1
|
Vaccarella E, Massimi L, Canepari S. Assessment of oxidative stress induced by atmospheric particulate matter: from acellular and cellular assays to the use of model and experimental organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178651. [PMID: 39892228 DOI: 10.1016/j.scitotenv.2025.178651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Oxidative stress is considered one of the major mechanisms by which atmospheric particulate matter (PM) can induce adverse effects on living systems. Recently, the assessment of PM-induced oxidative stress effects has gained importance, and many efforts have been invested in identifying the most suitable techniques for evaluating PM toxicological potential. This paper briefly resumes the current knowledge and criticisms related to the application of the OP and cellular assays and systematically reviews the studies focused on the assessment of PM-induced oxidative stress using model or experimental organisms. Currently, the most widely used techniques are acellular oxidative potential (OP) assays, which allow for a quick and relatively low-cost assessment of the OP of PM; however, their biological representativeness has still to be confirmed. Other popular techniques are based on the exposure of different cell lines, which allows for assessing different biological outcomes; however, they are based on simple systems unable to properly represent the response complexity of a complete biological organism. Another issue related to both OP and cellular assays is that they are mainly applied to the extracts of sampled PM filters, with a possible alteration of the actual oxidizing properties of the sample. Conversely, the use of model or experimental organisms for the assessment of PM-induced oxidative stress is less frequent in the literature, even though this would enable the evaluation of multiple stress response pathways and, in some cases, the prevention of any physicochemical alteration of PM by in situ exposure. In this review, we analyzed available papers focused on the study of oxidative stress effects induced by PM in plant and lower animal model/experimental organisms. In our opinion, increased employment of model and experimental organisms may overcome most of the criticisms shown by conventional methods.
Collapse
Affiliation(s)
- Emanuele Vaccarella
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy
| | - Lorenzo Massimi
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St. (Rome), 00015, Italy.
| | - Silvia Canepari
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St. (Rome), 00015, Italy
| |
Collapse
|
2
|
Abdul-Rahman T, Roy P, Bliss ZSB, Mohammad A, Corriero AC, Patel NT, Wireko AA, Shaikh R, Faith OE, Arevalo-Rios ECE, Dupuis L, Ulusan S, Erbay MI, Cedeño MV, Sood A, Gupta R. The impact of air quality on cardiovascular health: A state of the art review. Curr Probl Cardiol 2024; 49:102174. [PMID: 37913932 DOI: 10.1016/j.cpcardiol.2023.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Air pollution is a global health challenge, increasing the risk of cardiovascular diseases such as heart disease, stroke, and arrhythmias. Particulate matter (PM), particularly PM2.5 and ultrafine particles (UFP), is a key contributor to the adverse effects of air pollution on cardiovascular health. PM exposure can lead to oxidative stress, inflammation, atherosclerosis, vascular dysfunction, cardiac arrhythmias, and myocardial injury. Reactive oxygen species (ROS) play a key role in mediating these effects. PM exposure can also lead to hypertension, a significant risk factor for cardiovascular disease. The COVID-19 pandemic resulted in a significant reduction of air pollutants, leading to a decline in the incidence of heart attacks and premature deaths caused by cardiovascular diseases. This review highlights the relationship between environmental air quality and cardiovascular health, elucidating the pathways through which air pollutants affect the cardiovascular system. It also emphasizes the need for increased awareness, collective efforts to mitigate the adverse effects of air pollution, and strategic policies for long-term air quality improvement to prevent the devastating effects of air pollution on global cardiovascular health.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Poulami Roy
- Department of Research, Toufik's World Medical Association, Sumy, Ukraine; Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | | | | | - Neal T Patel
- Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL, USA
| | - Andrew Awuah Wireko
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Raheel Shaikh
- Broward Health Medical Center, Fort Lauderdale, FL, USA
| | | | | | - Léonie Dupuis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebahat Ulusan
- Medical School, Suleyman Demirel University, Isparta, Turkey
| | | | | | - Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA.
