1
|
Kono K, Ito M, Hano T, Ohkubo N. Estimation of the uptake of polycyclic aromatic hydrocarbons desorbed from polyethylene microplastics in the digestive tract of the red seabream (Pagrus major) and mummichog (Fundulus heteroclitus). MARINE POLLUTION BULLETIN 2024; 209:117216. [PMID: 39522398 DOI: 10.1016/j.marpolbul.2024.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
The vector effects of microplastics (MPs) in natural marine environments and their contribution to polycyclic aromatic hydrocarbon (PAH) bioaccumulation in fish are still unknown. This study, therefore, aimed to evaluate the effects of MPs on carrying PAHs under conditions close to the actual marine environments. The PAH content sorbed onto MPs from seawater positively correlated with the octanol/water partition coefficient (log KOW) in both polyethylene and polystyrene MPs. The desorption rate constant (k2) of PAHs sorbed onto MPs from seawater in the digestive tract was calculated using two marine teleost fish in an in vitro desorption experiment. A negative correlation was observed between the log KOW and k2 of the PAHs. The PAHs with larger log KOW and lower water solubility are easier to sorb onto MPs and less likely to desorb in the digestive tract of marine fish species. The estimation of PAH uptake into the fish body using the k2 of three selected PAHs (phenanthrene, pyrene, and chrysene) indicated that >95 % of the chemicals were uptaken from seawater via gills. It was presumed that there was an additional uptake of PAHs into the fish body (vector effect) due to desorption from MPs in the digestive tract when marine fish ingested MP that was sorbed and concentrated with PAHs. The degree of uptake was, however, much lower than that from seawater via gills. The vector effect of PAHs by MPs in the actual sea may be negligible, and the risk is presently considered to be low.
Collapse
Affiliation(s)
- Kumiko Kono
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Mana Ito
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Takeshi Hano
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nobuyuki Ohkubo
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
2
|
Ito M, Hano T, Kono K, Ohkubo N. Desorption of polycyclic aromatic hydrocarbons from polyethylene microplastics in two morphologically different digestive tracts of marine teleosts: Gastric red seabream (Pagrus major) and agastric mummichog (Fundulus heteroclitus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119589. [PMID: 35680066 DOI: 10.1016/j.envpol.2022.119589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/16/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
In this study, we elucidated the desorption potency of polycyclic aromatic hydrocarbons (PAHs) sorbed on microplastics (MP; polyethylene) in the digestive tract of two fish species: gastric red seabream and agastric mummichog. In our in vitro assay system using the real gut sample of unexposed fish, the digestive tract was firstly removed from the fish and divided into three parts. Then, MP that had previously been sorbed with 16 PAHs were incubated with extracts of the gut contents or tissue with buffer or only a buffer. The desorption potency of PAHs was individually assessed for gut contents and tissue, which revealed that PAH desorption from MP was elevated in extracts of the gut contents compared with that in the buffer alone for both fish species. PAH desorption potency was the highest in the midgut for gastric red seabream and in the foregut for agastric mummichog, which indicates that PAH desorption from MP varies among different parts of the digestive tract and among fish with distinct gut morphology. In the midgut contents of red seabream and foregut contents of mummichog, the desorption fraction was 5.6% and 8.1% of the total PAHs sorbed on MP, respectively. The desorption fraction enhancement achieved by adding gut contents extracts tended to be greater with an increase in the n-octanol/water partition ratio, suggesting that enhancement of the desorption fraction in the digestive tract depends on the physicochemical properties of PAHs. Thus, morphological differences in digestive tracts and PAH properties should be considered when evaluating the effect of MP vector on pollutant exposure in fish.
Collapse
Affiliation(s)
- Mana Ito
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima, 739-0452, Japan.
| | - Takeshi Hano
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima, 739-0452, Japan.
| | - Kumiko Kono
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima, 739-0452, Japan.
| | - Nobuyuki Ohkubo
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima, 739-0452, Japan.
