post-operatively, especially in penetrating repairs. No obvious immune rejection of lamellar or penetrating scleral grafts was found 28 days after DPS transplantation. This study shows that DPS could be used as an alternative material for the emergency repair of corneal perforations and lamellar injuries, representing another application of sclera.
Collapse
Affiliation(s)
- Xiuli Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Yujie Qiao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Long Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Zhen Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Xiaoyu Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Rui Cao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, 5 Yan'erdao Road, Qingdao 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Jingsi Road, Jinan 271000, China
| |
Collapse
|
14
|
He B, Wang J, Xie M, Xu M, Zhang Y, Hao H, Xing X, Lu W, Han Q, Liu W. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration. Bioact Mater 2022; 17:234-247. [PMID: 35386466 PMCID: PMC8965162 DOI: 10.1016/j.bioactmat.2022.01.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Corneal regeneration has always been a challenge due to its sophisticated structure and undesirable keratocyte-fibroblast transformation. Herein, we propose 3D printing of a biomimetic epithelium/stroma bilayer implant for corneal regeneration. Gelatin methacrylate (GelMA) and long-chain poly(ethylene glycol) diacrylate (PEGDA) are blended to form a two-component ink, which can be printed to different mechanically robust programmed PEGDA-GelMA objects by Digital Light Processing (DLP) printing technology, due to the toughening effect of crystalline crosslinks from long-chain PEGDA on GelMA hydrogel after photo-initiated copolymerization. The printed PEGDA-GelMA hydrogels support cell adhesion, proliferation, migration, meanwhile demonstrating a high light transmittance, and an appropriate swelling degree, nutrient permeation and degradation rate. A bi-layer dome-shaped corneal scaffold consisting of rabbit corneal epithelial cells (rCECs)-laden epithelia layer and rabbit adipose-derived mesenchymal stem cells (rASCs)-laden orthogonally aligned fibrous stroma layer can be printed out with a high fidelity and robustly surgical handling ability. This bi-layer cells-laden corneal scaffold is applied in a rabbit keratoplasty model. The post-operative outcome reveals efficient sealing of corneal defects, re-epithelialization and stromal regeneration. The concerted effects of microstructure of 3D printed corneal scaffold and precisely located cells in epithelia and stroma layer provide an optimal topographical and biological microenvironment for corneal regeneration. Crystalline microphase of long PEGDA is employed to toughen GelMA hydrogel. A bi-layer dome-shaped robust hydrogel-based biomimetic corneal scaffold is printed. The 3D printed cornea implant can efficiently repair the rabbits' corneal defect.
Collapse
|
15
|
Pirmoradian M, Hooshmand T, Najafi F, Haghbin Nazarpak M, Davaie S. Design, synthesis, and characterization of a novel dual cross-linked gelatin-based bioadhesive for hard and soft tissues adhesion capability. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac9268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Many surgical treatments require a suitable tissue adhesive that maintains its performance in wet conditions and can be applied simultaneously for hard and soft tissues. In the present study, a dual cross-linked tissue adhesive was synthesized by mixing the gelatin methacryloyl (Gel-MA) and gelatin-dopamine conjugate (Gel-Dopa). The setting reaction was based on a photopolymerization process in the presence of a combination of riboflavin and triethanolamine and a chemical cross-linking process attributed to the genipin as a natural cross-linker. Modified gelatin macromolecules were characterized and the best wavelength for free radical generation in the presence of riboflavin was obtained. Tissue adhesives were prepared with 30% hydrogels of Gel-MA and Gel-Dopa with different ratios in distilled water. The gelation occurred in a short time after light irradiation. The chemical, mechanical, physical, and cytotoxicity properties of the tissue adhesives were evaluated. The results showed that despite photopolymerization, chemical crosslinking with genipin played a more critical role in the setting process. Water uptake, degradation behavior, cytotoxicity, and adhesion properties of the adhesives were correlated with the ratio of the components. The SEM images showed a porous structure that could ensure the entry of cells and nutrients into the surgical area. While acceptable properties in most experiments were observed, all features were improved as the Gel-Dopa ratio increased. Also, the obtained hydrogels revealed excellent adhesive properties, particularly with bone even after wet incubation, and it was attributed to the amount of gelatin-dopamine conjugate. From the obtained results, it was concluded that a dual adhesive hydrogel based on gelatin macromolecules could be a good candidate as a tissue adhesive in wet condition.
Collapse
|
16
|
Pourjabbar B, Biazar E, Heidari Keshel S, Baradaran‐Rafii A. Improving the properties of fish skin collagen/silk fibroin dressing by chemical treatment for corneal wound healing. Int Wound J 2022; 20:484-498. [PMID: 35912793 PMCID: PMC9885469 DOI: 10.1111/iwj.13896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/03/2023] Open
Abstract
Natural biomaterials are crucial in ocular tissue engineering because they allow cells to proliferate, differentiate, and stratify while maintaining the typical epithelial phenotype. In this study, membranes as dressings were formed from silk fibroin and collagen (Co) extracted from fish skin and then modified with carbodiimide chemical cross linker in different concentrations. The samples were evaluated by different analyses such as structural, physical (optical, swelling, denaturation temperature, degradation), mechanical, and biological (viability, cell adhesion, immunocytochemistry) assays. The results showed that all membranes have excellent transparency, especially with higher silk fibroin content. Increasing the cross linker concentration and the ratio of silk fibroin to Co increased the denaturation temperature and mechanical strength and, conversely, reduced the degradation rate and cell adhesion. The samples did not show a significant difference in toxicity with increasing cross linker and silk fibroin ratio. In general, samples with a low silk fibroin ratio combined with cross linker can provide desirable properties as a membrane for corneal wound healing.
