1
|
Ihle V, Flach H, Kaminski F, Dietmann P, Pfeffer S, Kühl SJ. Tebuconazole-based fungicide impairs embryonic development of the South African Clawed Frog Xenopus laevis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104708. [PMID: 40311790 DOI: 10.1016/j.etap.2025.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Tebuconazole (TBZ) is a broad-spectrum fungicide that disrupts fungal cell membrane. Due to its extensive application in agriculture, TBZ is frequently detected in aquatic ecosystems, posing potential risks to amphibians. However, the effects of TBZ-based formulations on amphibian development remain poorly understood. The present study investigates the effects of the TBZ-based fungicide Tebucur on the embryogenesis of the South African clawed frog. Two-cell stage embryos were exposed to varying concentrations of Tebucur (0.01-100 mg a.i./L) in a static non-renewal bioassay. The exposure time varied between four and 14 days, depending on the desired developmental stage of the embryos and the analysis method. Tebucur exposure resulted in mortality with a LC50-value of 8.0 mg a.i./L at 14 days. As well, various morphological abnormalities during neural and cardiac development emerged. Additionally, a reduction of overall mobility was observed. This underlines the need for strict regulation of the use of TBZ-formulations.
Collapse
Affiliation(s)
- Vanessa Ihle
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Florian Kaminski
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Sarah Pfeffer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German.
| |
Collapse
|
2
|
Bellot P, Brischoux F, Budzinski H, Dupont SM, Fritsch C, Hope SF, Michaud B, Pallud M, Parenteau C, Prouteau L, Rocchi S, Angelier F. Chronic exposure to tebuconazole alters thyroid hormones and plumage quality in house sparrows (Passer domesticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3328-3342. [PMID: 37365357 DOI: 10.1007/s11356-023-28259-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Triazoles belong to a family of fungicides that are ubiquitous in agroecosystems due to their widespread use in crops. Despite their efficiency in controlling fungal diseases, triazoles are also suspected to affect non-target vertebrate species through the disruption of key physiological mechanisms. Most studies so far have focused on aquatic animal models, and the potential impact of triazoles on terrestrial vertebrates has been overlooked despite their relevance as sentinel species of contaminated agroecosystems. Here, we examined the impact of tebuconazole on the thyroid endocrine axis, associated phenotypic traits (plumage quality and body condition) and sperm quality in wild-caught house sparrows (Passer domesticus). We experimentally exposed house sparrows to realistic concentrations of tebuconazole under controlled conditions and tested the impact of this exposure on the levels of thyroid hormones (T3 and T4), feather quality (size and density), body condition and sperm morphology. We found that exposure to tebuconazole caused a significant decrease in T4 levels, suggesting that this azole affects the thyroid endocrine axis, although T3 levels did not differ between control and exposed sparrows. Importantly, we also found that exposed females had an altered plumage structure (larger but less dense feathers) relative to control females. The impact of tebuconazole on body condition was dependent on the duration of exposure and the sex of individuals. Finally, we did not show any effect of exposure to tebuconazole on sperm morphology. Our study demonstrates for the first time that exposure to tebuconazole can alter the thyroid axis of wild birds, impact their plumage quality and potentially affect their body condition. Further endocrine and transcriptomic studies are now needed not only to understand the underlying mechanistic effects of tebuconazole on these variables, but also to further investigate their ultimate consequences on performance (i.e. reproduction and survival).
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Hélène Budzinski
- CNRS-EPOC, UMR 5805, LPTC Research Group, University of Bordeaux, 33400, Talence, France
| | - Sophie M Dupont
- BOREA, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, 97233, Schoelcher, Martinique, France
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, F-25000, Besançon, France
| | - Sydney F Hope
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Bruno Michaud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Marie Pallud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Louise Prouteau
- CNRS-EPOC, UMR 5805, LPTC Research Group, University of Bordeaux, 33400, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, F-25000, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
3
|
Mackei M, Huber F, Sebők C, Vörösházi J, Tráj P, Márton RA, Neogrády Z, Mátis G. Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees. Heliyon 2025; 11:e41291. [PMID: 39811324 PMCID: PMC11730214 DOI: 10.1016/j.heliyon.2024.e41291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles. The results show that the redox homeostasis, especially the glutathione system, of the exposed animals is severely impaired by the treatment, but flight muscles are able to successfully counteract the detrimental effects by the effective activation of protective processes. This efficient adaptation may have led to overcompensation processes eventually resulting in lower hydrogen peroxide and malondialdehyde concentrations after exposure. It could also be assumed that tebuconazole has a non-monotonic dose-response curve similarly to many other substances with endocrine-disrupting activity concerning parameters such as superoxide dismutase activity or total antioxidant capacity. These findings shed light on the detrimental impact of tebuconazole on the redox balance of honey bee flight muscles, also highlighting, that unlike other organs such as the brain, they may effectively adapt to acute tebuconazole exposure.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| | - Fanni Huber
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
4
|
Zhang Y, Wang Z, Wang Y, Jin W, Zhang Z, Jin L, Qian J, Zheng L. CYP3A4 and CYP3A5: the crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 2024; 12:e18636. [PMID: 39650550 PMCID: PMC11625447 DOI: 10.7717/peerj.18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
CYP3A, a key member of the cytochrome P450 (CYP450) superfamily, is integral to drug metabolism, processing a substantial portion of medications. Their role in drug metabolism is particularly prominent, as CYP3A4 and CYP3A5 metabolize approximately 30-50% of known drugs. The genetic polymorphism of CYP3A4/5 is significant inter-individual variability in enzymatic activity, which can result in different pharmacokinetic profiles in response to the same drug among individuals. These polymorphisms can lead to either increased drug toxicity or reduced therapeutic effects, requiring dosage adjustments based on genetic profiles. Consequently, the study of the enzymatic activity of CYP3A4/5 gene variants is of great importance for the formulation of personalized treatment regimens. This article first reviews the role of CYP3A4/5 in drug metabolism in the human body, including inhibitors and inducers of CYP3A4/5 and drug-drug interactions. In terms of genetic polymorphism, it discusses the detection methods, enzymatic kinetic characteristics, and clinical guidelines for CYP3A5. Finally, the article summarizes the importance of CYP3A4/5 in clinical applications, including personalized therapy, management of drug-drug interactions, and adjustment of drug doses. This review contributes to the understanding of the functions and genetic characteristics of CYP3A4/5, allowing for more effective clinical outcomes through optimized drug therapy.
