1
|
Li M, Ma X, Wang Y, Saleem M, Yang Y, Zhang Q. Ecotoxicity of herbicide carfentrazone-ethyl towards earthworm Eisenia fetida in soil. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109250. [PMID: 34826613 DOI: 10.1016/j.cbpc.2021.109250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022]
Abstract
Herbicides pose a potential threat to the soil biodiversity and health. Carfentrazone-ethyl (CE), a triazolinones herbicide, is increasingly used in agricultural production. Its non-target toxic effects on soil microorganisms and soil enzymes are reported recently. However, the sublethal toxicity of CE on soil invertebrates like earthworms is not yet known. Therefore, in this work, the sublethal toxic effects of CE (0.05, 0.5, and 5.0 μg/g in soil) on the soil earthworm (Eisenia fetida) were evaluated using a battery of biomarkers including reactive oxygen species (ROS), enzyme (superoxide dismutase-SOD, catalase-CAT, peroxidase-POD, and glutathione S-transferase-GST) activities, malondialdehyde (MDA) contents, histopathological and DNA damage. Results indicated that CE increased ROS contents, enzyme activities, and MDA contents in the short-time (14 d), thus, causing a slight oxidative stress to E. fetida. However, the toxic effects of CE on earthworms gradually disappeared after 14 days. The CE did not cause histopathological and DNA damage in earthworms. Integrated Biological Response index (IBR) indicated that both concentration and exposure time of CE regulated its sublethal toxicity on earthworms. In conclusion, herbicide CE is safe to soil invertebrate earthworms when applied at the recommended doses. Our results contribute to the current understanding of CE effects on soil earthworms, and can be useful in developing soil health strategies under agrochemical use.
Collapse
Affiliation(s)
- Mengyao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xinxin Ma
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yanru Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Yong Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
2
|
Wang Z, Qi F, Shi Y, Zhang Z, Liu L, Li C, Meng L. Evaluation of single and joint toxicity of perfluorooctanoic acid and arsenite to earthworm (Eisenia fetida): A multi-biomarker approach. CHEMOSPHERE 2022; 291:132942. [PMID: 34793848 DOI: 10.1016/j.chemosphere.2021.132942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) and arsenic are ubiquitous environmental contaminants and could co-exist in soil. However, data on their possible combined toxic effects on terrestrial organisms are still lacking. In this study, we exposed earthworm Eisenia fetida to artificial soil spiked with different sub-lethal levels of PFOA, arsenite (As(III)) or their mixture for 28 days. The bioaccumulation and multi-biomarker responses in the earthworms were measured. Results showed that the co-existence of PFOA and As(III) in soil enhanced the bioaccumulation of arsenic while reduced the bioaccumulation of PFOA. Most selected biomarkers exhibited significant responses at higher exposure levels and indicated oxidative damages. Biomarker Response Index (BRI) was used to integrate the multi-biomarker responses and the results showed significant dose-effect relationships between biological health status and exposure levels. Moreover, variation analysis of multi-biomarkers and BRI proved that As(III) exhibited more toxicity than PFOA to the earthworms. Based on BRI results, Effect Addition Index (EAI) was calculated to evaluate the joint effects of the two toxicants. According to EAI, the joint toxicity of PFOA and As(III) was related to exposure concentration, changing from synergism to slight antagonism with the increase of exposure level. These results provide valuable toxicological information for the risk assessment of co-exposure to PFOA and arsenic in the soil environment. Moreover, this study proved that BRI is an effective tool to integrate multi-biomarker responses, and its combination with EAI provides a useful combined approach to evaluate the joint effects of mixed contamination systems.
