1
|
Asakura T, Diep TTT, Ueda Y, Yamada A, Tsuzuno T, Takahashi N, Miyata M, Tabeta K, Nagata M, Matsuda K. Analysis of the Effect of Human Type I Collagen-Derived Peptide on Bone Regenerative Capacity and Comparison with Various Collagen Materials In Vivo. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:57. [PMID: 39859038 PMCID: PMC11766864 DOI: 10.3390/medicina61010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Background and Objectives: Autologous bone grafting is the first choice for reconstructive surgery in bone defects due to trauma or malignant tumors. However, there is an increasing demand for minimally invasive alternatives involving bone regeneration using artificial materials. Biomimetic materials that replicate the body's microscopic structure, such as Cellnest®, are gaining attention. Cellnest is a xeno-free recombinant peptide based on human type I collagen, containing a rich Arg-Gly-Asp (RGD) motif related to cell adhesion. The aim of this study was to compare the effects of Cellnest with existing collagen materials (Pelnac®, Integra®, Terudermis®) on bone regeneration and elucidate the underlying mechanisms. Materials and Methods: In vivo experiments involved a rat model of calvarial bone defects, in which Cellnest and other collagen materials were implanted into the defect area. Bone formation was assessed after 4 weeks using micro-computed tomography (micro-CT) and histological analysis. In vitro experiments included the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), adhesion, and migration assays, and a real-time polymerase chain reaction using rapidly expanding cells (RECs) to explore the mechanisms of Cellnest's bone regenerative capacity. Results: The micro-CT analysis showed that the regenerated bone area was significantly greater in the Cellnest group (72.3%) than in the Pelnac® (25.5%), Integra® (31.6%), and Terudermis® (38.3%) groups. The histological analysis confirmed similar trends, with Cellnest showing 42.2% bone regeneration, outperforming the other materials. The in vitro assays revealed that Cellnest promoted cell proliferation, adhesion, and migration. Gene expression analysis demonstrated that Cellnest significantly increased the levels of the bone formation markers ALP and COL1. Conclusions: Cellnest, a human type I collagen-like peptide rich in RGD motifs, enhances bone regeneration by promoting MSC adhesion and migration, and bone formation-related gene expression. The findings suggest its potential as an effective material for bone defect reconstruction.
Collapse
Affiliation(s)
- Tatsunori Asakura
- Department of Plastic and Reconstructive Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tran Thi Thuy Diep
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yuta Ueda
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Aoi Yamada
- Division of Pioneering Advanced Therapeutics, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan
| | - Takahiro Tsuzuno
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Masayuki Miyata
- Department of Plastic and Reconstructive Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Masaki Nagata
- Division of Pioneering Advanced Therapeutics, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan
| | - Ken Matsuda
- Department of Plastic and Reconstructive Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
2
|
Jia Y, Han Y, Zhang Y, Li L, Zhang B, Yan X. Multifunctional type lll recombinant human collagen incorporated sodium alginate hydrogel with sustained release of extra cellular vehicles for wound healing multimodal therapy in diabetic mice. Regen Ther 2024; 27:329-341. [PMID: 38873636 PMCID: PMC11170477 DOI: 10.1016/j.reth.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 06/15/2024] Open
Abstract
The effective promotion of wound healing poses a substantial challenge for clinical treatment. Despite evidence supporting the role of extracellular vesicles (EVs) in this process, their therapeutic potential is currently restrict by challenges in targeting and maintaining them. The manufacturing process for rhCol III, or recombinant human collagen III, is stable, and the rejection rate is low. We used a cross-linking method to prepare a rhCol III incorporated sodium alginate (SA) hydrogel, which enabled to accomplish an EV sustained release that was site-specific. Cell viability through MTT assay, proliferation and ROS generation were performed with MC3T3-E1cell lines. In addition, diabetic wounds are characterised by an environment of hyper-inflammation and elevated oxidative stress. The rhCol III/SA-EVs hydrogel, which is a delivery vehicle with anti-inflammatory and antioxidant characteristics, promotes wound healing in this setting. The In vivo effectiveness of the created wound dressing on a diabetic wound model was examined in this study. After 21 days of treatment, the wound dressing significantly (p < 0.05) expedited wound healing compared to the control group, and wound closure was approximately 95% without any negative systemic reactions.
Collapse
Affiliation(s)
- Yao Jia
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yaxi Han
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yue Zhang
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Lei Li
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Baolin Zhang
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Xin Yan
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| |
Collapse
|
3
|
Li Y, Lu Y, Zhao Y, Zhang N, Zhang Y, Fu Y. Deciphering the Wound-Healing Potential of Collagen Peptides and the Molecular Mechanisms: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26007-26026. [PMID: 39405278 DOI: 10.1021/acs.jafc.4c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Collagen peptides have been reported to display various bioactivities and high bioavailability. Recently, increasing evidence has revealed the excellent wound-healing activity of collagen peptides, but their molecular mechanisms remain incompletely elucidated. This review systematically evaluates the therapeutic efficacy of collagen peptides from diverse sources based on various wound models. Furthermore, the structure-activity relationships of collagen peptides and wound-healing mechanisms are discussed and summarized. Characterized by their low molecular weight and abundant imino acids, collagen peptides facilitate efficient absorption by the body to deliver nutrition throughout the wound-healing process. The specific mechanism of collagen peptide for wound healing is mainly through up-regulation of related cytokines and participation in the activation of relevant signaling pathways, such as TGF-β/Smad and PI3K/Akt/mTOR, which can promote cell proliferation, angiogenesis, collagen synthesis and deposition, re-epithelialization, and ECM remodeling, ultimately achieving the effect of wound healing. Collagen peptides can offer a potential therapeutic approach for treating incision and excision wounds, mucosal injuries, burn wounds, and pressure ulcers, improving the efficiency of wound healing by about 10%-30%. The present review contributes to understanding of the wound-healing potential of collagen peptides and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yunying Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
4
|
Li D, Wang Y, Zhu S, Hu X, Liang R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front Bioeng Biotechnol 2024; 12:1411550. [PMID: 39205856 PMCID: PMC11349559 DOI: 10.3389/fbioe.2024.1411550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Natural biomaterials, particularly fibrous proteins, are extensively utilized in skin tissue engineering. However, their application is impeded by batch-to-batch variance, limited chemical or physical versatility, and environmental concerns. Recent advancements in gene editing and fermentation technology have catalyzed the emergence of recombinant fibrous protein biomaterials, which are gaining traction in skin tissue engineering. The modular and highly customizable nature of recombinant synthesis enables precise control over biomaterial design, facilitating the incorporation of multiple functional motifs. Additionally, recombinant synthesis allows for a transition from animal-derived sources to microbial sources, thereby reducing endotoxin content and rendering recombinant fibrous protein biomaterials more amenable to scalable production and clinical use. In this review, we provide an overview of prevalent recombinant fibrous protein biomaterials (collagens, elastin, silk proteins and their chimeric derivatives) used in skin tissue engineering (STE) and compare them with their animal-derived counterparts. Furthermore, we discuss their applications in STE, along with the associated challenges and future prospects.
