1
|
Li MR, Men SH, Wang ZY, Liu C, Zhou GR, Yan ZG. The application of human-derived cell lines in neurotoxicity studies of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168839. [PMID: 38036138 DOI: 10.1016/j.scitotenv.2023.168839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
As industrial and societal advancements progress, an increasing number of environmental pollutants linked to human existence have been substantiated to elicit neurotoxicity and developmental neural toxicity. For research in this field, human-derived neural cell lines have become excellent in vitro models. This study examines the utilization of immortalized cell lines, specifically the SH-SY5Y human neuroblastoma cell line, and neural cells derived from human pluripotent stem cells, in the investigation of neurotoxicity and developmental neural toxicity caused by environmental pollutants. The study also explores the culturing techniques employed for these cell lines and provides an overview of the standardized assays used to assess various biological endpoints. The environmental pollutants involved include a variety of organic compounds, heavy metals, and microplastics. The utilization of cell lines derived from human sources holds significant significance in elucidating the neurotoxic effects of environmental pollutants and the underlying mechanisms. Finally, we propose the possibility of improving the in vitro model of the human nervous system and the toxicity detection methods.
Collapse
Affiliation(s)
- Ming-Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shu-Hui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zi-Ye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guo-Rui Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Lan Y, Gao X, Xu H, Li M. 20 years of polybrominated diphenyl ethers on toxicity assessments. WATER RESEARCH 2024; 249:121007. [PMID: 38096726 DOI: 10.1016/j.watres.2023.121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.
Collapse
Affiliation(s)
- Yingying Lan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
3
|
Yi J, Ma Y, Ma J, Yu H, Zhang K, Jin L, Yang Q, Sun D, Wu D. Rapid Assessment of Ocular Toxicity from Environmental Contaminants Based on Visually Mediated Zebrafish Behavior Studies. TOXICS 2023; 11:706. [PMID: 37624211 PMCID: PMC10459940 DOI: 10.3390/toxics11080706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The presence of contaminants in the environment has increased in recent years, and studies have demonstrated that these contaminants have the ability to penetrate the blood-retinal barrier and directly affect the visual systems of organisms. Zebrafish are recognized as an ideal model for human eye diseases due to their anatomical and functional similarities to the human eye, making them an efficient and versatile organism for studying ocular toxicity caused by environmental contaminants in the field of environmental toxicology. Meanwhile, zebrafish exhibit a diverse repertoire of visually mediated behaviors, and their visual system undergoes complex changes in behavioral responses when exposed to environmental contaminants, enabling rapid assessment of the ocular toxicity induced by such pollutants. Therefore, this review aimed to highlight the effectiveness of zebrafish as a model for examining the effects of environmental contaminants on ocular development. Special attention is given to the visually mediated behavior of zebrafish, which allows for a rapid assessment of ocular toxicity resulting from exposure to environmental contaminants. Additionally, the potential mechanisms by which environmental contaminants may induce ocular toxicity are briefly outlined.
Collapse
Affiliation(s)
- Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Dejun Wu
- Emergency Department, Quzhou People’s Hospital, Quzhou 324000, China
| |
Collapse
|
4
|
Corrêa B, Paiva LG, Santos-Neto E, Vidal LG, Azevedo-Silva CE, Vianna M, Lailson-Brito JL. Organochlorine contaminants in Rio skate (Rioraja agassizii), an endangered batoid species, from southeastern coast of Brazil. MARINE POLLUTION BULLETIN 2022; 182:114002. [PMID: 35939933 DOI: 10.1016/j.marpolbul.2022.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A global movement towards decreases in elasmobranch overfishing has been noted in the last decades. However, discussion concerning the effects of POP contamination on the health and survival of these organisms is still recent. These compounds can affect the immune and endocrine systems of both sharks and batoids, impairing reproduction and impacting species recruitment, acting synergistically alongside overfishing effects. In this context, this study investigated the concentration of organochlorine compounds in liver of 29 individuals of Rioraja agassizii, a commercially exploited skate classified as Vulnerable by IUCN and as Endangered in Brazil. Contaminant concentrations were higher in adults compared to juveniles. Distinct contamination profiles were observed, suggesting different groups within the investigated population and revealing contaminants as a potential tool to assess population ecology. PCB levels were considered a concern as they resemble concentrations in ecosystems from the northern hemisphere, where deleterious effects on elasmobranchs have been observed.