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan, 250101, PR China.
| | - Fangjie Qi
- Global Centre for Environmental Research (GCER), Advanced Technology Center (ATC) Building, Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yanfeng Shi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan, 250101, PR China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan, 250101, PR China
| | - Lei Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan, 250101, PR China
| | - Chaona Li
- Test and Research Center of Jiangxi Nuclear Industry Geological Bureau, No.101 Hongduzhong Avenue, Nanchang, 330002, PR China
| | - Lei Meng
- Test and Research Center of Jiangxi Nuclear Industry Geological Bureau, No.101 Hongduzhong Avenue, Nanchang, 330002, PR China
| |
Collapse
|
3
|
Dolar A, Selonen S, van Gestel CAM, Perc V, Drobne D, Jemec Kokalj A. Microplastics, chlorpyrifos and their mixtures modulate immune processes in the terrestrial crustacean Porcellio scaber. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144900. [PMID: 33581511 DOI: 10.1016/j.scitotenv.2020.144900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 05/12/2023]
Abstract
Microplastics and agrochemicals are common pollutants in terrestrial ecosystems. Their interaction during coexistence in soils may influence their fate and adverse effects on terrestrial organisms. The aim of this study was to investigate how the exposure to two types of microplastics; polyester fibres, and crumb rubber; induce changes in immune parameters of Porcellio scaber and if the co-exposure of microplastics affects the response induced by the organophosphate pesticide chlorpyrifos. A number of immune parameters, such as total haemocyte count, differential haemocyte count, and phenoloxidase-like activity were assessed. In addition, the acetylcholinesterase (AChE) activity in the haemolymph was evaluated as a measure of the bioavailability of chlorpyrifos. After three weeks of exposure, the most noticeable changes in the measured immune parameters and also a significantly reduced AChE activity were seen in chlorpyrifos-exposed animals. Both types of microplastic at environmentally relevant concentrations caused only slight changes in immune parameters which were not dependent on the type of microplastic, although the two types differed significantly in terms of the chemical complexity of the additives. Mixtures of chlorpyrifos and microplastics induced changes that differed from individual exposures. For example, alterations in some measured parameters suggested a reduced bioavailability of chlorpyrifos (AChE activity, haemocyte viability) caused by both types of microplastics exposure, but the increase of haemocyte count was promoted by the presence of fibres implying their joint action. In conclusion, this study suggests that immune processes in P. scaber are slightly changed upon exposure to both types of microplastics and microplastics can significantly modulate the effects of other co-exposed chemicals. Further research is needed on the short-term and long-term joint effects of microplastics and agrochemicals on the immunity of soil invertebrates.
Collapse
Affiliation(s)
- Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Salla Selonen
- Vrije Universiteit Amsterdam, Faculty of Science, Department of Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Finnish Environment Institute (SYKE), Mustialankatu 3, 00790 Helsinki, Finland
| | - Cornelis A M van Gestel
- Vrije Universiteit Amsterdam, Faculty of Science, Department of Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Valentina Perc
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Krishnaswamy VG, Jaffar MF, Sridharan R, Ganesh S, Kalidas S, Palanisamy V, Mani K. Effect of chlorpyrifos on the earthworm Eudrilus euginae and their gut microbiome by toxicological and metagenomic analysis. World J Microbiol Biotechnol 2021; 37:76. [PMID: 33786661 DOI: 10.1007/s11274-021-03040-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
The earthworms are important soil invertebrates and play a crucial role in pedogenesis. The application of pesticides and prolonged exposure to pesticides causes mortality of earthworms apart from profoundly affecting the resident gut microbiome. The microbiome plays a significant effect on the metabolic processes associated with earthworms. The pesticide Chlorpyrifos (CPF) was studied for its toxicity on Eudrilus euginae by toxicity studies. The LC50 value of filter paper contact test and acute toxicity test was 3.8 mg/mL and 180 mg/kg. The prolonged exposure of earthworms to pesticide on reproductive toxicity resulted in the mortality of earthworms and absence of cocoon formation. Further, the effects of CPF on the whole gut microbiome of E. euginae was analyzed using a long amplicon Nanopore sequencing. Results indicated no fluctuations with Firmicutes and Bacteroidetes, that were found to be dominant at bacterial phyla level while at the genus level, remarkable differences were noticed. Clostridium dominated the earthworm gut prior to CPF exposure while Bacillus dominated after exposure. Similarly, the fungal members such as Ascomycota and Basidiomycota were observed to dominate the gut of earthworm at the phyla level before and after exposure to CPF. In contrast, Clavispora (65%) was the dominant genus before CPF exposure and Taloromyces (42%) dominated after the CPF exposure. Our study demonstrates the effect of CPF on the mortality of E. euginae while the amplicon sequencing established the unique microbiome of the gut in response to the CPF exposure.