| |
Collapse
|
3
|
Lee N, Woo S, Lee N, Jo Y, Yamindago A, Yum S. Transcriptome dynamics in benzo[a]pyrene exposed Hydra. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00203-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Hano T, Ito M, Ito K, Uchida M. Alterations of stool metabolome, phenome, and microbiome of the marine fish, red sea bream, Pagrus major, following exposure to phenanthrene: A non-invasive approach for exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141796. [PMID: 32898801 DOI: 10.1016/j.scitotenv.2020.141796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to assess the impact of phenanthrene (Phe) on fish health by addressing the alteration of fecal characteristics, in lieu of collecting biomarkers that often involves injurious or even fatal sampling of organisms. The marine fish red sea bream, Pagrus major, was exposed to Phe at a concentration of 18 μg/L for 16 days followed by depuration for 13 days. We collected feces from Phe-exposed or control (Phe-free) fish and then analyzed the fecal metabolite profile (metabolome), carbon utilization of microbiota (phenome), and bacterial 16s rRNA gene sequence (microbiome). Along with the increase in physiological stress markers (SOD and EROD) in serum and liver, we noted the possible role of intestine as a Phe reservoir. Furthermore, abnormal fecal appearance (green coloration) and remarkable changes in fecal characteristics were observed. These changes include alterations of cholesterol and putrescine metabolism and the enhanced utilization of putrescine as a carbon source. Phe also altered the microbial community, with an increase in Phe-degrading bacteria such as Pseudomonas. Interestingly, these enteric impairments were ameliorated by depuration. Taken together, our findings suggest that these alterations in feces were associated with adaptive responses to environmentally relevant Phe exposure scenarios, and that stool samples are potential candidates for exposure assessment in fish.
Collapse
Affiliation(s)
- Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Mana Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Katsutoshi Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Motoharu Uchida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
5
|
Dey S, Ballav P, Mandal A, Samanta P, Patra A, Das S, Mondal AK, Ghosh AR. Blood Biochemical and Erythrocytic Morpho-pathological Consequences of Naphthalene Intoxication in Indian Teleost, Anabas testudineus (Bloch). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103490. [PMID: 32911098 DOI: 10.1016/j.etap.2020.103490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Anabas testudineus (Bloch) was exposed to 0.71 mg/L and 1.42 mg/L (25 and 50% of LC50 value respectively) naphthalene, a polycyclic aromatic hydrocarbon (PAH), for 21 days. Blood biochemical parameters and erythrocytic morphological alterations were assessed to describe the naphthalene toxicity. Biochemical analysis showed a significant increase in glutamic pyruvic transaminase, GPT (576.7 ± 11.79 and 608.9 ± 12.08 U/L, respectively) and alkaline phosphatase, ALP (12.9 ± 0.69 and 13.4 ± 0.64 U/L, respectively) activities under two doses compared with control. Protein and albumin (ALB) content in blood decreased significantly, in comparison with control value in the tune of 22.67 ± 1.04 and 23.97 ± 1.24 g/dl, respectively and 10.7 ± 0.79 and 11.1 ± 0.67 g/dl, respectively. Erythrocytes showed varied symptomatic morphological changes under naphthalene exposure, which included severe denaturation, swelling in cells, appearance of sickle and tear drop cells, and cellular vacuolation. In particularly, the changes were more prominent under higher naphthalene exposure. Following the results, it has been able to establish that GPT, ALP, protein and ALB, and the morphological manifestations of erythrocytes would be good tools of biomarker in monitoring toxicological paradigm, especially to naphthalene exposure in aquatic bodies.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Puspita Ballav
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Arghya Mandal
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, West Bengal, India.
| | - Atanu Patra
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Subhas Das
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Arnab Kumar Mondal
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
6
|
Aguilar L, Dzul-Caamal R, Rendón-von Osten J, da Cruz AL. Effects of Polycyclic Aromatic Hydrocarbons inGambusia yucatana, an Endemic Fish from Yucatán Peninsula, Mexico. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1755322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Letícia Aguilar
- Laboratory of Animal Physiology, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Ricardo Dzul-Caamal
- Laboratory of Ecotoxicology, Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Autonomus University of Campeche, San Francisco de Campeche, Campeche, Mexico