Collapse
Affiliation(s)
- Yuqing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziying Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchao Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weikai Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheyan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lehao Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Zheng
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Guo M, Liang M, Gu J, Shen Y, Guo L, Wang Q, Ji G. Health risk assessment of triazole fungicides around a pesticide factory in China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1021. [PMID: 39367949 DOI: 10.1007/s10661-024-13170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
The environmental pollution and health effects caused by pesticide production have consistently garnered considerable research interest. In the present study, the concentrations of five triazole fungicides (TFs) in air, indoor dust, and diet were monitored around a pesticide factory in eastern China from November 2020 to May 2021. The levels of five TFs in each sample were determined via UPLC‒MS/MS. For a health risk assessment, the United States Environmental Protection Agency's deterministic method was applied. The findings revealed that the total concentrations of the five TFs around the monitoring area ranged from 0.29 to 5.85 ng/m3 in outdoor air, 287.4 to 9878.5 μg/kg in indoor dust, 0.0578 to 4.948 μg/kg in vegetables, and 0.447 to 3.00 μg/kg in rice. Notably, tebuconazole and hexaconazole had consistently high contributions over the years. For adults and children, the average daily doses (ADDs) were 1.32 × 10-5 and 2.69 × 10-5 mg/kg/day, respectively, in the monitoring area and 4.25 × 10-6 and 6.42 × 10-6 mg/kg/day, respectively, in the control area. In the control area, rice and vegetables were the primary media for exposure to TFs in children and adults, collectively accounting for more than 94% of the total TF exposure. Conversely, indoor dust is identified as the main medium of TF exposure in children residing near the pesticide factory, representing approximately 40% of the total exposure. The risks of noncarcinogenic effects on children and adults in the monitoring area were significantly greater than those in the control area, being approximately ten times greater for children, warranting increased attention. The carcinogenic risk to human health is relatively safe.
Collapse
Grants
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
Collapse
Affiliation(s)
- Min Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Jie Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Yuehong Shen
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Liguo Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Qian Wang
- Changzhou Environmental Monitoring Centre, Changzhou, 213004, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China.
| |
Collapse
|
6
|
Chen Y, Hajslova J, Schusterova D, Uttl L, Vymazal J, Chen Z. Transformation and degradation of tebuconazole and its metabolites in constructed wetlands with arbuscular mycorrhizal fungi colonization. WATER RESEARCH 2024; 263:122129. [PMID: 39094199 DOI: 10.1016/j.watres.2024.122129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization has been used in constructed wetlands (CWs) to enhance treatment performance. However, its role in azole (fungicide) degradation and microbial community changes is not well understood. This study aims to explore the impact of AMF on the degradation of tebuconazole and its metabolites in CWs. Total organic carbon levels were consistently higher with the colonization of AMF (AMF+; 9.63- 16.37 mg/L) compared to without the colonization of AMF (AMF-; 8.79-14.48 mg/L) in CWs. Notably, tebuconazole removal was swift, occurring within one day in both treatments (p = 0.885), with removal efficiencies ranging from 94.10 % to 97.83 %. That's primarily due to rapid substrate absorption at the beginning, while degradation follows with a longer time. Four metabolites were reported in CWs first time: tebuconazole hydroxy, tebuconazole lactone, tebuconazole carboxy acid, and tebuconazole dechloro. AMF decreased the abundance of tebuconazole dechloro in the liquid phase, suggesting an inhibitory effect of AMF on dechlorination processes. Furthermore, tebuconazole carboxy acid and hydroxy were predominantly found in plant roots, with a higher abundance observed in AMF+ treatments. Metagenomic analysis highlighted an increasing abundance in bacterial community structure in favor of beneficial microorganisms (xanthomonadales, xanthomonadaceae, and lysobacter), along with a notable presence of functional genes like codA, NAD, and deaD in AMF+ treatments. These findings highlight the positive influence of AMF on tebuconazole stress resilience, microbial community modification, and the enhancement of bioremediation capabilities in CWs.
Collapse
Affiliation(s)
- Yingrun Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Dana Schusterova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Leos Uttl
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jan Vymazal
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic.
| |
Collapse
|
7
|
Campani T, Casini S, Maccantelli A, Tosoni F, D'Agostino A, Caliani I. Oxidative stress and DNA alteration on the earthworm Eisenia fetida exposed to four commercial pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35969-35978. [PMID: 38743332 PMCID: PMC11136830 DOI: 10.1007/s11356-024-33511-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Modern agriculture is mainly based on the use of pesticides to protect crops but their efficiency is very low, in fact, most of them reach water or soil ecosystems causing pollution and health hazards to non-target organisms. Fungicide triazoles and strobilurins based are the most widely used and require a specific effort to investigate toxicological effects on non-target species. This study evaluates the toxic effects of four commercial fungicides Prosaro® (tebuconazole and prothioconazole), Amistar®Xtra (azoxystrobin and cyproconazole), Mirador® (azoxystrobin) and Icarus® (Tebuconazole) on Eisenia fetida using several biomarkers: lipid peroxidation (LPO), catalase activity (CAT), glutathione S-transferase (GST), total glutathione (GSHt), DNA fragmentation (comet assay) and lysozyme activity tested for the first time in E. fetida. The exposure to Mirador® and AmistarXtra® caused an imbalance of ROS species, leading to the inhibition of the immune system. AmistarXtra® and Prosaro®, composed of two active ingredients, induced significant DNA alteration, indicating genotoxic effects. This study broadened our knowledge of the effects of pesticide product formulations on earthworms and showed the need for improvement in the evaluation of toxicological risk deriving from the changing of physicochemical and toxicological properties that occur when a commercial formulation contains more than one active ingredient and several unknown co-formulants.