Collapse
Affiliation(s)
- Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - Mariyam Fathima Jaffar
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Shruthi Ganesh
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Suryasri Kalidas
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Vignesh Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore, India
| | - Kabilan Mani
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India.
| |
Collapse
|
5
|
Zhao S, Wang Y, Duo L. Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116225. [PMID: 33316493 DOI: 10.1016/j.envpol.2020.116225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
With the growing production and use of carbon nanomaterials (CNMs), the risk of their releases to the environment has drawn much attention. However, their potential effect on soil invertebrates has not yet been systematically assessed. Herein, the toxic effects of graphene oxide (GO) on earthworms (Eisenia fetida) were thoroughly investigated. Exposure to different doses of GO (0, 5, 10, 20, and 30 g kg-1) was conducted for 7, 14, 21, and 28 days. The results showed that enzymatic activity was stimulated at the early stages of exposure (7 days and 14 days) and inhibited after 14 days for catalase (CAT) and after 21 days for peroxidase (POD) and superoxide dismutase (SOD), especially at high GO doses. The content of MDA showed an increasing trend over the whole exposure period and was significantly elevated by GO from 21 days except at the dose of 5 g kg-1on day 21. Lysosomal membrane stability and DNA damage presented dose- and time-dependent relationships. Graphene oxide remarkably decreased lysosomal membrane stability except at the dose of 5 g kg-1 on day 7. The tail DNA%, tail length and olive tail moment increased with increasing GO dose throughout the exposure duration, reaching maximum values at the end of exposure (28 days). These findings suggest that GO induces oxidative stress and genotoxicity in Eisenia fetida, resulting in lipid peroxidation, decreased lysosomal membrane stability and DNA damage. Therefore, attention should be paid to the potential pollution and risk associated with graphene oxide application. The results can provide valuable information for environmental safety assessment of graphene nanomaterials in soil.
Collapse
Affiliation(s)
- Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yanli Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Wang Z, Li C, Shao Y, Xue W, Wang N, Xu X, Zhang Z. Antioxidant defense system responses, lysosomal membrane stability and DNA damage in earthworms (Eisenia fetida) exposed to perfluorooctanoic acid: an integrated biomarker approach to evaluating toxicity. RSC Adv 2021; 11:26481-26492. [PMID: 35479973 PMCID: PMC9037344 DOI: 10.1039/d1ra04097a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) is one of the most representative perfluoroalkyl substances and has garnered intense human and ecological health concerns due to its ubiquity in the environment, bio-accumulative nature and potential toxicological effects. In this study, an artificial soil containing PFOA was used to evaluate the biological toxicity of PFOA to earthworms Eisenia fetida. Six kinds of oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO), as well as lysosomal membrane stability (LMS) and DNA damage in earthworms were detected after exposure to 0, 10, 20, 40, 80 and 120 mg kg−1 PFOA in the soil for 3, 7, 14, 28, and 42 days. The results of multi-biomarker responses indicated that PFOA can induce various adverse effects on earthworms, including growth inhibition, oxidative stress and genotoxicity, resulting in lipid membrane peroxidation, decreased lysosomal membrane stability and DNA damage. LPO, LMS and DNA damage all presented dose- and time-dependent relationships. An integrated biomarker response (IBR) index was applied to summarize the multi-biomarker responses to star plots, and the IBR value was calculated as the area of the plots to indicate the integrated stress of PFOA on earthworms. The IBR index showed that the integrated stress induced by PFOA increased markedly throughout the exposure period, exhibiting a concentration-related and exposure time-related effect. The graphical changing trend of the IBR star plots, along with the multi-biomarker responses, suggested that the biomarkers of the antioxidant defense system in earthworms are sufficiently sensitive for short-term PFOA biomonitoring programs, while the bioindicators that indicate actual damage in organisms are more suitable to be employed in long-term monitoring programs for the risk assessment of PFOA. This is the first study evaluating the biological toxicity of PFOA by using an integrated biomarker approach. Our results showed that PFOA can potentially damage soil ecosystems, which provides valuable information for chemical risk assessment of PFOA in the soil environment and early warning bioindicators of soils contaminated by PFOA. The integrated biomarker response (IBR) index was calculated to evaluate the integrated toxicological effects of PFOA on earthworm Eisenia fetida.![]()