| | - Jaime Rendón-von Osten
- Laboratory of Ecotoxicology, Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Autonomus University of Campeche, San Francisco de Campeche, Campeche, Mexico
| | - André Luis da Cruz
- Laboratory of Animal Physiology, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
7
|
Avey SR, Kennedy CJ, Farrell AP, Gillis TE, Alderman SL. Effects of diluted bitumen exposure on Atlantic salmon smolts: Molecular and metabolic responses in relation to swimming performance. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105423. [PMID: 32006756 DOI: 10.1016/j.aquatox.2020.105423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Canada's oil sands industry continues to expand and the volume of diluted bitumen (dilbit) transported across North America is increasing, adding to spill risk and environmental contamination. Dilbit exposure is known to cause adverse effects in fish, but linking molecular and cellular changes with ecologically-relevant individual performance metrics is needed to better understand the potential consequences of a dilbit spill into the aquatic environment. Therefore, this study examined the effects of dilbit exposure on subcellular responses in cardiac and skeletal muscle in relation to swimming performance in a migratory fish species at risk of exposure, Atlantic salmon. Smolts were exposed subchronically to environmentally relevant concentrations of the water-soluble fraction of dilbit (WSFd) for 24 d, and then a subset of exposed fish underwent a depuration period of 7 or 14 d, for a total of 3 experimental time points. At each time point, repeat swimming performance was assessed using sequential critical swimming speed tests (Ucrit) separated by a 24 h rest period, and then several tissues were collected to determine biotransformation enzyme activation, energetic responses, and gene expression changes. Ucrit was unaffected in fish exposed to 67.9 μg/L total initial polycyclic aromatic compounds (PAC), but fish showed a decreased reliance on lipid metabolism for adenosine triphosphate (ATP) in the heart that was maintained through 7 d depuration. In contrast, Ucrit increased in fish exposed to 9.65 μg/L PAC, corresponding to an increased reliance on anaerobic metabolic pathways in cardiac and red skeletal muscle, with partial recovery after 7 d depuration. As expected, at both concentrations WSFd hepatic cyp 1A-mediated biotransformation reactions increased, as measured by EROD activity, which remained elevated for 7 d but not after 14 d depuration. Transcript abundance of cyp1a was also increased in muscle tissue and recovered by 14 d depuration. The expression of other stress-related genes increased in white muscle of dilbit-exposed fish, but were largely unchanged in cardiac and red muscle. The transcriptional profile of cardiac tissue was compared to that of sockeye salmon similarly exposed to WSFd in a previous experiment, and is provided in supplemental text. Combined, these results demonstrate that dilbit exposure alters gene expression and enzyme activities related to xenobiotic exposure, cellular stress, and muscle energetics in juvenile Atlantic salmon without impairing swimming performance, and that most of these changes are recoverable within 14 d depuration.
Collapse
Affiliation(s)
- Sean R Avey
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
8
|
Honda M, Suzuki N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1363. [PMID: 32093224 PMCID: PMC7068426 DOI: 10.3390/ijerph17041363] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds that are widely distributed in the air, water, and soil. Recently, the amount of PAHs derived from fuels and from incomplete combustion processes is increasing. In the aquatic environment, oil spills directly cause PAH pollution and affect marine organisms. Oil spills correlate very well with the major shipping routes. Furthermore, accidental oil spills can seriously impact the marine environment toxicologically. Here, we describe PAH toxicities and related bioaccumulation properties in aquatic animals, including invertebrates. Recent studies have revealed the toxicity of PAHs, including endocrine disruption and tissue-specific toxicity, although researchers have mainly focused on the carcinogenic toxicity of PAHs. We summarize the toxicity of PAHs regarding these aspects. Additionally, the bioaccumulation properties of PAHs for organisms, including invertebrates, are important factors when considering PAH toxicity. In this review, we describe the bioaccumulation properties of PAHs in aquatic animals. Recently, microplastics have been the most concerning environmental problem in the aquatic ecosystem, and the vector effect of microplastics for lipophilic compounds is an emerging environmental issue. Here, we describe the correlation between PAHs and microplastics. Thus, we concluded that PAHs have a toxicity for aquatic animals, indicating that we should emphasize the prevention of aquatic PAH pollution.