Collapse
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon BranchIslamic Azad UniversityTonekabonIran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran,Medical Nanotechnology and Tissue Engineering Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Alireza Baradaran‐Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
17
|
Delivery of Cells to the Cornea Using Synthetic Biomaterials. Cornea 2022; 41:1325-1336. [DOI: 10.1097/ico.0000000000003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
18
|
Shahin A, Ramazani S.A A, Mehraji S, Eslami H. Synthesis and characterization of a chitosan/gelatin transparent film crosslinked with a combination of EDC/NHS for corneal epithelial cell culture scaffold with potential application in cornea implantation. INT J POLYM MATER PO 2022; 71:568-578. [DOI: 10.1080/00914037.2020.1865349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Ali Shahin
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Ahmad Ramazani S.A
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Sima Mehraji
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Hamed Eslami
- Department of Biomedical Engineering Biomaterial, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Kilic Bektas C, Zhang W, Mao Y, Wu X, Kohn J, Yelick PC. Self-Assembled Hydrogel Microparticle-Based Tooth-Germ Organoids. Bioengineering (Basel) 2022; 9:bioengineering9050215. [PMID: 35621493 PMCID: PMC9137977 DOI: 10.3390/bioengineering9050215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we describe the characterization of tooth-germ organoids, three-dimensional (3D) constructs cultured in vitro with the potential to develop into living teeth. To date, the methods used to successfully create tooth organoids capable of forming functional teeth have been quite limited. Recently, hydrogel microparticles (HMP) have demonstrated utility in tissue repair and regeneration based on their useful characteristics, including their scaffolding ability, effective cell and drug delivery, their ability to mimic the natural tissue extracellular matrix, and their injectability. These outstanding properties led us to investigate the utility of using HMPs (average diameter: 158 ± 32 µm) derived from methacrylated gelatin (GelMA) (degree of substitution: 100%) to create tooth organoids. The tooth organoids were created by seeding human dental pulp stem cells (hDPSCs) and porcine dental epithelial cells (pDE) onto the HMPs, which provided an extensive surface area for the cells to effectively attach and proliferate. Interestingly, the cell-seeded HMPs cultured on low-attachment tissue culture plates with gentle rocking self-assembled into organoids, within which the cells maintained their viability and morphology throughout the incubation period. The self-assembled organoids reached a volume of ~50 mm3 within two weeks of the in vitro tissue culture. The co-cultured hDPSC-HMP and pDE-HMP structures effectively attached to each other without any externally applied forces. The presence of polarized, differentiated dental cells in these composite tooth-bud organoids demonstrated the potential of self-assembled dental cell HMPs to form tooth-bud organoid-like structures for potential applications in tooth regeneration strategies.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Weibo Zhang
- Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine, 1 Kneeland Avenue, Boston, MA 02111, USA;
| | - Yong Mao
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Xiaohuan Wu
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (C.K.B.); (Y.M.); (X.W.); (J.K.)
| | - Pamela C. Yelick
- Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine, 1 Kneeland Avenue, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
20
|
Sang S, Ma Z, Cao Y, Shen Z, Duan J, Zhang Y, Wang L, An Y, Mao X, An Y, Zhang Q. BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2052727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Zhuwei Ma
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, PR China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Jiahui Duan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yating Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Lijing Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yuchuan An
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Xingjia Mao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, PR China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, PR China
| | - Qiang Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
21
|
Sang S, Yan Y, Shen Z, Cao Y, Duan Q, He M, Zhang Q. Photo-crosslinked hydrogels for tissue engineering of corneal epithelium. Exp Eye Res 2022; 218:109027. [PMID: 35276182 DOI: 10.1016/j.exer.2022.109027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
Abstract
The vast majority of patients with corneal blindness cannot recover their vision due to the serious shortage of donor cornea. However, the technology to construct a feasible corneal substitute is a promising treatment method for corneal blindness. In this paper, methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA) double network (GHDN) hydrogels were prepared by modifying gelatin and hyaluronic acid with methacrylate anhydride (MA). GHDN hydrogel was compared with GelMA single network and HAMA single network hydrogels through characterization experiments of mechanical properties, optical properties, hydrophilicity and in-situ degradation in vitro. At the same time, the biocompatibility of hydrogel was tested by inoculating rabbit corneal epithelial cells (CEpCs) epidermal cells on hydrogels using CCK-8 test, live/dead staining, immunofluorescence staining and qRT-PCR. It was found that the GHDN hydrogel has optical transparency in the visible region, and its mechanical properties are better than those of GelMA and HAMA hydrogels, and its hydrophilicity is similar to that of normal human corneas. The results of in vitro hydrogel culture of CEpCs showed that the proliferation of CEpCs on GHDN hydrogel was two times higher than that of HAMA hydrogel, and the expression of specific marker Cytokeratin 3 (CK3) and Cytokeratin 12 (CK12) could be better maintained on GHDN hydrogel. All the experimental results proved that GHDN hydrogel has good physical properties and biocompatibility and is a potential candidate for corneal tissue engineering scaffolds.