| |
Collapse
|
3
|
Xu J, Shi Y, Chen G, Guo Y, Tang W, Wu C, Liang S, Huang Z, He G, Dong X, Cao G, Yang P, Lin Z, Zhu S, Wu F, Liu T, Ma W. Joint Effects of Long-Term Exposure to Ambient Fine Particulate Matter and Ozone on Asthmatic Symptoms: Prospective Cohort Study. JMIR Public Health Surveill 2023; 9:e47403. [PMID: 37535415 PMCID: PMC10436124 DOI: 10.2196/47403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The associations of long-term exposure to air pollutants in the presence of asthmatic symptoms remain inconclusive and the joint effects of air pollutants as a mixture are unclear. OBJECTIVE We aimed to investigate the individual and joint associations of long-term exposure to ambient fine particulate matter (PM2.5) and daily 8-hour maximum ozone concentrations (MDA8 O3) in the presence of asthmatic symptoms in Chinese adults. METHODS Data were derived from the World Health Organization Study on Global Ageing and Adult Health (WHO SAGE) cohort study among adults aged 50 years or older, which was implemented in 1 municipality and 7 provinces across China during 2007-2018. Annual average MDA8 O3 and PM2.5 at individual residential addresses were estimated by an iterative random forest model and a satellite-based spatiotemporal model, respectively. Participants who were diagnosed with asthma by a doctor or taking asthma-related therapies or experiencing related conditions within the past 12 months were recorded as having asthmatic symptoms. The individual associations of PM2.5 and MDA8 O3 with asthmatic symptoms were estimated by a Cox proportional hazards regression model, and the joint association was estimated by a quantile g-computation model. A series of subgroup analyses was applied to examine the potential modifications of some characteristics. We also calculated the population-attributable fraction (PAF) of asthmatic symptoms attributed to PM2.5 and MDA8 O3. RESULTS A total of 8490 adults older than 50 years were included, and the average follow-up duration was 6.9 years. During the follow-up periods, 586 (6.9%) participants reported asthmatic symptoms. Individual effect analyses showed that the risk of asthmatic symptoms was positively associated with MDA8 O3 (hazard ratio [HR] 1.12, 95% CI 1.01-1.24, for per quantile) and PM2.5 (HR 1.18, 95% CI 1.05-1.31, for per quantile). Joint effect analyses showed that per equal quantile increment of MDA8 O3 and PM2.5 was associated with an 18% (HR 1.18, 95% CI 1.05-1.33) increase in the risk of asthmatic symptoms, and PM2.5 contributed more (68%) in the joint effects. The individual PAFs of asthmatic symptoms attributable to PM2.5 and MDA8 O3 were 2.86% (95% CI 0.17%-5.50%) and 4.83% (95% CI 1.42%-7.25%), respectively, while the joint PAF of asthmatic symptoms attributable to exposure mixture was 4.32% (95% CI 1.10%-7.46%). The joint associations were greater in participants with obesity, in urban areas, with lower family income, and who used unclean household cooking fuel. CONCLUSIONS Long-term exposure to PM2.5 and MDA8 O3 may individually and jointly increase the risk of asthmatic symptoms, and the joint effects were smaller than the sum of individual effects. These findings informed the importance of joint associations of long-term exposure to air pollutants with asthma.
Collapse
Affiliation(s)
- Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yan Shi
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Gongbo Chen
- School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Weiling Tang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Cuiling Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Shuru Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongguo Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Ganxiang Cao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fan Wu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Sun XW, Lin YN, Ding YJ, Li SQ, Li HP, Zhou JP, Zhang L, Shen JM, Li QY. Surfaxin attenuates PM2.5-induced airway inflammation via restoring surfactant proteins in rats exposed to cigarette smoke. ENVIRONMENTAL RESEARCH 2022; 203:111864. [PMID: 34389351 DOI: 10.1016/j.envres.2021.111864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Epidemiologic studies have shown that the fine particulate matter 2.5 (PM2.5) exaggerates chronic airway inflammation involving in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Surfactant proteins (SPs) decreases significantly related to airflow limitation and airway inflammation. However, how to restore the reduction of SPs levels in airway inflammation exposed to PM2.5 has not been well understood. In the present study, the SPs including SPA, SPB, SPC and SPD levels in bronchoalveolar lavage fluid (BALF) were detected from patients with stable COPD. Rats were exposed to cigarette smoke and PM2.5. After given with Surfaxin, the expression of SPs, protein kinase C (PKC) and tight junction protein (ZO-1) in lung tissue and the levels of C-reactive protein (CRP) and fibrinogen (FIB) in plasma was observed. The results showed that SPA, SPB and SPD were significantly lower than those of the control group (p < 0.01). PM2.5 aggravated smoking-induced airway inflammation and oxidative stress demonstrated by pathological changes of lung tissue and increased levels of CRP and PKC in vivo. PM2.5 decreased the expression of all the SPs and ZO-1, which could be significantly restored by Surfaxin. These findings indicate that Surfaxin protects the alveolar epithelium from PM2.5 in airway inflammation through increasing SPs.
Collapse
Affiliation(s)
- Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Ping Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Min Shen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Zhu C, Maharajan K, Liu K, Zhang Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. ENVIRONMENTAL RESEARCH 2021; 198:111281. [PMID: 33961825 PMCID: PMC8096764 DOI: 10.1016/j.envres.2021.111281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Due to intense industrialization and urbanization, air pollution has become a serious global concern as a hazard to human health. Epidemiological studies found that exposure to atmospheric particulate matter (PM) causes severe health problems in human and significant damage to the physiological systems. In recent days, PM exposure could be related as a carrier for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus transmission and Coronavirus disease 2019 (COVID-19) infection. Hence, it is important to understand the adverse effects of PM in human health. This review aims to provide insights on the detrimental effects of PM in various human health problems including respiratory, circulatory, nervous, and immune system along with their possible toxicity mechanisms. Overall, this review highlights the potential relationship of PM with several life-limiting human diseases and their significance for better management strategies.