Collapse
Affiliation(s)
- Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan;
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| |
Collapse
|
9
|
Dey S, Ghosh AR. Dose-specific biochemical and erythrocytic alterations of anthracene exposure on blood of Anabas testudineus (Bloch). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103247. [PMID: 31473557 DOI: 10.1016/j.etap.2019.103247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/31/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The present work is designed to compare the chronic toxicity of anthracene [one of the major constituents of polycyclic aromatic hydrocarbons (PAHs)] on Anabas testudineus (Bloch), in an air-breathing carnivorous fish, in laboratory condition under the exposure of two doses of LC50 value, i.e., 0.0075 mg/l (T1), i.e., 25% and 0.015 mg/l (T2) i.e., 50% for 21 days. A comprehensive comparison was recorded based on biochemical parameters and evaluated the erythrocytic alterations of blood components of the fish. It revealed an enhanced trend of activity of glutamic pyruvic transamin (GPT) 470.7 ± 12.32, 546.6 ± 13.22, 599.4 ± 13.09 U/L and alkaline phosphatase (ALP) 9.2 ± 0.61, 10.4 ± 0.86, 10.9 ± 0.74 U/L in control, T1 and T2 respectively; and reverse trend of protein (PRO) 26.63 ± 1.32, 22.15 ± 1.13, 22.29 ± 1.02 g/dl and albumin (ALB) 11.9 ± 0.71, 9.65 ± 0.91, 10.05 ± 0.94 g/dl in control, T1 and T2 respectively. Under T1 and T2 exposure conditions, it displayed the maximum alterations and appearance of tear drop-like cells (Tr), sickle cells (Sk), swelled cells (Sc) and vacuolated cells (Va) in comparison to control condition. An exclusive experimentation of the present work suggested that biochemical parameters and erythrocytic alterations may be useful tool as biomarkers to monitor the long term toxicological effects, especially to anthracene a constituent of PAHs, in any aquatic environment.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
10
|
Sample treatment optimization for fish stool metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:258-267. [DOI: 10.1016/j.jchromb.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/24/2022]
|
11
|
Uno S, Kokushi E, Añasco NC, Iwai T, Ito K, Koyama J. Oil spill off the coast of Guimaras Island, Philippines: Distributions and changes of polycyclic aromatic hydrocarbons in shellfish. MARINE POLLUTION BULLETIN 2017; 124:962-973. [PMID: 28400055 DOI: 10.1016/j.marpolbul.2017.03.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
The sinking of the Solar 1 tanker caused serious heavy oil pollution around Guimaras Island, Philippines. In the present study, variations of parent polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs (alkPAHs) in some shellfish were investigated around Guimaras Island and other small islands from 3months to 5years after the spill. The total PAHs and alkPAHs in shellfish were detected in high concentrations at 448 and 33,666ng/g dry weight, respectively, in November 2006. The concentrations of alkPAHs gradually decreased, while the parent PAHs in shellfish degraded more slowly than the alkPAHs, which was likely due to the persistent characteristics of PAHs. The risks based on European Union regulations were insignificant in 2008, but total PAHs in shellfish were still over 8 times higher at the investigated sites in November 2011 than that before the oil spill.
Collapse
Affiliation(s)
- Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan.
| | - Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan
| | - Nathaniel C Añasco
- College of Fisheries and Ocean Sciences, University of the Philippines-Visayas, Philippines, Miagao, 5024, Iloilo, Philippines
| | - Takenori Iwai
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan
| | - Kazuki Ito
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan
| |
Collapse
|
12
|
Afifi M, Alkaladi A, Abu Zinada OA, Couderchet M. Alteration in antioxidant genes expression in some fish caught from Jeddah and Yanbu coast as a bio-indicator of oil hydrocarbons pollution. Saudi J Biol Sci 2017; 24:1580-1587. [PMID: 30294228 PMCID: PMC6169539 DOI: 10.1016/j.sjbs.2015.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 11/30/2022] Open
Abstract
The mRNA expression profile of some antioxidant genes in skin, gills, livers, and muscles of Siganus canaliculatus and Epinephelus morio was used as an indicator of petroleum hydrocarbons pollution in six areas at Jeddah and Yanbu coasts in KSA. Total petroleum hydrocarbons (TPHs) were determined in both sea water and sediments collected from the studied areas. The mRNA expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were determined. The highest level of total petroleum hydrocarbons was observed in front of the petromine refinery at Jeddah and in S. canaliculatus when compared to E. morio. There was a significant high expression level of studied antioxidant enzymes genes in the polluted areas and the level of the expression profile tended to correlate with the degree of pollution and fish species feed habit. This was confirmed by the level of MDA which in the same way increased with an increase in the level of total hydrocarbons. In conclusion; the expression profile of antioxidant enzymes of S. canaliculatus and E. morio tissues can be used as a strong bio-indicator of total hydrocarbons pollution especially in S. canaliculatus.