Collapse
Affiliation(s)
- Shengbo Sang
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yayun Yan
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhizhong Shen
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanyan Cao
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China; College of Information Science and Engineering, Hebei North University, Zhangjiakou, 075000, China
| | - Qianqian Duan
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Min He
- Department of Ophthalmology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Qiang Zhang
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
22
|
Xu W, Kong B, Xie H, Zhang J, Liu W, Liu S, Zhang Y, Yang F, Xiao J, Mi S, Xiong L, Zhang M, Jiang F. PCL scaffold combined with rat tail collagen type I to reduce keratocyte differentiation and prevent corneal stroma fibrosis after injury. Exp Eye Res 2022; 217:108936. [DOI: 10.1016/j.exer.2022.108936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
|
23
|
Sadeghian A, Kharaziha M, Khoroushi M. Osteoconductive visible light-crosslinkable nanocomposite for hard tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Sonker M, Bajpai S, Khan MA, Yu X, Tiwary SK, Shreyash N. Review of Recent Advances and Their Improvement in the Effectiveness of Hydrogel-Based Targeted Drug Delivery: A Hope for Treating Cancer. ACS APPLIED BIO MATERIALS 2021; 4:8080-8109. [PMID: 35005919 DOI: 10.1021/acsabm.1c00857] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using hydrogels for delivering cancer therapeutics is advantageous in pharmaceutical usage as they have an edge over traditional delivery, which is tainted due to the risk of toxicity that it imbues. Hydrogel usage leads to the development of a more controlled drug release system owing to its amenability for structural metamorphosis, its higher porosity to seat the drug molecules, and its ability to shield the drug from denaturation. The thing that makes its utility even more enhanced is that they make themselves more recognizable to the body tissues and hence can stay inside the body for a longer time, enhancing the efficiency of the delivery, which otherwise is negatively affected since the drug is identified by the human immunity as a foreign substance, and thus, an attack of the immunity begins on the drug injected. A variety of hydrogels such as thermosensitive, pH-sensitive, and magnetism-responsive hydrogels have been included and their potential usage in drug delivery has been discussed in this review that aims to present recent studies on hydrogels that respond to alterations under a variety of circumstances in "reducing" situations that mimic the microenvironment of cancerous cells.
Collapse
Affiliation(s)
- Muskan Sonker
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Sushant Bajpai
- Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Mohd Ashhar Khan
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Xiaojun Yu
- Department of Biomedical Engineering Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Saurabh Kr Tiwary
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Nehil Shreyash
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| |
Collapse
|
25
|
Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering (Basel) 2021; 8:161. [PMID: 34821727 PMCID: PMC8615221 DOI: 10.3390/bioengineering8110161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.
Collapse
Affiliation(s)
- Julie F. Jameson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Marisa O. Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Henry H. Nguyen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Whitney L. Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| |
Collapse
|
26
|
Formisano N, van der Putten C, Grant R, Sahin G, Truckenmüller RK, Bouten CVC, Kurniawan NA, Giselbrecht S. Mechanical Properties of Bioengineered Corneal Stroma. Adv Healthc Mater 2021; 10:e2100972. [PMID: 34369098 PMCID: PMC11468718 DOI: 10.1002/adhm.202100972] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Indexed: 12/26/2022]
Abstract
For the majority of patients with severe corneal injury or disease, corneal transplantation is the only suitable treatment option. Unfortunately, the demand for donor corneas greatly exceeds the availability. To overcome shortage issues, a myriad of bioengineered constructs have been developed as mimetics of the corneal stroma over the last few decades. Despite the sheer number of bioengineered stromas developed , these implants fail clinical trials exhibiting poor tissue integration and adverse effects in vivo. Such shortcomings can partially be ascribed to poor biomechanical performance. In this review, existing approaches for bioengineering corneal stromal constructs and their mechanical properties are described. The information collected in this review can be used to critically analyze the biomechanical properties of future stromal constructs, which are often overlooked, but can determine the failure or success of corresponding implants.
Collapse
Affiliation(s)
- Nello Formisano
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Cas van der Putten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Rhiannon Grant
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Gozde Sahin
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
27
|
Enhancing esophageal repair with bioactive bilayer mesh containing FGF. Sci Rep 2021; 11:19203. [PMID: 34584186 PMCID: PMC8478899 DOI: 10.1038/s41598-021-98840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
Abstract
We aimed to prepare a bioactive and biodegradable bilayer mesh formed by fibroblast growth factor (FGF) loaded gelatin film layer, and poly ε-caprolactone (PCL) film layer, and to investigate its treatment efficacy on esophageal anastomosis. It is envisaged that the bioactive mesh in in vivo model would improve tissue healing in rats. The full thickness semicircular defects of 0.5 × 0.5 cm2 were created in anterior walls of abdominal esophagus. The control group had abdominal esophagus isolated with distal esophageal blunt dissection, and sham group had primary anastomosis. In the test groups, the defects were covered with bilayer polymeric meshes containing FGF (5 μg/2 cm2), or not. All rats were sacrificed for histopathology investigation after 7 or 28 days of operation. The groups are coded as FGF(-)-7th day, FGF(+)-7th day, and FGF(+)-28th day, based on their content and operation day. Highest burst pressures were obtained for FGF(+)-7th day, and FGF(+)-28th day groups (p < 0.005) and decreased inflammation grades were observed. Submucosal and muscular collagen deposition scores were markedly increased in these groups compared to sham and FGF(-)-7th day groups having no FGF (p = 0.002, p = 0.001, respectively). It was proved that FGF loaded bioactive bilayer mesh provided effective repair, reinforcement and tissue healing of esophageal defects.
