1
|
Guo H, Ren W, Guo M, Wu X, Guo Q. A Comprehensive Review on Ethnopharmacology, Phytochemistry of Mylabris, and Pharmacology of Cantharidin. Chem Biodivers 2025; 22:e202500266. [PMID: 40095765 DOI: 10.1002/cbdv.202500266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Mylabris, the dried body of the Chinese blister beetle, has been utilized in traditional medicine across Asia, Europe, South Africa, and North America for the treatment of tumors, carbuncles, and scrofula. Phytochemical studies revealed cantharidin and its derivatives as the main constituents. Mylabris extracts and its phytochemicals have demonstrated promising pharmacological efficacy, including antitumor, cardiovascular protective, anti-osteoporotic, antidiabetic, and antileishmanial properties. Despite its extensive history of medicinal use and promising therapeutic potential, comprehensive reviews addressing the chemical constituents and pharmacological activities of Mylabris are still limited. This review aims to provide a detailed and systematic overview of ethnopharmacology and phytochemistry of Mylabris, as well as the pharmacology of cantharidin, highlighting the potential of Mylabris as a source of novel therapeutic agents. By summarizing the research findings, this review seeks to enhance the scientific understanding of Mylabris, support its rational clinical application, and guide future research directions, ultimately contributing to the development of new and effective treatments for various diseases.
Collapse
Affiliation(s)
- Huan Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Wenshuo Ren
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Meizhu Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Qiang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
2
|
Liang J, Liu W, Zhang T, Guo D, Gong J, Yang Z. Utilization of natural products in diverse pathogeneses of diseases associated with single or double DNA strand damage repair. Chin Med 2025; 20:46. [PMID: 40197523 PMCID: PMC11974029 DOI: 10.1186/s13020-025-01089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
The appearance of DNA damage often involves the participation of related enzymes, which can affect the onset and development of various diseases. Several natural active compounds have been found to efficiently adjust the activity of crucial enzymes associated with single or double-strand DNA damage, thus demonstrating their promise in treating diseases. This paper provides an in-depth examination and summary of these modulation mechanisms, leading to a thorough review of the subject. The connection between natural active compounds and disease development is explored through an analysis of the structural characteristics of these compounds. By reviewing how different scholarly sources describe identical structures using varied terminology, this study also delves into their effects on enzyme regulation. This review offers an in-depth examination of how natural active compounds can potentially be used therapeutically to influence key enzyme activities or expression levels, which in turn can affect the process of DNA damage repair (DDR). These natural compounds have been shown to not only reduce the occurrence of DNA damage but also boost the efficiency of repair processes, presenting new therapeutic opportunities for conditions such as cancer and other disease pathologies. Future research should focus on clarifying the exact mechanisms of these compounds to maximize their clinical utility and support the creation of novel approaches for disease prevention and treatment.
Collapse
Affiliation(s)
- Jiali Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dean Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jiyu Gong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Laboratory Animal Service and Experiments, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| |
Collapse
|
3
|
Jin D, Huang NN, Wei JX. Hepatotoxic mechanism of cantharidin: insights and strategies for therapeutic intervention. Front Pharmacol 2023; 14:1201404. [PMID: 37383714 PMCID: PMC10293652 DOI: 10.3389/fphar.2023.1201404] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023] Open
Abstract
Cantharidin (CTD), a natural compound derived from Mylabris, is widely used in traditional Oriental medicine for its potent anticancer properties. However, its clinical application is restricted due to its high toxicity, particularly towards the liver. This review provides a concise understanding of the hepatotoxic mechanisms of CTD and highlights novel therapeutic strategies to mitigate its toxicity while enhancing its anticancer efficacy. We systematically explore the molecular mechanisms underlying CTD-induced hepatotoxicity, focusing on the involvement of apoptotic and autophagic processes in hepatocyte injury. We further discuss the endogenous and exogenous pathways implicated in CTD-induced liver damage and potential therapeutic targets. This review also summarizes the structural modifications of CTD derivatives and their impact on anticancer activity. Additionally, we delve into the advancements in nanoparticle-based drug delivery systems that hold promise in overcoming the limitations of CTD derivatives. By offering valuable insights into the hepatotoxic mechanisms of CTD and outlining potential avenues for future research, this review contributes to the ongoing efforts to develop safer and more effective CTD-based therapies.
Collapse
Affiliation(s)
- Dian Jin
- Department of Pharmacy, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Na-Na Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Xia Wei
- Department of Pharmacy, Sixth People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
4
|
The role of heat shock proteins in neoplastic processes and the research on their importance in the diagnosis and treatment of cancer. Contemp Oncol (Pozn) 2021; 25:73-79. [PMID: 34667432 PMCID: PMC8506434 DOI: 10.5114/wo.2021.106006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins (HSPs) are chaperones with highly conservative primary structure, necessary in the processes of protein folding to the most energetically advantageous conformation and maintaining their stability. HSPs perform a number of important functions in various cellular processes and are capable of modulating pathophysiological conditions at the cellular and systemic levels. An example is the high level of HSP expression in neoplastic tissues, which disrupts the apoptosis of transformed cells and promotes the processes of proliferation, invasion, and metastasis. In addition, an increasing amount of information is appearing about the participation of HSPs in the formation of multidrug resistance.This paper provides a review of the current state of research on the fundamental importance as well as the diagnostic and prognostic role of various classes of HSP in cancer treatment. It presents the prospects for using HSPs as biological markers of disease progression and targets in various cancer treatment strategies. However, the need for additional research is quite high. Only numerous joint efforts of research groups will allow the effective use of HSPs as a tool to combat cancer.