Collapse
Affiliation(s)
- Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
6
|
Cáceres L, Paz ML, Garcés M, Calabró V, Magnani ND, Martinefski M, Martino Adami PV, Caltana L, Tasat D, Morelli L, Tripodi V, Valacchi G, Alvarez S, González Maglio D, Marchini T, Evelson P. NADPH oxidase and mitochondria are relevant sources of superoxide anion in the oxinflammatory response of macrophages exposed to airborne particulate matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111186. [PMID: 32853868 DOI: 10.1016/j.ecoenv.2020.111186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ambient air particulate matter (PM) is associated with increased cardiorespiratory morbidity and mortality. In this context, alveolar macrophages exhibit proinflammatory and oxidative responses as a result of the clearance of particles, thus contributing to lung injury. However, the mechanisms linking these pathways are not completely clarified. Therefore, the oxinflammation phenomenon was studied in RAW 264.7 macrophages exposed to Residual Oil Fly Ash (ROFA), a PM surrogate rich in transition metals. While cell viability was not compromised under the experimental conditions, a proinflammatory phenotype was observed in cells incubated with ROFA 100 μg/mL, characterized by increased levels of TNF-α and NO production, together with PM uptake. This inflammatory response seems to precede alterations in redox metabolism, characterized by augmented levels of H2O2, diminished GSH/GSSG ratio, and increased SOD activity. This scenario resulted in increased oxidative damage to phospholipids. Moreover, alterations in mitochondrial respiration were observed following ROFA incubation, such as diminished coupling efficiency and spare respiratory capacity, together with augmented proton leak. These findings were accompanied by a decrease in mitochondrial membrane potential. Finally, NADPH oxidase (NOX) and mitochondria were identified as the main sources of superoxide anion () in our model. These results indicate that PM exposure induces direct activation of macrophages, leading to inflammation and increased reactive oxygen species production through NOX and mitochondria, which impairs antioxidant defense and may cause mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lourdes Cáceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina
| | - Mariela L Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Facultad de Farmacia y Bioquímica, Argentina
| | - Mariana Garcés
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Natalia D Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Manuela Martinefski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica I, Argentina
| | - Pamela V Martino Adami
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Argentina
| | - Laura Caltana
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Facultad de Medicina, Argentina
| | - Deborah Tasat
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología, Centro de Estudios en Salud y Medio Ambiente, Argentina
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Argentina
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica I, Argentina
| | - Giuseppe Valacchi
- NC State University, Plants for Human Health Institute, Animal Science Department, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Alvarez
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Daniel González Maglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Facultad de Farmacia y Bioquímica, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| |
Collapse
|
7
|
Yang J, Roth P, Durbin TD, Shafer MM, Hemming J, Antkiewicz DS, Asa-Awuku A, Karavalakis G. Emissions from a flex fuel GDI vehicle operating on ethanol fuels show marked contrasts in chemical, physical and toxicological characteristics as a function of ethanol content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:749-761. [PMID: 31150895 DOI: 10.1016/j.scitotenv.2019.05.279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
This study assessed the gaseous and particulate emissions, as well as the toxicological properties of particulate matter (PM) from a flex fuel vehicle equipped with a wall-guided gasoline direct injection engine over triplicates cold-start and hot-start LA92 cycles. The vehicle was operated on a Tier 3 E10 fuel, an E10 fuel with higher levels of aromatics than the Tier 3 E10, an E30, and an E78 blend. Total hydrocarbon (THC), non-methane hydrocarbon (NMHC), carbon monoxide (CO), particulate emissions, and gaseous toxics (of benzene, toluene, ethylbenzene, xylenes (BTEX), and 1,3-butadiene) reduced for E30 and E78 blends compared to both E10 fuels. Formaldehyde and acetaldehyde emissions substantially increased with the higher ethanol blends. The high aromatic E10 fuel increased the emissions of THC, NMHC, particulates, and BTEX compared to the Tier 3 E10 fuel and the higher ethanol blends, as well as showed higher concentrations of accumulation mode particles. The GDI PM did not exhibit any measurable mutagenicity at the PM concentrations tested. Cytotoxicity varied only within a small range and concentrations of PM, eliciting a cytotoxic response similar to those by ambient aerosol. The outcomes of our two measures of PM oxidative potential (macrophage ROS and DTT) were significantly correlated, with the E78 blend exhibiting the least oxidative potential and the E30 the greatest. Gene expression analysis at both the mRNA and protein level indicates that there is the potential for GDI PM emissions to contribute to inflammation and etiology of disease such as asthma, and in contrast to the ROS and DTT outcomes, the E78 fuel PM exhibited the greatest potential to elicit pro-inflammatory cytokine (TNFα) production. Overall, the trends in toxicity emission rates (activity/mi) across the ethanol blends was driven primarily by PM mass emission rate contrasts and only secondarily by the differences in intrinsic toxicity of the PM.
Collapse
Affiliation(s)
- Jiacheng Yang
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA
| | - Patrick Roth
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA
| | - Thomas D Durbin
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA
| | - Martin M Shafer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Jocelyn Hemming
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Dagmara S Antkiewicz
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Akua Asa-Awuku
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA; Department of Chemical and Biomolecular Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA
| | - Georgios Karavalakis
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA.