Collapse
|
28
|
Nozari N, Biazar E, Kamalvand M, Keshel SH, Shirinbakhsh S. Photo Cross-linkable Biopolymers for Cornea Tissue Healing. Curr Stem Cell Res Ther 2021; 17:58-70. [PMID: 34269669 DOI: 10.2174/1574888x16666210715112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Light can act as an effective and strong agent for the cross-linking of biomaterials and tissues and is recognized as a safe substitute for chemical cross-linkers to modify mechanical and physical properties and promote biocompatibility. This review focuses on the research about cross-linked biomaterials with different radiation sources such as Laser or Ultraviolet (UV) that can be applied as scaffolds, controlled release systems, and tissue adhesives for cornea healing and tissue regeneration.
Collapse
Affiliation(s)
- Negar Nozari
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shervin Shirinbakhsh
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
29
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
30
|
Davoodi E, Montazerian H, Esmaeilizadeh R, Darabi AC, Rashidi A, Kadkhodapour J, Jahed H, Hoorfar M, Milani AS, Weiss PS, Khademhosseini A, Toyserkani E. Additively Manufactured Gradient Porous Ti-6Al-4V Hip Replacement Implants Embedded with Cell-Laden Gelatin Methacryloyl Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22110-22123. [PMID: 33945249 DOI: 10.1021/acsami.0c20751] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Laser additive manufacturing has led to a paradigm shift in the design of next-generation customized porous implants aiming to integrate better with the surrounding bone. However, conflicting design criteria have limited the development of fully functional porous implants; increasing porosity improves body fluid/cell-laden prepolymer permeability at the expense of compromising mechanical stability. Here, functionally gradient porosity implants and scaffolds designed based on interconnected triply periodic minimal surfaces (TPMS) are demonstrated. High local porosity is defined at the implant/tissue interface aiming to improve the biological response. Gradually decreasing porosity from the surface to the center of the porous constructs provides mechanical strength in selective laser melted Ti-6Al-4V implants. The effect of unit cell size is studied to discover the printability limit where the specific surface area is maximized. Furthermore, mechanical studies on the unit cell topology effects suggest that the bending-dominated architectures can provide significantly enhanced strength and deformability, compared to stretching-dominated architectures. A finite element (FE) model developed also showed great predictability (within ∼13%) of the mechanical responses of implants to physical activities. Finally, in vitro biocompatibility studies were conducted for two-dimensional (2D) and three-dimensional (3D) cases. The results of the 2D in conjunction with surface roughness show favored physical cell attachment on the implant surface. Also, the results of the 3D biocompatibility study for the scaffolds incorporated with a cell-laden gelatin methacryloyl (GelMA) hydrogel show excellent viability. The design procedure proposed here provides new insights into the development of porous hip implants with simultaneous high mechanical and biological responses.
Collapse
Affiliation(s)
- Elham Davoodi
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Reza Esmaeilizadeh
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ali Ch Darabi
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Armin Rashidi
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Javad Kadkhodapour
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Hamid Jahed
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
31
|
Farasatkia A, Kharaziha M. Robust and double-layer micro-patterned bioadhesive based on silk nanofibril/GelMA-alginate for stroma tissue engineering. Int J Biol Macromol 2021; 183:1013-1025. [PMID: 33974922 DOI: 10.1016/j.ijbiomac.2021.05.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
We develop a robust micro-patterned double-layer film that can adhere firmly to the tissue and provide a sustained release of ascorbic acid (AA) for corneal regeneration. This double-layer film consists of a AA reservoir sodium alginate (SA) adhesive and an anisotropic layer made of micro-patterned silk nanofibrils (SNF) incorporated gelatin methacrylate (GelMA) (S/G). The S/G layer facilitates the adhesion and orientation of corneal stroma cells, depending on the pattern sizes (50 μm (P1) and 100 (P2) μm). Results reveal that more than 90% and 80% of the cells are located at angles close to the vertical axis (0-20°) in the sample with the smaller and larger pattern size, respectively. The mechanical robustness and 90% light transmission of this hybrid film originate from the micro-patterned S/G layer. However, the micro-pattern size does not show a significant role in the mechanical properties of hybrid films (tensile strength of S/G-SA, S/G-SA(P1), and S/G-SA(P2) is 3.4 ± 0.1 MPa, 3.6 ± 0.6 MPa and 3.3 ± 0.2 MPa, respectively). In addition, the strong adhesion to the tissue of this double-layer film is related to the alginate layer. AA can release in a controlled manner, which can significantly promote corneal stroma cells' attachment, alignment, and proliferation compared to the control (AA-free micro-patterned film). Our results reveal that this innovative multifunctional S/G-SA + AA film can be a proper candidate for use in stroma tissue engineering of the human cornea.