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Chaona Li
- Jiangxi Nuclear Industry Geological Bureau Testing Center
- Nanchang 330002
- P. R. China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Weina Xue
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Ning Wang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Xiaoming Xu
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| |
Collapse
|
7
|
Zhu L, Li B, Wu R, Li W, Wang J, Wang J, Du Z, Juhasz A, Zhu L. Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia fetida): The difference between artificial and natural soils. CHEMOSPHERE 2020; 255:126982. [PMID: 32416393 DOI: 10.1016/j.chemosphere.2020.126982] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Pesticides can damage the soil environment, including damage to sentinel organisms such as earthworms. When assessing the toxicity of pesticides towards earthworms, assays are usually performed using standardized artificial soil, however, soil physicochemical properties may affect pesticide toxicity. In the present study, the toxicity of a commonly used insecticide (chlorpyrifos) to earthworms (Eisenia fetida) was determined in artificial soil and three typical natural soils (fluvo-aquic soil, black soil and red clay) by measuring acute and subchronic toxicity. Soil tests were conducted to measure the acute toxicity of chlorpyrifos to Eisenia fetida quantified by the half lethal concentration (LC50) while subchronic toxicity tests assessed the impact of low dose chlorpyrifos exposure (0.01, 0.1, 1 mg/kg; up to 56 d) on reactive oxygen species content, antioxidant enzymes activities, detoxifying enzyme activity, malondialdehyde content, and 8-hydroxydeoxyguanosine content. Subchronic toxicity was quantified using the integrated biomarker response (IBR) which highlighted that the toxicity of chlorpyrifos in artificial and natural soils was not the same. Outcomes from artificial soil studies may underestimate (fluvo-aquic soil and red clay) or overestimate (black soil) chlorpyrifos effects.
Collapse
Affiliation(s)
- Lei Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Wenxiu Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| |
Collapse
|
8
|
Gao Y, Sun X, Zhang Z, Li X. Combined effect of growth promoter roxarsone and copper on the earthworm Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23411-23419. [PMID: 31129905 DOI: 10.1007/s11356-019-05484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Roxarsone (ROX) and copper (Cu) are growth promoters in livestock to promote growth and prevent disease. These chemicals and their metabolites are released to the soil through manure application and have a potential adverse effect on soil-dwelling organisms. The objective of this study was to investigate the combined subacute effect of ROX exposure (0, 80, 240, 720 mg kg-1) and Cu exposure (0, 80, 160 mg kg-1) in earthworms (Eisenia fetida). Growth, reproduction, spermatogenesis under light microscope, and heavy metal residue were investigated during 56-day exposure period. Results showed that Cu exposure of 80 or 160 mg kg-1 alleviated the effect of ROX on cocoon production or hatching. The cocoon number exhibited an increase (P < 0.05) at 80 mg kg-1 ROX on day 28, compared with the 0 mg kg-1 ROX, in the presence of 80 mg kg-1 Cu, whereas there was no effect (P > 0.05) in the presence of 160 mg kg-1 Cu. The hatching success at 80 or 240 mg kg-1 ROX exhibited a decrease (P < 0.05) on day 28, in the absence of Cu, whereas no effect (P > 0.05) was observed in the presence of 80 or 160 mg kg-1 Cu. The other reproductive parameters (cocoon weight, juvenile number, and biomass) demonstrated a decrease (P < 0.05) only at 720 mg kg-1 ROX in the presence or absence of Cu. However, with increasing exposure time, the above reproductive parameters were not affected (P > 0.05) in all groups on day 56. On the other hand, sperm deformity (%) increased (P < 0.05) at 240 or 720 mg kg-1 ROX on day 28, in the presence or absence of Cu; however, the microstructural alteration in seminal vesicles occurred only at 720 mg kg-1 ROX, exhibiting disordered distribution and decreased mature sperm bundles. In addition, ROX or Cu residues in earthworms demonstrated an increase with increasing ROX or Cu exposure concentration. Our present results may provide important insight on combined toxicity of chemicals in soils.