Collapse
Affiliation(s)
- Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| | - Andrea Maccantelli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Filippo Tosoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Antonella D'Agostino
- Department of Economics and Statistics, University of Siena, Piazza S. Francesco, 7, 53100, Siena, Italia
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
8
|
Shi X, Zhu M, Lu G. Oxidant-mediated radical reactions of the azole fungicide TEB in aquatic media: Degradation mechanism and toxicity evolution. CHEMOSPHERE 2024; 351:141263. [PMID: 38246496 DOI: 10.1016/j.chemosphere.2024.141263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The degradation of tebuconazole (TEB) by UV/H2O2, UV/NaClO, and ozonation was investigated in this research. The experimental findings unveiled that under the specified conditions, the degradation percentages of TEB were raised to 99% within 40 s, 5 min, and 3 min for UV/H2O2, UV/NaClO and ozonation, respectively. The mineralization percentages within 1 h were 59%, 31% and 8% for the three AOPs. UV/H2O2 and UV/NaClO technologies mainly acted through OH·, while O3 treatment primarily relied on the free radicals such as 1O2 and O2·-. UV-based AOPs achieved almost complete dechlorination within 1 h, whereas O3 treatment had a less effective dechlorination, reaching only 27.61%. Notably, UV alone achieved a dechlorination percentage of 43.07%. By identifying the TPs, we found that the three AOPs shared three similar degradation pathways. The degradation mechanism of TEB mainly entailed the removal of the benzene ring, tert-butyl group and triazolyl group. Toxicity assessment revealed an initial increase followed by a gradual decrease in toxicity for UV/NaClO and O3 treatments, whereas UV/H2O2 treatment exhibited a sustained decrease. This was due to the presence of TP278 and TP303 by UV/NaClO and TP168 and TP153 by ozonation. After estimating the costs of the three AOPs, UV/H2O2 standed out as the best choice for achieving a 90% degradation percentage and exhibiting lower toxicity performance, while O3 treatment was favored for low TOC demands. These research findings provided valuable reference for understanding the degradation mechanism and developing a new technology of the removal of TEB.
Collapse
Affiliation(s)
- Xuan Shi
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Mingshan Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
10
|
Yang Y, Zhong J, Shen S, Huang J, Hong Y, Qu X, Chen Q, Niu B. Application and Progress of Machine Learning in Pesticide Hazard and Risk Assessment. Med Chem 2024; 20:2-16. [PMID: 37038674 DOI: 10.2174/1573406419666230406091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
Long-term exposure to pesticides is associated with the incidence of cancer. With the exponential increase in the number of new pesticides being synthesized, it becomes more and more important to evaluate the toxicity of pesticides by means of simulated calculations. Based on existing data, machine learning methods can train and model the predictions of the effects of novel pesticides, which have limited available data. Combined with other technologies, this can aid the synthesis of new pesticides with specific active structures, detect pesticide residues, and identify their tolerable exposure levels. This article mainly discusses support vector machines, linear discriminant analysis, decision trees, partial least squares, and algorithms based on feedforward neural networks in machine learning. It is envisaged that this article will provide scientists and users with a better understanding of machine learning and its application prospects in pesticide toxicity assessment.
Collapse
Affiliation(s)
- Yunfeng Yang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Junjie Zhong
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Songyu Shen
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiajun Huang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yihan Hong
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Goang Xi, China
| | - Qin Chen
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
11
|
de Oliveira M, da Silva EKP, Brovini EM, Rubio KTS, de Aquino SF, Martucci MEP. Identification of metabolites generated in the biotransformation process by the Danio rerio (zebrafish) exposed to the fungicide tebuconazole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106770. [PMID: 37995559 DOI: 10.1016/j.aquatox.2023.106770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Tebuconazole is a triazole fungicide widely used in agricultural crops for control of multiple fungal, mainly foliar and soil-borne diseases. Due to its intense use, this pesticide has been detected on aquatic matrices in different countries, which makes it necessary to identify metabolites capable to be used in its exposure monitoring. The aim of this work was to evaluate tebuconazole metabolites in zebrafish water tanks using liquid chromatography coupled to a high-resolution mass spectrometer (LCHRMS) to highlight analytical targets to monitor tebuconazole exposure in aquatic environments. Two Phase I metabolites, TEB-OH and TEB-COOH, and one Phase II metabolite, TEB-S, were identified. Target metabolomics pointed TEB-S as the most important metabolite for discrimination between treatment and negative control group and potential surrogate for detection and monitoring of tebuconazole exposure in aquatic environments. To the best of our knowledge, this is the first study to suggest the sulphation of tebuconazole (TEB-S) by zebrafish metabolism. Moreover, the use of water samples proved to be a promising approach when compared to the usual biological matrices (e.g. plasma) for evaluating the exposure of aquatic animals to tebuconazole because it is a clean and easy to obtain matrix. Water samples presented a higher concentration of metabolites when compared to plasma samples. The results suggest the applicability of this assay model for the identification of potential biomarkers for monitoring the presence of xenobiotics in water.
Collapse
Affiliation(s)
- Mariana de Oliveira
- Post-Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | | | - Emilia Marques Brovini
- Post-Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Karina Taciana Santos Rubio
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Sérgio Francisco de Aquino
- Post-Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Maria Elvira Poleti Martucci
- Post-Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil; Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil.
| |
Collapse
|
12
|
Meng M, Zhai Z, Zhang Z, Kim J, Zhu Y. Metabolic pathway of tebuconazole by soil fungus Cunninghamella elegans ATCC36112. Antonie Van Leeuwenhoek 2023; 116:1385-1393. [PMID: 37843736 DOI: 10.1007/s10482-023-01894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Tebuconazole is the most widely used fungicide in agriculture. Due to its long half-life, tebuconazole residues can be found in the environment media such as in soil and water bodies. Here, the metabolic pathway of tebuconazole was studied in Cunninghamella elegans (C. elegans). Approximately 98% of tebuconazole was degraded within 7 days, accompanied by the accumulation of five metabolites. The structures of the metabolites were completely or tentatively identified by gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). To identify representative oxidative enzymes that may be involved in the metabolic process, treatment with piperonyl butoxide (PB) and methimazole (MZ) was performed. PB had a strong inhibitory effect on the metabolic reactions, while MZ had a weak inhibitory effect. The results suggest that cytochrome P450 (CYP) and flavin-dependent monooxygenase are involved in the metabolism of tebuconazole. Based on the results, we propose a metabolic pathway for the fungal metabolism of tebuconazole. Data are of interest to gain insight into the toxicological effects of tebuconazole and for tebuconazole bioremediation.