Collapse
Affiliation(s)
- Dipeng Li
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Yirong Wang
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Shan Zhu
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Xuezhong Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Renjie Liang
- Hangzhou Ninth People’s Hospital, Hangzhou, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Asahi R, Sunaga A, Shirado T, Saito N, Mori M, Yamamoto Y, Wu Y, Yoshimura K. Irradiation Affects Adipose-Derived Stem Cells and Wound Healing Depending on Radiation Dose and Frequency. Plast Reconstr Surg 2024; 154:283e-295e. [PMID: 37678801 DOI: 10.1097/prs.0000000000011045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Radiation therapies are often associated with permanent devitalization in the surrounding tissue. The authors hypothesized that stem cells are damaged depending on each irradiation dose and frequency of fractionated radiotherapies, which results in impaired tissue function, including wound-healing capacity. METHODS Susceptibility of human adipose-derived stem cells (ASCs) to a single irradiation (0 to 10 Gy) was assessed in vitro. In vivo chronic radiation effects were also assessed on mouse dorsal skin ( n = 4 to 5) for 6 months after a total of 40 Gy irradiation (0 Gy as control) using 1 of 3 fractionated protocols (2 Gy daily for 20 days, 10 Gy weekly for 4 weeks, or 10 Gy monthly for 4 months). Oxygen partial pressure, oxygen saturation of hemoglobin, and dorsal skin viscoelasticity were measured periodically, and wound healing and tissue immunohistology were compared at 6 months. RESULTS A single irradiation of cultured human ASCs resulted in a dose-dependent increase in cell death up to 2 Gy but with no further increases between 2 and 10 Gy. Most of the apoptotic ASCs were in the proliferation phase. Among the 3 in vivo irradiation protocols, the 2 Gy×20 group had the most severe chronic tissue damage (ie, skin dysfunction, subcutaneous atrophy, depletion of CD34 + stem cells) 6 months after the irradiation. Wound healing was also impaired most significantly in the 2 Gy×20 group. CONCLUSION These results have important clinical implications for surgeons and radiotherapists in the timing of surgical interventions and the optimization of fractionation protocols. CLINICAL RELEVANCE STATEMENT Irradiation damages stem cells depending on the radiation dose and frequency. Using the ultimately optimized protocol, surgeons can minimize the long-term functional deficits of radiated tissue without losing the anticancer efficacy of radiation therapy.
Collapse
Affiliation(s)
- Rintaro Asahi
- From the Department of Plastic Surgery, Jichi Medical University
| | - Ataru Sunaga
- From the Department of Plastic Surgery, Jichi Medical University
| | - Takako Shirado
- From the Department of Plastic Surgery, Jichi Medical University
| | - Natsumi Saito
- From the Department of Plastic Surgery, Jichi Medical University
| | - Masanori Mori
- From the Department of Plastic Surgery, Jichi Medical University
| | | | - Yunyan Wu
- From the Department of Plastic Surgery, Jichi Medical University
| | - Kotaro Yoshimura
- From the Department of Plastic Surgery, Jichi Medical University
| |
Collapse
|
6
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
7
|
Srivastava GK, Martinez-Rodriguez S, Md Fadilah NI, Looi Qi Hao D, Markey G, Shukla P, Fauzi MB, Panetsos F. Progress in Wound-Healing Products Based on Natural Compounds, Stem Cells, and MicroRNA-Based Biopolymers in the European, USA, and Asian Markets: Opportunities, Barriers, and Regulatory Issues. Polymers (Basel) 2024; 16:1280. [PMID: 38732749 PMCID: PMC11085499 DOI: 10.3390/polym16091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024] Open
Abstract
Wounds are breaks in the continuity of the skin and underlying tissues, resulting from external causes such as cuts, blows, impacts, or surgical interventions. Countless individuals suffer minor to severe injuries, with unfortunate cases even leading to death. In today's scenario, several commercial products are available to facilitate the healing process of wounds, although chronic wounds still present more challenges than acute wounds. Nevertheless, the huge demand for wound-care products within the healthcare sector has given rise to a rapidly growing market, fostering continuous research and development endeavors for innovative wound-healing solutions. Today, there are many commercially available products including those based on natural biopolymers, stem cells, and microRNAs that promote healing from wounds. This article explores the recent breakthroughs in wound-healing products that harness the potential of natural biopolymers, stem cells, and microRNAs. A comprehensive exploration is undertaken, covering not only commercially available products but also those still in the research phase. Additionally, we provide a thorough examination of the opportunities, obstacles, and regulatory considerations influencing the potential commercialization of wound-healing products across the diverse markets of Europe, America, and Asia.
Collapse
Affiliation(s)
- Girish K. Srivastava
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain;
- Instituto Universitario de Oftalmobiología Aplicada, Facultad de Medicina, Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Sofia Martinez-Rodriguez
- Instituto Universitario de Oftalmobiología Aplicada, Facultad de Medicina, Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
| | - Daniel Looi Qi Hao
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| | - Gavin Markey
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK; (G.M.); (P.S.)
| | - Priyank Shukla
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK; (G.M.); (P.S.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (D.L.Q.H.); (M.B.F.)
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Bioactive Surfaces SL, 28260 Madrid, Spain
- Omnia Mater SL, 28009 Madrid, Spain
| |
Collapse
|
8
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
9
|
Mori M, Saito N, Shirado T, Wu Y, Asahi R, Yoshizumi K, Yamamoto Y, Zhang B, Yoshimura K. Human Adipose-Derived Endothelial Progenitor Cells Accelerate Epithelialization of Radiation Ulcers in Nude Mice. Plast Reconstr Surg 2024; 153:625-635. [PMID: 37224423 DOI: 10.1097/prs.0000000000010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cotransplantation of adipose-derived stem cells (ASCs) and endothelial progenitor cells has shown superior angiogenic effects compared with ASCs alone in recent animal studies. However, endothelial progenitor cells could only be collected from blood vessels or bone marrow. Thus, the authors have established a method for purifying adipose-derived endothelial progenitor cells (AEPCs). The authors hypothesized that AEPCs would enhance the therapeutic effect of ASCs on radiation ulcers. METHODS Seven-week-old male nude mice (BALB/cAJcl-nu/nu) were irradiated on the dorsal skin (total 40 Gy); 12 weeks later, 6-mm-diameter wounds were created. The mice were then treated with subcutaneous injection of human ASCs [1 × 10 5 ( n = 4)], human AEPCs [2 × 10 5 or 5 × 10 5 ( n = 5)], combinations of those [ASCs 1 × 10 5 plus AEPCs 2 × 10 5 ( n = 4) or 5 × 10 5 ( n = 5)], or only vehicle ( n = 7). The nonirradiated group was also prepared as a control ( n = 6). The days required for macroscopic epithelialization was compared, and immunostaining for human-derived cells and vascular endothelial cells was performed at day 28. RESULTS AEPC-ASC combination-treated groups healed faster than the ASC-treated group (14 ± 0 days versus 17 ± 2 days; P < 0.01). Engraftment of the injected cells could not be confirmed. Only the nonirradiated mice had significantly higher vascular density (0.988 ± 0.183 × 10 -5 /µm -2 versus 0.474 ± 0.092 × 10 -5 /µm 2 ; P = 0.02). CONCLUSION The results suggested therapeutic potentials of AEPCs and an enhanced effect of combination with ASCs. This study is a xenogenic transplantation model, and further validation in an autologous transplantation model is needed. CLINICAL RELEVANCE STATEMENT Human AEPCs and their combination with ASCs accelerated epithelialization of radiation ulcers in nude mice. The authors suggest that administration of humoral factors secreted from AEPCs (eg, treatment with culture-conditioned media) could be used for the same purpose.
