1
|
Zhao Q, Pan J, Bao Y, Wang X, Shi W. Prenatal exposure to bisphenol A causes reproductive damage in F1 male rabbits due to inflammation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117735. [PMID: 39862691 DOI: 10.1016/j.ecoenv.2025.117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Bisphenol A (BPA) is used extensively in producing industrial chemicals such as plastic products, resin, and paper coatings. Concerns have been expressed regarding its possible detrimental consequences, especially on the reproductive system of mammals. Despite extensive study in this domain, there has been no targeted examination of the impact of BPA on F1 generation rabbits. BPA exposure model was developed in pregnant female rabbits to examine the effects of BPA on reproductive hormones, cellular apoptosis, oxidative stress, inflammatory response, and tissue integrity in weaning rabbits. The results indicated that BPA exposure triggered an inflammatory response and oxidative stress, consequently impacting the reproductive system of weaned rabbits and altering reproductive hormone levels. By modulation of the Nrf2 and NF-κB axes, BPA could influence the expression of antioxidant enzymes and inflammatory mediators in the rabbit reproductive system, leading to cell apoptosis and tissue damage. These results underscore the importance of monitoring BPA exposure during pregnancy and emphasize the necessity of implementing measures to mitigate its potential effects on the reproductive health of offspring.
Collapse
Affiliation(s)
- Qianhui Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jialu Pan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| | - Wanyu Shi
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Veterinary Biotenology Innovation Center, Baoding 071001, China.
| |
Collapse
|
2
|
Pei J, Peng J, Wu M, Zhan X, Wang D, Zhu G, Wang W, An N, Pan X. Analyzing the potential targets and mechanisms of chronic kidney disease induced by common synthetic Endocrine Disrupting Compounds (EDCs) in Chinese surface water environment using network toxicology and molecular docking techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177980. [PMID: 39657341 DOI: 10.1016/j.scitotenv.2024.177980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Long-term exposure to NP and OP, as common synthetic endocrine-disrupting chemicals (EDCs) in surface water environments in China, is closely associated with the development of chronic kidney disease (CKD). However, their potential targets and toxicological mechanisms for inducing CKD remain unknown. This study utilizes network toxicology and molecular docking techniques to explore the potential toxic targets and molecular mechanisms of CKD induction by NP and OP. We identify 49 core targets of NP and OP action in CKD using the Comparative Toxicogenomics Database (CTD) and GeneCards databases. Using the STRING database and Cytoscape software, we identify five hub genes: MAPK3, TNF, BCL2, ESR1, and FOS. We construct a nomogram model based on the CKD dataset GSE66494, utilizing these five hub genes. Calibration and ROC curves demonstrate that the model has good diagnostic value for CKD, and the DCA curve indicates that the model has high clinical utility. Single-gene GSEA enrichment analysis identifies five hub genes that influence the development of CKD through multiple biological pathways, revealing that several immune-regulatory signaling pathways are activated. The CIBERSORT algorithm identifies eight types of immune cell infiltration levels that change significantly during CKD development, and correlation analyses suggest that the five hub genes are strongly associated with multiple immune cell infiltrations. The molecular docking results suggested that ESR1, MAPK3, and TNF had the lowest binding energies and high binding affinities with NP and OP. The results of molecular dynamics simulations similarly confirmed the stability of the interactions between ESR1, MAPK3 and TNF proteins with NP and OP. The results of this study provide a theoretical basis for understanding the potential toxicity targets and mechanisms of NP- and OP-induced CKD and promote the application of network toxicology and molecular docking techniques in the study of environmental pollutants.
Collapse
Affiliation(s)
- Jun Pei
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| | - Jinpu Peng
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Moudong Wu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Xiong Zhan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Dan Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Guohua Zhu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Wei Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Nini An
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Xingyu Pan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| |
Collapse
|
3
|
Yalcın B, Onder GO, Goktepe O, Suna PA, Mat OC, Koseoglu E, Cetindag E, Baran M, Bitgen N, Öz Gergı N Ö, Yay A. Enhanced kidney damage induced by increasing nonylphenol doses: impact on autophagy-related proteins and proinflammatory cytokines in rats. Toxicol Mech Methods 2024; 34:867-876. [PMID: 38769906 DOI: 10.1080/15376516.2024.2358348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.
Collapse
Affiliation(s)
- Betul Yalcın
- Department of Histology and Embryology, Adıyaman University, Adıyaman, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Pınar Alisan Suna
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmacy Basic Science, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Özlem Öz Gergı N
- Department of Surgical Medicine Science, Anesthesiology and Reanimation, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Albadrani MS, Aljassim MT, El-Tokhy AI. Pesticide exposure and spontaneous abortion risk: A comprehensive systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117000. [PMID: 39265264 DOI: 10.1016/j.ecoenv.2024.117000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUNDS AND AIM Exposure to pesticides has been proposed as a potential contributor to adverse pregnancy outcomes, possibly through the induction of inflammation, oxidative stress, and disruption of endocrine functions. Nevertheless, the definitive link between prenatal pesticide exposure and the risk of Spontaneous Abortion (SAB) remains uncertain. The objective of this systematic review is to explore and analyze the existing evidence regarding the link between pesticide exposure and the risk of SAB. METHODS A comprehensive systematic literature search was carried out on PubMed, Web of Science, and Scopus from their inception until February 2024 to identify relevant studies exploring the potential link between pesticide exposure and SAB. The frequency of SAB events and the total number of patients in each group were used to calculate the Relative Risk (RR) using the Mantel-Haenszel random-effects model. Heterogeneity among the studies was evaluated by visually inspecting the forest plot and performing the Chi-square test and I2 tests. We also used RevMan version 5.4 for Windows for the analysis. We also used the NIH tool to assess the quality of the included studies. RESULTS The initial database search yielded 2121 results, with 1525 articles remaining after removing duplicates. After screening, 29 articles were eligible for full-text review, and 18 studies (Four case-control, eleven cohorts, three cross-sectional) were included in the meta-analysis, comprising 439,097 participants. All included studies evaluated the primary outcome, SAB. Most of the included studies were cross-sectional in design, and pesticide exposure was primarily assessed through questionnaires administered to patients. We found that most of our observational studies, precisely 12 out of the total, were deemed fair quality. Four studies were rated poor quality, while only two received a good quality rating. The analysis demonstrated a significant 41 % increase in SAB risk among pregnant women exposed to pesticides compared to pregnant women without exposure to pesticides (RR= 1.41, 95 % CI; [1.10, 1.80], P= 0.006). CONCLUSION Our systematic review and meta-analysis revealed a significant 41 % increase in the risk of SAB among pregnant women exposed to pesticides. However, it is essential to acknowledge the limitations of the current evidence: potential publication bias and the inability to establish causality. Moving forward, future research should focus on longitudinal studies, mechanistic insights, and risk reduction strategies. In summary, our findings underscore the urgency of public health measures to protect maternal and fetal health in pesticide-exposed areas. Rigorous research and preventive strategies are crucial to mitigate adverse outcomes.