| |
Collapse
|
8
|
Direct and Indirect Effect of Air Particles Exposure Induce Nrf2-Dependent Cardiomyocyte Cellular Response In Vitro. Cardiovasc Toxicol 2019; 19:575-587. [DOI: 10.1007/s12012-019-09530-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Yang J, Roth P, Ruehl CR, Shafer MM, Antkiewicz DS, Durbin TD, Cocker D, Asa-Awuku A, Karavalakis G. Physical, chemical, and toxicological characteristics of particulate emissions from current technology gasoline direct injection vehicles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1182-1194. [PMID: 30308806 DOI: 10.1016/j.scitotenv.2018.09.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
We assessed the physical, chemical and toxicological characteristics of particulate emissions from four light-duty gasoline direct injection vehicles when operated over the LA92 driving cycle. Our results showed that particle mass and number emissions increased markedly during accelerations. For three of the four vehicles tested, particulate matter (PM) mass and particle number emissions were markedly higher during cold-start and the first few accelerations following the cold-start period than during the hot running and hot-start segments of the LA92 cycle. For one vehicle (which had the highest emissions overall) the hot-start and cold-start PM emissions were similar. Black carbon emissions were also much higher during the cold-start conditions, indicating severe fuel wetting leading to slow evaporation and pool burning, and subsequent soot formation. Particle number concentrations and black carbon emissions showed large reductions during the urban and hot-start phases of the test cycle. The oxidative potential of PM was quantified with both a chemical and a biological assay, and the gene expression impacts of the PM in a macrophage model with PCR (polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) analyses. Inter- and intra-vehicle variability in oxidative potential per milligram of PM emitted was relatively low for both oxidative assays, suggesting that real-world emissions and exposure can be estimated with distance-normalized emission factors. The PCR response from signaling markers for oxidative stress (e.g., NOX1) was greater than from inflammatory, AhR (aryl hydrocarbon receptor), or MAPK (mitogen-activated protein kinase) signaling. Protein production associated with inflammation (tumor necrosis factor alpha-TNFα) and oxidative stress (HMOX-1) were quantified and displayed relatively high inter-vehicle variability, suggesting that these pathways may be activated by different PM components. Correlation of trace metal concentrations and oxidative potential suggests a role for small, insoluble particles in inducing oxidative stress.
Collapse
Affiliation(s)
- Jiacheng Yang
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Patrick Roth
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | | | - Martin M Shafer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Dagmara S Antkiewicz
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas D Durbin
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - David Cocker
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Akua Asa-Awuku
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Georgios Karavalakis
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
10
|
Al Hanai AH, Antkiewicz DS, Hemming JDC, Shafer MM, Lai AM, Arhami M, Hosseini V, Schauer JJ. Seasonal variations in the oxidative stress and inflammatory potential of PM 2.5 in Tehran using an alveolar macrophage model; The role of chemical composition and sources. ENVIRONMENT INTERNATIONAL 2019; 123:417-427. [PMID: 30622066 DOI: 10.1016/j.envint.2018.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The current study was designed to assess the association between temporal variations in urban PM2.5 chemical composition, sources, and the oxidative stress and inflammatory response in an alveolar macrophage (AM) model. A year-long sampling campaign collected PM2.5 samples at the Sharif University in Tehran, Iran. PM-induced reactive oxygen species (ROS) production was measured both with an acellular dithiothreitol consumption assay (DTT-ROS; ranged from 2.1 to 9.3 nmoles min-1 m-3) and an in vitro macrophage-mediated ROS production assay (AM-ROS; ranged from 125 to 1213 μg Zymosan equivalents m-3). The production of tumor necrosis factor alpha (TNF-α; ranged from ~60 to 518 pg TNF-α m-3) was quantified as a marker of the inflammatory potential of the PM. PM-induced DTT-ROS and AM-ROS were substantially higher for the colder months' PM (1.5-fold & 3-fold, respectively) compared with warm season. Vehicular emission tracers, aliphatic diacids, and hopanes exhibited moderate correlation with ROS measures. TNF-α secretion exhibited a markedly different pattern than ROS activity with a 2-fold increase in the warm months compared to the rest of the year. Gasoline vehicles and residual oil combustion were moderately associated with both ROS measures (R ≥ 0.67, p < 0.05), while diesel vehicles exhibited a strong correlation with secreted TNF-α in the cold season (R = 0.89, p < 0.05). mRNA expression of fourteen genes including antioxidant response and pro-inflammatory markers were found to be differentially modulated in our AM model. HMOX1, an antioxidant response gene, was up-regulated throughout the year. Pro-inflammatory genes (e.g. TNF-α and IL1β) were down-regulated in the cold season and displayed moderate to weak correlation with crustal elements (R > 0.5, p < 0.05). AM-ROS activity showed an inverse relationship with genes including SOD2, TNF, IL1β and IL6 (R ≥ -0.66, p < 0.01). Our findings indicate that Tehran's PM2.5 has the potential to induce oxidative stress and inflammation responses in vitro. In the current study, these responses included NRF2, NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Ahlam H Al Hanai
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Martin M Shafer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Alexandra M Lai
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, Madison, WI, USA.