Collapse
|
5
|
Swagatika S, Tomar RS. Cantharidin downregulates PSD1 expression and inhibits autophagic flux in yeast cells. FEBS Open Bio 2021; 12:1017-1035. [PMID: 33999504 PMCID: PMC9063437 DOI: 10.1002/2211-5463.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 11/10/2022] Open
Abstract
Cantharidin is a terpenoid compound of insect origin, naturally produced by male blister beetles as an anti-predatory mechanism. Cantharidin has anticancer properties, which are attributed to its ability to induce cell cycle arrest, DNA damage, MAPK signalling pathway and apoptosis. Cantharidin has been reported to induce apoptosis in triple-negative breast cancer cells by suppressing autophagy via downregulation of Beclin 1 expression and autophagosome formation. However, it remains unclear which stage of the autophagic pathway is targeted by cantharidin. Herein, we report that yeast cells are sensitive to cantharidin, and external supplementation of ethanolamine (ETA) ameliorates the cytotoxicity. In addition, cantharidin downregulates phosphatidylserine decarboxylase1 (PSD1) expression. We also report that cantharidin inhibits autophagic flux, and external administration of ETA could rescue this inhibition. Additionally, co-treatment with chloroquine sensitized the autophagy inhibitory effects of cantharidin. We conclude that yeast cells are sensitive to cantharidin due to inhibition of autophagic flux.
Collapse
Affiliation(s)
- Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal-462066, MP, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal-462066, MP, India
| |
Collapse
|
6
|
Lagunas-Rangel FA, Bermúdez-Cruz RM. Natural Compounds That Target DNA Repair Pathways and Their Therapeutic Potential to Counteract Cancer Cells. Front Oncol 2020; 10:598174. [PMID: 33330091 PMCID: PMC7710985 DOI: 10.3389/fonc.2020.598174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance to current cancer treatments is an important problem that arises through various mechanisms, but one that stands out involves an overexpression of several factors associated with DNA repair. To counteract this type of resistance, different drugs have been developed to affect one or more DNA repair pathways, therefore, to test different compounds of natural origin that have been shown to induce cell death in cancer cells is paramount. Since natural compounds target components of the DNA repair pathways, they have been shown to promote cancer cells to be resensitized to current treatments. For this and other reasons, natural compounds have aroused great curiosity and several research projects are being developed around the world to establish combined treatments between them and radio or chemotherapy. In this work, we summarize the effects of different natural compounds on the DNA repair mechanisms of cancer cells and emphasize their possible application to re-sensitize these cells.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Rosa María Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
7
|
Naz F, Wu Y, Zhang N, Yang Z, Yu C. Anticancer Attributes of Cantharidin: Involved Molecular Mechanisms and Pathways. Molecules 2020; 25:E3279. [PMID: 32707651 PMCID: PMC7397086 DOI: 10.3390/molecules25143279] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a preeminent threat to the human race, causing millions of deaths each year on the Earth. Traditionally, natural compounds are deemed promising agents for cancer treatment. Cantharidin (CTD)-a terpenoid isolated from blister beetles-has been used extensively in traditional Chinese medicines for healing various maladies and cancer. CTD has been proven to be protein phosphatase 2A (PP2A) and heat shock transcription factor 1 (HSF-1) inhibitor, which can be potential targets for its anticancer activity. Albeit, it harbors some toxicities, its immense anticancer potential cannot be overlooked, as the cancer-specific delivery of CTD could help to rescue its lethal effects. Furthermore, several derivatives have been designed to weaken its toxicity. In light of extensive research, the antitumor activity of CTD is evident in both in vitro as well as in vivo cancer models. CTD has also proven efficacious in combination with chemotherapy and radiotherapy and it can also target some drug-resistant cancer cells. This mini-review endeavors to interpret and summarize recent information about CTD anticancer potential and underlying molecular mechanisms. The pertinent anticancer strength of CTD could be employed to develop an effective anticarcinogenic drug.
Collapse
Affiliation(s)
| | | | | | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (F.N.); (Y.W.); (N.Z.)