Collapse
Affiliation(s)
- Beatriz Corrêa
- Laboratório de Mamíferos Aquáticos e Bioindicadores Professora Izabel Gurgel, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil; Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Larissa G Paiva
- Laboratório de Mamíferos Aquáticos e Bioindicadores Professora Izabel Gurgel, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil; Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Elitieri Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores Professora Izabel Gurgel, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Lara G Vidal
- Laboratório de Mamíferos Aquáticos e Bioindicadores Professora Izabel Gurgel, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Cláudio E Azevedo-Silva
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - José L Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores Professora Izabel Gurgel, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Chen S, Che S, Li S, Ruan Z. The combined impact of decabromodiphenyl ether and high fat exposure on non-alcoholic fatty liver disease in vivo and in vitro. Toxicology 2021; 464:153015. [PMID: 34757160 DOI: 10.1016/j.tox.2021.153015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a public health concern. Decabromodiphenyl ether (BDE-209) and high fat (HF) exposure cause liver injury, yet the combined impact on NAFLD development remains unclear. HepG2 cells were incubated with BDE-209 or/and HF reagent (Csodium oleate/Csodium palmitate = 2/1) for establishing the in vitro model, while C57BL/6 mice fed BDE-209 or/and HF diet (HFD) was the in vivo model. Oil Red O staining and the determination of triglyceride, malondialdehyde, and reactive oxygen species (ROS) contents proved the elevated lipid accumulation and oxidative stress by the mixture of BDE-209 and HF in HepG2 cells, consistent in C57BL/6 mice. Importantly, the action analysis showed the synergistic effect between BDE-209 and HF, suggesting that the population preferring the HFD is more susceptible to BDE-209 to aggravate the progression of NAFLD. Further, the increased protein expression of sterol regulatory element-binding protein 1, fatty acid synthase, and stearoyl-CoA desaturase 1 was considered to be responsible for hepatic steatosis. The impairment of antioxidant system was reflected by the lower hepatic superoxide dismutase and glutathione transferase activities and reduced glutathione level, explaining the detected excessive ROS production. Besides, using high content analysis, the decline of mitochondrial mass and membrane potential, which was closed to the NAFLD pathogenesis, was also demonstrated in HepG2 cells.
Collapse
Affiliation(s)
- Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Shiqi Li
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
6
|
Olisah C, Adams JB, Rubidge G. The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112316. [PMID: 33993093 DOI: 10.1016/j.ecoenv.2021.112316] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The long-term health of many South African estuaries is impacted by pollutants entering these systems through industrial and agricultural runoff, sewage outfalls, contaminated storm water drainage, flows from informal settlements, and plastic materials in marine debris. Uncontrolled inputs combined with poor environmental management often result in elevated levels of persistent organic pollutants (POPs) in affected estuaries. Data on POPs research from 1960 to 2020 were analysed in terms of their sources, environmental investigations, and health implications. The outcome showed polychlorinated biphenyls (PCBs) and per- and poly-fluoroalkyl sulphonates (PFASs) to exceed the US EPA health advisory levels for drinking water. Concentration of organochlorine pesticides (OCPs) in water were below the WHO limits, while those in fish tissues from most estuaries were found to be below the US FDA limits. Although environmental compartments in some estuaries (e.g. Rooiels and uMngeni estuaries) seem to be less contaminated relative to other marine systems around the world, many others were polluted and critically modified (e.g. Durban Bay, Swartkops, Sundays, and Buffalo systems). Due to inconsistent monitoring methods coupled with limited data availability, temporal trends were unclear. Of the 290 estuaries in South Africa, 65 were prioritised and recommended for POPs evaluation based on their pollution sources, and a monitoring strategy was defined in terms of sampling. Government policies to curb marine pollution need to be enforced to prevent chronic contamination that leads to water quality deterioration and loss of ecosystem services.
Collapse
Affiliation(s)
- Chijioke Olisah
- Department of Botany and the Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Nelson Mandela University, Port Elizabeth 6031, South Africa; Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Janine B Adams
- Department of Botany and the Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Gletwyn Rubidge
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| |
Collapse
|
7
|
Che S, Yuan J, Chen S, Li S, Zhang L, Ruan Z, Yao Y. Hesperidin prevents the combined toxicity of decabromodiphenyl ether and sodium nitrite in vitro. Food Chem Toxicol 2021; 156:112410. [PMID: 34260953 DOI: 10.1016/j.fct.2021.112410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/30/2022]
Abstract
Decabromodiphenyl ether (BDE-209) and Sodium nitrite (SN) coexist in the processing meat and fish foods, but there is no research considering them together. The present study aimed to investigate the binary mixture's toxicity of BDE-209 and SN and explore the protective effect of hesperidin (Hsp) on the combined toxicity. Results showed that compared with the impact of BDE-209 or SN alone, the binary mixture had a synergistic toxic effect on impairing the viability of HepG2 cells, accompanied by oxidative stress, Ca2+ accumulation, mitochondrial dysfunction. The increase of γ-H2AX fluorescent foci and micronuclei number also indicated its genotoxicity. Pretreatment of Hsp could significantly alleviate the above damage caused by the binary combination. These findings revealed the toxicological interaction of BDE-209 and SN and highlighted that food containing abundant natural flavonoids, as hesperidin, could reduce this toxicological risk.