| |
Collapse
|
11
|
Zhong Y, Liao J, Hu Y, Wang Y, Sun C, Zhang C, Wang G. PM 2.5 Upregulates MicroRNA-146a-3p and Induces M1 Polarization in RAW264.7 Cells by Targeting Sirtuin1. Int J Med Sci 2019; 16:384-393. [PMID: 30911272 PMCID: PMC6428978 DOI: 10.7150/ijms.30084] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Fine particulate matter (PM2.5) exposure is proved to be associated with illnesses, but the mechanism is not clear. Potential effects of PM2.5 on innate immunity have become a hotspot recently. Confronting PM2.5, macrophages are able to be activated and induce inflammatory responses. Whether PM2.5 exposure affects macrophage polarization and associated mechanisms remains to be further explored. Afterwards, whether Sirtuin1 (SIRT1) an important intermediate regulator in various physiological processes takes part in the macrophage polarization induced by PM2.5 is unknown. MiRNAs are acknowledged as key regulator in posttranscriptional modification and our previous study found that miR-146a is a novel biomarker of PM2.5 exposure. Thus, we propose a hypothesis, PM2.5 exposure induces M1 polarization and miR-146a-3p is a potential upstream regulator by targeting SIRT1. Methods: RAW264.7 cells were treated with different concentrations of PM2.5 for 24h. The expressions of cytokines and key molecular markers were detected by qRT-PCR, Western blotting and ELISA. The activation degree of TLRs and NF-κB was assessed by Western blotting. The specific agonist and antagonist of SIRT1 were used to explore the potential role of SIRT1 in M1 polarization induced by PM2.5. MiR-146a-3p mimic and inhibitor were pre-transfected into RAW264.7 cells and the effects on M1 polarization induced by PM2.5 were evaluated. Luciferase analysis was used to identify the binding site of miR-146a-3p and SIRT1. Results: PM2.5 increased the mRNA and protein expression of M1 markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in RAW264.7 cells. The protein level of TLR4 was significantly increased and the ratio of phosphorylated NF-κB p65 versus p65 subunit was also elevated in PM2.5 group. PM2.5 decreased the protein level of SIRT1 but not the mRNA expression in vitro and in vivo experiments. Pre-treatment with SIRT1 agonist SRT1720 rescued the PM2.5 induced M1 response. Whereas, SIRT1 antagonist EX527 augment the effect. MiR-146a-3p was upregulated in PM2.5 treated RAW264.7 cells. Luciferase experiments reported that SIRT1 was directly targeted by miR-146a-3p. Overexpression of miR-146a-3p downregulated the expression of SIRT1 protein in untreated RAW264.7 cells. Importantly, inhibition of miR-146a-3p upregulated SIRT1 protein and suppressed M1 polarization in PM2.5 treated RAW264.7 cells. Conclusions: These results suggested that PM2.5 induces the inflammatory M1 polarization and TLR4/NF-κB signal transduction pathway might be involved in the process. MiR-146a-3p is a novel regulator of PM2.5 exerted M1 polarization by targeting SIRT1.
Collapse
Affiliation(s)
- Yijue Zhong
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China, 100034
| | - Jiping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China, 100034
| | - Yan Hu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China, 100034
| | - Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China, 100034
| | - Chao Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China, 100034
| | - Cheng Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China, 100034
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China, 100034
| |
Collapse
|
12
|
Losacco C, Perillo A. Particulate matter air pollution and respiratory impact on humans and animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33901-33910. [PMID: 30284710 DOI: 10.1007/s11356-018-3344-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Air pollution is now fully acknowledged to be a public health problem and a social issue. Particulate matter (PM) concentration has been linked with several clinical manifestations of pulmonary and cardiovascular diseases and is associated with morbidity and mortality induced by respiratory diseases both in human and animals. Current research on airborne particle-induced health effects investigates the critical characteristics of particulate matter that determine their biological effects. Scientific evidence assessed that the size of the airborne particles and their surface area determine the potential to elicit inflammatory injury, oxidative damage, and other biological effects. Thus, the present review paper aims to summarize the current evidences and findings on the effect of air pollution on lung function in both humans and animals.
Collapse
Affiliation(s)
- Caterina Losacco
- Department of Veterinary Medicine, University of Bari 'Aldo Moro', 70010, Valenzano, Bari, Italy.
| | - Antonella Perillo
- Department of Veterinary Medicine, University of Bari 'Aldo Moro', 70010, Valenzano, Bari, Italy
| |
Collapse
|
13
|
Lei X, Muscat JE, Huang Z, Chen C, Xiu G, Chen J. Differential transcriptional changes in human alveolar epithelial A549 cells exposed to airborne PM 2.5 collected from Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33656-33666. [PMID: 30276685 DOI: 10.1007/s11356-018-3090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Fine particulate matters (PM2.5) are the core pollutants of haze episode, which pose a serious threat to the human health of developing countries. However, the mechanisms involved in PM2.5-induced hazard influence are not to fully elucidated. In the present study, human lung epithelial cells (A549) were exposed to various concentrations of PM2.5 samples collected from Shanghai, China. Illumina RNA-Seq method with transcriptome, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were further employed to identify the detrimental effects of PM2.5 on A549 cells in vitro. A total of 712 differentially expressed genes were obtained from global transcriptome profiling of A549 cells after PM2.5 exposure. In addition, GO function enrichment analysis revealed that major differentially expressed genes (DEGs) involved in the biological process of the immune system and the response to the stress. KEGG pathway analysis further proposes that infectious disease, cancers, cardiovascular disease, and immune disease pathway were the key human disease events that occur in A549 cells under PM2.5 stress. The data obtained here shed light on the related biological process and gene signaling pathways affected by PM2.5 exposure. This study aids our understanding of the complicated mechanisms related to PM2.5-induced health effects and is informative for the prevention and treatment of PM2.5-induced systemic diseases.