Collapse
Affiliation(s)
- Asal Farasatkia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
32
|
Sharifi S, Islam MM, Sharifi H, Islam R, Koza D, Reyes-Ortega F, Alba-Molina D, Nilsson PH, Dohlman CH, Mollnes TE, Chodosh J, Gonzalez-Andrades M. Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications. Bioact Mater 2021; 6:3947-3961. [PMID: 33937594 PMCID: PMC8080056 DOI: 10.1016/j.bioactmat.2021.03.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gelatin based adhesives have been used in the last decades in different biomedical applications due to the excellent biocompatibility, easy processability, transparency, non-toxicity, and reasonable mechanical properties to mimic the extracellular matrix (ECM). Gelatin adhesives can be easily tuned to gain different viscoelastic and mechanical properties that facilitate its ocular application. We herein grafted glycidyl methacrylate on the gelatin backbone with a simple chemical modification of the precursor, utilizing epoxide ring-opening reactions and visible light-crosslinking. This chemical modification allows the obtaining of an elastic protein-based hydrogel (GELGYM) with excellent biomimetic properties, approaching those of the native tissue. GELGYM can be modulated to be stretched up to 4 times its initial length and withstand high tensile stresses up to 1.95 MPa with compressive strains as high as 80% compared to Gelatin-methacryloyl (GeIMA), the most studied derivative of gelatin used as a bioadhesive. GELGYM is also highly biocompatible and supports cellular adhesion, proliferation, and migration in both 2 and 3-dimensional cell-cultures. These characteristics along with its super adhesion to biological tissues such as cornea, aorta, heart, muscle, kidney, liver, and spleen suggest widespread applications of this hydrogel in many biomedical areas such as transplantation, tissue adhesive, wound dressing, bioprinting, and drug and cell delivery.
Collapse
Affiliation(s)
- Sina Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mohammad Mirazul Islam
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hannah Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Darrell Koza
- Department of Physical Sciences, Eastern Connecticut State University, Willimantic, CT, USA
| | - Felisa Reyes-Ortega
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - David Alba-Molina
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Claes H Dohlman
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Norway
| | - James Chodosh
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| |
Collapse
|
33
|
Zhang Y, Sun M, Liu T, Hou M, Yang H. Effect of Different Additives on the Mechanical Properties of Gelatin Methacryloyl Hydrogel: A Meta-analysis. ACS OMEGA 2021; 6:9112-9128. [PMID: 33842781 PMCID: PMC8028145 DOI: 10.1021/acsomega.1c00244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 05/24/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogel has adjustable physicochemical properties and a three-dimensional network structure for cell growth and hence a hot issue in the field of tissue engineering. However, its poor mechanical properties limit the application in the scaffold, especially as a bone scaffold. To date, many research studies have been carried out by adding some additives into GelMA to construct GelMA-based composites to improve the mechanical properties. However, there is a controversy as to whether the additives can improve the mechanical properties of GelMA. Herein, meta-analysis was used to evaluate the influence of the additives on the mechanical properties of GelMA-based composites, which can provide reference for the further enhancement of mechanical properties of GelMA. In this study, meta-analysis was adopted to investigate the influence of additives on the mechanical properties of GelMA composites; composites with different concentrations of GelMA, that is, ≥10% (w/v), 5-10% (w/v), and ≤5% (w/v) were found in 23 literatures and heterogeneity could be found among these references. Accordingly, it is found that additives can improve the mechanical properties in each concentration.
Collapse
Affiliation(s)
| | | | - Taotao Liu
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Mengdie Hou
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
34
|
Huang C, Zhang X, Luo H, Pan J, Cui W, Cheng B, Zhao S, Chen G. Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair. J Shoulder Elbow Surg 2021; 30:544-553. [PMID: 32650072 DOI: 10.1016/j.jse.2020.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Strategies involving microfracture, biomaterials, growth factors, and chemical agents have been evaluated for improving enthesis healing. Kartogenin (KGN) promotes selective differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocytes. Gelatin methacryloyl (GelMA) is a promising biomaterial for engineering scaffolds and drug carriers. Herein, we investigated KGN-loaded GelMA hydrogel scaffolds with a bone marrow-stimulating technique for the repair of rotator cuff tear. METHODS KGN-loaded GelMA hydrogel scaffolds were obtained by ultraviolet GelMA crosslinking and vacuum freeze-drying. Fifty-four New Zealand rabbits were randomly divided into (1) repair only (control), (2) microfracture + repair (BMS), and (3) microfracture + repair augmentation with a KGN-loaded GelMA hydrogel scaffold (combined) groups. Tendons were repaired by transosseous sutures. The structure, degradation, and in vitro KGN release of the scaffolds were characterized. Animals were euthanized 4, 8, and 12 weeks after repair. Enthesis healing was evaluated by macroscopy, microcomputed tomography, histology, and biomechanical tests. RESULTS The KGN-loaded GelMA hydrogel scaffolds are porous with a 60.4 ± 28.2-μm average pore size, and they degrade quickly in 2.5 units/mL collagenase solution. Nearly 81% of KGN was released into phosphate-buffered saline within 12 hours, whereas the remaining KGN was released in 7 days. Macroscopically, the repaired tendons were attached to the footprint. No differences were detected postoperatively in microcomputed tomography analysis among groups. Fibrous scar tissue was the main component at the tendon-to-bone interface in the control group. Disorderly arranged cartilage formation was observed at the tendon-to-bone interface in the BMS and combined groups 4 weeks after repair; the combined group exhibited relatively more cartilage. The combined group showed improved cartilage regeneration 8 and 12 weeks after repair. Similar results were found in tendon maturation scores. The ultimate load to failure and stiffness of the repaired tendon increased in all 3 groups. At 4 weeks after repair, the BMS and combined groups exhibited greater ultimate load to failure than the control group, although there was no difference in stiffness among groups. The BMS and combined groups exhibited greater ultimate load to failure and stiffness than the control group, and the combined group exhibited better values than the BMS group at 8 and 12 weeks after repair. CONCLUSION Compared with the bone marrow-stimulating technique, the KGN-loaded GelMA hydrogel scaffold with bone marrow stimulation improved enthesis healing by promoting fibrocartilage formation and improving the mechanical properties.