Collapse
Affiliation(s)
- Muayad Saud Albadrani
- Department of Family and Community Medicine and Medical Education, College of Medicine, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia.
| | - Mohammed Tawfiq Aljassim
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Ahmed I El-Tokhy
- Plant Protection Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
5
|
Qi T, Jing D, Zhang K, Shi J, Qiu H, Kan C, Han F, Wu C, Sun X. Environmental toxicology of bisphenol A: Mechanistic insights and clinical implications on the neuroendocrine system. Behav Brain Res 2024; 460:114840. [PMID: 38157990 DOI: 10.1016/j.bbr.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA) is a widely used environmental estrogen found in a variety of products, including food packaging, canned goods, baby bottle soothers, reusable cups, medical devices, tableware, dental sealants, and other consumer goods. This substance has been found to have detrimental effects on both the environment and human health, particularly on the reproductive, immune, embryonic development, nervous, endocrine, and respiratory systems. This paper aims to provide a comprehensive review of the effects of BPA on the neuroendocrine system, with a primary focus on its impact on the brain, neurons, oligodendrocytes, neural stem cell proliferation, DNA damage, and behavioral development. Additionally, the review explores the clinical implications of BPA, specifically examining its role in the onset and progression of various diseases associated with the neuroendocrine metabolic system. By delving into the mechanistic analysis and clinical implications, this review aims to serve as a valuable resource for studying the impacts of BPA exposure on organisms.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dongqing Jing
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunyan Wu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
6
|
Trasande L, Sargis RM. Endocrine-disrupting chemicals: Mainstream recognition of health effects and implications for the practicing internist. J Intern Med 2024; 295:259-274. [PMID: 38037246 PMCID: PMC11457725 DOI: 10.1111/joim.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Rapidly advancing evidence documents that a broad array of synthetic chemicals found ubiquitously in the environment contribute to disease and disability across the lifespan. Although the early literature focused on early life exposures, endocrine-disrupting chemicals (EDCs) are now understood to contribute substantially to chronic disease in adulthood, especially metabolic, cardiovascular, and reproductive consequences as well as endocrine cancers. The contribution to mortality is substantial, with over 90,000 deaths annually and at least $39 billion/year in lost economic productivity in the United States (US) due to exposure to certain phthalates that are used as plasticizers in food packaging. Importantly, exposures are disproportionately high in low-income and minoritized populations, driving disparities in these conditions. Though non-Hispanic Blacks and Mexican Americans comprise 12.6% and 13.5% of the US population, they bear 16.5% and 14.6% of the disease burden due to EDCs, respectively. Many of these exposures can be modified through safe and simple behavioral changes supported by proactive government action to both limit known hazardous exposures and to proactively screen new industrial chemicals prior to their use. Routine healthcare maintenance should include guidance to reduce EDC exposures, and a recent report by the Institute of Medicine suggests that testing be conducted, particularly in populations heavily exposed to perfluoroalkyl substances-chemicals used in nonstick coatings as well as oil- and water-resistant clothing.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
- NYU Wagner Graduate School of Public Service, New York, NY, USA
| | - Robert M. Sargis
- Department of Medicine; Division of Endocrinology, Diabetes, and Metabolism; University of Illinois at Chicago, Chicago, IL, USA
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
7
|
Bashir DW, Ahmed YH, El-Sakhawy MA. Ameliorative effect of vitamin E and selenium against bisphenol A-induced toxicity in spinal cord and submandibular salivary glands of adult male albino rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:993-1009. [PMID: 35451911 DOI: 10.1080/09603123.2022.2067327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) used in plastic industry. This study evaluate ameliorative effect of vitamin E and selenium in combating BPA toxicity in spinal cord (SC) and submandibular glands (SMGs). Thirty rats divided into three groups [Group I, controls; Group II, BPA orally (25 mg/kg) three times a week, 60 days; Group III, BPA (25 mg/kg) plus vitamin E and selenium in water (1 ml/L/day)]. By histopathological, immunohistochemical, and biochemical investigations. Bisphenol A group showed degenerative alterations. SC gray matter showed pyknotic nuclei and white matter revealed neuropil degeneration. Myelinated fibers showed dispersed myelin. SMGs, exhibited vacuolated cytoplasm in acinar cells. Intense glial fibrillary acidic protein in SC and strong proliferating cell nuclear antigen in acinar and ductal cell nuclei of SMGs. Malondialdehyde elevated in SC and catalase decreased in SMG. Group III, SC and SMG revealed partial recovery. Vitamin E and selenium displayed protective effects against BPA toxicity in SC and SMGs.
Collapse
Affiliation(s)
- Dina W Bashir
- Department of Cytology and Histology, Faculty of Vet Med, Cairo University, Cairo, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Vet Med, Cairo University, Cairo, Egypt
| | - Mohamed A El-Sakhawy
- Department of Cytology and Histology, Faculty of Vet Med, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Peña-Corona SI, Vargas-Estrada D, Chávez-Corona JI, Mendoza-Rodríguez CA, Caballero-Chacón S, Pedraza-Chaverri J, Gracia-Mora MI, Galván-Vela DP, García-Rodríguez H, Sánchez-Bartez F, Vergara-Onofre M, Leyva-Gómez G. Vitamin E (α-Tocopherol) Does Not Ameliorate the Toxic Effect of Bisphenol S on the Metabolic Analytes and Pancreas Histoarchitecture of Diabetic Rats. TOXICS 2023; 11:626. [PMID: 37505591 PMCID: PMC10383361 DOI: 10.3390/toxics11070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether the coadministration of vitamin E (VitE) diminishes the harmful effects provoked by plasticizer bisphenol S (BPS) in the serum metabolites related to hepatic and renal metabolism, as well as the endocrine pancreatic function in diabetic male Wistar rats. Rats were divided into five groups (n = 5-6); the first group was healthy rats (Ctrl group). The other four groups were diabetic rats induced with 45 mg/kg bw of streptozotocin: Ctrl-D (diabetic control); VitE-D (100 mg/kg bw/d of VitE); BPS-D (100 mg/kg bw/d of BPS); The animals from the VitE + BPS-D group were administered 100 mg/kg bw/d of VitE + 100 mg/kg bw/d of BPS. All compounds were administered orally for 30 days. Body weight, biochemical assays, urinalysis, glucose tolerance test, pancreas histopathology, proximate chemical analysis in feces, and the activity of antioxidants in rat serum were assessed. The coadministration of VitE + BPS produced weight losses, increases in 14 serum analytes, and degeneration in the pancreas. Therefore, the VitE + BPS coadministration did not have a protective effect versus the harmful impact of BPS or the diabetic metabolic state; on the contrary, it partially aggravated the damage produced by the BPS. VitE is likely to have an additive effect on the toxicity of BPS.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan I Chávez-Corona
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Caballero-Chacón
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Diana Patricia Galván-Vela
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Helena García-Rodríguez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Sánchez-Bartez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marcela Vergara-Onofre
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
9
|
Morphological, immunohistochemical, and biochemical study on the ameliorative effect of gallic acid against bisphenol A-induced nephrotoxicity in male albino rats. Sci Rep 2023; 13:1732. [PMID: 36720896 PMCID: PMC9889795 DOI: 10.1038/s41598-023-28860-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
This study aimed to determine the effect of gallic acid (GA) on ameliorating bisphenol A (BPA) nephrotoxicity in male rat kidneys. Forty rats were assigned randomly into two groups: control (ten animals) and BPA (40 mg/kg bwt) (thirty animals), the second group was divided into three subgroups: BPA alone, BPA + G50 (50 mg/kg bwt), and BPA + G200 (200 mg/kg bwt). The biochemical analysis included measurements of the contents of nitric oxide, lipid peroxidation, reactive oxygen species, and cytokines (interleukin-1α and interleukin-6) in the kidney. The antioxidant enzymes catalase and superoxide dismutase were also measured in the kidney. Kidney function was assessed by determining uric acid, urea, and creatinine levels. The morphological investigations included hematoxylin and eosin staining for assessing the general histology and determining the glomerular and corpuscular areas, the tubular cell degeneration mean area, and the mean leukocyte infiltration area. Also, collagen fiber intensity and polysaccharide content were analyzed. Furthermore, immunohistochemical, morphometric, and ultrastructural studies were carried out. The results revealed morphological, immunohistochemical, and biochemical alterations in the kidney. Most of these changes showed a satisfactory improvement of kidney damage when BPA-administered rats were treated with GA at both doses. In conclusion, GA exhibited a strong protective effect against BPA-induced nephrotoxicity.