Collapse
Affiliation(s)
- Masanori Mori
- From the Department of Plastic Surgery, Jichi Medical University
| | - Natsumi Saito
- From the Department of Plastic Surgery, Jichi Medical University
| | - Takako Shirado
- From the Department of Plastic Surgery, Jichi Medical University
| | - Yunyan Wu
- From the Department of Plastic Surgery, Jichi Medical University
| | - Rintaro Asahi
- From the Department of Plastic Surgery, Jichi Medical University
| | - Kayo Yoshizumi
- From the Department of Plastic Surgery, Jichi Medical University
| | | | - Bihang Zhang
- From the Department of Plastic Surgery, Jichi Medical University
| | - Kotaro Yoshimura
- From the Department of Plastic Surgery, Jichi Medical University
| |
Collapse
|
10
|
Shuai Q, Liang Y, Xu X, Halbiyat Z, Wang X, Cheng J, Liu J, Huang T, Peng Z, Wang L, He S, Zhao H, Liu Z, Xu J, Xie J. Sodium alginate hydrogel integrated with type III collagen and mesenchymal stem cell to promote endometrium regeneration and fertility restoration. Int J Biol Macromol 2023; 253:127314. [PMID: 37827397 DOI: 10.1016/j.ijbiomac.2023.127314] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
A thinner endometrium has been linked to implantation failure, and various therapeutic strategies have been attempted to improve endometrial regeneration, including the use of mesenchymal stem cells (MSCs). However, low survival and retention rates of transplanted stem cells are main obstacles to efficient stem cell therapy in thin endometrium. Collagen type III is a key component of the extracellular matrix, plays a crucial role in promoting cell proliferation and differentiation, and has been identified as the major collagen expressed at the implantation site. Herein, composite alginate hydrogel containing recombinant type III collagen (rCo III) and umbilical cord mesenchymal stem cells are developed. rCo III serves as favorable bioactive molecule, displaying that rCo III administration promotes MSCs proliferation, stemness maintenance and migration. Moreover, rCo III administration enhances cell viability and migration of mouse endometrial stromal cells (ESCs). In a mouse model of thin endometrium, the Alg-rCo III hydrogel loaded with MSCs (MSC/Alg-rCo III) significantly induces endometrial regeneration and fertility enhancement in vivo. Further studies demonstrate that the MSC/Alg-rCo III hydrogel promoted endometrial function recovery partly by regulating mesenchymal-epithelial transition of ESCs. Taken together, the combination of Alg-rCo III hydrogel and MSCs has shown promising results in promoting endometrium regeneration and fertility restoration, and may provide new therapeutic options for endometrial disease.
Collapse
Affiliation(s)
- Qizhi Shuai
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yuxiang Liang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China; Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xinrui Xu
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China; Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zulala Halbiyat
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaowan Wang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jingwen Cheng
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jialing Liu
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Tingjuan Huang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhiwei Peng
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Lei Wang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Sheng He
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hong Zhao
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhizhen Liu
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jun Xu
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education), Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
11
|
Malekzadeh H, Tirmizi Z, Arellano JA, Egro FM, Ejaz A. Application of Adipose-Tissue Derived Products for Burn Wound Healing. Pharmaceuticals (Basel) 2023; 16:1302. [PMID: 37765109 PMCID: PMC10534650 DOI: 10.3390/ph16091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Burn injuries are a significant global health concern, leading to high morbidity and mortality. Deep burn injuries often result in delayed healing and scar formation, necessitating effective treatment options. Regenerative medicine, particularly cell therapy using adipose-derived stem cells (ASCs), has emerged as a promising approach to improving burn wound healing and reducing scarring. Both in vitro and preclinical studies have demonstrated the efficacy of ASCs and the stromal vascular fraction (SVF) in addressing burn wounds. The application of ASCs for burn healing has been studied in various forms, including autologous or allogeneic cells delivered in suspension or within scaffolds in animal burn models. Additionally, ASC-derived non-cellular components, such as conditioned media or exosomes have shown promise. Injection of ASCs and SVF at burn sites have been demonstrated to enhance wound healing by reducing inflammation and promoting angiogenesis, epithelialization, and granulation tissue formation through their paracrine secretome. This review discusses the applications of adipose tissue derivatives in burn injury treatment, encompassing ASC transplantation, as well as the utilization of non-cellular components utilization for therapeutic benefits. The application of ASCs in burn healing in the future will require addressing donor variability, safety, and efficacy for successful clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Yoshino Y, Miyaji H, Nishida E, Kanemoto Y, Hamamoto A, Kato A, Sugaya T, Akasaka T. Periodontal tissue regeneration by recombinant human collagen peptide granules applied with β-tricalcium phosphate fine particles. J Oral Biosci 2023; 65:62-71. [PMID: 36669699 DOI: 10.1016/j.job.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Recombinant human collagen peptide (RCP) is a recombinantly created xeno-free biomaterial enriched in arginine-glycine-aspartic acid sequences with good processability whose use for regenerative medicine applications is under investigation. The biocompatibility and osteogenic ability of RCP granules combined with β-tricalcium phosphate (TCP) submicron particles (β-TCP/RCP) were recently demonstrated. In the present study, β-TCP/RCP was implanted into experimental periodontal tissue defects created in beagles to investigate its regenerative effects. METHODS An RCP solution was lyophilized, granulated, and thermally cross-linked into particles approximately 1 mm in diameter. β-TCP dispersion (1 wt%; 500 μL) was added to 100 mg of RCP granules to form β-TCP/RCP. A three-walled intrabony defect (5 mm × 3 mm × 4 mm) was created on the mesial side of the mandibular first molar and filled with β-TCP/RCP. RESULTS A micro-computed tomography image analysis performed at 8 weeks postoperative showed a significantly greater amount of new bone after β-TCP/RCP grafting (2.2-fold, P < 0.05) than after no grafting. Histological findings showed that the transplanted β-TCP/RCP induced active bone-like tissue formation including tartaric acid-resistant acid phosphatase- and OCN-positive cells as well as bioabsorbability. Ankylosis did not occur, and periostin-positive periodontal ligament-like tissue formation was observed. Histological measurements performed at 8 weeks postoperative revealed that β-TCP/RCP implantation formed 1.7-fold more bone-like tissue and 2.1-fold more periodontal ligament-like tissue than the control condition and significantly suppressed gingival recession and epithelial downgrowth (P < 0.05). CONCLUSIONS β-TCP/RCP implantation promoted bone-like and periodontal ligament-like tissue formation, suggesting its efficacy as a periodontal tissue regenerative material.