Collapse
Affiliation(s)
- Yuhong Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, Hebei Province, People's Republic of China.
| | - Xinsheng Sun
- College of Information and Technology, Hebei Agricultural University, Baoding, 071001, Hebei Province, People's Republic of China
| | - Zhenhong Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, Hebei Province, People's Republic of China
| | - Xuemei Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, Hebei Province, People's Republic of China
| |
Collapse
|
9
|
Wang G, Xia X, Yang J, Tariq M, Zhao J, Zhang M, Huang K, Lin K, Zhang W. Exploring the bioavailability of nickel in a soil system: Physiological and histopathological toxicity study to the earthworms (Eisenia fetida). JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121169. [PMID: 31520931 DOI: 10.1016/j.jhazmat.2019.121169] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/24/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Nickel (Ni) contamination in soils, at high concentrations, is considered to be very common. Knowledge of the total content of Ni is frequently insufficient to estimate environmental risk. Our explored findings showed that the earthworms adding reduced the available Ni, along with the superior performance of HCl than CaCl2. The bioaccumulation of Ni in earthworms was aggravated with increasing Ni dosage and exposure time. Bioaccumulation factor was significantly correlated with the extractable Ni, which was the most suitable predicting the variations of Ni bioavailability. LC50 of earthworms on 7 and 14 days were 1202.444 mg kg-1 and 1069.324 mg kg-1, respectively along with the recovery rate in 500 mg kg-1 Ni polluted soil reached up to 92.5%. Earthworms' respiration was sensitive presenting a significant dose-effect relationship with the Ni concentration. Five biochemical indices in earthworms were induced along with the relevance of a dose- and time-response pattern. Additionally, histological damage in earthworm's body wall, intestine and seminal vesicles were observed under high level of Ni exposure. Overall, we believe that our current study will open a new window for deeper insights into the potential availability of Ni along with other associated metals on the function of soil ecosystem.
Collapse
Affiliation(s)
- Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoqian Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Muhammad Tariq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Assessment of acute toxicity and biochemical responses to chlorpyrifos, cypermethrin and their combination exposed earthworm, Eudrilus eugeniae. Toxicol Rep 2019; 6:288-297. [PMID: 30989054 PMCID: PMC6447753 DOI: 10.1016/j.toxrep.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 01/02/2023] Open
Abstract
In the present study, co-exposed administered pesticides induced a higher level of toxicity to Eudrilus eugeniae. Statistically significant changes were observed after 48 h exposure of CPF, cypermethrin and combination of the two, reflects the synergistic cumulative impact on the AChE and oxidative stress parameters in dose- dependent manner. Significant changes were observed in different body segments (Pre-Clitellar, Clitellar and Post-Clitellar) of earthworm in tissue specific pattern.
Recurrent application of chemical pesticides in the agricultural fields have adverse impact on flora and fauna of soil ecosystem. Earthworms immensely contribute in increasing the fertility of soil. They may act as a bioindicator for the ecotoxicological analysis of pesticide induced soil pollution. Earthworms, Eudrilus eugeniae were exposed to different concentrations of pesticides chlorpyrifos (OP), cypermethrin (a pyrethroid) and their combination for 48 h by paper contact toxicity method. The LC50 for commercial grade of chlorpyrifos, cypermethrin and combined pesticides were determined as 0.165, 0.066 and 0.020 μg/cm2, respectively. To assess the sub-lethal effect of these pesticides, E. eugeniae were exposed to 5% and 10% of LC50 of the pesticides for 48 h. Variation in morpho-behavioural changes such as coiling, clitellar swelling, mucus release, bleeding and body fragmentation in earthworms were observed after exposure of both pesticides and their combination. Various biochemical estimations such as specific activity of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), glutathione -S-transferase (GST); levels of lipid peroxidation (LPO) and reduced glutathione (GSH) were carried out in different body segments. Significant changes in these stress markers were observed at low and high sub-acute concentration of pesticides exposed earthworm, Eudrilus eugeniae. Such changes indicate potential health risk to E. eugeniae if exposed to the high concentrations of these pesticides accumulated in soil.