Collapse
Affiliation(s)
- Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Shiqi Li
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| | - Yanbin Yao
- Jian Engineering Research Center for Freeze-dried Food, China
| |
Collapse
|
8
|
Deygas F, Amadou A, Coudon T, Grassot L, Couvidat F, Bessagnet B, Faure E, Salizzoni P, Gulliver J, Caudeville J, Severi G, Mancini FR, Leffondré K, Fervers B, Praud D. Long-term atmospheric exposure to PCB153 and breast cancer risk in a case-control study nested in the French E3N cohort from 1990 to 2011. ENVIRONMENTAL RESEARCH 2021; 195:110743. [PMID: 33450235 DOI: 10.1016/j.envres.2021.110743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although the genetic and hormonal risk factors of breast cancer are well identified, they cannot fully explain the occurrence of all cases. Epidemiological and experimental studies have suggested that exposure to environmental pollutants, especially those with potential estrogenic properties, as polychlorinated biphenyls (PCBs) may have a role in breast cancer development. Being the most abundantly detected in human tissues and in the environment, congener 153 (PCB153) is widely used in epidemiological studies as indicator for total PCBs exposure. OBJECTIVES We aimed to estimate the association between cumulative atmospheric exposure to PCB153 and breast cancer risk. METHODS We conducted a case-control study of 5222 cases and 5222 matched controls nested within the French E3N cohort from 1990 to 2011. Annual atmospheric PCB153 concentrations were simulated with the deterministic chemistry-transport model (CHIMERE) and were assigned to women using their geocoded residential history. Their cumulative PCB153 exposure was calculated for each woman from their cohort inclusion to their index date. Breast cancer odds ratios (ORs) associated with cumulative PCB153 exposure and their 95% confidence intervals (95% CIs) were estimated using multivariate conditional logistic regression models. RESULTS Overall, our results showed a statistically significant linear increase in breast cancer risk related to cumulative atmospheric exposure to PCB153 as a continuous variable (adjusted OR = 1.19; 95% CI: 1.08-1.31, for an increment of one standard deviation among controls (55 pg/m3)). Among women who became postmenopausal during follow-up, the association remained statistically significant (adjusted OR = 1.23; 95% CI: 1.09-1.39). In analyses by hormone receptors status, the positive association remained significant only for ER-positive breast cancer (adjusted OR = 1.18; 95% CI: 1.05-1.33). DISCUSSION This study is the first to have estimated the impact of atmospheric exposure to PCB153 on breast cancer risk. Our results showed a statistically significant increase in breast cancer risk, which may be limited to ER-positive breast cancer. These results warrant confirmation in further independent studies but raise the possibility that exposure to PCB153 increase breast cancer risk.
Collapse
Affiliation(s)
- Floriane Deygas
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| | - Amina Amadou
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| | - Thomas Coudon
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France; Ecole Centrale de Lyon, University Claude Bernard Lyon 1, Ecully, France
| | - Lény Grassot
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Bertrand Bessagnet
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; Citepa, Technical Reference Center for Air Pollution and Climate Change, Paris, France
| | - Elodie Faure
- Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), Team "Exposome and Heredity", Gustave Roussy, Villejuif, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, University Claude Bernard Lyon 1, Ecully, France
| | - John Gulliver
- Centre for Environmental Health and Sustainability, School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Julien Caudeville
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Gianluca Severi
- Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), Team "Exposome and Heredity", Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Italy
| | - Francesca Romana Mancini
- Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), Team "Exposome and Heredity", Gustave Roussy, Villejuif, France.
| | - Karen Leffondré
- University of Bordeaux, ISPED, Inserm U1219, Bordeaux Population Health Center, Bordeaux, France
| | - Béatrice Fervers
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France.
| | - Delphine Praud
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| |
Collapse
|
9
|
Hogberg HT, de Cássia da Silveira E Sá R, Kleensang A, Bouhifd M, Cemiloglu Ulker O, Smirnova L, Behl M, Maertens A, Zhao L, Hartung T. Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Arch Toxicol 2021; 95:207-228. [PMID: 33078273 PMCID: PMC7811506 DOI: 10.1007/s00204-020-02903-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47-the most abundant PBDE congener-with four OPFR (isopropylated phenyl phosphate-IPP, triphenyl phosphate-TPHP, isodecyl diphenyl phosphate-IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)-TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1-5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell-cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.