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (F.N.); (Y.W.); (N.Z.)
| |
Collapse
|
8
|
Li YD, Mao Y, Dong XD, Lei ZN, Yang Y, Lin L, Ashby CR, Yang DH, Fan YF, Chen ZS. Methyl-Cantharidimide (MCA) Has Anticancer Efficacy in ABCB1- and ABCG2-Overexpressing and Cisplatin Resistant Cancer Cells. Front Oncol 2020; 10:932. [PMID: 32676451 PMCID: PMC7333678 DOI: 10.3389/fonc.2020.00932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, we investigated the efficacy of methyl-cantharidimide (MCA), a cantharidin (CTD) analog, as an anticancer drug, in cancer cells overexpressing either ABCB1 or ABCG2 transporters and in cisplatin-resistant cancer cells. The results indicated that: (i) MCA was efficacious in the ABCB1-overexpressing cell line, KB-C2, and the ABCB1-gene-transfected cell line, HEK293/ABCB1 (IC50 from 6.37 to 8.44 mM); (ii) MCA was also efficacious in the ABCG2-overexpressing cell line, NCI-H460/MX20, and the ABCG2-gene-transfected cell lines, HEK293/ABCG2-482-R2, HEK293/ABCG2-482-G2, and the HEK293/ABCG2-482-T7 cell lines (IC50 from 6.37 to 9.70 mM); (iii) MCA was efficacious in the cisplatin resistant cancer cell lines, KCP-4 and BEL-7404/CP20 (IC50 values from 7.05 to 8.16 mM); (iv) MCA (up to 16 mM) induced apoptosis in both BEL-7404 and BEL-7404/CP20 cancer cells; (v) MCA arrested both BEL-7404 and BEL-7404/CP20 cancer cells in the G0/G1 phase of the cell cycle; (vi) MCA (8 mM) upregulated the expression level of the protein, unc-5 netrin receptor B (UNC5B) in HepG2 and BEL-7404 cancer cells. Overall, our results indicated that MCA's efficacy in ABCB1- and ABCG2-overexpressing and cisplatin resistant cancer cells is due to the induction of apoptosis and cell cycle arrest in the G0/G1 phase.
Collapse
Affiliation(s)
- Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Lizhu Lin
- Cancer Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
9
|
Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019; 9:cells9010060. [PMID: 31878360 PMCID: PMC7017199 DOI: 10.3390/cells9010060] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across cancers as they are implicated in a variety of cancer-related activities such as cell proliferation, metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-, and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Hyung Joo Kim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea
- Correspondence: ; Tel.: +82-02-709-2029
| |
Collapse
|
10
|
Huang X, Xie W, Yu X, Fan C, Wang J, Cao Y, Li J. Methyl-Cantharidimide Inhibits Growth of Human Hepatocellular Carcinoma Cells by Inducing Cell Cycle Arrest and Promoting Apoptosis. Front Oncol 2019; 9:1234. [PMID: 31803617 PMCID: PMC6873211 DOI: 10.3389/fonc.2019.01234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Methyl-Cantharidimide (MCA) is a derivative of cantharidin which has potential anticancer activity. This study investigates the effect of MCA on the growth and metastasis of human hepatocellular carcinoma (HCC) cells. Human HCC HepG2 and Hep3B2.1-7 cells, and normal hepatocytes (L02) were treated with a series of concentrations of MCA. The inhibition ability of these cells was examined by CCK-8 assay. Cell cycle and cell apoptosis were determined using Flow Cytometry. The effect of MCA on cell migration and invasion was evaluated through scratch wound healing and transwell migration assays. Furthermore, Western blot was used to evaluate biomarkers associated with cell cycle and apoptosis. It was found that: (i) MCA inhibited cell proliferation in HCC cells in a dose- and time-dependent manner, especially in HepG2 cells; (ii) MCA arrested HCC cells in G-1 phase cell cycle; (iii) MCA induced HCC cells apoptosis; (iv) MCA inhibited the migration ability of HCC cells; and (v) MCA treatment significantly increased cleaved-caspase3 and decreased NF-κB protein in HCC cells. These results suggest that MCA has cytotoxic effect on HCC cells by inducing cell cycle arrest and promoting apoptosis. MCA could be developed as an previous anticancer drug for the treatment of human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiangzhong Huang
- Department of Interventional Therapy, Affiliated Jiangyin Hospital, Medical College of Southeast University, Jiangyin, China
| | - Wen Xie
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiaofan Yu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Caiyun Fan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jin Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yi Cao
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jianxiang Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Xiao Z, Wang C, Tan Z, Hu S, Chen Y, Zhou M, Feng J, Liu S, Chen L, Ding J, Gong Q, Tang F, Liu H, Li X. Clinical efficacy and safety of sodium cantharidinate plus chemotherapy in non-small-cell lung cancer: A systematic review and meta-analysis of 38 randomized controlled trials. J Clin Pharm Ther 2018; 44:23-38. [PMID: 30229971 DOI: 10.1111/jcpt.12761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 11/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Sodium cantharidinate has been widely used in lung cancer treatment in China. To investigate whether sodium cantharidinate improves clinical effectiveness in non-small-cell lung cancer, we systematically re-evaluated all related studies. METHODS All studies of cantharidinate for non-small-cell lung cancers (NSCLC) were selected from the MEDLINE, EMBASE, Web of Science (ISI), China National Knowledge Infrastructure Database (CNKI), Chinese Scientific Journals Full-Text Database (VIP), Wanfang, China Biological Medicine Database (CBM), Cochrane Central Register of Controlled Trials (CENTRAL), Chinese clinical trial registry (Chi-CTR), WHO International Clinical Trials Registry Platform (WHO-ICTRP) and US-clinical trials databases (established to September 2017). Their quality was evaluated using the Cochrane evaluation handbook of randomized controlled trials (RCTs) (5.1.0). The data were extracted following PICO principles and synthesized through meta-analysis. RESULTS AND DISCUSSION We included 38 trials involving 2845 patients, but most trials had an unclear risk of bias. Sodium cantharidinate could increase the objective response rate (ORR) (1.52, (1.40-1.66]), disease control rate (DCR) (1.20, [1.16-1.25]) and quality of life (QOL) (1.76, [1.56-1.98]), but not the 1-year overall survival (OS) rate (1.16, [0.91-1.47]) and the 2-year OS rate (1.21, [0.51-2.91]). Subgroup analysis revealed that sodium cantharidinate and vitamin B6 at 0.5, 0.4 or 0.3 mg, and cantharidinate at 0.5 mg could all increase the ORR and DCR. Cantharidinate therapy had a lower risk of neutropenia (0.58, [0.50-0.67]), thrombocytopenia (0.57, [0.45-0.72]), gastrointestinal reaction (0.65, [0.52-0.82]) and nausea/vomiting (0.56, [0.41-0.76]) than that of chemotherapy alone. Sensitivity analysis showed that the results had good robustness. WHAT IS NEW AND CONCLUSION Current evidence reveals that sodium cantharidinate can improve tumour responses and QOL with a lower risk of haematotoxicity and gastrointestinal toxicity than chemotherapy alone in NSCLC. However, the evidence does not indicate that it can improve long-term survival rates.