Collapse
|
11
|
Hackenberger DK, Stjepanović N, Lončarić Ž, Hackenberger BK. Acute and subchronic effects of three herbicides on biomarkers and reproduction in earthworm Dendrobaena veneta. CHEMOSPHERE 2018; 208:722-730. [PMID: 29894974 DOI: 10.1016/j.chemosphere.2018.06.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Earthworms are exposed to herbicides both through their skin and digestive system. Herbicides can influence earthworms' survival, physiology and reproduction. However, there is a lack of data on herbicide effects on earthworms as they are often regarded as low or non-toxic. The aim of our study was to investigate whether widely used commercial formulations of glyphosate (GLF), tembotrione (TBT) and nicosulfuron (NCS) each applied at three environmentally relevant concentrations have adverse effects on various biomarkers and reproduction in epigeic earthworm Dendrobaena veneta. The activities of measured biomarkers varied depending on the herbicide used and the exposure duration and suggest that oxidative stress plays an important role in the toxicity of tested herbicides. Namely, GLF caused an acetylcholinesterase (AChE) activity induction after seven days, and NCS after 28 days, while TBT caused an inhibition up to 47% (6.6 μg kgdw soil-1) after seven days. Only TBT caused a significant change (H2 = 13.96, p = 0.002) to catalase (CAT) after seven days of exposure. Malondialdehyde concentrations (MDA) were increased all the time after NCS exposure, but only after seven days in GLF and 28 days in TBT treatments, respectively. The tested herbicides did not have a significant effect on reproduction success, expect of NCS which increased the number of juveniles (p < 0.05).
Collapse
Affiliation(s)
- Davorka K Hackenberger
- J. J. Strossmayer University, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | - Nikolina Stjepanović
- J. J. Strossmayer University, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | - Željka Lončarić
- J. J. Strossmayer University, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | - Branimir K Hackenberger
- J. J. Strossmayer University, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| |
Collapse
|
12
|
Li B, Xia X, Wang J, Zhu L, Wang J, Wang G. Evaluation of acetamiprid-induced genotoxic and oxidative responses in Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:610-615. [PMID: 29933130 DOI: 10.1016/j.ecoenv.2018.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
As a novel neonicotinoids insecticide, acetamiprid has been widely used worldwide. In this study, a laboratory test was conducted to expose earthworms (Eisenia fetida) to artificial soil spiked with various concentrations of acetamiprid (0, 0.05, 0.10, 0.25 and 0.50 mg/kg of soil) respectively after 7, 14, 21 and 28 d. Reactive oxygen species (ROS) generation, antioxidant enzymes activity including superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferases (GST), malondialdehyde (MDA) content, and DNA damage were determined in earthworms. The ROS level increased in varying degrees at most exposure concentrations. The SOD activity was not significantly affected. The CAT activity was increased in the beginning, then gradually suppressed and resumed to the control level at the end, with the maximum change (171%) occurred at 14 d for 0.05 mg/kg. The GST activity was induced at 7 d, and then inhibited, with the maximum change (67.6%) occurred at 14 d for 0.50 mg/kg. The MDA content had a tendency that increasing at the first and decreasing at the end. The olive tail moment (OTM) in comet assay reflected a dose-dependent relationship, and DNA damage initially increased and then decreased over time. The results suggest that the sub-chronic exposure of acetamiprid can cause oxidative stress and DNA damage of earthworm and change the activity of the anti-oxidant enzyme. In addition, ROS content and DNA damage can be good indicators for assessing environmental risks of acetamiprid in earthworms.