Collapse
Affiliation(s)
- Helena T Hogberg
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Rita de Cássia da Silveira E Sá
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Andre Kleensang
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mounir Bouhifd
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ozge Cemiloglu Ulker
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Lena Smirnova
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Alexandra Maertens
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liang Zhao
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. ENVIRONMENTAL RESEARCH 2020; 187:109531. [PMID: 32454306 DOI: 10.1016/j.envres.2020.109531] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants (BFRs) in different types of materials, which have been listed as Persistent Organic Pollutants (POPs) by the Stockholm Convention in 2009 and 2017. Due to their ubiquities in the environment and toxicities, PBDEs have posed great threat to both human health and ecosystems. The aim of this review is to offer a comprehensive understanding of the exposure pathways, levels and trends and associated health risks of PBDEs in human body in a global scale. We systematically reviewed and described the scientific data of PBDE researches worldwide from 2010 to March 2020, focusing on the following three areas: (1) sources and human external exposure pathways of PBDEs; (2) PBDE levels and trends in humans; (3) human data of PBDEs toxicity. Dietary intake and dust ingestion are dominant human exposure pathways. PBDEs were widely detected in human samples, especially in human serum and human milk. Data showed that PBDEs are generally declining in human samples worldwide as a result of their phasing out. Due to the common use of PBDEs, their levels in humans from the USA were generally higher than that in other countries. High concentrations of PBDEs have been detected in humans from PBDE production regions and e-waste recycling sites. BDE-47, -153 and -99 were proved to be the primary congeners in humans. Human toxicity data demonstrated that PBDEs have extensively endocrine disruption effects, developmental effects, and carcinogenic effects among different populations.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohua Jing
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455002, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
11
|
Lawson TM, Ylitalo GM, O'Neill SM, Dahlheim ME, Wade PR, Matkin CO, Burkanov V, Boyd DT. Concentrations and profiles of organochlorine contaminants in North Pacific resident and transient killer whale (Orcinus orca) populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137776. [PMID: 32199362 DOI: 10.1016/j.scitotenv.2020.137776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/08/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Organochlorine (OC) profiles have been used as chemical "fingerprints" to infer an animal's foraging area. North Pacific killer whale (Orcinus orca) populations are exposed to different levels and patterns of OCs based on their prey, distribution, and amount of time spent in a particular area. To characterize concentrations and profiles of OCs found in various populations of North Pacific killer whales, polychlorinated biphenyls (PCBs), including dioxin-like congeners, DDTs, and hexachlorobenzene (HCB), were measured in biopsy blubber samples of photo-identified resident (fish-eating) and transient (mammal-eating) killer whales collected from 1994 through 2002 from Russian Far East waters to the waters of the west coast of the United States, representing 10 populations. We compared blubber OC concentrations based on ecotype (resident vs. transient), sex and reproductive maturity, and geographic area. We also examined OC mixtures to determine if we could detect segregated geographical areas (foraging areas) among the six populations with sufficient sample sizes. Transients had significantly higher OC concentrations than residents and adult male whales had consistently higher OC levels compared to adult females, regardless of ecotype. Our OC profile findings indicate segregated foraging areas for the North Pacific killer whales, consistent with observations of their geographic distributions. Several potential health risks have also been associated with exposure to high levels of contaminants in top-level predators including reproductive impairment, immune suppression, skeletal deformities, and carcinoma. The results of this baseline study provide information on the geographic distribution of OCs found in North Pacific killer whales, results which are crucial for assessing the potential health risks associated with OC exposure in this species.
Collapse
Affiliation(s)
- Teresa M Lawson
- West Coast Region, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, United States Department of Commerce, 7600 Sand Point Way NE, Seattle, WA 98115, United States of America.
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, United States Department of Commerce, 2725 Montlake Blvd. East, Seattle, WA 98112, United States of America
| | - Sandra M O'Neill
- Washington Department of Fish and Wildlife, P.O. Box 43200, Olympia, WA 98504-3200, United States of America
| | - Marilyn E Dahlheim
- Retired employee of the Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, United States Department of Commerce, 7600 Sand Point Way NE, Seattle, WA 98115, United States of America
| | - Paul R Wade
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, United States Department of Commerce, 7600 Sand Point Way NE, Seattle, WA 98115
| | - Craig O Matkin
- North Gulf Oceanic Society, P.O. Box 15244, Homer, AK 99603, United States of America
| | - Vladimir Burkanov
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, United States Department of Commerce, 7600 Sand Point Way NE, Seattle, WA 98115
| | - Daryle T Boyd
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, United States Department of Commerce, 2725 Montlake Blvd. East, Seattle, WA 98112, United States of America
| |
Collapse
|
12
|
A Halogen Bonding Perspective on Iodothyronine Deiodinase Activity. Molecules 2020; 25:molecules25061328. [PMID: 32183289 PMCID: PMC7144113 DOI: 10.3390/molecules25061328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
Iodothyronine deiodinases (Dios) are involved in the regioselective removal of iodine from thyroid hormones (THs). Deiodination is essential to maintain TH homeostasis, and disruption can have detrimental effects. Halogen bonding (XB) to the selenium of the selenocysteine (Sec) residue in the Dio active site has been proposed to contribute to the mechanism for iodine removal. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are known disruptors of various pathways of the endocrine system. Experimental evidence shows PBDEs and their hydroxylated metabolites (OH-BDEs) can inhibit Dio, while data regarding PCB inhibition are limited. These xenobiotics could inhibit Dio activity by competitively binding to the active site Sec through XB to prevent deiodination. XB interactions calculated using density functional theory (DFT) of THs, PBDEs, and PCBs to a methyl selenolate (MeSe−) arrange XB strengths in the order THs > PBDEs > PCBs in agreement with known XB trends. THs have the lowest energy C–X*-type unoccupied orbitals and overlap with the Se lp donor leads to high donor-acceptor energies and the greatest activation of the C–X bond. The higher energy C–Br* and C–Cl* orbitals similarly result in weaker donor-acceptor complexes and less activation of the C–X bond. Comparison of the I···Se interactions for the TH group suggest that a threshold XB strength may be required for dehalogenation. Only highly brominated PBDEs have binding energies in the same range as THs, suggesting that these compounds may inhibit Dio and undergo debromination. While these small models provide insight on the I···Se XB interaction itself, interactions with other active site residues are governed by regioselective preferences observed in Dios.