Collapse
Affiliation(s)
- Xiaoning Lei
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, PA, 17033, USA
| | - Joshua E Muscat
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, PA, 17033, USA
| | - Zhongsi Huang
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Jiahui Chen
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| |
Collapse
|
14
|
Activation of Porcine Alveolar Macrophages by Actinobacillus pleuropneumoniae Lipopolysaccharide via the Toll-Like Receptor 4/NF-κB-Mediated Pathway. Infect Immun 2018; 86:IAI.00642-17. [PMID: 29229731 DOI: 10.1128/iai.00642-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia. Overproduction of proinflammatory cytokines, like interleukin-1β (IL-1β), IL-6, tumor necrosis factor alpha, and resistin, in the lung is an important feature of A. pleuropneumoniae infection. These proinflammatory cytokines enhance inflammatory and immunological responses. However, the mechanism that leads to cytokine production remains unclear. As a major virulence factor of A. pleuropneumoniae, lipopolysaccharide (LPS) may act as a potent stimulator of Toll-like receptor 4 (TLR4), triggering a number of intracellular signaling pathways that lead to the synthesis of proinflammatory cytokines. Porcine alveolar macrophages (PAMs) are the first line of defense against pathogenic microbes during pathogen invasion. The results of the present study demonstrate that A. pleuropneumoniae LPS induces PAMs to produce inflammatory cytokines in time- and dose-dependent manners. Moreover, PAMs were activated by A. pleuropneumoniae LPS, resulting in upregulation of signaling molecules, including TLR4, MyD88, TRIF-related adaptor molecule, and NF-κB. In contrast, the activation effects of A. pleuropneumoniae LPS on PAMs could be suppressed by specific inhibitors, like small interfering RNA and Bay11-7082. Taken together, our data indicate that A. pleuropneumoniae LPS can induce PAMs to produce proinflammatory cytokines via the TLR4/NF-κB-mediated pathway. These findings partially reveal the mechanism of the overproduction of proinflammatory cytokines in the lungs of swine with A. pleuropneumoniae infection and may provide targets for the prevention of A. pleuropneumoniae-induced pneumonia. All the data could be used as a reference for the pathogenesis of respiratory infection.
Collapse
|
15
|
Bliss B, Tran KI, Sioutas C, Campbell A. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors. ENVIRONMENTAL RESEARCH 2018; 161:314-320. [PMID: 29178980 PMCID: PMC5748008 DOI: 10.1016/j.envres.2017.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 05/22/2023]
Abstract
Exposure to ambient particulate matter (PM) has been linked to adverse pulmonary and cardiovascular health effects. Activation of both inflammatory and oxidative stress pathways has been observed and may be a probable cause of these outcomes. We tested the hypothesis that in human monocytes, PM-induced oxidative and inflammatory responses are interrelated. A human monocytic cell line (THP-1) was used to determine if dose and differentiation state plays a role in the cellular response after a 24hr exposure to particles. Primary human monocytes derived from eight female, non-smoker donors (aged: 21, 24, 27, 28, 48, 49, 54 & 60yo) were used to determine if the age of donors modulates the response. Cells were treated with aqueous suspensions of ambient ultrafine particles (UFP, defined as smaller than 0.2µm in size) or a media control for 24hr. After exposure, reactive oxygen species (ROS) formation was increased irrespective of dose or differentiation state of THP-1 cells. In the primary human monocytes, ROS formation was not significantly changed. The release of the proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), was dose-dependent and greatest in differentiated compared to undifferentiated THP-1 cells exposed to UFP. In the Primary human monocytes, TNF-α secretion was increased irrespective of the age of the donor. Our results suggest that after a 24hr exposure to particles, general reactive oxygen species formation was nonspecific and uncorrelated to cytokine secretion which was consistently enhanced. Cytokines play an important role in orchestrating many immune responses and thus the ability of ambient particles to enhance robust secretion of a proinflammatory cytokine from primary human monocytes, and how this may influence the response to pathogens and alter disease states, needs to be further evaluated.
Collapse
Affiliation(s)
- Bishop Bliss
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Kevin Ivan Tran
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Constantinos Sioutas
- Department of Civil & Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
16
|
Shafer MM, Hemming JDC, Antkiewicz DS, Schauer JJ. Oxidative potential of size-fractionated atmospheric aerosol in urban and rural sites across Europe. Faraday Discuss 2018; 189:381-405. [PMID: 27116365 DOI: 10.1039/c5fd00196j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study we applied several assays, an in vitro rat alveolar macrophage model, a chemical ROS probe (DTT, dithiothreitol), and cytokine induction (TNFα) to examine relationships between PM-induced generation of reactive oxygen species (ROS) and PM composition, using a unique set of size-resolved PM samples obtained from urban and rural environments across Europe. From April-July 2012, we collected PM from roadside canyon, roadside motorway, and background urban sites in each of six European cities and from three rural sites spanning the continent. A Hi-Vol sampler was used to collect PM in three size classes (PM>7, PM7-3, PM3) and PM was characterized for total elements, and oxidative activity quantified in unfiltered and filtered PM extracts. We measured a remarkable uniformity in air concentrations of ROS and especially DTT activity across the continent. Only a 4-fold difference was documented for DTT across the urban sites and a similar variance was documented for ROS, implying that chemical drivers of oxidative activity are relatively similar between sites. The ROS and DTT specific activity was greater at urban background sites (and also rural sites) than at urban canyon locations. PM3 dominated the size distribution of both ROS activity (86% of total) and DTT activity (76% of total), reflecting both the large contribution of PM3 to total PM mass levels and importantly the higher specific oxidative activity of the PM3 in comparison with the larger particles. The soluble fraction of total activity was very high for DTT (94%) as well as for ROS (64%) in the PM3. However in the larger PM size fractions the contributions of the insoluble components became increasingly significant. The dominance of the insoluble PM drivers of activity was particularly evident in the TNFα data, where the insoluble contribution to cytokine production could be 100-fold greater than that from soluble components. ROS and DTT activity were strongly correlated in the PM3 (r = 0.93), however oxidative activity was not correlated with any measured inorganic element in this size cut. In contrast, significant correlations of both ROS and DTT oxidative activity with specific groups of chemical elements were documented in the larger PM size fractions.