Collapse
Affiliation(s)
- Yuto Yoshino
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asako Hamamoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
13
|
Brembilla NC, Vuagnat H, Boehncke WH, Krause KH, Preynat-Seauve O. Adipose-Derived Stromal Cells for Chronic Wounds: Scientific Evidence and Roadmap Toward Clinical Practice. Stem Cells Transl Med 2022; 12:17-25. [PMID: 36571216 PMCID: PMC9887085 DOI: 10.1093/stcltm/szac081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/16/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic wounds, ie, non-healing ulcers, have a prevalence of ~1% in the general population. Chronic wounds strongly affect the quality of life and generate considerable medical costs. A fraction of chronic wounds will heal within months of appropriate treatment; however, a significant fraction of patients will develop therapy-refractory chronic wounds, leading to chronic pain, infection, and amputation. Given the paucity of therapeutic options for refractory wounds, cell therapy and in particular the use of adipose-derived stromal cells (ASC) has emerged as a promising concept. ASC can be used as autologous or allogeneic cells. They can be delivered in suspension or in 3D cultures within scaffolds. ASC can be used without further processing (stromal vascular fraction of the adipose tissue) or can be expanded in vitro. ASC-derived non-cellular components, such as conditioned media or exosomes, have also been investigated. Many in vitro and preclinical studies in animals have demonstrated the ASC efficacy on wounds. ASC efficiency appears to occurs mainly through their regenerative secretome. Hitherto, the majority of clinical trials focused mainly on safety issues. However more recently, a small number of randomized, well-controlled trials provided first convincing evidences for a clinical efficacy of ASC-based chronic wound therapies in humans. This brief review summarizes the current knowledge on the mechanism of action, delivery and efficacy of ASC in chronic wound therapy. It also discusses the scientific and pharmaceutical challenges to be solved before ASC-based wound therapy enters clinical reality.
Collapse
Affiliation(s)
- Nicolo C Brembilla
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | - Hubert Vuagnat
- Program for Wounds and Wound Healing, Care Directorate, Geneva University Hospitals, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Laboratory of Therapy and Stem Cells, Geneva University Hospitals, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Corresponding author: Olivier Preynat-Seauve, PATIM, 1 rue Michel Servet CH-1211 Geneva 4, Switzerland. Tel: +41223794139;
| |
Collapse
|
14
|
Liu W, Lin H, Zhao P, Xing L, Li J, Wang Z, Ju S, Shi X, Liu Y, Deng G, Gao G, Sun L, Zhang X. A regulatory perspective on recombinant collagen-based medical devices. Bioact Mater 2022; 12:198-202. [PMID: 35310384 PMCID: PMC8897173 DOI: 10.1016/j.bioactmat.2021.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
As a class of novel biomaterials manufactured by synthetic biology technologies, recombinant collagens are candidates for a variety of medical applications. In this article, a regulatory scientific perspective on recombinant collagens and their medical devices is presented with a focus on the definition, translation, classification and technical review. Recombinant collagens are categorized as recombinant human collagen, recombinant humanized collagen and recombinant collagen-like protein, as differentiated by specific compositions and structures. Based on their intended uses and associated risks, recombinant collagen-based medical devices are generally classified as Class Ⅱ or Ⅲ in China. The regulatory review of recombinant collagen-based medical devices aims to assess their safety and efficacy demonstrated by scientific evidences generated from preclinical and clinical evaluations. Taken together, opportunities as well as challenges for their future clinical translation of recombinant collagen-based medical devices abound, which highlights the essential role of regulatory science to provide new tools, standards, guidelines and methods to evaluate the safety and efficacy of medical products. Recombinant collagens are novel biomaterials manufactured by biosynthesis methods. The first regulatory article on recombinant collagen-based medical devices. Recombinant collagen-based medical devices are defined and classified by NMPA. Regulatory review assesses the safety and efficacy of medical devices. Translation of recombinant collagens from bench to clinic needs regulatory science.
Collapse
|
15
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
16
|
Abstract
Collagen and its derivative proteins have been widely used as a major component for cosmetic formulations as a natural ingredient and moisturizer. Most commercially available collagens are animal-derived collagen type I and other forms of collagen, such as type III collagen, are far less prevalent in animals, making extraction and purification extremely difficult and expensive. Here, we report the production of a 50 kDa protein produced in yeast that is 100% identical to the N-terminus of the human type III collagen. This recombinant protein has a larger molecular weight than most incumbent recombinant collagen proteins available for personal care applications. We report the industrialization of both the fermentation and purification processes to produce a final recombinant protein product. This final protein product was shown to be safe for general applications to human skin and compatible with common formulation protocols, including ethanol-based formulations. This recombinant collagen type III protein was also shown to uniquely stimulate both collagen type I and type III production and secretion by primary human dermal fibroblasts. The unique combination of biostimulation, compatibility with beauty product formulations and demonstrated commercial production, make this novel recombinant type III collagen a good candidate for broad application in the cosmetics industry.
Collapse
|
17
|
Malhotra P, Shukla M, Meena P, Kakkar A, Khatri N, Nagar RK, Kumar M, Saraswat SK, Shrivastava S, Datt R, Pandey S. Mesenchymal stem cells are prospective novel off-the-shelf wound management tools. Drug Deliv Transl Res 2022; 12:79-104. [PMID: 33580481 DOI: 10.1007/s13346-021-00925-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Chronic/non-healing cutaneous wounds pose a debilitating burden on patients and healthcare system. Presently, treatment modalities are rapidly shifting pace from conventional methods to advanced wound care involving cell-based therapies. Mesenchymal stem cells (MSCs) have come across as a prospective option due to its pleiotropic functions viz. non-immunogenicity, multipotency, multi-lineage plasticity and secretion of growth factors, cytokines, microRNAs (miRNA), exosomes, and microvesicles as part of their secretome for assisting wound healing. We outline the therapeutic role played by MSCs and its secretome in suppressing tissue inflammation, causing immunomodulation, aiding angiogenesis and assisting in scar-free wound healing. We further assess the mechanism of action by which MSCs contribute in manifesting tissue repair. The review flows ahead in exploring factors that influence healing behavior including effect of multiple donor sites, donor age and health status, tissue microenvironment, and in vitro expansion capability. Moving ahead, we overview the advancements achieved in extending the lifespan of cells upon implantation, influence of genetic modifications aimed at altering MSC cargo, and evaluating bioengineered matrix-assisted delivery methods toward faster healing in preclinical and clinical models. We also contribute toward highlighting the challenges faced in commercializing cell-based therapies as standard of care treatment regimens. Finally, we strongly advocate and highlight its application as a futuristic technology for revolutionizing tissue regeneration.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Poonam Meena
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rakesh K Nagar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Sumit K Saraswat
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Supriya Shrivastava
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India.