Collapse
|
13
|
Poston RG, Dunn CJ, Sarkar P, Saha RN. Persistent 6-OH-BDE-47 exposure impairs functional neuronal maturation and alters expression of neurodevelopmentally-relevant chromatin remodelers. ENVIRONMENTAL EPIGENETICS 2018; 4:dvx020. [PMID: 29765770 PMCID: PMC5941167 DOI: 10.1093/eep/dvx020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a pervasive class of brominated flame retardants that are present in the environment at particularly high levels, especially in the United States. Their environmental stability, propensity for bioaccumulation, and known potential for neurotoxicity has evoked interest regarding their effects on the developing nervous system. Exposure to PBDEs has been strongly associated with neurodevelopmental disorders. However, the details of their mechanistic roles in such disorders are incompletely understood. Here, we report the effects of one of the most prevalent congeners, BDE-47, and its hydroxylated metabolites on the maturation and function of embryonic rat cortical neurons. Prolonged exposure to 6OH-BDE-47 produces the strongest effects amongst the parent BDE-47 congener and its tested hydroxylated metabolites. These effects include: i) disruption of transcriptional responses to neuronal activity, ii) dysregulation of multiple genes associated with neurodevelopmental disorders, and intriguingly, iii) altered expression of several subunits of the developmentally-relevant BAF (Brg1-associated factors) chromatin remodeling complex, including the key subunit BAF170. Taken together, our data indicate that persistent exposure to 6OH-BDE-47 may interfere with neurodevelopmental chromatin remodeling mechanisms and gene transcription programs, which in turn are likely to interfere with downstream processes such as synapse development and overall functional maturity of neurons. Results from this study have identified a novel aspect of 6OH-BDE-47 toxicity and open new avenues to explore the effects of a ubiquitous environmental toxin on epigenetic regulation of neuronal maturation and function.
Collapse
Affiliation(s)
- Robert G Poston
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Carissa J Dunn
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Pushpita Sarkar
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Ramendra N Saha
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
14
|
Martin OV, Evans RM, Faust M, Kortenkamp A. A Human Mixture Risk Assessment for Neurodevelopmental Toxicity Associated with Polybrominated Diphenyl Ethers Used as Flame Retardants. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087016. [PMID: 28886598 PMCID: PMC5783671 DOI: 10.1289/ehp826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND The European Food Safety Authority recently concluded that the exposure of small children (1-3 y old) to brominated diphenyl ether (BDE)-99 may exceed acceptable levels defined in relation to neurodevelopmental toxicity in rodents. The flame retardant BDE-209 may release BDE-99 and other lower brominated BDEs through biotic and abiotic degradation, and all age groups are exposed not only to BDE-209 and -99 but also to a cocktail of BDE congeners with evidence of neurodevelopmental toxicity. The possible risks from combined exposures to these substances have not been evaluated. OBJECTIVES We performed a congener-specific mixture risk assessment (MRA) of human exposure to combinations of BDE-209 and other BDEs based on estimated exposures via diet and dust intake and on measured levels in biologic samples. METHODS We employed the Hazard Index (HI) method by using BDE congener-specific reference doses for neurodevelopmental toxicity. RESULTS Our HI analysis suggests that combined exposures to polybrominated diphenyl ethers (PBDEs) may exceed acceptable levels in breastfeeding infants (0-3 mo old) and in small children (1-3 y old), even for moderate (vs. high) exposure scenarios. Our estimates also suggest that acceptable levels of combined PBDEs may be exceeded in adults whose diets are high in fish. Small children had the highest combined exposures, with some estimated body burdens that were similar to body burdens associated with developmental neurotoxicity in rodents. CONCLUSIONS Our estimates corroborate reports from several recent epidemiological studies of associations between PBDE exposures and neurobehavioral outcomes, and they support the inclusion of BDE-209 in the persistent organic pollutant (POP) convention as well as the need for strategies to reduce exposures to PBDE mixtures, including maximum residue limits for PBDEs in food and measures for limiting the release of PBDEs from consumer waste. https://doi.org/10.1289/EHP826.
Collapse
Affiliation(s)
- Olwenn V Martin
- Institute of Environment, Health and Societies, Brunel University London , London, UK
| | - Richard M Evans
- Institute of Environment, Health and Societies, Brunel University London , London, UK
| | - Michael Faust
- Faust & Backhaus, BITZ - Bremer Innovations- und Technologie-Zentrum , Bremen, Germany
| | - Andreas Kortenkamp
- Institute of Environment, Health and Societies, Brunel University London , London, UK
| |
Collapse
|
15
|
Human Excretion of Polybrominated Diphenyl Ether Flame Retardants: Blood, Urine, and Sweat Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3676089. [PMID: 28373979 PMCID: PMC5360950 DOI: 10.1155/2017/3676089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/26/2017] [Indexed: 01/17/2023]
Abstract
Commonly used as flame retardants, polybrominated diphenyl ethers (PBDEs) are routinely detected in the environment, animals, and humans. Although these persistent organic pollutants are increasingly recognized as having serious health implications, particularly for children, this is the first study, to our knowledge, to investigate an intervention for human elimination of bioaccumulated PBDEs. Objectives. To determine the efficacy of blood, urine, and perspiration as PBDE biomonitoring mediums; assess excretion of five common PBDE congeners (28, 47, 99, 100, and 153) in urine and perspiration; and explore the potential of induced sweating for decreasing bioaccumulated PBDEs. Results. PBDE congeners were not found in urine samples; findings focus on blood and perspiration. 80% of participants tested positive in one or more body fluids for PBDE 28, 100% for PBDE 47, 95% for PBDE 99, and 90% for PBDE 100 and PBDE 153. Induced perspiration facilitated excretion of the five congeners, with different rates of excretion for different congeners. Conclusion. Blood testing provides only a partial understanding of human PBDE bioaccumulation; testing of both blood and perspiration provides a better understanding. This study provides important baseline evidence for regular induced perspiration as a potential means for therapeutic PBDE elimination. Fetotoxic and reproductive effects of PBDE exposure highlight the importance of further detoxification research.