Collapse
Affiliation(s)
- Chenglong Huang
- Department of Orthopedics, Clinical Medical School, The Affiliated Shanghai No. 10 People's Hospital, Nanjing Medical University, Shanghai, China; Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xuancheng Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huanhuan Luo
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jieen Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Biao Cheng
- Department of Orthopedics, Clinical Medical School, The Affiliated Shanghai No. 10 People's Hospital, Nanjing Medical University, Shanghai, China.
| | - Song Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Gang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
35
|
Xiang L, Cui W. Biomedical application of photo-crosslinked gelatin hydrogels. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00043-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field.
Graphical abstract
Collapse
|
36
|
Farasatkia A, Kharaziha M, Ashrafizadeh F, Salehi S. Transparent silk/gelatin methacrylate (GelMA) fibrillar film for corneal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111744. [DOI: 10.1016/j.msec.2020.111744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
|
37
|
Misra R, Acharya S. Smart nanotheranostic hydrogels for on-demand cancer management. Drug Discov Today 2020; 26:344-359. [PMID: 33212236 DOI: 10.1016/j.drudis.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Theranostics is a revolution in cancer therapy. Hydrogels have many implications as a drug delivery vehicle and theranostics hydrogels could be a model nanotherapeutic for simultaneous cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ranjita Misra
- Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Sarbari Acharya
- Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
38
|
Alió Del Barrio JL, Arnalich-Montiel F, De Miguel MP, El Zarif M, Alió JL. Corneal stroma regeneration: Preclinical studies. Exp Eye Res 2020; 202:108314. [PMID: 33164825 DOI: 10.1016/j.exer.2020.108314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Corneal grafting is one of the most common and successful forms of human tissue transplantation in the world, but the need for corneal grafting is growing and availability of human corneal donor tissue to fulfill this increasing demand is not assured worldwide. The stroma is responsible for many features of the cornea, including its strength, refractive power and transparency, so enormous efforts have been put into replicating the corneal stroma in the laboratory to find an alternative to classical corneal transplantation. Unfortunately this has not been yet accomplished due to the extreme difficulty in mimicking the highly complex ultrastructure of the corneal stroma, and none of the obtained substitutes that have been assayed has been able to replicate this complexity yet. In general, they can neither match the mechanical properties nor recreate the local nanoscale organization and thus the transparency and optical properties of a normal cornea. In this context, there is an increasing interest in cellular therapy of the corneal stroma using Induced Pluripotent Stem Cells (iPSCs) or mesenchymal stem cells (MSCs) from either ocular or extraocular sources, as they have proven to be capable of producing new collagen within the host stroma, modulate preexisting scars and enhance transparency by corneal stroma remodeling. Despite some early clinical data is already available, in the current article we will summary the available preclinical evidence about the topic corneal stroma regeneration. Both, in vitro and in vivo experiments in the animal model will be shown.
Collapse
Affiliation(s)
- Jorge L Alió Del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Arnalich-Montiel
- IRYCIS. Ophthalmology Department. Ramón y Cajal University Hospital, Madrid, Spain; Cornea Unit. Hospital Vissum Madrid (Miranza Group), Madrid, Spain
| | - María P De Miguel
- Cell Engineering Laboratory, IdiPAZ, La Paz Hospital Research Institute, Madrid, Spain
| | | | - Jorge L Alió
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain.
| |
Collapse
|
39
|
Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213432] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Biomimetic corneal stroma using electro-compacted collagen. Acta Biomater 2020; 113:360-371. [PMID: 32652228 DOI: 10.1016/j.actbio.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Engineering substantia propria (or stroma of cornea) that mimics the function and anatomy of natural tissue is vital for in vitro modelling and in vivo regeneration. There are, however, few examples of bioengineered biomimetic corneal stroma. Here we describe the construction of an orthogonally oriented 3D corneal stroma model (3D-CSM) using pure electro-compacted collagen (EC). EC films comprise aligned collagen fibrils and support primary human corneal stromal cells (hCSCs). Cell-laden constructs are analogous to the anatomical structure of native human cornea. The hCSCs are guided by the topographical cues provided by the aligned collagen fibrils of the EC films. Importantly, the 3D-CSM are biodegradable, highly transparent, glucose-permeable and comprise quiescent hCSCs. Gene expression analysis indicated the presence of aligned collagen fibrils is strongly coupled to downregulation of active fibroblast/myofibroblast markers α-SMA and Thy-1, with a concomitant upregulation of the dormant keratocyte marker ALDH3. The 3D-CSM represents the first example of an optimally robust biomimetic engineered corneal stroma that is constructed from pure electro-compacted collagen for cell and tissue support. The 3D-CSM is a significant advance for synthetic corneal stroma engineering, with the potential to be used for full-thickness and functional cornea replacement, as well as informing in vivo tissue regeneration. STATEMENT OF SIGNIFICANCE: This manuscript represents the first example of a robust, transparent, glucose permeable and pure collagen-based biomimetic 3D corneal stromal model (3D-CSM) constructed from pure electro-compacted collagen. The collagen fibrils of 3D-CSM are aligned and orthogonally arranged, mimicking native human corneal stroma. The alignment of collagen fibrils correlates with the direction of current applied for electro-compaction and influences human corneal stromal cell (hCSC) orientation. Moreover, 3D-CSM constructs support a corneal keratocyte phenotype; an essential requirement for modelling healthy corneal stroma. As-prepared 3D-CSM hold great promise as corneal stromal substitutes for research and translation, with the potential to be used for full-thickness cornea replacement.