Collapse
|
10
|
Molina-López AM, Bujalance-Reyes F, Urbano MT, Lora-Benítez A, Ayala-Soldado N, Moyano-Salvago R. Analysis of Blood Biochemistry and Pituitary-Gonadal Histology after Chronic Exposure to Bisphenol-A of Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113894. [PMID: 36360773 PMCID: PMC9659152 DOI: 10.3390/ijerph192113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/12/2023]
Abstract
Bisphenol-A is an emerging pollutant that is widespread in the environment, and to which live beings are continuously and inadvertently exposed. It is a substance with an endocrine-disrupting capacity, causing alterations in the reproductive, immunological, and neurological systems, among others, as well as metabolic alterations. Our study aimed to assess its clinical signs, and effects on the most relevant blood biochemical parameters, and to evaluate pituitary and gonadal histology after a chronic exposure of adult mice to different BPA doses (0.5, 2, 4, 50 and 100 µg/kg BW/day) through their drinking water. The biochemical results showed that a marked significant reduction (p < 0.05) was produced in the levels of serum glucose, hypoproteinaemia and hypoalbuminemia in the groups exposed to the highest doses, whereas in the group exposed to 50 µg/kg BW/day the glucose and total protein levels dropped, and the animals exposed to 100 µg/kg BW/day experienced a diminution in albumin levels. In the case of the group exposed to 50 µg/kg BW/day, however, hypertriglyceridemia and hypercholesterolemia were determined, and the blood parameters indicating kidney alterations such as urea and creatinine experienced a significant increase (p < 0.05) with respect to the controls. Regarding the pituitary and gonads, none of the animals exposed presented histological alterations at the doses tested, giving similar images to those of the control group. These results suggest that continuous exposure to low BPA doses could trigger an inhibition of hepatic gluconeogenesis, which would result in a hypoglycaemic state, together with an induction of the enzymes responsible for lipidic synthesis, a mechanism by which the increase in the lipid and serum cholesterol levels could be explained. Likewise, the decline in the protein and albumin levels would be indicative of a possible hepatic alteration, and the increase in urea and creatinine would point to a possible renal perturbation, derived from continuous exposure to this xenobiotic. Based on our results, it could be said that chronic exposure to low BPA doses would not produce any clinical signs or histological pituitary-gonadal effects, but it could cause modifications in some blood biochemical parameters, that could initially indicate a possible hepatic and renal effect.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - María Teresa Urbano
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| |
Collapse
|
11
|
Boyacioglu M, Gules O, Sahiner HS. Protective Effect of Sodium Selenite on 4-Nonylphenol-Induced Hepatotoxicity and Nephrotoxicity in Rats. Biol Trace Elem Res 2021; 199:3001-3012. [PMID: 33026593 DOI: 10.1007/s12011-020-02418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
This study was aimed at evaluating the protective effect of sodium selenite (SS) on DNA integrity, antioxidant/oxidant status, and histological changes on 4-nonylphenol (4-NP)-induced toxicity in liver and kidney tissues of rats. Twenty-four adult male Sprague Dawley rats were divided into 4 groups as control, SS, 4-NP, and SS+4-NP group. Control group was untreated. The SS group was supplemented with SS (0.5 mg/kg/day) and the 4-NP group was given 4-NP (125 mg/kg/day). The rats in the SS+4-NP group received SS followed by 4-NP 1 h later at the abovementioned doses. The treatments were administered by oral gavage for 48 days. DNA damage was analyzed by comet assay in lymphocytes. Oxidative stress parameters were measured, and histological evaluation was performed in liver and kidney tissues. Results showed that SS administration significantly decreased % Tail DNA and Mean Tail Moment in SS+4-NP group as compared with 4-NP group. Catalase activity in liver was significantly lower in 4-NP group only. SS treatment significantly increased the glutathione level and decreased high malondialdehyde level in tissues of the SS+4-NP group as compared with 4-NP group. Dilation of central vein, ballooning degeneration, vacuolar degeneration, and deterioration in the structure of remark cords in 4-NP-administered were alleviated in rats that received SS supplementation before administration of 4-NP. Moreover, glycogen intensity in hepatocytes and the wall of central vein increased in the SS+4-NP group. In addition, the SS supplementation in the SS+4-NP group decreased glomerular degeneration as well as the width of cavum glomeruli and congestion intensity in the kidney. These results indicate that SS may have a protective effect against 4-NP-induced hepato-nephrotoxicity in rats.
Collapse
Affiliation(s)
- Murat Boyacioglu
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey.
| | - Ozay Gules
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Hande Sultan Sahiner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey
| |
Collapse
|
12
|
Shi R, Liu Z, Liu T. The antagonistic effect of bisphenol A and nonylphenol on liver and kidney injury in rats. Immunopharmacol Immunotoxicol 2021; 43:527-535. [PMID: 34282716 DOI: 10.1080/08923973.2021.1950179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bisphenol A (BPA) and nonylphenol (NP) are widely distributed endocrine-disrupting compounds. We aimed to estimate the combined toxicity of BPA and NP at a clinically safe dose (100 μg/kg) in rats. MATERIALS AND METHODS Liver and kidney functions were evaluated by detecting the relevant indicators. Hematoxylin and Eosin (HE) staining was performed to examine the injury in the tissue. TUNEL assay and Western blot were used to detect cell apoptosis and expressions of target factors, respectively. RESULTS The body weight of rats in the BPA + NP group was lighter than that in the BPA or NP group. BPA or NP weakened liver function through increasing levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), cholesterol (CHOL), triglyceride TG, globulin (GLOB), treponemiapallidum (TP), and total bilirubin (TBIL). BPA and NP could induce kidney damage by elevating the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). Moreover, the malondialdehyde (MDA) content was increased, whereas the activities of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX), glutathione sulfotransferase (GSH-ST), catalase (CAT), and peroxidase (POD) were reduced in those groups exposed to BPA or NP. HE staining exhibited injuries of the liver and kidney. Furthermore, the apoptosis of liver and kidney cells was enhanced by exposure to BPA or NP. Additionally, the expressions of CYP2D6, CYP1A1, and CYP2E1 were triggered by the treatment of BPA or NP. The combined effect of BPA and NP seemed to be antagonistic at a low dose. CONCLUSION BPA and NP may have potential interactions.
Collapse
Affiliation(s)
- Rui Shi
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Tong Liu
- Department of General surgery, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Wang X, Gao M, Wang Z, Cui W, Zhang J, Zhang W, Xia Y, Wei B, Tang Y, Xu X. Hepatoprotective effects of oridonin against bisphenol A induced liver injury in rats via inhibiting the activity of xanthione oxidase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145301. [PMID: 33515877 DOI: 10.1016/j.scitotenv.2021.145301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is widely used to manufacture packaging materials for various daily necessities and causes harmful effects in organs, especially liver injury, by generating oxidative stress. Oridonin, an active diterpenoid isolated from Rabdosia rubescens (Hemsl.) Hara, has been reported to possess a wide range of pharmacological activities including anti-inflammatory, antioxidative and antiapoptotic effects. However, the role of oridonin in BPA--induced liver injury and its potential protective mechanism have not been well characterized. In this research, we explored the metabolic alterations in the liver tissue of rats after exposure to BPA with or without pretreatment with oridonin for 14 days by metabolomics analysis based on UPLC-MS/MS. Rats were randomly divided into groups as follows: Control, Vehicle, Oridonin (10 mg/kg), Bisphenol A (500 mg/kg), bisphenol A + Oridonin (500 + 10 mg/kg), Bisphenol A + Diammonium glycyrrhizinate (500 + 40 mg/kg). The biochemical results showed that oridonin significantly reduced the levels of AST and ALT (P < 0.05), ameliorated the abnormal histopathological changes and reduced hepatic apoptosis compared with the BPA group. Furthermore, metabolomics results revealed that purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism were reprogrammed, based on 28 identified significant differential metabolites among the Vehicle, BPA and BPA + oridonin groups. In-depth studies demonstrated that pretreatment with oridonin may play a protective role by restoring BPA-induced changes in oxidative stress and the activity of oxidase (XOD) (P < 0.05). Additionally, oridonin could inhibit the activity of XOD by binding to it, therefore decreasing the reactive oxygen species (ROS) level, upregulating the content of hypoxanthine and xanthine, and reducing the level of uric acid in the liver (P < 0.05). This research presents the potential protective mechanisms of oridonin on BPA-induced liver injury at the metabolic level, which might be used to identify new protective agents that prevent BPA-induced liver injury.