Collapse
|
16
|
One TEF concept does not fit all: The case for human risk assessment of polychlorinated biphenyls. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Souza AO, Tasso MJ, Oliveira AMC, Pereira LC, Duarte FV, Oliveira DP, Palmeira CM, Dorta DJ. Evaluation of Polybrominated Diphenyl Ether Toxicity on HepG2 Cells - Hexabrominated Congener (BDE-154) Is Less Toxic than Tetrabrominated Congener (BDE-47). Basic Clin Pharmacol Toxicol 2016; 119:485-497. [DOI: 10.1111/bcpt.12598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Alecsandra O. Souza
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Maria J. Tasso
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Alana M. C. Oliveira
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Lilian C. Pereira
- Department of Clinical Analysis, Toxicological and Bromatological; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Filipe V. Duarte
- CNC - Center for Neuroscience and Cell Biology; Faculty of Medicine; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| | - Danielle P. Oliveira
- Department of Clinical Analysis, Toxicological and Bromatological; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Carlos M. Palmeira
- CNC - Center for Neuroscience and Cell Biology; Faculty of Medicine; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| | - Daniel J. Dorta
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
18
|
Colaianna M, Ilmjärv S, Peterson H, Kern I, Julien S, Baquié M, Pallocca G, Bosgra S, Sachinidis A, Hengstler JG, Leist M, Krause KH. Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay. Arch Toxicol 2016; 91:365-391. [PMID: 27015953 PMCID: PMC5225183 DOI: 10.1007/s00204-016-1690-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Abstract
Identification of neurotoxic drugs and environmental chemicals is an important challenge. However, only few tools to address this topic are available. The aim of this study was to develop a neurotoxicity/developmental neurotoxicity (DNT) test system, using the pluripotent mouse embryonic stem cell line CGR8 (ESCs). The test system uses ESCs at two differentiation stages: undifferentiated ESCs and ESC-derived neurons. Under each condition, concentration–response curves were obtained for three parameters: activity of the tubulin alpha 1 promoter (typically activated in early neurons), activity of the elongation factor 1 alpha promoter (active in all cells), and total DNA content (proportional to the number of surviving cells). We tested 37 compounds from the ESNATS test battery, which includes polypeptide hormones, environmental pollutants (including methylmercury), and clinically used drugs (including valproic acid and tyrosine kinase inhibitors). Different classes of compounds showed distinct concentration–response profiles. Plotting of the lowest observed adverse effect concentrations (LOAEL) of the neuronal promoter activity against the general promoter activity or against cytotoxicity, allowed the differentiation between neurotoxic/DNT substances and non-neurotoxic controls. Reporter activity responses in neurons were more susceptible to neurotoxic compounds than the reporter activities in ESCs from which they were derived. To relate the effective/toxic concentrations found in our study to relevant in vivo concentrations, we used a reverse pharmacokinetic modeling approach for three exemplary compounds (teriflunomide, geldanamycin, abiraterone). The dual luminescence reporter assay described in this study allows high-throughput, and should be particularly useful for the prioritization of the neurotoxic potential of a large number of compounds.