Collapse
Affiliation(s)
- Bing Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Guangchi Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
13
|
Sanchez-Hernandez JC, Ríos JM, Attademo AM. Response of digestive enzymes and esterases of ecotoxicological concern in earthworms exposed to chlorpyrifos-treated soils. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:890-899. [PMID: 29497918 DOI: 10.1007/s10646-018-1914-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Assessment of organophosphorus (OP) pesticide exposure in non-target organisms rarely involves non-neural molecular targets. Here we performed a 30-d microcosm experiment with Lumbricus terrestris to determine whether the activity of digestive enzymes (phosphatase, β-glucosidase, carboxylesterase and lipase) was sensitive to chlorpyrifos (5 mg kg-1 wet soil). Likewise, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in the wall muscle and gastrointestinal tissues as indicators of OP exposure. Chlorpyrifos inhibited the acid phosphatase (34% of controls), carboxylesterase (25.6%) and lipase activities (31%) in the gastrointestinal content. However, in the gastrointestinal tissue, only the carboxylesterase and lipase activities were significantly depressed (42-67% carboxylesterase inhibition in the foregut and crop/gizzard, and 15% lipase inhibition in the foregut). Chlorpyrifos inhibited the activity of both cholinesterases in the gastrointestinal tissues, whereas the AChE activity was affected in the wall muscle. These results suggested chlorpyrifos was widely distributed throughout the earthworm body after 30 d of incubation. Interestingly, we found muscle carboxylesterase activity strongly inhibited (92% of control) compared with that detected in the gastrointestinal tissues of the same OP-exposed individuals. This finding was explained by the occurrence of pesticide-resistant esterases in the gastrointestinal tissues, which were evidenced by zymography. Our results suggest that digestive processes of L. terrestris may be altered by chlorpyrifos, as a consequence of the inhibitory action of the insecticide on some digestive enzymes.
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, 45071, Toledo, Spain.
| | - Juan Manuel Ríos
- Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)-CONICET, P.O. Box 131, ZC5500, Mendoza, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Paraje El Pozo s/n, 3000, Santa Fe, Argentina
| |
Collapse
|
14
|
Yang G, Chen C, Yu Y, Zhao H, Wang W, Wang Y, Cai L, He Y, Wang X. Combined effects of four pesticides and heavy metal chromium (Ⅵ) on the earthworm using avoidance behavior as an endpoint. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:191-200. [PMID: 29621711 DOI: 10.1016/j.ecoenv.2018.03.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
In natural ecosystems, organisms are commonly exposed to chemical mixtures rather than individual compounds. However, environmental risk is traditionally assessed based on data of individual compounds. In the present study, we aimed to investigate the individual and combined effects of four pesticides [fenobucarb (FEN), chlorpyrifos (CPF), clothianidin (CLO), acetochlor (ACE)] and one heavy metal chromium [Cr(Ⅵ)] on the earthworm (Eisenia fetida) using avoidance behavior as an endpoint. Our results indicated that CLO had the highest toxicity to E. fetida, followed by Cr(Ⅵ), while FEN showed the least toxicity. Two mixtures of CPF+CLO and Cr(Ⅵ)+CPF+CLO+ACE exhibited synergistic effects on the earthworms. The other two quaternary mixtures of CLO+FEN+ACE+Cr(Ⅵ) and Cr(Ⅵ)+FEN+CPF+ACE at low concentrations also displayed synergistic effects on the earthworms. In contrast, the mixture of Cr(Ⅵ)+FEN had the strongest antagonistic effects on E. fetida. Besides, the quinquenary mixture of Cr(Ⅵ)+FEN+CPF+CLO+ACE also exerted antagonistic effects. These findings highlighted the importance to evaluate chemical mixtures. Moreover, our data strongly pointed out that the avoidance tests could be used to assess the effects of combined effects.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chen Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture / Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yijun Yu
- Administration for Farmland Quality and Fertilizer of Zhejiang Province, Hangzhou 310020, China
| | - Huiyu Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanhua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leiming Cai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yueping He
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinquan Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
15
|
Sanchez-Hernandez JC, Notario Del Pino J, Capowiez Y, Mazzia C, Rault M. Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1407-1416. [PMID: 28898947 DOI: 10.1016/j.scitotenv.2017.09.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 05/28/2023]
Abstract
Earthworms contribute, directly and indirectly, to contaminant biodegradation. However, most of bioremediation studies using these annelids focus on pollutant dissipation, thus disregarding the health status of the organism implied in bioremediation as well as the recovery of indicators of soil quality. A microcosm study was performed using Lumbricus terrestris to determine whether earthworm density (2 or 4individuals/kg wet soil) and the time of exposure (1, 2, 6, 12, and 18wk) could affect chlorpyrifos persistence in soil initially treated with 20mg active ingredientkg-1 wet soil. Additionally, selected earthworm biomarkers and soil enzyme activities were measured as indicators of earthworm health and soil quality, respectively. After an 18-wk incubation period, no earthworm was killed by the pesticide, but clear signs of severe intoxication were detected, i.e., 90% inhibition in muscle acetylcholinesterase and carboxylesterase (CbE) activities. Unexpectedly, the earthworm density had no significant impact on chlorpyrifos dissipation rate, for which the measured half-life ranged between 30.3d (control soils) and 44.5d (low earthworm density) or 36.7d (high earthworm density). The dynamic response of several soil enzymes to chlorpyrifos exposure was examined calculating the geometric mean and the treated-soil quality index, which are common enzyme-based indexes of microbial functional diversity. Both indexes showed a significant and linear increase of the global enzyme response after 6wk of chlorpyrifos treatment in the presence of earthworms. Examination of individual enzymes revealed that soil CbE activity could decrease chlorpyrifos-oxon impact upon the rest of enzyme activities. Although L. terrestris was found not to accelerate chlorpyrifos dissipation, a significant increase in the activity of soil enzyme activities was achieved compared with earthworm-free, chlorpyrifos-treated soils. Therefore, the inoculation of organophosphorus-contaminated soils with L. terrestris arises as a complementary bioremediation strategy in terms of recovery of soil biochemical performance and quality.