Collapse
Affiliation(s)
- Min Meng
- College of Plant Health and Medicine, Qingdao Agricultural University, Changcheng Rd, Chengyang, Qingdao City, 266-109, Shandong Province, China
| | - Zhaochi Zhai
- College of Plant Health and Medicine, Qingdao Agricultural University, Changcheng Rd, Chengyang, Qingdao City, 266-109, Shandong Province, China
| | - Zhenxing Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Changcheng Rd, Chengyang, Qingdao City, 266-109, Shandong Province, China
| | - Jeonghan Kim
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-Ro, Silim-Dong, Gwanak-Gu, Seoul, 151-742, Republic of Korea
| | - Yongzhe Zhu
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Rd, Chengyang, Qingdao City, 266-109, Shandong Province, China.
| |
Collapse
|
13
|
Ruiz-Yance I, Siguas J, Bardales B, Robles-Castañeda I, Cordova K, Ypushima A, Estela-Villar E, Quintana-Criollo C, Estacio D, Rodríguez JL. Potential Involvement of Oxidative Stress, Apoptosis and Proinflammation in Ipconazole-Induced Cytotoxicity in Human Endothelial-like Cells. TOXICS 2023; 11:839. [PMID: 37888690 PMCID: PMC10610737 DOI: 10.3390/toxics11100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Triazole fungicides are widely used in the world, mainly in agriculture, but their abuse and possible toxic effects are being reported in some in vivo and in vitro studies that have demonstrated their danger to human health. This in vitro study evaluated the cytotoxicity, oxidative stress and proinflammation of EA.hy926 endothelial cells in response to ipconazole exposure. Using the MTT assay, ipconazole was found to produce a dose-dependent reduction (*** p < 0.001; concentrations of 20, 50 and 100 µM) of cell viability in EA.hy926 with an IC50 of 29 µM. Also, ipconazole induced a significant increase in ROS generation (** p < 0.01), caspase 3/7 (** p < 0.01), cell death (BAX, APAF1, BNIP3, CASP3 and AKT1) and proinflammatory (NLRP3, CASP1, IL1β, NFκB, IL6 and TNFα) biomarkers, as well as a reduction in antioxidant (NRF2 and GPx) biomarkers. These results demonstrated that oxidative stress, proinflammatory activity and cell death could be responsible for the cytotoxic effect produced by the fungicide ipconazole, such that this triazole compound should be considered as a possible risk factor in the development of alterations in cellular homeostasis.
Collapse
Affiliation(s)
- Iris Ruiz-Yance
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Junior Siguas
- Animal Physiology Department, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Brandy Bardales
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Ingrid Robles-Castañeda
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Karen Cordova
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Alina Ypushima
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Esteban Estela-Villar
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Carlos Quintana-Criollo
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Darwin Estacio
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - José-Luis Rodríguez
- Pharmacology and Toxicology Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Marques LP, Santos-Miranda A, Joviano-Santos JV, Teixeira-Fonseca JL, Alcântara FDS, Sarmento JO, Roman-Campos D. The fungicide tebuconazole modulates the sodium current of human Na V1.5 channels expressed in HEK293 cells. Food Chem Toxicol 2023; 180:113992. [PMID: 37633639 DOI: 10.1016/j.fct.2023.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The fungicide Tebuconazole is a widely used pesticide in agriculture and may cause cardiotoxicity. In our present investigation the effect of Tebuconazole on the sodium current (INa) of human cardiac sodium channels (NaV1.5) was studied using a heterologous expression system and whole-cell patch-clamp techniques. Tebuconazole reduced the amplitude of the peak INa in a concentration- and voltage-dependent manner. At the holding potential of -120 mV the IC50 was estimated at 204.1 ± 34.3 μM, while at -80 mV the IC50 was 0.3 ± 0.1 μM. The effect of the fungicide is more pronounced at more depolarized potentials, indicating a state-dependent interaction. Tebuconazole caused a negative shift in the half-maximal inactivation voltage and delayed recovery from fast inactivation of INa. Also, it enhanced closed-state inactivation, exhibited use-dependent block in a voltage-dependent manner. Furthermore, Tebuconazole reduced the increase in late sodium current induced by the pyrethroid insecticide β-Cyfluthrin. These results suggest that Tebuconazole can interact with NaV1.5 channels and modulate INa. The observed effects may lead to decreased cardiac excitability through reduced INa availability, which could be a new mechanism of cardiotoxicity to be attributed to the fungicide.
Collapse
Affiliation(s)
- Leisiane Pereira Marques
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Artur Santos-Miranda
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Jorge Lucas Teixeira-Fonseca
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fabiana da Silva Alcântara
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jaqueline Oliveira Sarmento
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Danilo Roman-Campos
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
16
|
Gao J, Li X, Fu R, Li Y. Mechanism analysis and improved molecular modification: Design of high efficiency and environmentally friendly triazole fungicide substitutes. CHEMOSPHERE 2023:139150. [PMID: 37290508 DOI: 10.1016/j.chemosphere.2023.139150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The adverse effects of triazole fungicides (TFs) on the soil and the environmental damage caused by their residues have attracted the attention of the international community. To effectively prevent and control the above problems, this paper designed 72 substitutes of TFs with significantly better molecular functionality (>40%) using Paclobutrazol (PBZ) as the template molecule. Then, the comprehensive scores for environmental effects calculated after normalization by "extreme value method-entropy weight method-weighted average method" was the dependent variable, the structural parameters of TFs molecules was the independent variable (PBZ-214 was the template molecule) to construct the 3D-QSAR model of integrated environmental effects of TFs with high degradability, low bioenrichment, low endocrine disruption effects, and low hepatotoxicity and designed 46 substitutes of TFs with significantly better comprehensive environmental effects (>20%). After confirming the above effects of TFs and assessing human health risk and the universality of biodegradation and endocrine disruption, we screened PBZ-319-175 as the eco-friendly substitute of TF, which had high efficiency (improved functionality) and better environmental effects than those of the target molecule by 51.63% and 36.09%, respectively. Finally, the results of the molecular docking analysis showed that non-bonding interactions (hydrogen bonding, electrostatic, or polar force) predominantly affected the association between PBZ-319-175 and its biodegradable protein, and the hydrophobic effect of the amino acids distributed around PBZ-319-175 played a significant role. Additionally, we determined the microbial degradation path of PBZ-319-175 and found that the steric hindrance of the substituent group after molecular modification promoted its biodegradability. In this study, we enhanced molecular functionality twice and also reduce the major damage of TFs to the environment by performing iterative modifications. This paper provided theoretical support for the development and application of high-performance, eco-friendly substitutes of TFs.