Collapse
Affiliation(s)
- Marilena Colaianna
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Ilse Kern
- Department of Pediatrics, Geneva University Hospital, Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Centre Medical Universitaire, Rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Stephanie Julien
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Giorgia Pallocca
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Sieto Bosgra
- TNO, Zeist, The Netherlands.,BioMarin Pharmaceutical Inc., Leiden, The Netherlands
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland. .,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Centre Medical Universitaire, Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
19
|
Leng L, Li J, Luo XM, Kim JY, Li YM, Guo XM, Chen X, Yang QY, Li G, Tang NJ. Polychlorinated biphenyls and breast cancer: A congener-specific meta-analysis. ENVIRONMENT INTERNATIONAL 2016; 88:133-141. [PMID: 26735351 DOI: 10.1016/j.envint.2015.12.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 05/20/2023]
Abstract
The incidence of breast cancer is related to various risk factors, especially that the environmental and lifestyle factors account for major contribution at the rate of 70% to 95% over all. However, there still remains some controversy over the epidemiological evidence regarding the effects of environmental carcinogens on the risk of breast cancer. We conducted a quantitative meta-analysis aiming at full evaluation of the effects of polychlorinated biphenyls (PCBs) on breast cancer in a congener-specific fashion. Four online literature databases were systematically searched before 1st January 2015, for studies stating correlation between PCB congeners and breast cancer. The Newcastle-Ottawa Scale was used to evaluate the quality of the studies that were included in our analysis. Sixteen studies were included in our final meta-analysis after screening based on the priori inclusion criteria. Nine PCB congeners were reported by more than two studies and they were presented in detail. The pooled Odds Ratios (ORs) showed a significant increase in the risk of breast cancer in individuals with higher plasma/fat levels of PCB 99 (OR: 1.36; 95% CI: 1.02 to 1.80), PCB 183 (OR: 1.56; 95% CI: 1.25 to 1.95) and PCB 187 (OR: 1.18; 95% CI: 1.01 to 1.39). Besides, the outcomes did not support a relationship between dioxin-like PCB congeners and the risk of breast cancer. The results of our meta-analysis imply that PCB 99, PCB 183 and PCB 187 would increase the risk of breast cancer. The mechanism of this increased risk may be by the induction of the CYP2B family in cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Ling Leng
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiu-Mei Luo
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jun-Young Kim
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yi-Meng Li
- Department of Biomedical Information, Library, Tianjin Medical University, Tianjin 300070, China
| | - Xue-Mei Guo
- Department of Biomedical Information, Library, Tianjin Medical University, Tianjin 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qiao-Yun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guang Li
- Basic Medical College, Tianjin Medical University, Tianjin 300070, China.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
20
|
Hendriks HS, Westerink RH. Neurotoxicity and risk assessment of brominated and alternative flame retardants. Neurotoxicol Teratol 2015; 52:248-69. [DOI: 10.1016/j.ntt.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022]
|
21
|
Zhang X, Hong Q, Yang L, Zhang M, Guo X, Chi X, Tong M. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:133-138. [PMID: 25938693 DOI: 10.1016/j.ecoenv.2015.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Polychlorinated biphenyls (PCBs), a group of highly toxic environmental pollutants, have been report to influence the visual system development in children. However, the underlying mechanism is unclear. The study was aim to investigate the effects of continuous PCBs exposure on optomotor response (OMR) and retinal photoreceptor cell development-related gene expression in zebrafish larvae. The fertilized zebrafish embryos were exposed to PCBs at concentrations of 0.125, 0.25, 0.5, and 1mg/L until 7 days post-fertilization. Control groups with blank and 0.01% methanol were also prepared. OMR test was used to detect the visual behavior. The mRNA expression of the CRX, RHO, SWS1, and SWS2 was assessed by the Quantitative Real-Time PCR. The OMR test showed that the visual behavior of the larvae was most sensitive when the grating spatial frequency was 0.20LP/mm and the moving speed was 25cm/s. Moreover, the proportion of positively swimming fish was significantly reduced in the 0.5 and 1mg/L PCB1254 treatment group (P<0.05) compared with the controls. In addition, the expression of SWS2 was significantly down-regulated in all PCB1254 treatment groups (P<0.05), whereas the decreased expression of the CRX, RHO and SWS1 was found in the 0.5 and 1mg/L PCB1254 groups (P<0.05). This is the first report to demonstrate that continue exposure of zebrafish larvae to PCBs causes photoreceptor cell development-related gene expression changes that lead to OMR behavioral alterations. Analysis of these visual behavioral paradigms may be useful in predicting the adverse effects of toxicants on visual function in fish.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China
| | - Qin Hong
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China
| | - Lei Yang
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China
| | - Min Zhang
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China
| | - Xirong Guo
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China
| | - Xia Chi
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China.
| | - Meiling Tong
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China.
| |
Collapse
|
22
|
Mustieles V, Pérez-Lobato R, Olea N, Fernández MF. Bisphenol A: Human exposure and neurobehavior. Neurotoxicology 2015; 49:174-84. [DOI: 10.1016/j.neuro.2015.06.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
|
23
|
Costa LG, de Laat R, Tagliaferri S, Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett 2014; 230:282-94. [PMID: 24270005 PMCID: PMC4028440 DOI: 10.1016/j.toxlet.2013.11.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/12/2013] [Indexed: 01/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), extensively used in the past few decades as flame retardants in a variety of consumer products, have become world-wide persistent environmental pollutants. Levels in North America are usually higher than those in Europe and Asia, and body burden is 3-to-9-fold higher in infants and toddlers than in adults. The latter has raised concern for potential developmental toxicity and neurotoxicity of PBDEs. Experimental studies in animals and epidemiological observations in humans suggest that PBDEs may be developmental neurotoxicants. Pre- and/or post-natal exposure to PBDEs may cause long-lasting behavioral abnormalities, particularly in the domains of motor activity and cognition. The mechanisms underlying the developmental neurotoxic effects of PBDEs are not known, though several hypotheses have been put forward. One general mode of action relates to the ability of PBDEs to impair thyroid hormone homeostasis, thus indirectly affecting the developing brain. An alternative or additional mode of action involves a direct effect of PBDEs on nervous system cells; PBDEs can cause oxidative stress-related damage (DNA damage, mitochondrial dysfunction, apoptosis), and interfere with signal transduction (particularly calcium signaling), and with neurotransmitter systems. Important issues such as bioavailability and metabolism of PBDEs, extrapolation of results to low level of exposures, and the potential effects of interactions among PBDE congeners and between PBDEs and other contaminants also need to be taken into account.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Parma, Italy.