Collapse
Affiliation(s)
- Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ming Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zihan Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Weiqi Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingxian Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Weijie Zhang
- Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Key Laboratory of Rehabilitation Medicine, Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Kangfuqian Street, Zhengzhou, Henan 450052, PR China
| | - Yu Xia
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Youcai Tang
- Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Key Laboratory of Rehabilitation Medicine, Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Kangfuqian Street, Zhengzhou, Henan 450052, PR China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
14
|
Park HJ, Lee R, Yoo H, Hong K, Song H. Nonylphenol Induces Apoptosis through ROS/JNK Signaling in a Spermatogonia Cell Line. Int J Mol Sci 2020; 22:ijms22010307. [PMID: 33396729 PMCID: PMC7796095 DOI: 10.3390/ijms22010307] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Nonylphenol (NP) is an endocrine-disruptor chemical that negatively affects reproductive health. Testes exposure to NP results in testicular structure disruption and a reduction in testicular size and testosterone levels. However, the effects of NP on spermatogonia in testes have not been fully elucidated. In this study, the molecular mechanisms of NP in GC-1 spermatogonia (spg) cells were investigated. We found that cell viability significantly decreased and apoptosis increased in a dose-dependent manner when GC-1 spg cells were exposed to NP. Furthermore, the expression levels of the pro-apoptotic proteins increased, whereas anti-apoptosis markers decreased in NP-exposed GC-1 spg cells. We also found that NP increased reactive oxygen species (ROS) generation, suggesting that ROS-induced activation of the MAPK signaling pathway is the molecular mechanism of NP-induced apoptosis in GC-1 spg cells. Thus, NP could induce c-Jun phosphorylation; dose-dependent expression of JNK, MKK4, p53, and p38; and the subsequent inhibition of ERK1/2 and MEK1/2 phosphorylation. The genes involved in apoptosis and JNK signaling were also upregulated in GC-1 spg cells treated with NP compared to those in the controls. Our findings suggest that NP induces apoptosis through ROS/JNK signaling in GC-1 spg cells.
Collapse
Affiliation(s)
| | | | | | | | - Hyuk Song
- Correspondence: ; Tel.: +82-2-450-0562
| |
Collapse
|
15
|
Gu Z, Jia R, He Q, Cao L, Du J, Jeney G, Xu P, Yin G. Oxidative stress, ion concentration change and immune response in gills of common carp (Cyprinus carpio) under long-term exposure to bisphenol A. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108711. [PMID: 31958508 DOI: 10.1016/j.cbpc.2020.108711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA) is a well-known phenolic environmental estrogen, widely distributed in the aquatic environment, which poses a toxic risk to the health of aquatic organisms. This study aimed to assess the effect of BPA on common carp gills by analyzing oxidative stress, ion equilibrium and immune response. Fish were exposed to five concentrations of BPA (0, 0.01, 0.1, 0.5, and 2 mg/L) for 30 days. Then gills were collected to assay biochemical parameters and gene expression. The results showed that BPA could decrease the levels of total antioxidant capacity (T-AOC), catalase (CAT), glutathione (GSH) and glutathione S-transferase (GST) and increase the levels of superoxide dismutase (SOD), malondialdehyde (MDA) and 8-hydroxy-2 deoxyguanosine (8-OHdG). The gene expression showed that BPA (2 mg/L) could affect the nuclear erythroid 2-related factor 2 (nrf2) signaling pathway, upregulate the gene expression of nrf2 and heme oxygenase 1 (ho-1). Meanwhile, BPA was found to change the activity of Na+/K+ ATPase, and increased the concentrations of Na+ and Ca2+ in gills of common carp. Also, high BPA concentration (0.5 or 2 mg/L) exposure increased the activity of alkaline phosphatase (AKP), blocked mRNA level of lysozyme-c (c-lyz), activated Toll-like receptors (TLRs) signaling pathway, enhanced the mRNA levels of toll-like receptor 2 (tlr2), receptor 4 (tlr4), myeloid differentiation factor 88 (myd88), interferon regulatory factor 3 (irf3), interleukin 1β (il-1β), interleukin 6 (il-6) and interleukin 10 (il-10). Overall, these results suggested that high BPA could induce oxidative damage, ion imbalance, immunosuppression and inflammatory response in gills of common carp.
Collapse
Affiliation(s)
- Zhengyan Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qin He
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Galina Jeney
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; National Agricultural Research Center, Research Institute for Fisheries and Aquaculture, Anna Light 8, Szarvas 5440, Hungary
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
16
|
Güleş Ö, Kum Ş, Yıldız M, Boyacıoğlu M, Ahmad E, Naseer Z, Eren Ü. Protective effect of coenzyme Q10 against bisphenol-A-induced toxicity in the rat testes. Toxicol Ind Health 2020; 35:466-481. [PMID: 31364507 DOI: 10.1177/0748233719862475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study was conducted to investigate the antioxidant, histomorphometric, histochemical, immunohistochemical, biochemical, and cytological effects of coenzyme Q10 (CoQ10) against bisphenol-A (BPA)-induced testicular toxicity in rats. A total of 40 adult male Wistar rats were divided into five equal groups. The control group remained untreated. The vehicle control group was administered corn oil (2 ml/kg/day), the BPA group was given BPA (100 mg/kg/day), the CoQ10 group was supplemented with CoQ10 (10 mg/kg/day), and the rats in the CoQ10-BPA group received CoQ10 (10 mg/kg/day) followed by BPA (100 mg/kg/day) 1 h later. The treatments were administered by oral gavage for 14 days. Results showed that the seminiferous tubule diameters (STDs) and seminiferous epithelium heights (SEHs) at stages VII-VIII and XII-XIV, number of undifferentiated embryonic cell transcription factor-1 (UTF-1) positive cells per tubule, UTF-1 positive tubules (%), plasma glutathione (GSH), and serum superoxide dismutase activities, testicular GSH activity and sperm viability (%) decreased whereas the number of terminal dUTP nick end labeling (TUNEL) positive cells per tubule, TUNEL positive tubules (%), testicular and serum malondialdehyde (MDA) levels, and the rate of mid-piece sperm abnormality increased in the BPA administered group. However, while the STDs at stages VII-VIII and XII-XIV, SEHs at stages VII-VIII, plasma GSH, and serum SOD activities increased, serum MDA level decreased in the CoQ10-BPA group. In conclusion, these results suggest a protective effect of CoQ10 against BPA-induced testicular toxicity in rats.
Collapse
Affiliation(s)
- Özay Güleş
- 1 Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Şadiye Kum
- 1 Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Mustafa Yıldız
- 2 Department of Occupational Health and Safety, Çan School of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Murat Boyacıoğlu
- 3 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Ejaz Ahmad
- 4 Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Zahid Naseer
- 5 Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Ülker Eren
- 1 Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
17
|
Mahdavinia M, Alizadeh S, Raesi Vanani A, Dehghani MA, Shirani M, Alipour M, Shahmohammadi HA, Rafiei Asl S. Effects of quercetin on bisphenol A-induced mitochondrial toxicity in rat liver. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:499-505. [PMID: 31217929 PMCID: PMC6556511 DOI: 10.22038/ijbms.2019.32486.7952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recognized as a distinguished environmental and global toxicant, Bisphenol A (BPA) affects the liver, which is a vital body organ, by the induction of oxidative stress. The present study was designed to investigate the protective effect of quercetin against BPA in hepatotoxicity in Wistar rats and also, the activity of mitochondrial enzymes were evaluated. MATERIALS AND METHODS To this end, 32 male Wistar rats were divided into four groups (six rats per group), including control, BPA (250 mg/kg), BPA + quercetin (75 mg/kg), and quercetin (75 mg/kg). RESULTS The BPA-induced alterations were restored in concentrations of alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) due to the quercetin treatment (75 mg/kg) (all P<0.001). While the levels of mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and malondialdehyde (MDA) decreased by the quercetin treatment in the liver mitochondria (P<0.001), catalase (CAT) and glutathione (GSH) increased (P<0.001). CONCLUSION According to the results, the potential hepatotoxicity of BPA can be prevented by quercetin, which protects the body against oxidative stress and BPA-induced biochemical toxicity. Moreover, the reproductive toxicity of BPA after environmental or occupational exposures can be potentially prohibited by quercetin.