Collapse
Affiliation(s)
- Jiaxuan Gao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Rui Fu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
17
|
Xu Y, Zhang Y, Tao Q, Sun Q, Zheng Y, Yin D, Yang Y. A possible but unrecognized risk of acceptable daily intake dose triazole pesticides exposure-bile acid disturbance induced pharmacokinetic changes of oral medication. CHEMOSPHERE 2023; 322:138209. [PMID: 36822518 DOI: 10.1016/j.chemosphere.2023.138209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Triazole antifungal pesticides work by inhibiting the activity of lanosterol-14-α-demethylase, a member of cytochrome P450 enzymes (CYPs), but this effect is non-specific. Bile acids (BAs) are important physical surfactants for lipids absorption in intestine, and synthesized by CYPs 7A1/27A1. Thus, we presume that triazole exposure might influence the therapeutic effect or safety of oral medication through disturbing the BAs pool, even though the exposure is under an acceptable daily intake (ADI) dose. Short- and long-term of ADI dose tebuconazole (TEB) exposure animal models were established through various routes, and statins with different hydrophilic and lipophilic properties were gavaged. It exhibited that the activity of CYP7A1/27A1 was indeed inhibited but the expression was up-regulated, the BAs pool was changed either the content and the composition, and the absorption behavior of statins with strong and medium degree of lipid-solubility were significantly changed. A series of experiments performed on models of intestinal mucus, Caco-2 cell monolayer and Caco-2/HT29 co-culture system revealed that the TEB-exposure induced BAs disturbance made impacts on drug absorption in many aspects, including drug solubility and the structure of intestinal barriers. This study suggests us to be more alert about the hazard of pesticides residues for elderly and chronically ill groups.
Collapse
Affiliation(s)
- Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Yufeng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Quan Tao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Yuyu Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
18
|
Lee WY, Lee R, Park HJ. Tebuconazole Induces ER-Stress-Mediated Cell Death in Bovine Mammary Epithelial Cell Lines. TOXICS 2023; 11:397. [PMID: 37112622 PMCID: PMC10144106 DOI: 10.3390/toxics11040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
Tebuconazole (TEB) is a triazole fungicide used to increase crop production by controlling fungi, insects, and weeds. Despite their extensive use, people are concerned about the health risks associated with pesticides and fungicides. Numerous studies have defined the cellular toxicity of triazole groups in pesticides, but the mechanisms of TEB toxicity in bovine mammary gland epithelial cells (MAC-T cells) have not yet been studied. Damage to the mammary glands of dairy cows directly affects milk production. This study investigated the toxicological effects of TEB on MAC-T cells. We found that TEB decreases both cell viability and proliferation and activates apoptotic cell death via the upregulation of pro-apoptotic proteins, such as cleaved caspases 3 and 8 and BAX. TEB also induced endoplasmic reticulum (ER) stress via the upregulation of Bip/GRP78; PDI; ATF4; CHOP; and ERO1-Lα. We found that TEB induced mitochondria-mediated apoptotic MAC-T cell death by activating ER stress. This cell damage eventually led to a dramatic reduction in the expression levels of the milk-protein-synthesis-related genes LGB; LALA; CSN1S1; CSN1S2; and CSNK in MAC-T cells. Our data suggest that the exposure of dairy cows to TEB may negatively affect milk production by damaging the mammary glands.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculure and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Ran Lee
- Department of Livestock, Korea National University of Agriculure and Fisheries, Jeonju-si 54874, Republic of Korea
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
19
|
Nie J, Zhou J, Shen Y, Lin R, Hu H, Zeng K, Bi H, Huang M, Yu L, Zeng S, Miao J. Studies on the interaction of five triazole fungicides with human renal transporters in cells. Toxicol In Vitro 2023; 88:105555. [PMID: 36669674 DOI: 10.1016/j.tiv.2023.105555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The widespread use of triazole fungicides in agricultural production poses a potential risk to human health. This study investigates the interaction of five triazole fungicides, i.e., tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole with human renal transporters, including OAT1, OAT3, OCT2, OCTN1, OCTN2, MATE1, MATE2-K, MRP2, MDR1, and BCRP, using transgenic cell models. For uptake transporters, triticonazole was the substrate of OAT1 and OAT3 and the inhibitor of OCT2. Tebuconazole and penconazole inhibited OCTN2 (100 μM), while tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole inhibited MATE1 (100 μM). Tebuconazole and hexaconazole inhibited MATE2-K (100 μM). All five triazole fungicides were not substrates or strong inhibitors of MRP2, MDR1, and BCRP efflux transporters. Penconazole inhibited OCT2 with IC50 = 1.12 μM. Penconazole and uniconazole inhibited MATE1 with IC50 = 0.94 μM and 0.87 μM. Tebuconazole and hexaconazole inhibited MATE2-K with IC50 = 0.96 μM and 1.04 μM, indicating that triazole fungicides may inhibit renal drug transporter activity at low concentrations. Triticonazole was transported by OAT1 and OAT3, and the Km values of triticonazole were 5.81 ± 1.75 and 47.35 ± 14.27, respectively. Tebuconazole and uniconazole were transported by OAT3, and the Km values of tebuconazole and uniconazole were 30.28 ± 7.18 and 87.61 ± 31.70, respectively, which may induce nephrotoxicity.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ruimiao Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Kui Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Huichang Bi
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Min Huang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China.