| |
Collapse
|
18
|
Comparative Analysis of Collagen-Containing Waste Biodegradation, Amino Acid, Peptide and Carbohydrate Composition of Hydrolysis Products. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This paper aimed to study the biodegradation of collagen-containing waste (pork skin) induced by collagenase and Neutrase 1.5 MG enzymes and compare the amino acid, peptide, and carbohydrate composition of hydrolysis products. It was found that the degree of biodegradation of collagen-containing raw materials (pork skin) reached 78% when using an enzyme preparation (collagenase with a concentration of 250 U/g of the substrate) at pH 7.0, 40 °C, and a 360 min process duration. It was shown that the content of peptides with a molecular weight of 6.5–14.0 kDa in the hydrolysis products (collagenase) of collagen-containing wastes was 13.4 ± 0.40%, while in the products of hydrolysis (Neutrase 1.5 MG) it was 12.8 ± 0.38%. The study found that the hydrolysis products (Neutrase 1.5 MG) of collagen-containing raw materials contain fewer hexoses, free hexosamines, and hyaluronic acid than the hydrolysis products (collagenase) of collagen-containing raw materials. The content of chondroitin sulfates is practically the same in all samples of hydrolysis products. Proteases with collagenolytic activity are widely used in industry. Recently, they have increasingly been used in pharmaceutical, food, and other industries. Collagenases are promising enzymes for the production of chondroprotectors used for the treatment of osteoarthritis.
Collapse
|
19
|
Huayllani MT, Ruiz-Garcia H, Boczar D, Avila FR, Lu X, Rinker BD, Moran SL, Sarabia-Estrada R, Quiñones-Hinojosa A, Forte AJ. Adipose-Derived Stem Cells Therapy for Radiation-Induced Skin Injury. Ann Plast Surg 2021; 87:639-649. [PMID: 34724441 DOI: 10.1097/sap.0000000000003039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radiation-induced skin injuries have been treated with different medical therapies and have shown diverse outcomes. We aim to evaluate the effect of adipose-derived stem cells (ADSCs) therapy on radiation-induced skin injury. METHODS We performed a review by querying PubMed, Ovid MEDLINE, and EMBASE databases from inception to April 2020 following Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. The MeSH terms "adipose-derived stem cells," "wound healing," "radiation," and synonyms in combinations determined our search strategy. Experimental peer-reviewed articles describing the protocol and comparing the results with controls were included. Non-English studies were excluded. RESULTS Our search recorded a total of 137 articles. Only 8 studies met our inclusion criteria and were included in this review. Five studies evaluated the use of ADSC alone, whereas the others evaluated the efficacy of ADSC seeded in scaffolds. Adipose-derived stem cell-based therapies, either alone or seeded in scaffolds, were shown to improve wound healing in most studies when compared with controls. CONCLUSIONS There is evidence supporting the positive benefits from ADSC-based therapies in radiation-induced skin injury. However, further studies are needed to standardize the method of ADSC extraction, radiation-induced skin injury experimental model, and increase the time of follow-up to evaluate the results accurately.
Collapse
Affiliation(s)
| | | | | | | | - Xiaona Lu
- Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, CT
| | | | | | | | | | | |
Collapse
|
20
|
Abdul Kareem N, Aijaz A, Jeschke MG. Stem Cell Therapy for Burns: Story so Far. Biologics 2021; 15:379-397. [PMID: 34511880 PMCID: PMC8418374 DOI: 10.2147/btt.s259124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Burn injuries affect approximately 11 million people annually, with fatalities amounting up to 180,000. Burn injuries constitute a global health issue associated with high morbidity and mortality. Recent years have seen advancements in regenerative medicine for burn wound healing encompassing stem cells and stem cell-derived products such as exosomes and conditioned media with promising results compared to current treatment approaches. Sources of stem cells used for treatment vary ranging from hair follicle stem cells, embryonic stem cells, umbilical cord stem cells, to mesenchymal stem cells, such as adipose-derived mesenchymal stem cells, bone marrow-derived mesenchymal stem cells, and even stem cells harvested from discarded burn tissue. Stem cells utilize various pathways for wound healing, such as PI3/AKT pathway, WNT-β catenin pathway, TGF-β pathway, Notch and Hedgehog signaling pathway. Due to the paracrine signaling mechanism of stem cells, exosomes and conditioned media derived from stem cells have also been utilized in burn wound therapy. As exosomes and conditioned media are cell-free therapy and contain various biomolecules that facilitate wound healing, they are gaining popularity as an alternative treatment strategy with significant improvement in outcomes. The treatment is provided either as direct injections or embedded in a natural/artificial scaffold. This paper reviews in detail the different sources of stem cells, stem cell-derived products, their efficacy in burn wound repair, associated signaling pathways and modes of delivery for wound healing.