Collapse
Affiliation(s)
- Martin M Shafer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park St., Madison, WI 53706, USA. and Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718, USA
| | - Jocelyn D C Hemming
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718, USA
| | - Dagmara S Antkiewicz
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718, USA
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park St., Madison, WI 53706, USA.
| |
Collapse
|
17
|
Hu Y, Wang LS, Li Y, Li QH, Li CL, Chen JM, Weng D, Li HP. Effects of particulate matter from straw burning on lung fibrosis in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:249-258. [PMID: 29031221 DOI: 10.1016/j.etap.2017.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the impacts of particulate matter 2.5 (PM2.5) from straw burning on the acute exacerbation of lung fibrosis in mice and the preventive effects of N-acetylcysteine (NAC). METHODS The composition, particle size, and 30-min concentration change in an exposure system of the PM2.5 from straw-burning were determined. Forty C57BL male mice were equally randomized to two groups: bleomycin (BLM)-induced lung fibrosis with an exposure to air (BLM+air) and BLM+PM2.5 groups. On day 7 after receiving intratracheal injection of BLM, mice were exposed to air or PM2.5 in an exposure system for 30min twice daily and then sacrificed after one-week or four-week exposure (10 mice/group). Mouse survival, lung histopathology, macrophage accumulation in the lung, and pro-inflammatory cytokine levels in alveolar lavage fluid (ALF) were determined. RESULTS PM2.5 from straw burning were mainly composed of organic matter (74.1%); 10.92% of the inorganic matter of the PM2.5 were chloride ion; 4.64% were potassium ion; other components were sulfate, nitrate, and nitrite. Particle size was 10nm-2μm. Histopathology revealed a greater extent of inflammatory cell infiltration in the lung, widened alveolar septum, and lung fibrosis in the BLM+PM2.5 group than in the BLM+air group and a greater extent of those adverse effects after four-week than after one-week exposure to PM2.5. The BLM+PM2.5 group also showed macrophages containing particular matter and increased pulmonary collagen deposition as the exposure to PM2.5 increased. Interleukin (IL)-6 and TNF-α levels in ALF were significantly higher in the BLM+PM2.5 group than in the BLM+air group (P<0.05) and significantly higher after four-week exposure than after one-week exposure to PM2.5 (P<0.05). TGF-β levels in ALF after four-week exposure were significantly higher in the BLM+PM2.5 group than in the BLM+air group (P<0.05). The levels of IL-6, TNF-α, and TGF-β in peripheral serum were not significantly different in the BLM+PM2.5 and BLM+air groups. Lung hydroxyproline contents increased as the exposure to PM2.5 increased and were significantly higher after four-week than after one-week exposure (P=0.019). Exposure to PM2.5 did not affect the survival of normal mice (100%) but reduced the survival of mice with BLM-induced IPF (30%), whereas NAC extended the survival (70%, vs. BLM+PM2.5, P=0.032). CONCLUSION Exposure of mice with BLM-induced IPF to PM2.5 from straw burning exacerbated lung inflammation and fibrosis and increased mortality; NAC increased the mouse survival, indicating protective effects.
Collapse
Affiliation(s)
- Yang Hu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China.
| | - Liu-Sheng Wang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China.
| | - Yan Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China.
| | - Qiu-Hong Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China.
| | - Chun-Lin Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jian-Min Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Dong Weng
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China.
| | - Hui-Ping Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China.
| |
Collapse
|
18
|
Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis. Pharm Res 2017; 34:2466-2476. [PMID: 28540501 PMCID: PMC5736774 DOI: 10.1007/s11095-017-2176-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Progress to the clinic may be delayed or prevented when vacuolated or "foamy" alveolar macrophages are observed during non-clinical inhalation toxicology assessment. The first step in developing methods to study this response in vitro is to characterize macrophage cell lines and their response to drug exposures. METHODS Human (U937) and rat (NR8383) cell lines and primary rat alveolar macrophages obtained by bronchoalveolar lavage were characterized using high content fluorescence imaging analysis quantification of cell viability, morphometry, and phospholipid and neutral lipid accumulation. RESULTS Cell health, morphology and lipid content were comparable (p < 0.05) for both cell lines and the primary macrophages in terms of vacuole number, size and lipid content. Responses to amiodarone, a known inducer of phospholipidosis, required analysis of shifts in cell population profiles (the proportion of cells with elevated vacuolation or lipid content) rather than average population data which was insensitive to the changes observed. CONCLUSIONS A high content image analysis assay was developed and used to provide detailed morphological characterization of rat and human alveolar-like macrophages and their response to a phospholipidosis-inducing agent. This provides a basis for development of assays to predict or understand macrophage vacuolation following inhaled drug exposure.