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
20
|
Ma X, Chen X, Hou H, Liu D, Liu X, Wang P, Zhou Z. Low Dose of Carbendazim and Tebuconazole: Accumulation in Tissues and Effects on Hepatic Oxidative Stress in Mice. TOXICS 2023; 11:326. [PMID: 37112553 PMCID: PMC10142364 DOI: 10.3390/toxics11040326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
As two commonly used fungicides, carbendazim and tebuconazole are widely found in the environment and in foods. Studies have reported that these fungicides can induce hepatic oxidative stress and other health risks. Nevertheless, the influences of exposure to carbendazim and tebuconazole at their acceptable daily intake (ADI) doses on hepatic oxidative stress, and the residual distributions in mice remain unclear. To fill these gaps, ICR (CD-1) mice were exposed to carbendazim and tebuconazole at their ADI doses by oral administration for 4 weeks in this study. The results showed that tebuconazole accumulated primarily in the epididymal fat of mice (16.84 μg/kg), whereas no significant residues of carbendazim in the tissues were observed. In addition, exposure to ADI doses of tebuconazole significantly reduced liver coefficients and induced hepatic oxidative stress in mice, including elevating the levels of glutathione and malonaldehyde. However, no significant impacts were observed on the hepatic redox homeostasis in mice after exposure to carbendazim at its ADI dose. The results could be helpful for understanding the exposure risks of carbendazim and tebuconazole in terms of low doses and long term.
Collapse
|
21
|
Assessment of exposure to pesticide mixtures in five European countries by a harmonized urinary suspect screening approach. Int J Hyg Environ Health 2023; 248:114105. [PMID: 36563507 DOI: 10.1016/j.ijheh.2022.114105] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Humans are exposed to a mixture of pesticides through diet as well as through the environment. We conducted a suspect-screening based study to describe the probability of (concomitant) exposure to a set of pesticide profiles in five European countries (Latvia, Hungary, Czech Republic, Spain and the Netherlands). We explored whether living in an agricultural area (compared to living in a peri-urban area), being a a child (compared to being an adult), and the season in which the urine sample was collected had an impact on the probability of detection of pesticides (-metabolites). In total 2088 urine samples were collected from 1050 participants (525 parent-child pairs) and analyzed through harmonized suspect screening by five different laboratories. Fourty pesticide biomarkers (either pesticide metabolites or the parent pesticides as such) relating to 29 pesticides were identified at high levels of confidence in samples across all study sites. Most frequently detected were biomarkers related to the parent pesticides acetamiprid and chlorpropham. Other biomarkers with high detection rates in at least four countries related to the parent pesticides boscalid, fludioxonil, pirimiphos-methyl, pyrimethanil, clothianidin, fluazifop and propamocarb. In 84% of the samples at least two different pesticides were detected. The median number of detected pesticides in the urine samples was 3, and the maximum was 13 pesticides detected in a single sample. The most frequently co-occurring substances were acetamiprid with chlorpropham (in 62 urine samples), and acetamiprid with tebuconazole (30 samples). Some variation in the probability of detection of pesticides (-metabolites) was observed with living in an agricultural area or season of urine sampling, though no consistent patterns were observed. We did observe differences in the probability of detection of a pesticide (metabolite) among children compared to adults, suggesting a different exposure and/or elimination patterns between adults and children. This survey demonstrates the feasibility of conducting a harmonized pan-European sample collection, combined with suspect screening to provide insight in the presence of exposure to pesticide mixtures in the European population, including agricultural areas. Future improvements could come from improved (harmonized) quantification of pesticide levels.
Collapse
|
22
|
Moltedo G, Catalano B, Martuccio G, Sesta G, Romanelli G, Lauria A, Berducci MT, Parravano R, Maggi C, Simbula G, Vignoli L, Onorati F, D'Antoni S. Processes involved in biochemical response to pesticides by lizard Podarcis siculus (Rafinesque-Schmaltz, 1810) – A field study. Toxicol Appl Pharmacol 2023; 467:116491. [PMID: 36990228 DOI: 10.1016/j.taap.2023.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Although reptiles are non-target organisms of pesticide applications, their ecological niche and trophic role suggest that the use of these compounds in agriculture can have toxicological effects on them. Our recent field study on Italian wall lizard Podarcis siculus in hazelnut orchards evidenced that the use of pesticides-mixtures, consisting of thiophanate-methyl (TM), tebuconazole (TEB), deltamethrin (DM), lambda-cyhalothrin (LCT), besides copper sulphate, induced an increase of the total antioxidant capacity toward hydroxyl radicals and caused DNA damage; however, it did not cause neurotoxicity, and did not induce the glutathione-S-transferases' activities. These results raised some questions which were answered in this study by carrying out analyses on 4 biomarkers and 5 chemical substances in the tissues of non-target organisms coming from treated fields: cytochrome P450, catalase, total glutathione, and malondialdehyde, TM, TEB, DM, LCT and Cu. Our results highlighted a partial accumulation of different chemicals, the involvement of two important mechanisms of defence, and some cellular damages after exposure to the considered pesticides. In details, 1) LCT and DM were not accumulated in lizard muscle, copper remained at basal levels, whereas TM and TEB were uptaken with a partial metabolization of TM; 2) the cytochrome P450 and the catalase were involved in lizard biochemical responses to pesticides-mixtures used for "conventional" farming treatment; 3) "conventional" treatment with pesticides caused damage to lipids, besides DNA, probably related to the excess of hydroxyl radicals.
Collapse
|
23
|
The effect of conazoles on reproductive organs structure and function – a review. ACTA VET BRNO 2023. [DOI: 10.2754/avb202392010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conazoles are azole antifungals used in agricultural and pharmaceutical products. Exposure to conazole fungicides leads to several toxic endpoints, including reproductive and endocrine. The results of animal experiments have shown that various conazole fungicides at high doses affect the structure and functions of reproductive organs. In males, adverse effects of conazole fungicides are manifested in the testes, prostate, sperm viability, fertility and sexual behaviour. Reduced testis weight, testis atrophy and reduced or absent sperm production were frequently observed. In female genitalia, structural changes in the ovaries and uterus have been observed. The extent of the changes depends on the dose and duration of treatment. Triazoles affected the expression of multiple genes involved in steroid hormone metabolism and modulate enzyme activity of multiple cytochrome P450 (CYP) and other metabolic enzymes in mammalian liver and other tissues. Conazole fungicides act as endocrine disruptors. Conazoles have been reported to reduce oestradiol and testosterone production and to increase progesterone concentration, indicating the inhibition of enzymes involved in the conversion of progesterone to testosterone. The reproductive effects are consistent with impairment of testosterone homeostasis. The disruption in steroid homeostasis is a common mode of action, leading to abnormal reproductive development and diminished reproductive function. At high doses, azole fungicides affect reproductive organs and fertility in several species.