Collapse
Affiliation(s)
- Zheng Xiao
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi, China.,Department of Respiratory Medicine (Center for Evidence-Based and Translational Medicine of major infectious diseases), Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Chengqiong Wang
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi, China.,Department of Respiratory Medicine (Center for Evidence-Based and Translational Medicine of major infectious diseases), Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Zhouke Tan
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Shanshan Hu
- GCP Center, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Yali Chen
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Minghua Zhou
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Jihong Feng
- Department of Oncology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Shiyu Liu
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Ling Chen
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi, China.,Department of Respiratory Medicine (Center for Evidence-Based and Translational Medicine of major infectious diseases), Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Jie Ding
- Outpatient Department of Psychological Counseling Clinic, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Zunyi Medical College, Zunyi, China
| | - Fushan Tang
- School of Pharmacy, Zunyi Medical College, Zunyi, China
| | - Hui Liu
- Special Key Laboratory of Special Antitumor Drugs of Guizhou Province, Zunyi Medical College, Zunyi, China
| | - Xiaofei Li
- Special Key Laboratory of Special Antitumor Drugs of Guizhou Province, Zunyi Medical College, Zunyi, China
| |
Collapse
|
12
|
Clinical Efficacy and Safety of Aidi Injection Plus Docetaxel-Based Chemotherapy in Advanced Nonsmall Cell Lung Cancer: A Meta-Analysis of 36 Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7918258. [PMID: 29991956 PMCID: PMC6016159 DOI: 10.1155/2018/7918258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/14/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
Background. Aidi injection is an important adjuvant anticancer drug commonly used in China. Can Aidi injection plus docetaxel-based chemotherapy improve clinical efficacy with good safety in NSCLC? To further reveal its clinical effectiveness, we systematically evaluated all the related studies. Method. We collected all the studies about Aidi injection plus docetaxel-based chemotherapy for NSCLC on Medline, Embase, Web of Science, CNKI, VIP, Wanfang, CBM, CENTRAL, Chi-CTR, and US-clinical trials. We evaluated their methodological bias risk according to the Cochrane evaluation handbook (5.1.0), extracted data following the predesigned data extraction form according to the PICO principle, and synthesized the data using meta-analysis. Results. We included 36 RCTs with 2837 patients, and most studies had unclear bias risk. The merged RR values and their 95% CI of meta-analysis for ORR, DCR, and QOL were as follows: 1.30 (1.19, 1.42), 1.17, (1.12, 1.22), and 1.73 (1.54, 1.95). The merged RR values for neutropenia, thrombocytopenia, anemia, gastrointestinal toxicity, hepatorenal dysfunctions, and alopecia were as follows: 0.70 (0.61, 0.79), 0.63 (0.53, 0.75), 0.60 (0.48, 0.75), 0.76 (0.65, 0.89), 0.56 (0.36, 0.88), and 0.58 (0.36, 0.93). Compared with chemotherapy alone, all differences were statistically significant. Subgroup analysis showed that, with 100 ml, 80-100 ml, and 50 ml, Aidi injection could increase the tumor response and Aidi injection plus DP, DC, and DO could increase the tumor response. Meta-analysis results had good stability. Conclusions. Aidi injection plus docetaxel-based chemotherapy, especially plus DP, DC, and DO, may significantly improve the clinical efficacy and QOL in NSCLC. It may also have low risk of hematotoxicity, gastrointestinal toxicity, and low risk of inducing hepatorenal dysfunctions. Aidi injection may have attenuation and synergistic efficacy to docetaxel chemotherapy. All these need to have new evidence to be proved.