Collapse
Affiliation(s)
- Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Said Alizadeh
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Raesi Vanani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Shirani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hedayat Allah Shahmohammadi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sirous Rafiei Asl
- Department of Clinical Pathology, School of Veterinary Medicine, University of Shahid Chamran, Ahvaz, Iran
| |
Collapse
|
18
|
Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Demirel HH, Kucukkurt I, Eryavuz A, Kara R, Varol N, Zhu K. Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicol Res (Camb) 2019; 8:262-269. [PMID: 30997025 PMCID: PMC6425992 DOI: 10.1039/c8tx00312b] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/07/2019] [Indexed: 11/21/2022] Open
Abstract
Bisphenol A (BPA) is one of the most produced chemicals in the world and has been widely employed in the food industry. Continuous and widespread exposure to BPA through drinking water and food leads to health concerns for humans. This study evaluated the effects of boron (B) on BPA-mediated oxidative stress in male Wistar albino rats. Rats were equally divided into 5 groups; corn oil was given orally to the control group; 25 mg kg-1 of BPA dissolved in corn oil was given orally to the second group. All other groups received the same dose of BPA and different doses of B (5, 10, and 20 mg kg-1 per day, respectively) orally for 30 days. The administration of BPA significantly decreased glutathione levels and increased malondialdehyde levels in rat tissues. Furthermore, BPA treatment reduced the catalase and superoxide dismutase activities in tissues and erythrocytes. Also, mRNA expression levels of TNF-α, IL-1β, and IL-6 in the brain, liver, and testes of rats were augmented, whereas IL-10 was decreased with BPA treatment. Besides, BPA treatment adversely altered biochemical parameters and caused damage to the cell integrity of rat tissues. However, B administration reversed BPA-induced alterations in rat tissues in a dose-dependent manner. Furthermore, B exhibited antioxidant and anti-inflammatory effects and regulated metabolic and histopathological alterations in male Wistar albino rats exposed to BPA.
Collapse
Affiliation(s)
- Ulas Acaroz
- Afyon Kocatepe University , Veterinary Faculty , Department of Food Hygiene and Technology , Afyonkarahisar , Turkey . ; ; Tel: +90272281312-2891
| | - Sinan Ince
- Afyon Kocatepe University , Veterinary Faculty , Department of Pharmacology and Toxicology , Afyonkarahisar , Turkey
| | - Damla Arslan-Acaroz
- Afyon Kocatepe University , Bayat Vocational School , Afyonkarahisar , Turkey
| | - Zeki Gurler
- Afyon Kocatepe University , Veterinary Faculty , Department of Food Hygiene and Technology , Afyonkarahisar , Turkey . ; ; Tel: +90272281312-2891
| | | | - Ismail Kucukkurt
- Afyon Kocatepe University , Veterinary Faculty , Department of Biochemistry , Afyonkarahisar , Turkey
| | - Abdullah Eryavuz
- Afyon Kocatepe University , Veterinary Faculty , Department of Physiology , Afyonkarahisar , Turkey
| | - Recep Kara
- Afyon Kocatepe University , Veterinary Faculty , Department of Food Hygiene and Technology , Afyonkarahisar , Turkey . ; ; Tel: +90272281312-2891
| | - Nuray Varol
- Afyon Kocatepe University , Faculty of Medicine , Department of Medical Genetics , 03200 Afyonkarahisar , Turkey
| | - Kui Zhu
- China Agricultural University , College of Veterinary Medicine , Beijing, National Center for Veterinary Drug Safety Evaluation , 100193 , China
| |
Collapse
|
19
|
Khalaf AA, Ahmed WMS, Moselhy WA, Abdel-Halim BR, Ibrahim MA. Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 2018; 38:398-408. [DOI: 10.1177/0960327118816134] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bisphenol A (BPA) is a widespread compound associated with the manufacture of many consumer products. The BPA-induced reproductive toxicity was reported to be mainly attributed to oxidative stress. However, the role of antioxidants usage to decrease the injurious effects of BPA, on male reproductive functions, remains to unveil. The present research is established to evaluate the role of selenium (Se) and its nano form (NSe) as protective agents to alleviate BPA-induced testicular toxicity. Ninety mature albino male rats were assigned into six equal groups: negative control; orally BPA 150 mg/kg; Se 3 mg/kg; NSe 2 mg/kg; both BPA 150 mg/kg and Se 3 mg/kg; and BPA 150 mg/kg + NSe 2 mg/kg. The experiment lasted for 70 consecutive days, and then serum was collected for estimation of prostatic acid phosphatase. Testicular tissues were subjected to measurement of antioxidant status, lipid peroxidation, DNA damage, and expression of some apoptotic genes. Our results reported that BPA-induced marked testicular damage evidenced by significant elevations in serum prostatic acid phosphatase activity, malondialdehyde levels, a decrease in testicular catalase activity and reduced glutathione level. Moreover, marked DNA internucleosomal fragmentation pattern as well as upregulation of cyclooxygenase-2 and estrogen receptor-2 NSe genes were detected. Coadministration of Se and NSe attenuated the reproductive toxicity induced by BPA via improvement of the antioxidant activity, genetic changes, and restoration of testicular tissue nearly as control one. These results indicated that both Se and NSe forms could be used as reproductive protective agents against the detrimental effect induced by BPA. However, the NSe surpassed the selenium in modulating the DNA laddering, and the studied gene expression levels, and offered a potent reproductive protection.
Collapse
Affiliation(s)
- AA Khalaf
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - WMS Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - WA Moselhy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - BR Abdel-Halim
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - MA Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M. In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. Int J Biol Macromol 2018; 120:2418-2430. [DOI: 10.1016/j.ijbiomac.2018.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
|
21
|
Maryam S, Khan MR, Shah SA, Zahra Z, Majid M, Sajid M, Ali S. In vitro antioxidant efficacy and the therapeutic potential of Wendlandia heynei (Schult.) Santapau & Merchant against bisphenol A-induced hepatotoxicity in rats. Toxicol Res (Camb) 2018; 7:1173-1190. [PMID: 30510687 PMCID: PMC6220732 DOI: 10.1039/c7tx00322f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of present study was to access the antioxidant and ameliorative efficacy of Wendlandia heynei stem bark's crude methanol extract (WHBM) against bisphenol A (BPA)-induced hepatotoxicity in the rat moel. WHBM and its derived fractions exhibited promising activity for the scavenging of DPPH, hydroxyl and nitrite radicals, iron chelation, and for the inhibition of β-carotene oxidation. The administration of BPA to Sprague Dawley rats (25 mg kg-1) for 28 days resulted in an elevated (p < 0.01) level of aspartate transaminase, alanine transaminase, alkaline phosphatase, and globulin, and at the same time a decrease (p < 0.01) in the level of total protein and albumin in the serum of the rats. In hepatic samples, the levels of catalase, peroxidase, superoxide dismutase, glutathione-S-transferase, and reduced glutathione were decreased (p < 0.05), whereas thiobarbituric acid reactive substances, hydrogen peroxide, and the nitrite content were increased (p < 0.05) with BPA treatment to the rats. The administration of WHBM to BPA-intoxicated rats restored the altered levels of these parameters toward the control animals. Histopathological alterations of the hepatic tissues induced with BPA were restored with WHBM co-treatment to the rats. HPLC-DAD analysis ensured the occurrence of rutin, catechin, and caffeic acid in WHBM and WHBE. The results of this study suggested that the presence of phenolics and flavonoids in W. heynei bark might be responsible for it exhibiting antioxidant potential during the in vitro and in vivo studies and hence it has potential to be used as a therapeutic agent against oxidative stress associated diseases.