Collapse
|
24
|
Bellot P, Brischoux F, Fritsch C, Goutte A, Alliot F, Rocchi S, Angelier F. Evidence of environmental transfer of tebuconazole to the eggs in the house sparrow (Passer domesticus): An experimental study. CHEMOSPHERE 2022; 308:136469. [PMID: 36116623 DOI: 10.1016/j.chemosphere.2022.136469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Triazole compounds are among the most widely used fungicides in agroecosystems to protect crops from potential fungal diseases. Many farmland birds spend a significant part of their life cycle in agroecosystems, which may chronically expose them to pesticides. We experimentally tested whether exposure to environmental concentrations of tebuconazole could induce a contamination of the eggs in an agroecosystem sentinel species, the house sparrow (Passer domesticus). Wild-caught adult sparrows were maintained in captivity and exposed (exposed group) or not (control group) for seven months to tebuconazole through drinking water. Eggs were opportunistically collected for the determination of tebuconazole concentration by Liquid Chromatography coupled to tandem Mass Spectrometry in eggs. We found that eggs from exposed parents all contained tebuconazole with a mean concentration of 1.52 ng g-1 dry weight. In eggs from control parents, the tebuconazole concentration was below the limit of quantification (0.23 ng g-1 dry weight) for 11 out of 13 eggs. Thus, our study demonstrates for the first time that environmental exposure of female birds to tebuconazole can translate into egg contamination by this fungicide.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgogne Franche-Comté, 25000, Besançon, France
| | - Aurélie Goutte
- École Pratique des Hautes Études, PSL Research University, UMR 7619 METIS, Sorbonne Université- CNRS, Paris, France
| | - Fabrice Alliot
- École Pratique des Hautes Études, PSL Research University, UMR 7619 METIS, Sorbonne Université- CNRS, Paris, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgogne Franche-Comté, 25000, Besançon, France; Service de Parasitologie-Mycologie, CHU Jean Minjoz, 25000, Besançon, France
| | - Frédéric Angelier
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
25
|
Bellot P, Dupont SM, Brischoux F, Budzinski H, Chastel O, Fritsch C, Lourdais O, Prouteau L, Rocchi S, Angelier F. Experimental Exposure to Tebuconazole Affects Metabolism and Body Condition in a Passerine Bird, the House Sparrow (Passer domesticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2500-2511. [PMID: 35899983 DOI: 10.1002/etc.5446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Triazole compounds are among the most widely used fungicides in agroecosystems to protect crops from potential fungal diseases. Triazoles are suspected to have an impact on nontarget species due to their interactions with nonfungal sterol synthesis, and wild birds are likely to be contaminated by triazole fungicides because many of them live in agroecosystems. We experimentally tested whether exposure to environmental concentrations of a triazole could alter key integrative traits (metabolic rates and body condition) of an agroecosystem sentinel species, the house sparrow (Passer domesticus). Wild-caught adult sparrows were maintained in captivity and exposed (exposed group) or not (control group) for 7 continuous months to tebuconazole through drinking water. The metabolic rates of exposed and control sparrows were then measured at two different temperatures (12 °C and 25 °C), which correspond, respectively, to the thermoregulation and thermoneutrality temperatures of this species. We found that exposed sparrows had lower resting metabolic rates (i.e., measured at thermoneutrality, 25 °C) than controls. However, the thermoregulatory metabolic rates (i.e., measured at 12 °C) did not differ between exposed and control sparrows. Although the body mass and condition were not measured at the beginning of the exposure, sparrows at the time of the metabolic measurements 7 months after the onset of such exposure had a higher body condition than controls, supporting further the idea that tebuconazole affects metabolic functions. Our study demonstrates for the first time that the use of tebuconazole can alter metabolism and could potentially lead to adverse effects in birds. Environ Toxicol Chem 2022;41:2500-2511. © 2022 SETAC.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Sophie Marie Dupont
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Hélène Budzinski
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Louise Prouteau
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
- Service de Parasitologie-Mycologie, CHU Jean Minjoz, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| |
Collapse
|
26
|
Li H, Li Y, Song L, Cheng J, Ge J, Yu X, Sun W. Effects of tebuconazole application at different growth stages on rice grain quality of rice-based untargeted metabolomics. CHEMOSPHERE 2022; 303:134920. [PMID: 35588883 DOI: 10.1016/j.chemosphere.2022.134920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/03/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Tebuconazole (TEB) is a pesticide widely used in crops and has a strong control effect on fungal pathogens. TEB abuse has caused many food safety problems. In this study, the TEB residue in rice and the effect of TEB on white rice quality were investigated. The results showed that under two spraying concentrations, the TEB residue in rice was 11.21-19.05 μg/kg and 24.45-31.12 μg/kg, and there was no food safety risk of pesticide residue. When applying TEB according to the instructions, no significant effect was found. However, when 3 times the recommended TEB concentration was used at the filling stage, the protein content of white rice decreased significantly from 106.52 mg/g to 80.72 mg/g. At the jointing,heading and filling stage, the amylose content of white rice decreased to 53.95 mg/g, 48.77 mg/g and 49.04 mg/g from the blank control group. Plant metabolic analysis using LC-QTOF/MS revealed that the amino acid-related metabolic pathways in white rice were significantly affected by TEB. This is closely related to the decrease in protein accumulation in white rice and the stress response of rice plants. The increase in pantothenic acid content in white rice indicated that the glycolysis pathway of white rice plants was affected, and the consumption of starch and sucrose increased, leading to the inhibition of amylose accumulation in white rice. The increase in soluble sugar content and decrease in phosphocholine content in white rice suggested that rice plants were affected by TEB exposure, which produced similar effects under drought stress.