Collapse
Affiliation(s)
| | - Ayesha Aijaz
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
21
|
Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep 2021; 39:335-388. [PMID: 34879125 DOI: 10.1039/d1np00027f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
Collapse
Affiliation(s)
- Rachel S Heath
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rebecca E Ruscoe
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
22
|
Li M, Hou Q, Zhong L, Zhao Y, Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol 2021; 12:681710. [PMID: 34220830 PMCID: PMC8242337 DOI: 10.3389/fimmu.2021.681710] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent hyper-inflammation is a distinguishing pathophysiological characteristic of chronic wounds, and macrophage malfunction is considered as a major contributor thereof. In this review, we describe the origin and heterogeneity of macrophages during wound healing, and compare macrophage function in healing and non-healing wounds. We consider extrinsic and intrinsic factors driving wound macrophage dysregulation, and review systemic and topical therapeutic approaches for the restoration of macrophage response. Multidimensional analysis is highlighted through the integration of various high-throughput technologies, used to assess the diversity and activation states as well as cellular communication of macrophages in healing and non-healing wound. This research fills the gaps in current literature and provides the promising therapeutic interventions for chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Evin N, Tosun Z, Aktan TM, Duman S, Harmankaya I, Yavas G. Effects of Adipose-Derived Stem Cells and Platelet-Rich Plasma for Prevention of Alopecia and Other Skin Complications of Radiotherapy. Ann Plast Surg 2021; 86:588-597. [PMID: 33141771 DOI: 10.1097/sap.0000000000002573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Radiotherapy (RT) involves the use of ionizing radiation in treating malignancies and benign disorders. However, RT damages target and healthy surrounding tissues in a dose-dependent manner. This effectively reduces patient compliance and quality of life, thereby warranting the prevention of RT-induced adverse effects on skin. Adipose-derived stem cells (ASCs) are used to treat RT-induced damage and platelet-rich plasma (PRP) provides a scaffold that potentiates the effects of ASCs. Thus, the aim of this study was to determine the mechanism employed by ASCs and PRP in protecting against RT-induced adverse effects. METHODS We have established an immunodeficient mouse transplantation model using which human hair follicular units were implanted. When the follicular units were macroscopically and microscopically mature and anagenic, we administered localized RT. Subsequently, the mice were randomly divided into 4 groups based on the subcutaneous injection of the following to the irradiated transplantation site: saline, PRP, ASCs, and a combination of ASCs and PRP. Next, we used macroscopic and microscopic analyses to determine the protective effects of the injected solutions on skin and hair follicles. RESULTS Adipose-derived stem cells reduced RT-induced adverse effects, such as impaired wound healing, alopecia, skin atrophy, and fibrosis by suppressing inflammation, dystrophy, degeneration, connective tissue synthesis, and apoptosis and increasing cellular proliferation, differentiation, and signaling. Moreover, these effects were augmented by PRP. CONCLUSIONS Thus, co-administering ASCs with PRP in mice prevented RT-induced adverse effects and can be tested for use in clinical practice.
Collapse
Affiliation(s)
- Nuh Evin
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Ordu State Hospital, Ordu
| | - Zekeriya Tosun
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Selcuk University Faculty of Medicine
| | - Tahsin Murad Aktan
- Department of Histology and Embryology, Necmettin Erbakan University Faculty of Medicine
| | - Selcuk Duman
- Department of Histology and Embryology, Necmettin Erbakan University Faculty of Medicine
| | - Ismail Harmankaya
- Department of Medical Pathology, Selcuk University Faculty of Medicine, Konya
| | - Güler Yavas
- Department of Radiation Oncology, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
24
|
A Novel Bone Substitute Based on Recombinant Type I Collagen for Reconstruction of Alveolar Cleft. MATERIALS 2021; 14:ma14092306. [PMID: 33946797 PMCID: PMC8125289 DOI: 10.3390/ma14092306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to examine the optimal cross-link density of recombinant peptide (RCP) particles, based on human collagen type I, for bone reconstruction in human alveolar cleft. Low- (group 1), medium- (group 2), and high- (group 3) cross-linked RCP particles were prepared by altering the duration of the heat-dependent dehydration reaction. Rat palatine fissures (n = 45), analogous to human congenital bone defects, were examined to evaluate the potential of bone formation by the three different RCP particles. Microcomputed tomography images were obtained to measure bone volume and bone mineral density at 4, 8, 12, and 16 weeks post grafting. Specimens were obtained for histological analysis at 16 weeks after grafting. Additionally, alkaline phosphatase and tartrate acid phosphatase staining were performed to visualize the presence of osteoblasts and osteoclasts. At 16 weeks, bone volume, bone mineral density, and new bone area measurements in group 2 were significantly higher than in any other group. In addition, the number of osteoblasts and osteoclasts on the new bone surface in group 2 was significantly higher than in any other group. Our results demonstrated that medium cross-linking was more suitable for bone formation—and could be useful in human alveolar cleft repairs as well.
Collapse
|
25
|
Li Y, Lyu P, Ze Y, Li P, Zeng X, Shi Y, Qiu B, Gong P, Yao Y. Exosomes derived from plasma: promising immunomodulatory agents for promoting angiogenesis to treat radiation-induced vascular dysfunction. PeerJ 2021; 9:e11147. [PMID: 33859878 PMCID: PMC8020864 DOI: 10.7717/peerj.11147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Ionizing radiation (IR)-induced vascular disorders slow down tissue regeneration. Exosomes derived from plasma exhibit potential to promote angiogenesis; meanwhile, the immune microenvironment plays a significant role in the process. This study aimed to test the hypothesis that plasma exosomes promote angiogenesis in irradiated tissue by mediating the immune microenvironment. First, we explored the impact of IR on macrophages. We found that cell viability and capacity for promoting angiogenesis were decreased in irradiated macrophages compared to control macrophages. Then, we isolated and characterized rat plasma-derived exosomes (RP-Exos) which were defined as 40-160 nm extracellular vesicles extracted from rat plasma. Afterward, we evaluated the effects of RP-Exos on the behaviors of irradiated macrophages. Our results show that RP-Exos promoted cell proliferation. More importantly, we found that RP-Exos stimulated the immune microenvironment in a manner that improved the angiogenesis-related genes and proteins of irradiated macrophages. The supernatant of macrophage cell cultures was used as conditioned medium to treat human primary umbilical vein endothelial cells, further confirming the pro-angiogenic ability of macrophages receiving RP-Exo intervention. RP-Exos were used in vivo to treat irradiated skin or calvarial defects in irradiated Sprague-Dawley male rats. The results indicated the ability of RP-Exos to enhance angiogenesis and promote tissue regeneration. Our research suggested the potential of plasma exosomes to be used as immunomodulatory agents with angiogenic capacity to treat radiation-associated vascular disorders and facilitate tissue repair.
Collapse
Affiliation(s)
- Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bingrun Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Selective Proliferation of Highly Functional Adipose-Derived Stem Cells in Microgravity Culture with Stirred Microspheres. Cells 2021; 10:cells10030560. [PMID: 33806638 PMCID: PMC7998608 DOI: 10.3390/cells10030560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Therapeutic effects of adult stem-cell transplantations are limited by poor cell-retention in target organs, and a reduced potential for optimal cell differentiation compared to embryonic stem cells. However, contemporary studies have indicated heterogeneity within adult stem-cell pools, and a novel culturing technique may address these limitations by selecting those for cell proliferation which are highly functional. Here, we report the preservation of stemness in human adipose-derived stem cells (hASCs) by using microgravity conditions combined with microspheres in a stirred suspension. The cells were bound to microspheres (100-300 μm) and cultured using a wave-stirring shaker. One-week cultures using polystyrene and collagen microspheres increased the proportions of SSEA-3(+) hASCs 4.4- and 4.3-fold (2.7- and 2.9-fold increases in their numbers), respectively, compared to normal culture conditions. These cultured hASCs expressed higher levels of pluripotent markers (OCT4, SOX2, NANOG, MYC, and KLF), and had improved abilities for proliferation, colony formation, network formation, and multiple-mesenchymal differentiation. We believe that this novel culturing method may further enhance regenerative therapies using hASCs.