Collapse
Affiliation(s)
- Sonia Maryam
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan . ; ; ; ;
| | - Muhammad Rashid Khan
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan . ; ; ; ;
| | - Sayed Afzal Shah
- Department of Plant Sciences , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan .
| | - Zartash Zahra
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan . ; ; ; ;
| | - Muhammad Majid
- Department of Pharmacy , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan .
| | - Moniba Sajid
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan . ; ; ; ;
| | - Saima Ali
- Department of Biochemistry , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan . ; ; ; ;
| |
Collapse
|
22
|
Fawzy EI, El Makawy AI, El-Bamby MM, Elhamalawy HO. Improved effect of pumpkin seed oil against the bisphenol-A adverse effects in male mice. Toxicol Rep 2018; 5:857-863. [PMID: 30167376 PMCID: PMC6111037 DOI: 10.1016/j.toxrep.2018.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The present study was conducted to evaluate the ameliorative role of pumpkin seed oil (PSO) against potential adverse effects of bisphenol-A (BPA) in male mice. BPA was administered to the mice orally at a dose of 50 mg/kg body weight once a day for 28 successive days. While, PSO was administered to the mice orally at 1 mL/kg b w either before, with or after treatment of BPA, once a day for 28 successive days. The studied parameters were DNA damage evaluation using comet assay in liver and testes cells and micronucleus test in bone marrow; and histopathological examination of liver and testes tissues. Results revealed that BPA induced DNA damage in tested cells and marked histopathological alterations in liver and testes. In contrast, PSO treatments alleviated DNA damage and improved the histopathological alterations in liver and testes tissues. Furthermore, administration of mice with the PSO before BPA treatment was the best regimen in the alleviation of the adverse effects of BPA, followed by administration of PSO after then with treatment of BPA. It can be concluded that PSO may has a protective role against BPA genotoxicity and histopathological alterations in male mice.
Collapse
Affiliation(s)
- Eissa I Fawzy
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Aida I El Makawy
- Department of Cell Biology, National Research Center, Dokki, Giza, Egypt
| | - M Mahmoud El-Bamby
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - H Osama Elhamalawy
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Kazmi STB, Majid M, Maryam S, Rahat A, Ahmed M, Khan MR, Haq IU. Quercus dilatata Lindl. ex Royle ameliorates BPA induced hepatotoxicity in Sprague Dawley rats. Biomed Pharmacother 2018; 102:728-738. [DOI: 10.1016/j.biopha.2018.03.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
|
24
|
Ahmed RG, Walaa GH, Asmaa FS. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicol Ind Health 2018; 34:397-407. [DOI: 10.1177/0748233718757082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to assess the effects of neonatal bisphenol A (BPA) administration on neuroendocrine features (the thyroid–brain axis). BPA (20 or 40 µg/kg) was orally administered to juvenile male albino rats ( Rattus norvegicus) from postnatal days (PNDs) 15 to 30. Both doses resulted in lower serum thyroxine (T4), triiodothyronine (T3), and growth hormone levels and higher thyrotropin level than the control levels at PND 30. In the neonatal cerebellum and cerebrum, vacuolation, pyknosis, edema, degenerative changes, and reductions in the size and number of the cells were observed in both treated groups. Alternatively, elevations in oxidative markers (lipid peroxidation, nitric oxide, and hydrogen peroxide [H2O2]) at both dose levels were recorded at PND 30, along with decreased activities of antioxidant markers (ascorbic acid, total thiol [t-SH], glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and catalase) with respect to control levels. Thus, the BPA-induced hypothyroid state may disturb the neonatal thyroid–brain axis via production of free radicals, and this could damage the plasma membrane and cellular components, delaying cerebrum and cerebellum development.
Collapse
Affiliation(s)
- RG Ahmed
- Anatomy and Embryology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - GH Walaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - FS Asmaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
25
|
Kim JH, Hong YC. Increase of urinary malondialdehyde level by bisphenol A exposure: a longitudinal panel study. Environ Health 2017; 16:8. [PMID: 28202054 PMCID: PMC5312571 DOI: 10.1186/s12940-017-0221-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/14/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND To verify oxidative stress as a possible mechanism that establishes a relationship between exposure to bisphenol A (BPA) and adverse health outcomes in the elderly Korean population, we evaluated the relation between visit-to-visit variations in urinary BPA and oxidative stress biomarker. METHODS To assess the relation between BPA and urinary malondialdehyde (MDA) as an oxidative stress biomarker, we used a mixed effect model after controlling for age, sex, BMI, drinking status, exercise, urinary cotinine level, PM10 on lag day 2, and mean temperature and dew point on the day. The relation between exposure to BPA and MDA level by sex of participants and polymorphisms of oxidative stress-related genes (COX2, EPHX1, HSP70-hom, PON1, eNOS, CAT, DRD2, SOD2, and MPO) was also evaluated. RESULTS A significant association was found for BPA with MDA in both male and female elderly participants (male, β = 0.19 and p = 0.0003; female, β = 0.18 and p < .0001; and total, β = 0.18 and p < .0001). Furthermore, the association of BPA with MDA was found regardless of any genotype of the nine oxidative stress-related genes. CONCLUSIONS The results of our study suggest a strong association of BPA with oxidative stress, not related with sex and oxidative stress-related gene polymorphisms.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, Republic of Korea
- Institute of Environmental Medicine, Seoul National University Medical Research Center, 28 Yongon-dong, Chongno-gu, Seoul, Republic of Korea
| |
Collapse
|
26
|
Khan S, Beigh S, Chaudhari BP, Sharma S, Aliul Hasan Abdi S, Ahmad S, Ahmad F, Parvez S, Raisuddin S. Mitochondrial dysfunction induced by Bisphenol A is a factor of its hepatotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1922-1934. [PMID: 26450347 DOI: 10.1002/tox.22193] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA), an estrogenic and endocrine disrupting agent, is widely used in manufacturing of polycarbonate plastics and epoxy resins. BPA and other endocrine disrupting chemicals (EDCs) act via multiple mechanisms including interference with mitochondrial functions. Mitochondria are the hub of cellular energy pool and hence are the target of many EDCs. We studied perturbation of activities of mitochondrial enzymes by BPA and its possible role in hepatotoxicity in Wistar rats. Rats were exposed to BPA (150 mg/kg, 250 mg/kg, 500 mg/kg per os, for 14 days) and activities of enzymes of mitochondrial electron transport chain (ETC) were measured. Besides, other biochemical parameters such as superoxide generation, protein oxidation, and lipid peroxidation (LPO) were also measured. Our results indicated a significant decrease in the activities of enzymes of mitochondrial ETC complexes, i.e., complex I, II, III, IV, and V along with significant increase in LPO and protein oxidation. Additionally, a significant increase in mitochondrial superoxide generation was also observed. All these findings could be attributed to enhanced oxidative stress, decrease in reduced glutathione level, and decrease in the activity of superoxide dismutase in rat liver mitochondria isolated from BPA-treated rats. BPA treatment also caused a significant increase in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase indicating its potential hepatotoxicity. Furthermore, histopathological findings revealed marked edema formation, hepatocellular degeneration, and necrosis of liver tissue in BPA-exposed rats. In conclusion, this study provides an evidence of impaired mitochondrial bioenergetics and liver toxicity after high-dose BPA exposure in rats. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1922-1934, 2016.