Collapse
|
13
|
Wang S, Xin J, Zhang L, Zhou Y, Yao C, Wang B, Wang J, Zhang Z. Cantharidin-encapsulated thermal-sensitive liposomes coated with gold nanoparticles for enhanced photothermal therapy on A431 cells. Int J Nanomedicine 2018; 13:2143-2160. [PMID: 29692611 PMCID: PMC5901154 DOI: 10.2147/ijn.s156240] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Plasmonic nanostructure-mediated photothermal therapy (PTT) is a promising alternative therapy for the treatment of skin cancer and other diseases. However, the insufficient efficiency of PTT at irradiation levels tolerable to tissues and the limited biodegradability of nanomaterials are still crucial challenges. In this study, a novel nanosystem for PTT based on liposome–nanoparticle assemblies (LNAs) was established. Materials and methods Thermal-sensitive liposomes (TSLs) encapsulating cantharidin (CTD) were coated with gold nanoparticles (GNPs) and used in near-infrared (NIR) illumination-triggered PTT and thermally induced disruption on A431 cells. Results The coated GNPs disintegrated into small particles of 5–6 nm after disruption of TSLs, allowing their clearance by the liver and kidneys. CTD encapsulated in the TSLs was released into cytoplasm after PTT. The released CTD increased the apoptosis of PTT-treated tumor cells by blocking the heat shock response (HSR) and inhibiting the expression of HSP70 and BAG3 inhibiting the expression of HSP70 and BAG3 with the synergistic enhancement of CTD, the new nanosystem CTD-encapsulated TSLs coated with GNPs (CTD-TSL@GNPs) had an efficient PTT effect using clinically acceptable irradiation power (200 mW//cm2) on A431 cells. Conclusion The developed CTD-TSL@GNPs may be a promising PTT agent for clinical skin cancer therapy.
Collapse
Affiliation(s)
- Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yicheng Zhou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Bing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
14
|
Xiao Z, Wang C, Chen L, Tang X, Li L, Li N, Li J, Gong Q, Tang F, Feng J, Li X. Has aidi injection the attenuation and synergistic efficacy to gemcitabine and cisplatin in non-small cell lung cancer? A meta-analysis of 36 randomized controlled trials. Oncotarget 2018; 8:1329-1342. [PMID: 27901493 PMCID: PMC5352058 DOI: 10.18632/oncotarget.13617] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Gemcitabine and cisplatin is the first line chemotherapy for non-small cell lung cancer with high toxicity. Aidi injection is a cantharidin and astragalu-based Chinese herbs injection in China. Has Aidi injection attenuation and synergistic efficacy to GP in NSCLC? There is lack of strong evidence to prove it. To further reveal it, we systematically evaluated all related studies. We collected all studies about Aidi injection plus GP for NSCLC in Medline, Embase, Web of Science, CNKI, VIP, Wanfang Database, CBM, CCRCT, Chi-CTR, and US-clinical trials (established to June 2015). We evaluated their quality according to the Cochrane evaluation handbook of randomized controlled trials (5.1.0), extracted data following the PICO principles and synthesized the data by Meta analysis. Thirty six RCTs with 2582 NSCLC patients were included, with general methodological quality in most trials. The RR values and their 95% CI of Meta-analysis for ORR, DCR and QOL were as following: 1.28 (1.17, 1.39), 1.11(1.07, 1.15) and 1.81 (1.61, 2.03). The merged RD values and their 95% CI of Meta-analysis for myelosuppression, neutropenia, thrombocytopenia, neurotoxicity and nausea and vomiting were as following: -0.23(-0.29, -0.17), -0.17(-0.22, -0.11), -0.13(-0.18, -0.08), -0.06(-0.17, 0.05) and -0.15(-0.21, -0.10). To compare with GP alone, all differences were statistically significant. The available evidence indicates that Aidi injection plus GP can significantly increase the clinical efficacy and improve the QOL of patients with NSCLC. Aidi injection can reduce myelosuppression, neutropenia, thrombocytopenia neurotoxicity and nausea/vomiting. These indirectly reveal that Aidi injection has the attenuation and synergistic efficacy to GP chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Zheng Xiao
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China.,Department of Respiratory Medicine (Center for Evidence-Based and Translational Medicine of Major Infectious Diseases), Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China
| | - Chengqiong Wang
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China.,Department of Respiratory Medicine (Center for Evidence-Based and Translational Medicine of Major Infectious Diseases), Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China
| | - Ling Chen
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China.,Department of Respiratory Medicine (Center for Evidence-Based and Translational Medicine of Major Infectious Diseases), Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China
| | - Xuemei Tang
- Grade 2012 Students, Department of Public Health, Zunyi Medical College. Zunyi 563002, Guizhou, China
| | - Lianhong Li
- Grade 2012 Students, Department of Public Health, Zunyi Medical College. Zunyi 563002, Guizhou, China
| | - Nana Li
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China.,Department of Respiratory Medicine (Center for Evidence-Based and Translational Medicine of Major Infectious Diseases), Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China
| | - Jing Li
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou, China.,Department of Neurology, First People's Hospital of Zunyi City and Third Affiliated Hospital of Zunyi Medical College, Zunyi 563002, Guizhou, China
| | - Qihai Gong
- School of pharmacy, Zunyi Medical College, Zunyi 563003, Guizhou, China
| | - Fushan Tang
- School of pharmacy, Zunyi Medical College, Zunyi 563003, Guizhou, China
| | - Jihong Feng
- Department of Oncology, Affiliated Hospital of Zunyi Medical College, Zunyi 563000, Guizhou, China
| | - Xiaofei Li
- Department of Parasites, Zunyi Medical College, Zunyi 563003, Guizhou, China
| |
Collapse
|
15
|
Hsieh FS, Hung MH, Wang CY, Chen YL, Hsiao YJ, Tsai MH, Li JR, Chen LJ, Shih CT, Chao TI, Chen KF. Inhibition of protein phosphatase 5 suppresses non-small cell lung cancer through AMP-activated kinase activation. Lung Cancer 2017; 112:81-89. [DOI: 10.1016/j.lungcan.2017.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022]