Collapse
|
27
|
Akiyama Y, Ito M, Toriumi T, Hiratsuka T, Arai Y, Tanaka S, Futenma T, Akiyama Y, Yamaguchi K, Azuma A, Hata KI, Natsume N, Honda M. Bone formation potential of collagen type I-based recombinant peptide particles in rat calvaria defects. Regen Ther 2020; 16:12-22. [PMID: 33426238 PMCID: PMC7773759 DOI: 10.1016/j.reth.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction This study aimed to examine the bone-forming ability of medium-cross-linked recombinant collagen peptide (mRCP) particles developedbased on human collagen type I, contains an arginyl-glycyl-aspartic acid-rich motif, fabricated as bone filling material, compared to that of the autologous bone graft. Methods Calvarial bone defects were created in immunodeficient rats though a surgical procedure. The rats were divided into 2 groups: mRCP graft and tibia bone graft (bone graft). The bone formation potential of mRCP was evaluated by micro-computed tomography and hematoxylin-eosin staining at 1, 2, 3, and 4 weeks after surgery, and the data were analyzed and compared to those of the bone graft. Results The axial volume-rendered images demonstrated considerable bony bridging with the mRCP graft, but there was no significant difference in the bone volume and bone mineral density between the mRCP graft and bone graft at 4 weeks. The peripheral new bone density was significantly higher than the central new bone density and the bottom side score was significantly higher than the top side score at early stage in the regenerated bone within the bone defects. Conclusion These results indicate that mRCP has a high potential of recruiting osteogenic cells, comparable to that of autologous bone chips. Bone formation potential of mRCP were comparable to that of autogenous bone. mRCP particles exhibit high new bone formation potential in the calvaria defect. Bone bridging was observed over the entire defect in mRCP graft at 4 weeks. mRCP has a high potential of recruiting osteogenic cells comparable to bone graft.
Collapse
Key Words
- ALP, alkaline phosphatase
- Autologous bone
- BMD, bone mineral density
- BMSCs, bone marrow derived mesenchymal stem cells
- Bone reconstruction
- Bone substitute
- CSD, critical-size defect
- Calvaria
- Collagen scaffold
- DHT, dehydothermal treatment
- H&E, hematoxylin and eosin
- RCP, recombinant collagen peptide
- RGD, arginyl-glycyl-aspartic acid
- ROIs, regions of interest
- Recombinant human collagen peptide
- SD, standard deviation
- TRAP, tartrate-resistant acid phosphatase
- mRCP, medium-cross-linked RCP
- micro-CT, micro-computed tomography
Collapse
Affiliation(s)
- Yasunori Akiyama
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Taku Toriumi
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Takahiro Hiratsuka
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Sho Tanaka
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Taku Futenma
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Yuhki Akiyama
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Kazuhiro Yamaguchi
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Akihiko Azuma
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Ken-Ichiro Hata
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| |
Collapse
|
28
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
29
|
From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine. Mar Drugs 2020; 18:md18080414. [PMID: 32781644 PMCID: PMC7460064 DOI: 10.3390/md18080414] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022] Open
Abstract
Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine.
Collapse
|
30
|
Jankowski M, Dompe C, Sibiak R, Wąsiatycz G, Mozdziak P, Jaśkowski JM, Antosik P, Kempisty B, Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells 2020; 9:cells9081783. [PMID: 32726947 PMCID: PMC7463427 DOI: 10.3390/cells9081783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) exhibiting mesenchymal stem cell (MSC) characteristics, have been extensively studied in recent years. Because they have been shown to differentiate into lineages such as osteogenic, chondrogenic, neurogenic or myogenic, the focus of most of the current research concerns either their potential to replace bone marrow as a readily available and abundant source of MSCs, or to employ them in regenerative and reconstructive medicine. There is close to consensus regarding the methodology used for ASC isolation and culture, whereas a number of molecular analyses implicates them in potential therapies of a number of pathologies. When it comes to clinical application, there is a range of examples of animal trials and clinical studies employing ASCs, further emphasizing the advancement of studies leading to their more widespread use. Nevertheless, in vitro studies will most likely continue to play a significant role in ASC studies, both providing the molecular knowledge of their ex vivo properties and possibly serving as an important step in purification and application of those cells in a clinical setting. Therefore, it is important to consider current methods of ASC isolation, culture, and processing. Furthermore, molecular analyses and cell surface properties of ASCs are essential for animal studies, clinical studies, and therapeutic applications of the MSC properties.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Claudia Dompe
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK
| | - Rafał Sibiak
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 20 Jihlavská St., 601 77 Brno, Czech Republic
- Correspondence:
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
31
|
Cheng Y, Li Y, Huang S, Yu F, Bei Y, Zhang Y, Tang J, Huang Y, Xiang Q. Hybrid Freeze-Dried Dressings Composed of Epidermal Growth Factor and Recombinant Human-Like Collagen Enhance Cutaneous Wound Healing in Rats. Front Bioeng Biotechnol 2020; 8:742. [PMID: 32760705 PMCID: PMC7375021 DOI: 10.3389/fbioe.2020.00742] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/10/2020] [Indexed: 01/13/2023] Open
Abstract
Epidermal growth factor (EGF) is important for promoting skin repair and remodeling. Native collagen is also widely used as a scaffold for skin tissue engineering. The limitations of EGF include easy decomposition or inactivation, whereas native collagen is immunogenic and has poor solubility. Therefore, we constructed a freeze-dried dressing based on the recombinant human-like collagen (RHC) to act as a carrier for EGF (RHC/EGF freeze-dried dressing) and promote skin wound closure. Here, the freeze-dried dressing that combined EGF and RHC significantly enhanced the proliferation, adhesion, and spreading of NIH/3T3 fibroblasts and migration of HaCaT keratinocytes at the wound site. The physicochemical characteristics of the RHC/EGF freeze-dried dressing investigated using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry revealed that it was a loose and porous cake that redissolved quickly. The molecular mechanisms involved in cell proliferation and angiogenesis were also assessed. The expression levels of the markers Ki-67, proliferating cell nuclear antigen, vascular endothelial growth factor, and cluster of differentiation 31 were significantly increased after treatment with the RHC/EGF freeze-dried dressing (P < 0.01, vs. RHC or EGF alone). This increase indicated that the RHC/EGF freeze-dried dressing significantly accelerated wound closure, re-epithelialization, and the orderly arrangement and deposition of collagen in the Sprague–Dawley rats with full-thickness skin defects. This work describes a significant step toward the development of wound environments conducive to healing, and the RHC/EGF freeze-dried dressing is a potential therapeutic strategy in wound management.