Collapse
|
19
|
Wu X, Lintelmann J, Klingbeil S, Li J, Wang H, Kuhn E, Ritter S, Zimmermann R. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: a pilot study. Biomarkers 2017; 22:525-536. [DOI: 10.1080/1354750x.2017.1306753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiao Wu
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jutta Lintelmann
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
| | - Sophie Klingbeil
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jie Li
- Department of Environmental Health, Shandong University, Jinan, China
| | - Hao Wang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Evelyn Kuhn
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
| | - Sebastian Ritter
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
| | - Ralf Zimmermann
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Luo B, Liu J, Fei G, Han T, Zhang K, Wang L, Shi H, Zhang L, Ruan Y, Niu J. Impact of probable interaction of low temperature and ambient fine particulate matter on the function of rats alveolar macrophages. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:172-178. [PMID: 28064136 DOI: 10.1016/j.etap.2016.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/15/2016] [Accepted: 12/24/2016] [Indexed: 05/20/2023]
Abstract
The present study aimed to explore the probable interaction of low temperature and ambient fine particulate matter (PM2.5) on rat alveolar macrophages (AMs). AMs were separated from rat BALF and exposed to PM2.5 (0, 25, 50, 100μg/ml) under different temperature (18, 24, 30, 37°C) for 8h. Results indicated that viability and phagocytosis function of AMs decreased with the decline of temperature and the rise of PM2.5 dose, and the strongest toxicity was shown in the highest PM2.5 (100μg/ml) exposure group at 18°C. Both PM2.5 and lower temperature increased the releasing of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein 1α (MIP-1α) and interleukin-6 (IL-6), while significant interaction was only found in MIP-1α production. No obvious change was found in granulocyte-macrophage colony-stimulating factor (GM-CSF) detection. These results indicated that both the two factors are harmful to rat AMs and lower temperature could increase the toxicity of PM2.5 on the AMs.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Gaoqiang Fei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ting Han
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lina Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hongxia Shi
- Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Li Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ye Ruan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
21
|
Zhao Q, Chen H, Yang T, Rui W, Liu F, Zhang F, Zhao Y, Ding W. Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim Biophys Acta Gen Subj 2016; 1860:2835-43. [PMID: 27041089 DOI: 10.1016/j.bbagen.2016.03.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exposure of atmospheric particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5) is epidemiologically associated with illnesses. Potential effects of air pollutants on innate immunity have raised concerns. As the first defense line, macrophages are able to induce inflammatory response. However, whether PM2.5 exposure affects macrophage polarizations remains unclear. METHODS We used freshly isolated macrophages as a model system to demonstrate effects of PM2.5 on macrophage polarizations. The expressions of cytokines and key molecular markers were detected by real-time PCR, and flow cytometry. The specific inhibitors and gene deletion technologies were used to address the molecular mechanisms. RESULTS PM2.5 increased the expression of pro-inflammatory cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα). PM2.5 also enhanced the lipopolysaccharide (LPS)-induced M1 polarization even though there was no evidence in the change of cell viability. However, PM2.5 significantly decreased the number of mitochondria in a dose dependent manner. Pre-treatment with NAC, a scavenger of reactive oxygen species (ROS), prevented the increase of ROS and rescued the PM2.5-impacted M1 but not M2 response. However, mTOR deletion partially rescued the effects of PM2.5 to reduce M2 polarization. CONCLUSIONS PM2.5 exposure significantly enhanced inflammatory M1 polarization through ROS pathway, whereas PM2.5 exposure inhibited anti-inflammatory M2 polarization through mTOR-dependent pathway. GENERAL SIGNIFICANCE The present studies suggested that short-term exposure of PM2.5 acts on the balance of inflammatory M1 and anti-inflammatory M2 macrophage polarizations, which may be involved in air pollution-induced immune disorders and diseases. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Qingjie Zhao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tao Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Rui
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis 2016; 8:E8-E19. [PMID: 26904258 DOI: 10.3978/j.issn.2072-1439.2015.11.37] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollution is now becoming an independent risk factor for cardiovascular morbidity and mortality. Numerous epidemiological, biomedical and clinical studies indicate that ambient particulate matter (PM) in air pollution is strongly associated with increased cardiovascular disease such as myocardial infarction (MI), cardiac arrhythmias, ischemic stroke, vascular dysfunction, hypertension and atherosclerosis. The molecular mechanisms for PM-caused cardiovascular disease include directly toxicity to cardiovascular system or indirectly injury by inducing systemic inflammation and oxidative stress in peripheral circulation. Here, we review the linking between PM exposure and the occurrence of cardiovascular disease and discussed the possible underlying mechanisms for the observed PM induced increases in cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Yixing Du
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaohan Xu
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Chu
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Guo
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Junhong Wang
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|