|
16
|
Zhang Y, Yang SL, Zhang HR, Gao L, Gao X, Liu PJ, Yi ZY, Li N, Xu ZQ. Combination radiotherapy and cantharidin inhibits lung cancer growth through altering tumor infiltrating lymphocytes. Future Oncol 2017; 13:1173-1180. [PMID: 28498036 DOI: 10.2217/fon-2016-0437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aimed to detect the effect of combination radiotherapy and cantharidin on lung cancer growth. We found that combination therapy with radiotherapy and cantharidin was more effective in inhibiting the tumor growth than radiotherapy or cantharidin alone. It decreased the percentage of CD4+ Tregs and enhanced the percentage of CD8+ T cells, CD4+ Teff cells when comparing to that of single treatment. Combination therapy promoted a great increase in double producing CD8+ T cells and CD4+ Teff cells in tumor infiltrating lymphocytes. Overexpression of CTLA4 reversed the inhibitory action of combination treatment on cancer growth. Our data suggest that combining radiotherapy and cantharidin may have synergistic effects in driving tumor rejection by increasing T-cell infiltration, proliferation and cytokine production.
Collapse
Affiliation(s)
- Yan Zhang
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Shu-li Yang
- Department of Imaging, Henan Medical College, Zhengzhou 451191, China
| | - Hong-rui Zhang
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Ling Gao
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Xin Gao
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Pei-jie Liu
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Zhen-ying Yi
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Ning Li
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Zhi-qiao Xu
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| |
Collapse
|
17
|
Li CC, Yu FS, Fan MJ, Chen YY, Lien JC, Chou YC, Lu HF, Tang NY, Peng SF, Huang WW, Chung JG. Anticancer effects of cantharidin in A431 human skin cancer (Epidermoid carcinoma) cells in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2017; 32:723-738. [PMID: 27113412 DOI: 10.1002/tox.22273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Cantharidin (CTD), a potential anticancer agent of Traditional Chinese Medicine has cytotxic effects in different human cancer cell lines. The cytotoxic effects of CTD on A431 human skin cancer (epidermoid carcinoma) cells in vitro and in A431 cell xenograft mouse model were examined. In vitro, A431 human skin cell were treated with CTD for 24 and 48 h. Cell phase distribution, ROS production, Ca2+ release, Caspase activity and the level of apoptosis associated proteins were measured. In vivo, A431 cell xenograft mouse model were examined. CTD-induced cell morphological changes and decreased percentage of viable A431 cells via G0/G1 phase arrest and induced apoptosis. CTD-induced G0/G1 phase arrest through the reduction of protein levels of cyclin E, CDK6, and cyclin D in A431 cells. CTD-induced cell apoptosis of A431 cells also was confirm by DNA gel electrophoresis showed CTD-induced DNA fragmentation. CTD reduced the mitochondrial membrane potential and stimulated release of cytochrome c, AIF and Endo G in A431 cells. Flow cytometry demonstrated that CTD increased activity of caspase-8, -9 and -3. However, when cells were pretreated with specific caspase inhibitors activity was reduced and cell viability increased. CTD increased protein levels of death receptors such as DR4, DR5, TRAIL and levels of the active form of caspase-8, -9 and -3 in A431 cells. AIF and Endo G proteins levels were also enhanced by CTD. In vivo studies showed that CTD significantly inhibited A431 cell xenograft tumors in mice. Taken together, these in vitro and in vivo results provide insight into the mechanisms of CTD on cell growth and tumor production. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 723-738, 2017.
Collapse
Affiliation(s)
- Chi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung, Taiwan, 404
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, Taiwan, 413
| | - Ya-Yin Chen
- Department of Chinese-Western Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, 402
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, 402
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan, 404
| | - Yu-Cheng Chou
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, 407
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, 114
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, 112
| | - Nou-Ying Tang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, 402
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
- Department of Biotechnology, Asia University, Taichung, Taiwan, 413
| |
Collapse
|
18
|
Bo P, Lien JC, Chen YY, Yu FS, Lu HF, Yu CS, Chou YC, Yu CC, Chung JG. Allyl Isothiocyanate Induces Cell Toxicity by Multiple Pathways in Human Breast Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:415-37. [PMID: 27080949 DOI: 10.1142/s0192415x16500245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isothiocyanates (ITCs) occur in many cruciferous vegetables. These compounds, which have significant anticancer actions, can induce apoptosis in different human cancer cell lines. In the present study, we investigated if allyl isothiocyanate (AITC) would induce toxicity in human breast cancer MCF-7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative) cells. We found that AITC stimulated reactive oxygen species and Ca[Formula: see text] production, and decreased the mitochondrial membrane potential. Activity of caspase-8, -9 and -3 was increased by AITC in both cell lines. AITC also induced mitochondrial-mediated apoptosis, as shown by cytochrome c, AIF and Endo G release from mitochondria, activation of caspase-9 and caspase-3, and formation of DAPI-positive cells. There was a significant reduction in the levels of the anti-apoptotic protein Bcl-2 along with a marked increase in the pro-apoptotic protein Bax in both cell lines. AITC induced apoptosis in human breast cancer MCF-7 cells via AIF and Endo G signaling pathways, but in MDA-MB-231 cells apoptosis occurred via the GADD153 pathway. This study has revealed novel anti-cancer mechanisms of AITC, a compound that is ordinarily present in human diets and may have potential therapeutic effects in various cancers.