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Ecotoxicology Lab, Fac. Environmental Science and Biochemistry, University of Castilla-La Mancha, Toledo, Spain.
| | - J Notario Del Pino
- Department of Animal Biology, Soil Science and Geology, University of La Laguna, Canary Islands, Spain
| | - Yvan Capowiez
- INRA, UMR 1114, EMMAH, Site Agroparc, Avignon, France
| | - Christophe Mazzia
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France
| |
Collapse
|
16
|
Peiris DC, Dhanushka T. Low doses of chlorpyrifos interfere with spermatogenesis of rats through reduction of sex hormones. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20859-20867. [PMID: 28721614 DOI: 10.1007/s11356-017-9617-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/23/2017] [Indexed: 05/28/2023]
Abstract
Use of pesticides results in indirect effects on human health. We aimed to evaluate implications of toxicological effects of subchronic chlorpyrifos exposure on reproductive function in male rats. A total of 48 adult Wistar male rats were separated into four groups (n = 12). Animals were gavaged with 2.5 mg/kg (T1), 5 mg/kg (T2), or 10 mg/kg (T3) body weight of chlorpyrifos (CPF) or distilled water (control) daily for 30 days. Organ weights, epididymal sperm parameters, DNA integrity, sex hormonal (FHS and LH) levels, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), and creatinine concentrations were determined on day 31. Another two sets of (four groups/set; n = 10) animals were orally treated with the same doses of CPF, control animal groups were treated with distilled water only for 30 days, and fertility indices and blood plasma acetylcholine esterase (AchE) were determined on day 31. Exposure to CPF resulted in a significant (p < 0.05) decrease in weights of testis and epididymis. An increase in liver weight resulted in reduced sperm counts and sperm motility and an increase in sperm abnormalities. Significant reduction in serum testosterone (p < 0.01), luteinizing hormone (p < 0.05), and follicular stimulating hormone (p < 0.05) levels was evident in animals treated with the highest dose. A significant decrease in the number of viable implantation sites and pups was observed in female rats mated with the T3 (p < 0.01) and T2 (p < 0.05) males. The ALT, AST, GGT, and creatinine contents were significantly increased (p < 0.05 and p < 0.01, respectively) on CPF exposure. A significant (p < 0.01) reduction in blood plasma AchE enzyme was observed with the highest dose. Our results demonstrated that prolonged exposure of CPF induces spermatogenesis damage, possibly through interference with sex hormones and AchE enzyme resulting in reduction of fertility. Therefore, awareness programs on handling CPF (pesticides) to enhance safety warrant minimization of its hazards.
Collapse
Affiliation(s)
- Dinithi Champika Peiris
- Department of Zoology (Center for Biotechnology), University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka.
| | - Thamali Dhanushka
- Department of Zoology (Center for Biotechnology), University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
- Environmental Management Division, Abans Environmental (Pvt.) Ltd., Colombo, 05, Sri Lanka
| |
Collapse
|
17
|
Tiwari RK, Singh S, Pandey RS, Sharma B. Enzymes of Earthworm as Indicators of Pesticide Pollution in Soil. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aer.2016.44011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|