| | - Rian de Laat
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
24
|
Vilahur N, Fernández MF, Bustamante M, Ramos R, Forns J, Ballester F, Murcia M, Riaño I, Ibarluzea J, Olea N, Sunyer J. In utero exposure to mixtures of xenoestrogens and child neuropsychological development. ENVIRONMENTAL RESEARCH 2014; 134:98-104. [PMID: 25086706 DOI: 10.1016/j.envres.2014.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND To date, no epidemiological studies have explored the impact and persistence of in utero exposure to mixtures of xenoestrogens on the developing brain. We aimed to assess whether the cumulative effect of xenoestrogens in the placenta is associated with altered infant neuropsychological functioning at two and at four years of age, and if associations differ among boys and girls. METHODS Cumulative prenatal exposure to xenoestrogens was quantified in the placenta using the biomarker Total Effective Xenoestrogen Burden (TEXB-alpha) in 489 participants from the INMA (Childhood and the Environment) Project. TEXB-alpha was split in tertiles to test its association with the mental and psychomotor scores of the Bayley Scales of Infant Development (BSID) at 1-2 years of age, and with the McCarthy Scales of Children׳s Abilities (MSCA) general cognitive index and motor scale assessed at 4-5 years of age. Interactions with sex were investigated. RESULTS After adjustment for potential confounders, no association was observed between TEXB-alpha and mental scores at 1-2 years of age. We found a significant interactions with sex for the association between TEXB-alpha and infant psychomotor development (interaction p-value=0.029). Boys in the third tertile of exposure scored on average 5.2 points less than those in the first tertile on tests of motor development at 1-2 years of age (p-value=0.052), while no associations were observed in girls. However, this association disappeared in children at 4-5 years of age and no association between TEXB-alpha and children׳s cognition was found. CONCLUSIONS Our results suggest that boys' early motor development might be more vulnerable to prenatal exposure to mixtures of xenoestrogens, but associations do not persist in preschool children.
Collapse
Affiliation(s)
- Nadia Vilahur
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain.
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospital Universitario San Cecilio, Granada, Spain
| | - Mariona Bustamante
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Rosa Ramos
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Joan Forns
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Ferran Ballester
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain; University of Valencia, Valencia, Spain
| | - Mario Murcia
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain
| | - Isolina Riaño
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; University of Oviedo, Asturias, Oviedo, Spain
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Biodonostia, Health Research Institute, San Sebastián, Spain; Sub-Directorate for Public Health of Gipuzkoa, Department of Health, Government of the Basque Country, San Sebastian, Spain
| | - Nicolás Olea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Jordi Sunyer
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Health and Life Sciences, University Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
25
|
|
26
|
Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro. Toxicol Appl Pharmacol 2013; 274:283-92. [PMID: 24296301 DOI: 10.1016/j.taap.2013.11.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/23/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4h to 20μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15μM and 9 fold at 20μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20μM) decreased the mitochondrial membrane potential by 47-64.5% at 4, 8 and 24h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12h and a 12-fold increased protein concentration at 24h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions necessary for placental development and successful pregnancy, further investigation is warranted of the impact of ROS and BDE-47 on trophoblast cytokine responses.
Collapse
|
27
|
Gascon M, Fort M, Martínez D, Carsin AE, Forns J, Grimalt JO, Santa Marina L, Lertxundi N, Sunyer J, Vrijheid M. Polybrominated diphenyl ethers (PBDEs) in breast milk and neuropsychological development in infants. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1760-5. [PMID: 23052368 PMCID: PMC3548276 DOI: 10.1289/ehp.1205266] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/25/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND There is increasing interest in the potential effects of polybrominated diphenyl ethers (PBDEs) on children's neuropsychological development, but only a few small studies have evaluated such effects. OBJECTIVES Our goal was to examine the association between PBDE concentrations in colostrum and infant neuropsychological development and to assess the influence of other persistent organic pollutants (POPs) on such association. METHODS We measured concentrations of PBDEs and other POPs in colostrum samples of 290 women recruited in a Spanish birth cohort. We tested children for mental and psychomotor development with the Bayley Scales of Infant Development at 12-18 months of age. We analyzed the sum of the seven most common PBDE congeners (BDEs 47, 99, 100, 153, 154, 183, 209) and each congener separately. RESULTS Increasing Σ7PBDEs concentrations showed an association of borderline statistical significance with decreasing mental development scores (β per log ng/g lipid = -2.25; 95% CI: -4.75, 0.26). BDE-209, the congener present in highest concentrations, appeared to be the main congener responsible for this association (β = -2.40, 95% CI: -4.79, -0.01). There was little evidence for an association with psychomotor development. After adjustment for other POPs, the BDE-209 association with mental development score became slightly weaker (β = -2.10, 95% CI: -4.66, 0.46). CONCLUSIONS Our findings suggest an association between increasing PBDE concentrations in colostrum and a worse infant mental development, particularly for BDE-209, but require confirmation in larger studies. The association, if causal, may be due to unmeasured BDE-209 metabolites, including OH-PBDEs (hydroxylated PBDEs), which are more toxic, more stable, and more likely to cross the placenta and to easily reach the brain than BDE-209.
Collapse
Affiliation(s)
- Mireia Gascon
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|