Collapse
Affiliation(s)
- Peng Bo
- * Departments of Biological Science and Technology
| | | | - Ya-Yin Chen
- ¶ Department of Chinese-Western Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.,∥ School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | | - Hsu-Feng Lu
- ** Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chun-Shu Yu
- § School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Cheng Chou
- †† Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan.,‡‡ National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Chih Yu
- § School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Jing-Gung Chung
- * Departments of Biological Science and Technology.,§§ Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
19
|
Su CC, Lee KI, Chen MK, Kuo CY, Tang CH, Liu SH. Cantharidin Induced Oral Squamous Cell Carcinoma Cell Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways. PLoS One 2016; 11:e0168095. [PMID: 27930712 PMCID: PMC5145211 DOI: 10.1371/journal.pone.0168095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell carcinoma (OSCC). OSCC is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is important and imperative. Here, we investigated the therapeutic effect and molecular mechanism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro. Results showed that cantharidin significantly decreased cell viability in human tongue squamous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic studies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin decreased mitochondrial transmembrane potential (MMP) and induced cytochrome c and apoptosis inducing factor (AIF) release. Cantharidin also increased Bax, Bid, and Bak protein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase the endoplasmic reticulum (ER) stress signals, including the expressions of phosphorylated eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-caspase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the mitochondrial and ER stress-related signaling molecules. Taken together, these findings suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochondria and ER stress-related signaling pathways.
Collapse
Affiliation(s)
- Chin-Chuan Su
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
20
|
Sun X, Cai X, Yang J, Chen J, Guo C, Cao P. Cantharidin Overcomes Imatinib Resistance by Depleting BCR-ABL in Chronic Myeloid Leukemia. Mol Cells 2016; 39:869-876. [PMID: 27989101 PMCID: PMC5223104 DOI: 10.14348/molcells.2016.0023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/23/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
Cantharidin (CTD) is an active compound isolated from the traditional Chinese medicine blister beetle and displayed anticancer properties against various types of cancer cells. However, little is known about its effect on human chronic myeloid leukemia (CML) cells, including imatinib-resistant CML cells. The objective of this study was to investigate whether CTD could overcome imatinib resistance in imatinib-resistant CML cells and to explore the possible underlying mechanisms associated with the effect. Our results showed that CTD strongly inhibited the growth of both imatinib-sensitive and imatinib-resistant CML cells. CTD induced cell cycle arrest at mitotic phase and triggered DNA damage in CML cells. The ATM/ATR inhibitor CGK733 abrogated CTD-induced mitotic arrest but promoted the cytotoxic effects of CTD. In addition, we demonstrated that CTD downregulated the expression of the BCR-ABL protein and suppressed its downstream signal transduction. Real-time quantitative PCR revealed that CTD inhibited BCR-ABL at transcriptional level. Knockdown of BCR-ABL increased the cell-killing effects of CTD in K562 cells. These findings indicated that CTD overcomes imatinib resistance through depletion of BCR-ABL. Taken together, CTD is an important new candidate agent for CML therapy.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cantharidin/administration & dosage
- Cantharidin/pharmacology
- Cell Cycle Checkpoints/drug effects
- DNA Damage
- Drug Synergism
- Fusion Proteins, bcr-abl/deficiency
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Knockdown Techniques
- Humans
- Imatinib Mesylate/administration & dosage
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
Collapse
Affiliation(s)
- Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028,
China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu,
China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028,
China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu,
China
| | - Jie Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028,
China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu,
China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028,
China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu,
China
| | - Caixia Guo
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101,
China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028,
China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu,
China
| |
Collapse
|
21
|
Lin YJ, Peng SF, Lin ML, Kuo CL, Lu KW, Liao CL, Ma YS, Chueh FS, Liu KC, Yu FS, Chung JG. Tetrandrine Induces Apoptosis of Human Nasopharyngeal Carcinoma NPC-TW 076 Cells through Reactive Oxygen Species Accompanied by an Endoplasmic Reticulum Stress Signaling Pathway. Molecules 2016; 21:molecules21101353. [PMID: 27754332 PMCID: PMC6273859 DOI: 10.3390/molecules21101353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy of the head and neck and the incidence is higher in Southeast Asia. Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid, a natural product, and exhibits biological activities including action against many human cancer cell lines. However, the molecular mechanism of TET-induced cell apoptosis in human NPC cells is still unclear. In the present study, we investigated TET-induced apoptotic cell death and associated possible signal pathways on human nasopharyngeal carcinoma NPC-TW 076 cells in vitro. Phase contrast microscopy was used to examine cell morphology and DAPI staining was used to examine chromatin condensation. Flow cytometry assay was used to measure total viable cells, cell cycle and sub-G1 phase distribution, reactive oxygen species (ROS), Ca2+, and mitochondria membrane potential (ΔΨm) in NPC-TW 076 cells. Results indicate that TET induced cell death through the cell morphological changes, caused G0/G1 phase arrest, increased ROS and Ca2+ production, and finally caused apoptotic cell death in NPC-TW 076 cells. There was no influence on the level of ΔΨm after TET treatment. Western blotting indicated that TET increased endoplasmic reticulum (ER) stress associated protein expression such as GADD153, GRP78, ATF-6α and ATF-6 βwhich indicated that TET induced cell death through ER stress. ER stress is a potential target in cancer treatment, so the ability of TET to induce ER stress response and to activate programming cell death in NPC-TW 076 cells make this molecule become a promising anticancer agent.