Collapse
Affiliation(s)
- Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yangfan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Shiyi Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yu Bei
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yifan Zhang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Jianzhong Tang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Furihata T, Miyaji H, Nishida E, Kato A, Miyata S, Shitomi K, Mayumi K, Kanemoto Y, Sugaya T, Akasaka T. Bone forming ability of recombinant human collagen peptide granules applied with β-tricalcium phosphate fine particles. J Biomed Mater Res B Appl Biomater 2020; 108:3033-3044. [PMID: 32386261 DOI: 10.1002/jbm.b.34632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022]
Abstract
Recombinant human collagen peptide, developed based on human collagen type I, contains an arginyl-glycyl-aspartic acid (RGD)-rich motif to enhance cell behavior and is anticipated as a xeno-free polymer material for use in tissue engineering. We fabricated granules containing recombinant human collagen peptide (RCP) applied with beta-tricalcium phosphate fine particles (RCP/β-TCP) as bone filling scaffold material and assessed the bone forming ability of RCP/β-TCP. Recombinant peptide was thermal crosslinked and freeze-dried to prepare RCP. An aqueous dispersion of β-TCP fine particles was added to RCP to obtain RCP/β-TCP. Subsequently, RCP/β-TCP were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and cell culture assessments. Furthermore, RCP/β-TCP were implanted into rat cranial bone defects for radiographic and histological evaluations. In SEM and EDX analyses of RCP/β-TCP, β-TCP particles dose-dependently covered the surface of RCP. Cell culture tests showed that RCP/β-TCP remarkably promoted proliferation and mRNA expression of various genes, such as integrin β1 and osteogenic markers, of osteoblastic MC3T3-E1 cells. Histomorphometric assessment at 4 weeks showed that RCP/β-TCP significantly promoted new skull bone formation compared to RCP (p < 0.05) and control (no application) (p < 0.01). Accordingly, these findings suggest RCP/β-TCP possess bone forming capability and would be beneficial for bone tissue engineering therapy.
Collapse
Affiliation(s)
- Tomokazu Furihata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako Shitomi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kayoko Mayumi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
33
|
Abstract
Objective: Recent studies have shown the important influence of various micro factors on the general biological activity and function of endothelial cells (ECs). Vascular endothelial growth factor (VEGF) and angiogenin (ANG) are classic micro factors that promote proliferation, differentiation, and migration of ECs. The underlying pathophysiological mechanisms and related pathways of these micro factors remain the focus of current research. Data sources: An extensive search was undertaken in the PubMed database by using keywords including “micro factors” and “endothelial cell.” This search covered relevant research articles published between January 1, 2007 and December 31, 2018. Study selection: Original articles, reviews, and other articles were searched and reviewed for content on micro factors of ECs. Results: VEGF and ANG have critical functions in the occurrence, development, and status of the physiological pathology of ECs. Other EC-associated micro factors include interleukin 10, tumor protein P53, nuclear factor kappa B subunit, interleukin 6, and tumor necrosis factor. The results of Gene Ontology analysis revealed that variations were mainly enriched in positive regulation of transcription by the RNA polymerase II promoter, cellular response to lipopolysaccharides, negative regulation of apoptotic processes, external side of the plasma membrane, cytoplasm, extracellular regions, cytokine activity, growth factor activity, and identical protein binding. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that micro factors were predominantly enriched in inflammatory diseases. Conclusions: In summary, the main mediators, factors, or genes associated with ECs include VEGF and ANG. The effect of micro factors on ECs is complex and multifaceted. This review summarizes the correlation between ECs and several micro factors.
Collapse
|
34
|
Davison-Kotler E, Marshall WS, García-Gareta E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering (Basel) 2019; 6:E56. [PMID: 31261996 PMCID: PMC6783949 DOI: 10.3390/bioengineering6030056] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
Collagen is the most frequently used protein in the fields of biomaterials and regenerative medicine. Within the skin, collagen type I and III are the most abundant, while collagen type VII is associated with pathologies of the dermal-epidermal junction. The focus of this review is mainly collagens I and III, with a brief overview of collagen VII. Currently, the majority of collagen is extracted from animal sources; however, animal-derived collagen has a number of shortcomings, including immunogenicity, batch-to-batch variation, and pathogenic contamination. Recombinant collagen is a potential solution to the aforementioned issues, although production of correctly post-translationally modified recombinant human collagen has not yet been performed at industrial scale. This review provides an overview of current collagen sources, associated shortcomings, and potential resolutions. Recombinant expression systems are discussed, as well as the issues associated with each method of expression.
Collapse
Affiliation(s)
- Evan Davison-Kotler
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - William S Marshall
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| |
Collapse
|
35
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019; 20:ijms20102523. [PMID: 31121953 PMCID: PMC6566837 DOI: 10.3390/ijms20102523] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
36
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019. [PMID: 31121953 DOI: 10.3390/ijms20102523.pmid:31121953;pmcid:pmc6566837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
37
|
Murray RZ, West ZE, Cowin AJ, Farrugia BL. Development and use of biomaterials as wound healing therapies. BURNS & TRAUMA 2019; 7:2. [PMID: 30701184 PMCID: PMC6346526 DOI: 10.1186/s41038-018-0139-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
There is a vast number of treatments on the market for the management of wounds and burns, representing a multi-billion dollar industry worldwide. These include conventional wound dressings, dressings that incorporate growth factors to stimulate and facilitate the wound healing process, and skin substitutes that incorporate patient-derived cells. This article will review the more established, and the recent advances in the use of biomaterials for wound healing therapies, and their future direction.
Collapse
Affiliation(s)
- Rachael Zoe Murray
- 1The Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059 Australia
| | - Zoe Elizabeth West
- 1The Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059 Australia
| | - Allison June Cowin
- 2Future Industries Institute, University of South Australia, Adelaide, SA 5095 Australia
| | - Brooke Louise Farrugia
- 3Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
38
|
Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 2018; 843:307-315. [PMID: 30537490 DOI: 10.1016/j.ejphar.2018.12.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
Abstract
The latest findings indicate the huge therapeutic potential of stem cells in regenerative medicine, including the healing of chronic wounds. Main stem cell types involved in wound healing process are: epidermal and dermal stem cells, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and hematopoietic stem cells (HSCs). In the therapy of chronic wounds, they can be administrated either topically or using different matrix like hydrogels, scaffolds, dermal substitutes and extracellular matrix (ECM) derivatives. Stem cells are proven to positively influence wound healing by different direct and indirect mechanisms including residing cells stimulation, biomolecules release, inflammation control and ECM remodelling. MSCs are especially worth mentioning as they can be easily derived from bone-marrow or adipose tissue. Apart from traditional approach of administering living stem cells to wounds, new trends have emerged in recent years. Good healing results are obtained using stem cell secretome alone, for example exosomes or conditioned media. There are also attempts to improve healing potential of stem cells by their co-culture with other cell types as well as by their genetic modifications or pretreatment using different chemicals or cell media. Moreover, stem cells have been tested for novel therapeutic purposes like for example acute burns and have been used in experiments on large animal models including pigs and sheep. In this review we discuss the role of stem cells in skin wound healing acceleration. In addition, we analyse possible new strategies of stem cells application in treatment of chronic wounds.
Collapse
|