Collapse
Affiliation(s)
- Mohamed Afifi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Egypt
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Ali Alkaladi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Osama A. Abu Zinada
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Michel Couderchet
- Unité de Recherche Vigne et Vin de Champagne – EA 4067, University of Reims Champagne-Ardenne, France
| |
Collapse
|
13
|
Hano T, Ohkubo N, Mochida K. A hepatic metabolomics-based diagnostic approach to assess lethal toxicity of dithiocarbamate fungicide polycarbamate in three marine fish species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:64-70. [PMID: 28011422 DOI: 10.1016/j.ecoenv.2016.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The present study was performed to evaluate the toxic effect of the dithiocarbamate fungicide polycarbamate (PC) on the hepatic metabolic profiles of three marine fish species, red sea bream (Pagrus major), spotted halibut (Verasper variegatus), and marbled flounder (Pleuronectes yokohamae). First, juvenile fish were exposed to graded concentrations of PC for 96h; the 96-h LC50 values obtained were 22-29, 239-553, and 301-364µgL-1 for red sea bream, spotted halibut, and marbled flounder, respectively, indicating that red sea bream possessed higher sensitivity to PC than the two benthic species. Second, the fish were exposed to lethal-equivalent concentration (H group) or sub-lethal (one-tenth of the H group concentrations; L group) for 24 and 96h and gas-chromatography based metabolomics approach was employed to explore the crucial biomarker metabolite associated with lethal toxicity. Of the 53 metabolites identified, only reduced glutathione (GSH) was consistently elevated in the H group for the three fish species at 96h. The calculated cut-off value of GSH (mM) based on receiver operating curve analysis between H group and the other treatment groups (control, solvent control, and L group) was obtained at 0.56mM, which allowed to distinguish between the groups with high confidence for the three fish species. These results are the first to demonstrate the potential of using GSH as a possible biomarker metabolite and its usefulness of threshold cut-off value for diagnosing life-threatening health conditions of fish.
Collapse
Affiliation(s)
- Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Nobuyuki Ohkubo
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| |
Collapse
|
14
|
Hano T, Ito M, Ito K, Kono K, Ohkubo N. Dietary taurine supplementation ameliorates the lethal effect of phenanthrene but not the bioaccumulation in a marine teleost, red sea bream, Pagrus major. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:272-280. [PMID: 27987481 DOI: 10.1016/j.ecoenv.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
The present study was performed to evaluate the effect of dietary taurine on the hepatic metabolic profiles of red sea bream (Pagrus major) and on phenanthrene (a polyaromatic hydrocarbon) toxicity and bioaccumulation. The fish were fed a diet supplemented with 0% (TAU0%), 0.5% (TAU0.5%), or 5% (TAU5%) taurine for 40-55d and subjected to phenanthrene acute toxicity and bioaccumulation tests. Taurine deficiency in feed severely affected the hepatic metabolic profiles of fish, which indicated a complementary physiological response to taurine deficiency. For the acute toxicity test, fish were fed the test diets for 55d and were then exposed to 0-893µg/L phenanthrene for 96h. Tolerance to phenanthrene was significantly improved by 0.5% of taurine inclusion in feed relative to TAU0%, but not by 5.0% inclusion. Reduced glutathione in the liver, which acts as an oxygen-free radical scavenger, was associated with a reduction in the toxicity of phenanthrene. For the bioaccumulation test, fish were fed the test diets for 40d and were thereafter chronically exposed to 20µg/L phenanthrene for 13d followed by depuration for 3d. The activity of hepatic biomarker, ethoxyresorufin-O-deethylase, was increased by phenanthrene exposure in the taurine inclusion groups. However, phenanthrene concentrations in the liver and muscle of fish fed TAU5.0% tended to be higher than those of fish fed TAU0% and TAU0.5% during the exposure period. These results indicate that 0.5% of taurine inclusion in feed plays an important role in the alleviation of phenanthrene toxicity but not bioaccumulation. Furthermore, larger amount of taurine inclusion (TAU5%) did not show marked beneficial effects against phenanthrene exposure. This study provides insight about a major concern of environmental contaminants into aquatic environment and can be effectively used for improvement of aquaculture.
Collapse
Affiliation(s)
- Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Mana Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Katsutoshi Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kumiko Kono
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nobuyuki Ohkubo
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
15
|
Determination of kinetic bioconcentration in mussels after short term exposure to polycyclic aromatic hydrocarbons. Heliyon 2017; 3:e00231. [PMID: 28203639 PMCID: PMC5292759 DOI: 10.1016/j.heliyon.2017.e00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022] Open
Abstract
The kinetic bioconcentration of N-heterocyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in mussels (Mytilus galloprovincialis) after short waterborne exposure was studied. Benzo[a]pyrene (BaP), its analogue azaarene 10-azabenzo[a]pyrene (AzaBaP), and their mixture (Mix), were selected to monitor the changes in water concentrations over three days. Decay of both PAHs concentrations in water after 24 h of waterborne exposure to mussels at levels of 10 and 100 μg/L follows a first order kinetic with half-lives of 4–5 h, with residual levels of PAHs below 7%. While steady-state scenarios are well studied, there is a lack of information of what happens under non-steady-state conditions, the main purpose of our paper. A synergistic bioconcentration of the mixture was found (around 800 in the mix vs. around 400 for individual PAHs at 100 μg/L of waterborne exposure). It could be explained by the following reasons. The most polar AzaBaP does not compete with the most non-polar BaP for the same tissue compartments. Whereas BaP aggregate in hydrophobic areas, AzaBaP can also do in hydrophilic areas. Moreover, a chance for complex formation between them by charge-transfer stabilization mechanisms could make possible a higher bioaccumulation as a mixture. Instead, toxicological results suggest an additive behaviour in the mixture performance, dominated by BaP, which is the key PAH controlling phase I metabolization in mussels, since is approx. three times more toxic. These experiments provide useful indications for a rapid assessment of PAHs kinetic bioconcentration in mussels.