Collapse
Affiliation(s)
- Ya-Jing Lin
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yi-Shih Ma
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan.
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Fu-Shin Chueh
- Department of Health and Nutrition Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan.
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung 40402, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
22
|
Wang B, Zhang L, Qiu F, Fang W, Deng J, Zhou Y, Lu J, Yang L. A Newfound association between MDC1 functional polymorphism and lung cancer risk in Chinese. PLoS One 2014; 9:e106794. [PMID: 25198518 PMCID: PMC4157800 DOI: 10.1371/journal.pone.0106794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/02/2014] [Indexed: 12/18/2022] Open
Abstract
Mediator of DNA damage checkpoint protein 1 (MDC1) plays an early and core role in Double-Strand Break Repair (DDR) and ataxia telangiectasia-mutated (ATM) mediated response to DNA double-strand breaks (DSBs), and thus involves the pathogenesis of several DNA damage-related diseases such as cancer. We hypothesized that the single nucleotide polymorphisms (SNPs) of MDC1 which have potencies on affecting MDC1 expression or function were associated with risk of lung cancer. In a two-stage case-control study, we tested the association between 5 putatively functional SNPs of MDC1 and lung cancer risk in a southern Chinese population, and validated the promising association in an eastern Chinese population. We found the SNP rs4713354A>C that is located in the 5′-untranslated region of MDC1 was significantly associated with lung cancer risk in both populations (P = 0.001), with an odds ratio as 1.33(95% confidence interval = 1.14–1.55) for the rs4713354C (CA+CC) genotypes compared to the rs4713354AA genotype. The correct sixth sentence is: The gene-based analysis rested with these SNPs suggested the MDC1 as a susceptible gene for lung cancer (P = 0.057) [corrected]. Moreover, by querying the gene expression database, we further found that the rs4713354C genotypes confer a significantly lower mRNA expression of MDC1 than the rs4713354AA genotype in 260 cases of lymphoblastoid cells (P = 0.002). Our data suggested that the SNP rs4713354A>C of MDC1 may be a functional genetic biomarker for susceptibility to lung cancer in Chinese.
Collapse
Affiliation(s)
- Bo Wang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Lisha Zhang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Fang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Jieqiong Deng
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Yifeng Zhou
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
23
|
Wu JY, Kuo CD, Chu CY, Chen MS, Lin JH, Chen YJ, Liao HF. Synthesis of novel lipophilic N-substituted norcantharimide derivatives and evaluation of their anticancer activities. Molecules 2014; 19:6911-28. [PMID: 24865603 PMCID: PMC6271113 DOI: 10.3390/molecules19066911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/16/2022] Open
Abstract
This research attempted to study the effect of lipophilicity on the anticancer activity of N-substituted norcantharimide derivatives. Twenty-three compounds were synthesized and their cytotoxicities against five human cancer cell lines studied. The lipophilicity of each derivative was altered by its substituent, an alkyl, alkyloxy, terpenyl or terpenyloxy group at the N-position of norcantharimide. Further, among all synthesized derivatives studied, the compounds N-farnesyloxy-7-oxabicyclo[2.2.1]heptane-2,3-dicarboximide (9), and N-farnesyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboximide (18), have shown the highest cytotoxicity, anti-proliferative and apoptotic effect against human liver carcinoma HepG2 cell lines, yet displayed no significant cytotoxic effect on normal murine embryonic liver BNL CL.2 cells. Their overall performance led us to believe that these two compounds might be potential candidates for anticancer drugs development.
Collapse
Affiliation(s)
- Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceutics, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan.
| | - Cheng-Deng Kuo
- Laboratory of Biophysics, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chien-Yu Chu
- Department of Microbiology, Immunology and Biopharmaceutics, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan
| | - Min-Shin Chen
- Department of Microbiology, Immunology and Biopharmaceutics, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan
| | - Jia-Hua Lin
- Department of Microbiology, Immunology and Biopharmaceutics, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, New Taipei City 25160, Taiwan
| | - Hui-Fen Liao
- Department of Biochemical Science and Technology, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan
| |
Collapse
|