Collapse
|
41
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
42
|
Gu L, Li T, Song X, Yang X, Li S, Chen L, Liu P, Gong X, Chen C, Sun L. Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering. Regen Biomater 2020; 7:195-202. [PMID: 32296538 PMCID: PMC7147361 DOI: 10.1093/rb/rbz050] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Methacrylated gelatin (GelMA)/bacterial cellulose (BC) composite hydrogels have been successfully prepared by immersing BC particles in GelMA solution followed by photo-crosslinking. The morphology of GelMA/BC hydrogel was examined by scanning electron microscopy and compared with pure GelMA. The hydrogels had very well interconnected porous network structure, and the pore size decreased from 200 to 10 µm with the increase of BC content. The composite hydrogels were also characterized by swelling experiment, X-ray diffraction, thermogravimetric analysis, rheology experiment and compressive test. The composite hydrogels showed significantly improved mechanical properties compared with pure GelMA. In addition, the biocompatility of composite hydrogels were preliminarily evaluated using human articular chondrocytes. The cells encapsulated within the composite hydrogels for 7 days proliferated and maintained the chondrocytic phenotype. Thus, the GelMA/BC composite hydrogels might be useful for cartilage tissue engineering.
Collapse
Affiliation(s)
- Liling Gu
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Rehabilitation, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xianteng Yang
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Senlei Li
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Pingju Liu
- Zunyi Traditional Chinese Medicine Hospital, Zunyi 563099, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| |
Collapse
|
43
|
Sun X, Yang X, Song W, Ren L. Construction and Evaluation of Collagen-Based Corneal Grafts Using Polycaprolactone To Improve Tension Stress. ACS OMEGA 2020; 5:674-682. [PMID: 31956817 PMCID: PMC6964271 DOI: 10.1021/acsomega.9b03297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/18/2019] [Indexed: 05/09/2023]
Abstract
The emergence of innovative surgical procedures using partial thickness corneal transplant has created a need for the development of corneal grafts to replace pathologic corneal tissue. Corneal repair materials have been successfully prepared in the past 10 years, but they were difficult to be used in clinics because of the unbearable tension caused by interrupted suture during routine surgery. However, polycaprolactone (PCL), a medical polymer material, can solve this problem. Therefore, a hierarchical collagen (Col)-based corneal graft with curvature, consisting of a transparent core part composed of collagen in the center and a mechanically robust fixed part containing collagen and polycaprolactone in the edge, was used as a potential corneal graft for corneal repair and regeneration in this study. The hierarchical collagen-based corneal grafts [collagen-polycaprolactone (Col-PCL) membranes] that are capable of mimicking the native cornea were developed based on chemical and thermal crosslinking mechanisms. The water adsorption of Col-PCL membranes could reach over 80% similar to that of human cornea, and its swelling could reach over 400%. More importantly, the formed Col-PCL membranes could resist a larger tensile strength (1.1 ± 0.03 MPa) before rupturing in comparison with pure collagen membranes and polycaprolactone membranes. Furthermore, the biodegradable Col-PCL membranes could facilitate cell adhesion and proliferation as well as cell migration (exhibiting epithelial wound coverage in <5 days), which showed promise as corneal grafts for cornea tissue engineering.
Collapse
Affiliation(s)
- Xiaomin Sun
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Xiangjing Yang
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Wenjing Song
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Li Ren
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Sino-Singapore
International Joint Research Institute, Guangzhou 510555, P. R. China
- Guangzhou
Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, P. R. China
| |
Collapse
|
44
|
Kilic Bektas C, Hasirci V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater Sci 2020; 8:438-449. [DOI: 10.1039/c9bm01236b] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue engineering aims to replace missing or damaged tissues and restore their functions.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Biological Sciences
- Middle East Technical University (METU)
- Ankara
- Turkey
- Department of Biotechnology
| | - Vasif Hasirci
- Department of Biological Sciences
- Middle East Technical University (METU)
- Ankara
- Turkey
- Department of Biotechnology
| |
Collapse
|
45
|
Kilic Bektas C, Hasirci V. Cell Loaded GelMA:HEMA IPN hydrogels for corneal stroma engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 31:2. [PMID: 31811387 DOI: 10.1007/s10856-019-6345-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Stroma is the main refractive element of the cornea and damage to it is one of the main causes of blindness. In this study, cell loaded hydrogels of methacrylated gelatin (GelMA) and poly(2-hydroxyethyl methacrylate) (pHEMA) (8:2) interpenetrating network (IPN) hydrogels were prepared as the corneal stroma substitute and tested in situ and in vitro. Compressive modulus of the GelMA hydrogels was significantly enhanced with the addition of pHEMA in the structure (6.53 vs 155.49 kPa, respectively). More than 90% of the stromal keratocytes were viable in the GelMA and GelMA-HEMA hydrogels as calculated by Live-Dead Assay and NIH Image-J program. Cells synthesized representative collagens and proteoglycans in the hydrogels indicating that they preserved their keratocyte functions. Transparency of the cell loaded GelMA-HEMA hydrogels was increased significantly up to 90% at 700 nm during three weeks of incubation and was comparable with the transparency of native cornea. Cell loaded GelMA-HEMA corneal stroma model is novel and reported for the first time in the literature in terms of introduction of cells during the preparation phase of the hydrogels. The appropriate mechanical strength and high transparency of the cell loaded constructs indicates a viable alternative to the current devices used in the treatment of corneal blindness.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
- Department of Biotechnology, METU, Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Vasif Hasirci
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey.