Collapse
|
16
|
Gust KA, Najar FZ, Habib T, Lotufo GR, Piggot AM, Fouke BW, Laird JG, Wilbanks MS, Rawat A, Indest KJ, Roe BA, Perkins EJ. Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress. BMC Genomics 2014; 15:591. [PMID: 25016412 PMCID: PMC4117956 DOI: 10.1186/1471-2164-15-591] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/18/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). RESULTS RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5. Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral/zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (i.e. cytochrome P450 and UDP glucuronosyltransferase 2 family) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production including glycolysis and electron-transport pathways was observed in the coral animal. CONCLUSIONS Transcriptional network analysis for central energy metabolism demonstrated highly correlated responses to RDX among the coral animal and zooxanthellae indicative of potential compensatory responses to lost photosynthetic potential within the holobiont. These observations underscore the potential for complex integrated responses to RDX exposure among species comprising the coral holobiont and highlight the need to understand holobiont-species interactions to accurately assess pollutant impacts.
Collapse
Affiliation(s)
- Kurt A Gust
- />Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 39180 USA
| | - Fares Z Najar
- />Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019 USA
| | - Tanwir Habib
- />Badger Technical Services, San Antonio, TX 71286 USA
| | - Guilherme R Lotufo
- />Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 39180 USA
| | - Alan M Piggot
- />Department of Geology, Urbana-Champaign, University of Illinois, Urbana-Champaign, IL 31801 USA
- />Division of Marine Geology and Geophysics, University of Miami, Miami, FL 33149 USA
| | - Bruce W Fouke
- />Department of Geology, Urbana-Champaign, University of Illinois, Urbana-Champaign, IL 31801 USA
- />Institute for Genomic Biology, Urbana-Champaign, University of Illinois, Illinois, IL 31801 USA
| | - Jennifer G Laird
- />Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 39180 USA
| | - Mitchell S Wilbanks
- />Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 39180 USA
| | - Arun Rawat
- />Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Karl J Indest
- />Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 39180 USA
| | - Bruce A Roe
- />Department of Geology, Urbana-Champaign, University of Illinois, Urbana-Champaign, IL 31801 USA
| | - Edward J Perkins
- />Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 39180 USA
| |
Collapse
|
17
|
Machado AADS, Hoff MLM, Klein RD, Cordeiro GJ, Lencina Avila JM, Costa PG, Bianchini A. Oxidative stress and DNA damage responses to phenanthrene exposure in the estuarine guppy Poecilia vivipara. MARINE ENVIRONMENTAL RESEARCH 2014; 98:96-105. [PMID: 24722053 DOI: 10.1016/j.marenvres.2014.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Despite ubiquitous phenanthrene contamination in aquatic coastal areas, little is known regarding its potential effects on estuarine fishes. The present work evaluated the response of a large suite of oxidative stress- and DNA damage-related biomarkers to phenanthrene exposure (10, 20 and 200 μg L(-1), 96 h) using DMSO as the solvent in estuarine guppy Poecilia vivipara (salinity 24 psu). Phenanthrene affected oxidative stress-related parameters, and decreased antioxidant defenses and reactive oxygen species in the gills and muscle overall. Lipid peroxidation occurred in muscle at 200 μg L(-1) phenanthrene. Genotoxicity was increased at 20 μg L(-1), while 200 μg L(-1) caused a relative decrease in erythrocyte release into the bloodstream. These findings indicated that phenanthrene is genotoxic and can induce oxidative stress, depending on tissue and phenanthrene concentration analyzed. Thus, some of the biomarkers analyzed in the present study are sufficiently sensitive to monitor the exposure of the guppy P. vivipara to phenanthrene in salt water. However, further studies are required for a better interpretation of the dose-response patterns observed.