Collapse
Affiliation(s)
- Somaira Khan
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Saba Beigh
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Bhushan P Chaudhari
- Central Pathology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Shikha Sharma
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Sayed Aliul Hasan Abdi
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Shahzad Ahmad
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Firoz Ahmad
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Sheikh Raisuddin
- Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| |
Collapse
|
27
|
Huang W, Quan C, Duan P, Tang S, Chen W, Yang K. Nonylphenol induced apoptosis and autophagy involving the Akt/mTOR pathway in prepubertal Sprague-Dawley male rats in vivo and in vitro. Toxicology 2016; 373:41-53. [PMID: 27832966 DOI: 10.1016/j.tox.2016.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 01/14/2023]
Abstract
This research explores the detrimental effect of nonylphenol (NP) to prepubertal Sprague-Dawley male rats in vivo and in vitro. Herein, forty-two 3-week-old rats were randomly divided into six groups, which were treated with NP (0, NAC, 25, 50, 100, 100+NACmg/kg/2d for 30 consecutive days) by intraperitoneal injection. NP induced a reduction in testosterone (15.58%, 17.23%, 13.38% in 25, 50, 100mg/kg group, respectively), triggered apoptosis related to oxidative stress, and disturbed mRNA and/or protein levels of PI3K, PTEN, PDK1, p-Akt, p-mTOR, p70S6K, caspase-3, LC3B. NP induced morphological abnormality in epididymal sperm (2.00-, 3.02-fold in 50, 100mg/kg group, respectively). Pretreatment with NAC, attenuated NP-induced ROS production; recovered testosterone in serum, and ameliorated toxic effect in epididymal sperm. Sertoli cells were isolated, purified, treated with NP (0, 10, 20, and 30μM) for 12h. NP disturbed mRNA and/or protein levels of caspase-3, cleave-caspase-3, LC3B involving the PI3K/Akt/mTOR pathway. It also decreased protein levels of ABP, FSHR, N-cadherin, transferrin, vimentin; disturbed the gene levels of all, but vimentin. Pretreatment with wortmannin, alleviated an NP-induced reduction in protein levels of PI3K and PTEN. In conclusion, excess NP exposure induces apoptosis and autophagy, causes reproductive lesions involving the PI3K/AKT/mTOR pathway both in vivo and in vitro. It also triggers oxidative stress and hormonal deficiency, reduces semen quality.
Collapse
Affiliation(s)
- Wenting Huang
- MOE Key Laboratory of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Chao Quan
- MOE Key Laboratory of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Peng Duan
- MOE Key Laboratory of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Sha Tang
- MOE Key Laboratory of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Wei Chen
- MOE Key Laboratory of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Kedi Yang
- MOE Key Laboratory of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.
| |
Collapse
|
28
|
Jahan S, Ain QU, Ullah H. Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats. Syst Biol Reprod Med 2016; 62:114-24. [DOI: 10.3109/19396368.2015.1115139] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qurat Ul Ain
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hizb Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
29
|
Wang PW, Chen ML, Huang LW, Yang W, Wu KY, Huang YF. Prenatal nonylphenol exposure, oxidative and nitrative stress, and birth outcomes: A cohort study in Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:145-151. [PMID: 26367708 DOI: 10.1016/j.envpol.2015.08.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/22/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
Data concerning the effects of prenatal exposures to nonylphenol (NP) and oxidative stress on neonatal birth outcomes from human studies are limited. A total of 146 pregnant women were studied (1) to investigate the association between prenatal NP exposure and maternal oxidative/nitrative stress biomarkers of DNA damage (8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua)) and lipid peroxidation (8-iso-prostaglandin F2α (8-isoPF2α), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)) and (2) to explore the associations among oxidative stress biomarkers, NP exposure, and neonatal birth outcomes, including gestational age, birth weight, length, Ponderal index, and head and chest circumferences. NP significantly increased the 8-OHdG and 8-NO2Gua levels. All infants born to mothers with urinary 8-OHdG levels above the median exhibited a significantly shorter gestational duration (Badjusted = -4.72 days; 95% CI: -8.08 to -1.36 days). No clear association was found between NP levels and birth outcomes. Prenatal 8-OHdG levels might be a novel biomarker for monitoring fetal health related to NP exposure.
Collapse
Affiliation(s)
- Pei-Wei Wang
- Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Winnie Yang
- Division of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
30
|
Wang PW, Chen ML, Huang LW, Yang W, Wu KY, Huang YF. Nonylphenol exposure is associated with oxidative and nitrative stress in pregnant women. Free Radic Res 2015; 49:1469-78. [DOI: 10.3109/10715762.2015.1088644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Pei-Wei Wang
- Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics and Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Winnie Yang
- Division of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Mahmoudi A, Ghorbel H, Bouallegui Z, Marrekchi R, Isoda H, Sayadi S. Oleuropein and hydroxytyrosol protect from bisphenol A effects in livers and kidneys of lactating mother rats and their pups'. ACTA ACUST UNITED AC 2015; 67:413-25. [PMID: 25963946 DOI: 10.1016/j.etp.2015.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a chemical found in hard plastics and the coatings of food and drinks cans which can behave in a similar way to estrogen and other hormones in the human body. This study aimed to evaluate the significance of the treatment with oleuropein and hydroxytyrosol olive leaves rich extracts in reducing functional perturbations and oxidative stress arising from BPA treatment in livers and kidneys of lactating mother rats and their pups'. For this, four groups of lactating mothers were used: controls (group A), treated with bisphenol A (group B), treated with bisphenol A and oleuropein (group C) and with bisphenol A and hydroxytyrosol (group D). As results, we had found, in BPA treated group, either in mothers or in their pups', a significant decrease in morphological parameters, in catalase activity and in total antioxidant capacity associated to an increase in malondialdehyde levels in livers and kidneys. For these rats, the histological aspect showed, also, deep changes. Indeed, we had observed, in livers, hepatocellular necrosis associated to leucocytes infiltration and in kidneys tubular and glomerular necrosis. The co-treatments with BPA and oleuropein (group C) or with BPA and hydroxytyrosol (group D) ameliorate all morphological, biochemical and histological parameters as compared to BPA treated group B. The analysis of BPA and its derivatives with LC-MS/MS showed changes in their localizations between serum, livers or kidneys in all studied groups. In conclusion, the present study demonstrates the hepato-protective and reno-protective effects of oleuropein and hydroxytyrosol olive leaves extracts from BPA and its derivates toxicity.
Collapse
Affiliation(s)
- Asma Mahmoudi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3038 Sfax, Tunisia
| | - Héla Ghorbel
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3038 Sfax, Tunisia.
| | - Zouhair Bouallegui
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3038 Sfax, Tunisia
| | - Rim Marrekchi
- Laboratory of Biochemistry, CHU Habib Bourguiba, 3029 Sfax, Tunisia
| | - Hiroko Isoda
- Alliance for Research on North Africa (ARENA), Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3038 Sfax, Tunisia
| |
Collapse
|
32
|
DNA damage in organs of female and male mice exposed to nonylphenol, as a single agent or in combination with ionizing irradiation: A comet assay study. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 772:14-9. [DOI: 10.1016/j.mrgentox.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/07/2023]
|
33
|
Morgan AM, El-Ballal SS, El-Bialy BE, El-Borai NB. Studies on the potential protective effect of cinnamon against bisphenol A- and octylphenol-induced oxidative stress in male albino rats. Toxicol Rep 2014; 1:92-101. [PMID: 28962230 PMCID: PMC5598475 DOI: 10.1016/j.toxrep.2014.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
Among the numerous chemicals discharged into the surrounding environment, bisphenol A (BPA) and octylphenol (OP) have been shown to increase oxidative stress in body by disturbing the prooxidant/antioxidant balance of cells. Cinnamon aqueous extract (CAE) is a natural product rich in polyphenolic compounds that have antioxidant activity. This study was designed to investigate the protective efficacy of CAE against oxidative disorders induced by BPA and OP in male albino rats. Animals were divided into 6 groups (10 rats each) and treated orally, 3 times weekly for 50 days. Group 1: control vehicle (olive oil); group 2 (25 mg BPA/kg b.wt./day); group 3 (25 mg OP/kg b.wt./day); group 4 (200 mg CAE/kg b.wt./day); group 5 (CAE 2 h before BPA administration); and group 6 (CAE 2 h before OP administration). BPA- and OP-exposed groups showed insignificant elevation in the final body weight; weight gains and significant reduction only in the relative kidneys weight. Also, BPA and OP exposure resulted in significant increase in serum urea, creatinine and kidney, brain, testicular malondialdehyde (MDA) levels. Significant reduction in tissues reduced glutathione (GSH) contents; catalase (CAT) and superoxide dismutase (SOD) activities were also recorded in BPA and OP exposed animals compared to the control vehicle group. Pretreatment with CAE 2 h either before BPA or OP administration ameliorated the BPA- and OP-induced body weight; weight gains and relative organs weight changes and biochemical adverse effects. CAE pretreatment also protected against the recorded pathological changes in kidney, brain and testis. In conclusion, CAE could ameliorate the oxidative toxic effects of BPA and OP indicating its protective antioxidant effect.