- Department of Biotechnology, METU, Ankara, Turkey.
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey.
- Department of Medical Engineering, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
| |
Collapse
|
46
|
Uyanıklar M, Günal G, Tevlek A, Hosseinian P, Aydin HM. Hybrid Cornea: Cell Laden Hydrogel Incorporated Decellularized Matrix. ACS Biomater Sci Eng 2019; 6:122-133. [DOI: 10.1021/acsbiomaterials.9b01286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Kilic Bektas C, Burcu A, Gedikoglu G, Telek HH, Ornek F, Hasirci V. Methacrylated gelatin hydrogels as corneal stroma substitutes: in vivo study. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1803-1821. [DOI: 10.1080/09205063.2019.1666236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cemile Kilic Bektas
- Departments of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Ayse Burcu
- Eye Clinic, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Gokhan Gedikoglu
- Department of Medical Pathology, Hacettepe University, Ankara, Turkey
| | - Hande H. Telek
- Eye Clinic, Beytepe Murat Erdi Eker State Hospital, Ankara, Turkey
| | - Firdevs Ornek
- Eye Clinic, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Vasif Hasirci
- Departments of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Medical Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| |
Collapse
|
48
|
Lei X, Jia YG, Song W, Qi D, Jin J, Liu J, Ren L. Mechanical and Optical Properties of Reinforced Collagen Membranes for Corneal Regeneration through Polyrotaxane Cross-Linking. ACS APPLIED BIO MATERIALS 2019; 2:3861-3869. [DOI: 10.1021/acsabm.9b00464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyue Lei
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Dawei Qi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiahong Jin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
49
|
Brovold M, Almeida JI, Pla-Palacín I, Sainz-Arnal P, Sánchez-Romero N, Rivas JJ, Almeida H, Dachary PR, Serrano-Aulló T, Soker S, Baptista PM. Naturally-Derived Biomaterials for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1077:421-449. [PMID: 30357702 PMCID: PMC7526297 DOI: 10.1007/978-981-13-0947-2_23] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naturally-derived biomaterials have been used for decades in multiple regenerative medicine applications. From the simplest cell microcarriers made of collagen or alginate, to highly complex decellularized whole-organ scaffolds, these biomaterials represent a class of substances that is usually first in choice at the time of electing a functional and useful biomaterial. Hence, in this chapter we describe the several naturally-derived biomaterials used in tissue engineering applications and their classification, based on composition. We will also describe some of the present uses of the generated tissues like drug discovery, developmental biology, bioprinting and transplantation.
Collapse
Affiliation(s)
- Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Joana I Almeida
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Iris Pla-Palacín
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Pilar Sainz-Arnal
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
- Aragon Health Sciences Institute (IACS), Zaragoza, Spain
| | | | - Jesus J Rivas
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Helen Almeida
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Pablo Royo Dachary
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Liver Transplant Unit, Gastroenterology Department, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Trinidad Serrano-Aulló
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Liver Transplant Unit, Gastroenterology Department, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.
| | - Pedro M Baptista
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain.
- Center for Biomedical Research Network Liver and Digestive Diseases (CIBERehd), Zaragoza, Spain.
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
- Biomedical and Aerospace Engineering Department, Universidad Carlos III de Madrid, Madrid, Spain.
- Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
50
|
The future of keratoplasty: cell-based therapy, regenerative medicine, bioengineering keratoplasty, gene therapy. Curr Opin Ophthalmol 2019; 30:286-291. [PMID: 31045881 DOI: 10.1097/icu.0000000000000573] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To provide an update on the state of development of novel therapeutic modalities for the treatment of corneal diseases. RECENT FINDINGS Novel corneal therapeutics may be broadly classified as cell therapy, regenerative medicine, bioengineered corneal grafts and gene therapy. Cell therapy encompasses cultivation of cells, such as corneal endothelial cells (CECs) and keratocytes to replenish the depleted native cell population. Regenerative medicine is mainly applicable to the corneal endothelium, and is dependent on the ability of native, healthy CECs to restore the corneal endothelium following trauma or descemetorhexis; this approach may be effective for the treatment of Peter's anomaly and Fuchs endothelial corneal dystrophy (FECD). Bioengineered corneal grafts are synthetic constructs designed to replace cadaveric corneal grafts; tissue-engineered endothelial-keratoplasty grafts and bioengineered stromal grafts have been experimented in animal models with favourable results. Gene therapy with antisense oligonucleotide and CRISPR endonucleases, including deactivated Cas9, may potentially be used to treat FECD and TGFBI-related corneal dystrophies. SUMMARY These novel therapeutic modalities may potentially supersede keratoplasty as the standard of care in the future.
Collapse
|