Collapse
Affiliation(s)
- Anderson Abel de Souza Machado
- Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul, Brazil.
| | - Mariana Leivas Müller Hoff
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul, Brazil.
| | - Roberta Daniele Klein
- Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul, Brazil.
| | - Gilson Junior Cordeiro
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul, Brazil.
| | - Jannine Marquez Lencina Avila
- Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul, Brazil.
| | - Patrícia Gomes Costa
- Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul, Brazil.
| | - Adalto Bianchini
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Woo S, Lee A, Denis V, Chen CA, Yum S. Transcript response of soft coral (Scleronephthya gracillimum) on exposure to polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:901-910. [PMID: 23832774 DOI: 10.1007/s11356-013-1958-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most persistent organic pollutants in worldwide aquatic environments. The extensive isolation of genes responsive to PAH pollution in soft coral (Scleronephthya gracillimum) is described herein. Soft coral colonies were exposed to 100 μg/L of a standard mixture of PAHs. Gene candidates with transcript levels that changed in response to PAH exposure were identified by differential display polymerase chain reaction (DD-PCR). There were 37 types of candidate genes identified, of which 20 were upregulated in expression and 17 were downregulated. The functions of the genes identified included oxidative stress response, ribosomal structure maintenance, molecular chaperone activity, protein kinase activation and tumorigenesis, defense mechanisms, transcription, and other biological responses. mRNA quantification was carried out using real-time quantitative PCR in eight selected genes: cytosolic malate dehydrogenase, protein disulfide isomerase, ribosomal protein L6, ral guanine nucleotide dissociation stimulator-like 1, poly(ADP-ribose) polymerase 4, peptidylglycine α-hydroxylating monooxygenase, a disintegrin and metalloproteinase (ADAM) metallopeptidase protein, and eukaryotic initiation factor 4 gamma 3. Changes in transcript levels were consistent with DD-PCR results. The gene candidates isolated in this study were differentially expressed and therefore have potential as molecular biomarkers for understanding coral responses to environmental stressors.
Collapse
Affiliation(s)
- Seonock Woo
- South Sea Environment Research Division, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Costa J, Reis-Henriques MA, Castro LFC, Ferreira M. Gene expression analysis of ABC efflux transporters, CYP1A and GSTα in Nile tilapia after exposure to benzo(a)pyrene. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:469-82. [PMID: 22227637 DOI: 10.1016/j.cbpc.2011.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/06/2023]
Abstract
The aim of this study was to evaluate the response of ABC transporters, CYP1A and class alpha (α) GST genes, upon water and dietary exposures to benzo(a)pyrene (BaP) in Oreochromis niloticus. Partial mRNA sequences of ABC transporters (ABCB1b, ABCB11, ABCC1, ABCC2 and ABCG2) were identified, and their tissue distribution patterns evaluated in liver, gill and intestine, showing similarities with other fish and mammals. After 14 days of water exposure to BaP, ABC transporters mRNA expression was up-regulated, namely ABCC2 in gill (up to 16-fold) and ABCG2 in liver (up to 2-fold) and proximal intestine (up to 7-fold). CYP1A mRNA expression was up-regulated in water exposed animals, with maximum fold inductions of 5, 35 and 155, respectively in liver, gill and proximal intestine. After dietary exposure, intestinal CYP1A mRNA showed a 13-fold increase in exposed animals. No significant changes were seen in ABCB1b, ABCC1 and GSTα mRNA expression after both routes of exposure to BaP. In conclusion, this study has shown that transcriptional expression of some ABC transporters and CYP1A respond to the presence of BaP, indicating a possible involvement and cooperation in the detoxification process in Nile tilapia.