Collapse
Affiliation(s)
- Ashraf M Morgan
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Salah S El-Ballal
- Pathology Department, Faculty of Veterinary Medicine, El-Sadat City University, Egypt
| | - Badre E El-Bialy
- Forensic Medicine & Toxicology Department, Faculty of Veterinary Medicine, El-Sadat City University, Egypt
| | - Nermeen B El-Borai
- Forensic Medicine & Toxicology Department, Faculty of Veterinary Medicine, El-Sadat City University, Egypt
| |
Collapse
|
34
|
Snedeker SM, Hay AG. The Alkylphenols Nonylphenol and Octylphenol in Food Contact Materials and Household Items: Exposure and Health Risk Considerations. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2014. [DOI: 10.1007/978-1-4471-6500-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Chen X, Chen M, Xu B, Tang R, Han X, Qin Y, Xu B, Hang B, Mao Z, Huo W, Xia Y, Xu Z, Wang X. Parental phenols exposure and spontaneous abortion in Chinese population residing in the middle and lower reaches of the Yangtze River. CHEMOSPHERE 2013; 93:217-222. [PMID: 23714150 DOI: 10.1016/j.chemosphere.2013.04.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Widespread use of phenols has led to ubiquitous exposure to phenols. In experimental animals, phenols increased resorptions, reduced live litter size and fetal body weights. However, there are limited epidemiological evidences of the relationships between exposure to phenols and pregnancy outcomes. We evaluated the associations between parental urinary levels of various phenols and spontaneous abortion in a Chinese population residing in the middle and lower reaches of the Yangtze River. A case-control study was conducted that included 70 case couples with medically unexplained spontaneous abortion and 180 control couples who did not have a history of spontaneous abortion and had at least one living child. Both parental urinary phenols were measured by ultra-high performance liquid chromatography-tandem mass spectrometry including bisphenol A (BPA), benzophenone-3 (BP-3), 2,3,4-trichlorophenol (2,3,4-TCP), pentachlorophenol (PCP), 4-n-octylphenol (4-n-OP) and 4-n-nonylphenol (4-n-NP). Compared with the low exposure group, there was an increased risk of spontaneous abortion with high paternal urinary PCP concentration [odds ratio (OR)=2.09, 95% Confidence Interval (CI), 1.05-4.14], and maternal exposure to 4-n-OP and alkylphenol(s) also significantly increased the risk of spontaneous abortion (OR=2.21, 95% CI, 1.02-4.80; OR=2.81, 95% CI, 1.39-5.65, respectively). Our study firstly provides the evidence that paternal PCP exposure, maternal 4-n-OP and alkylphenol(s) exposure are associated with spontaneous abortion in humans.
Collapse
Affiliation(s)
- Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bisphenol A exposure is associated with low-grade urinary albumin excretion in children of the United States. Kidney Int 2013; 83:741-8. [PMID: 23302717 PMCID: PMC3709970 DOI: 10.1038/ki.2012.422] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Urinary bisphenol A (BPA), a widely used biomarker of exposure to BPA, has been associated with cardiometabolic derangements in laboratory studies and with low-grade albuminuria in Chinese adults. Despite the known unique vulnerability of children to environmental chemicals, no studies have examined associations of urinary BPA with albuminuria in children. As exposure to BPA is widespread in the United States population, we examined data from 710 children in the 2009-10 National Health and Nutrition Examination Survey with urinary BPA measurements and first morning urine samples with creatinine values. Controlled for a broad array of sociodemographic and environmental risk factors as well as insulin resistance and elevated cholesterol, children with the highest compared with the lowest quartile of urinary BPA had a significant 0.91 mg/g higher albumin-to-creatinine ratio, adjusted for the urinary BPA concentration. When the multivariable model was reprised substituting continuous measures of BPA, a significant 0.28 mg/g albumin-to-creatinine ratio increase was identified for each log unit increase in urinary BPA. Thus, an association of BPA exposure with low-grade albuminuria is consistent with previous results found in Chinese adults and documents this in children in the United States. Our findings broaden the array of adverse effects of BPA to include endothelial dysfunction as evidenced by the low-grade albuminuria and support proactive efforts to prevent harmful exposures.
Collapse
|
37
|
Yen CH, Lin KC, Leu S, Sun CK, Chang LT, Chai HT, Chung SY, Chang HW, Ko SF, Chen YT, Yip HK. Chronic exposure to environmental contaminant nonylphenol exacerbates adenine-induced chronic renal insufficiency: role of signaling pathways and therapeutic impact of rosuvastatin. Eur J Pharm Sci 2012; 46:455-67. [PMID: 22484332 DOI: 10.1016/j.ejps.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/14/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Although chronic exposure to environmental contaminants is hazardous to health, the association between chronic kidney disease (CKD) and nonylphenol (NP), a common environmental compound, remains unclear. This study tested the hypothesis that chronic NP exposure aggravated adenine (AD)-induced CKD that could be mitigated with rosuvastatin treatment. Fifty Wistar rats were randomly (n=10/each group) categorized into normal controls (N(C)), NP only (2.0mg/kg/day), AD only (0.25% AD in fodder), combined NP-AD, and NP-AD with rosuvastatin (20.0mg/kg/day) (NP-AD-R(OSU)). All animals received treatment for 24 weeks prior to being sacrificed. Results showed that ratio of urine protein to creatinine were increased in NP-AD group than in groups N(C), NP, and AD, but reduced in NP-AD-R(OSU) group compared with NP-AD group (all p<0.003). Protein expression of TGF-β and phosphorylated Smad3, indexes of tissue fibrosis, were increased in NP-AD group than in groups N(C), NP and AD, but reduced in NP-AD-R(OSU) group compared with NP-AD group (all p<0.001). BMP-2 and phosphorylated Smad1/5, two indicators of anti-fibrosis, were lower in NP-AD group than in groups N(C), NP and AD, but higher in NP-AD-R(OSU) group compared with NP-AD group (all p<0.001). Protein expressions of JNK and PKC-α in membranous compartment were higher in group NP-AD than in groups N(C), NP and AD, but reduced in NP-AD-R(OSU) group compared with NP-AD group (all p<0.001). More TGF-β+cells but less BMP-2+, CD31+, vWF+and GR+cells were noted in groups AD and NP-AD than in groups N(C), NP and NP-AD-R(OSU) (all p<0.04). In conclusion, NP exposure worsened aggravated AD-induced CKD that could be ameliorated with rosuvastatin treatment.
Collapse
Affiliation(s)
- Chia-Hung Yen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Korkmaz A, Ahbab MA, Kolankaya D, Barlas N. Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem Toxicol 2010; 48:2865-71. [DOI: 10.1016/j.fct.2010.07.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/23/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|