Collapse
Affiliation(s)
- Joana Costa
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
| | | | | | | |
Collapse
|
20
|
HELLOU JOCELYNE, BEACH DANIELG, LEONARD JAMES, BANOUB JOSEPHH. Integrating Field Analyses with Laboratory Exposures to Assess Ecosystems Health. Polycycl Aromat Compd 2012. [DOI: 10.1080/10406638.2011.651681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Costa J, Ferreira M, Rey-Salgueiro L, Reis-Henriques MA. Comparision of the waterborne and dietary routes of exposure on the effects of Benzo(a)pyrene on biotransformation pathways in Nile tilapia (Oreochromis niloticus). CHEMOSPHERE 2011; 84:1452-1460. [PMID: 21561639 DOI: 10.1016/j.chemosphere.2011.04.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/06/2011] [Accepted: 04/17/2011] [Indexed: 05/30/2023]
Abstract
BaP is one of the most studied PAH, due to its ubiquitous presence in aquatic environments and toxicity to aquatic organisms. The main goal of this study was to assess BaP effects in Nile Tilapia after waterborne and dietary exposures, through the evaluation of EROD and GST activities in liver, gills and intestine, and BaP metabolites in bile; and also to evaluate the usefulness of these commonly used biomarkers after two different routes of exposure. Waterborne exposure to BaP led to a significant induction of EROD in all tissues analyzed (644%, 1640% and 2880% in relation to solvent in liver, gill and intestine respectively) while in dietary exposures EROD was induced only in intestine (3143%) after exposure to high BaP concentrations. GST activities with CDNB were slightly induced in liver (40%) and in gill (66%) after water exposure to BaP, and in intestine after dietary exposure to low BaP concentrations (182%). BaP metabolites in bile increased after both exposure routes, and were highly correlated with EROD activity after water exposure. In summary, this work has shown that the effects of BaP on biotransformation pathways depend on the route of exposure. Moreover, barrier tissues like gills and intestine also have an important role in the first-pass metabolism of BaP, reducing the amount of parent compound that reaches the liver to be metabolized. For that reason, EROD activity as a biomarker of exposure should also be applied in extrahepatic organs, like gills and intestine, in monitoring studies. Biliary BaP type metabolites are good reflectors of contamination levels under both exposure routes, while GST activity with CDNB as substrate, as a phase II enzyme, does not seem a reliable biomarker of exposure to BaP regardless the route of exposure.
Collapse
Affiliation(s)
- Joana Costa
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
| | | | | | | |
Collapse
|
22
|
Pal S, Kokushi E, Cheikyula JO, Koyama J, Uno S. Histopathological effects and EROD induction in common carp exposed to dietary heavy oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:307-314. [PMID: 21272936 DOI: 10.1016/j.ecoenv.2011.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 10/19/2010] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
Common carp, Cyprinus carpio, was exposed to 1% and 5% dietary heavy oil for 2 weeks. Higher polyaromatic hydrocarbons (PAHs) accumulation induced higher hepatic EROD activity in exposure groups compared with the control group. Significant histological alternations were observed in the liver such as nuclear and cellular hypertrophy, accumulation of eosinophilic granules in cytoplasm, nuclear degeneration and fibrillar inclusion in cytoplasm. Severe damage of the kidney was indicated by nuclear and cellular degeneration, and ultimately necrosis in the tubular epithelium cells. In addition, dilated glomerulus with hemorrhage was found in the renal capsule. The mean assessment value (MAV) and degree of tissue changes (DTC), as semi-quantitative analyses, were significantly increased with concentration and duration of exposure. Likewise, frequencies of pathological lesions in both liver and kidney were also increased with concentration and duration of exposure.
Collapse
Affiliation(s)
- Sandipan Pal
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima City 890-0056, Japan
| | | | | | | | | |
Collapse
|
23
|
Lazartigues A, Thomas M, Brun-Bellut J, Feidt C. Bioaccumulation of PAHs and Their Hydroxylated Metabolites in Common Carp (Cyprinus Carpio Linnaeus 1758) in Controlled Environment. Polycycl Aromat Compd 2010. [DOI: 10.1080/10406631003756187] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Uno S, Koyama J, Kokushi E, Monteclaro H, Santander S, Cheikyula JO, Miki S, Añasco N, Pahila IG, Taberna HS, Matsuoka T. Monitoring of PAHs and alkylated PAHs in aquatic organisms after 1 month from the Solar I oil spill off the coast of Guimaras Island, Philippines. ENVIRONMENTAL MONITORING AND ASSESSMENT 2010; 165:501-515. [PMID: 19449110 DOI: 10.1007/s10661-009-0962-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 04/18/2009] [Indexed: 05/27/2023]
Abstract
Following the oil spill accident of the Solar I tanker in 2006 off the coast of Guimaras Island in the Philippines, polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in some aquatic organisms were investigated at Luzaran in Guimaras and Taklong Islands, which were heavily polluted with spilled oil, immediately and 1 month after the accident. The concentrations of total PAHs were 11.9-52.3 ng/g dry weight in fish. Meanwhile, total PAH concentrations in shellfish were 38.0-3,102 ng/g dry weight in Luzaran and 128-236 ng/g dry weight in Taklong. Pyrene, phenanthrene, and fluoranthene were dominant in most fish and chrysene in all shellfish. Significantly higher concentrations of all alkylated homologs were detected in shellfish than in fish. These differences had two possible causes, that is, the differences between fish and shellfish could be attributed to the uptake routes and/or their metabolizing abilities.
Collapse
Affiliation(s)
- Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|