Collapse
Affiliation(s)
- Haocong Li
- Jiangsu University, School of Food & Biology Engineering, Zhenjiang, 212013, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Agricultural Resources and the Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Agricultural Resources and the Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Lixiao Song
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Agricultural Resources and the Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Jinjin Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Agricultural Resources and the Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Jing Ge
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Agricultural Resources and the Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Agricultural Resources and the Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
| | - Wenjing Sun
- Jiangsu University, School of Food & Biology Engineering, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
27
|
Miao Y, Zeng JY, Rong M, Li M, Zhang L, Liu C, Tian KM, Yang KD, Liu CJ, Zeng Q. Organochlorine pesticide exposures, metabolic enzyme genetic polymorphisms and semen quality parameters among men attending an infertility clinic. CHEMOSPHERE 2022; 303:135010. [PMID: 35605733 DOI: 10.1016/j.chemosphere.2022.135010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The associations of organochlorine pesticides (OCPs) with semen quality from human studies are conflicting, and also it is largely unknown whether the associations are modified by genetic polymorphisms. We aimed to evaluate the associations between serum concentrations of 18 OCPs and semen quality among 387 Chinese men, and further to examine the modifying effects by genetic polymorphisms in cytochrome P450 (CYP2E1) and glutathione S-transferase (GSTT1). Multivariable linear regressions were used to evaluate the relationships between serum OCP concentrations and semen quality, and the role of CYP2E1 and GSTT1 polymorphisms in modifying the associations were assessed. Multiple testing was adjusted using the false discovery rate (FDR). We observed that men with detectable concentrations of serum ɤ-HCH had a decrease in sperm motility of 7.07% (95% CI: -10.9%, -3.24%) compared to those with undetectable concentrations (FDR-P value = 0.02). Men with TT of CYP2E1 rs 915906 genotypes had higher median concentrations of serum dieldrin compared with those with CT/CC of CYP2E1 rs 915906 genotypes. There were interactions between CYP2E1 and GSTT1 polymorphisms and certain OCPs namely ɤ-HCH, δ-HCH, dieldrin, endosulfan I, and endrin aldehyde on semen quality. For example, elevated dieldrin levels in relation to decreased sperm concentration, sperm count, and sperm motility were only observed among men with CC of CYP2E1 rs2031920 genotypes (all Pinteraction < 0.05). However, these interactions were not statistically significant after the FDR adjustment. Our results suggested that CYP2E1 and GSTT1 polymorphisms may modify the effects of OCP exposures on semen quality. Due to the relatively small size samples, further investigation is warranted to confirm the findings.
Collapse
Affiliation(s)
- Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mao Rong
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei, PR China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei, PR China
| | - Min Li
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei, PR China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei, PR China
| | - Li Zhang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei, PR China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Kun-Ming Tian
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ke-Di Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
28
|
Coremen M, Turkyilmaz IB, Us H, Us AS, Celik S, Ozel A, Bulan OK, Yanardag R. Lupeol inhibits pesticides induced hepatotoxicity via reducing oxidative stress and inflammatory markers in the rats. Food Chem Toxicol 2022; 164:113068. [PMID: 35483487 DOI: 10.1016/j.fct.2022.113068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
Abstract
The present study was aimed at investigating the toxicity of various pesticides on rat liver. It also aimed to show whether this toxicity could be avoided using lupeol. Adult male Wistars albino rats were randomly divided into nine groups. Control groups were given saline, corn oil, and lupeol; pesticide groups were given malathion, chlorpyrifos, and tebuconazole; in the other three treatments, same doses of pesticides and lupeol were given to the rats for ten days. Histopathological examination showed severe degenerative changes in the pesticide groups. Serum AChE activities, liver GSH, total antioxidant capacity levels, AChE, CAT, SOD, GPx, GR, Na+/K+-ATPase, ARE, and PON were decreased, while serum TNF-α, liver LPO, HP, NO, AOPP, total oxidant status, ROS, and oxidative stress index levels as well as AST, ALT, ALP, GST, arginase and xanthine oxidase activities were increased in the pesticides administered groups. It was observed that the PCNA levels determined by the immunohistochemical method increased in the pesticide groups. Also, the results Raman spectroscopy suggest that the technique may be used to understand/have an insight into pesticide toxicity mechanisms. The administration of lupeol demonstrated a hepatoprotective effect against pesticide-induced toxicity.
Collapse
Affiliation(s)
- Melis Coremen
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, Istanbul, Turkey.
| | - Ismet Burcu Turkyilmaz
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcılar, Istanbul, Turkey
| | - Huseyin Us
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, Istanbul, Turkey
| | - Ayca Sezen Us
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, Istanbul, Turkey
| | - Sefa Celik
- Istanbul University, Faculty of Science, Department of Physics Vezneciler, Istanbul, Turkey
| | - Ayşen Ozel
- Istanbul University, Faculty of Science, Department of Physics Vezneciler, Istanbul, Turkey
| | - Omur Karabulut Bulan
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, Istanbul, Turkey
| | - Refiye Yanardag
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcılar, Istanbul, Turkey
| |
Collapse
|
29
|
Vieira RSF, Venâncio CAS, Félix LM. Behavioural impairment and oxidative stress by acute exposure of zebrafish to a commercial formulation of tebuconazole. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103823. [PMID: 35123019 DOI: 10.1016/j.etap.2022.103823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Tebuconazole is a systemic follicular fungicide known to cause diverse problems in non-target organisms namely associated to the pure active ingredient. As such, the objective of this work was to evaluate developmental changes induced by a tebuconazole commercial formulation to a non-target animal model. Zebrafish embryos at ± 2 h post-fertilization were exposed to tebuconazole wettable powder concentrations (0.05, 0.5 and 5 mg L-1) for 96 h with developmental toxicity assessed throughout the exposure period and biochemical parameters evaluated at the end of the exposure. Behavioural assessment (spatial exploration and response to stimuli) was conducted 24 h after the end of the exposure. While no developmental and physiological alterations were observed, exposure to tebuconazole resulted in an increased generation of reactive oxidative species at the 0.05 and 0.5 mg L-1 concentrations and a decreased GPx activity at the 0.5 mg L-1 concentration suggesting a potential protection mechanism. There was also a change in the avoidance-escape behaviour supporting an anxiolytic effect suggesting possible alterations in the central nervous system development demanding further studies.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; Laboratory Animal Science, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
30
|
Xie Y, Chang J, Pan Y, Hao W, Li J. Toxicological effects of acute prothioconazole and prothioconazole-desthio administration on liver in male Chinese lizards (Eremias argus). CHEMOSPHERE 2022; 291:132825. [PMID: 34762875 DOI: 10.1016/j.chemosphere.2021.132825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Prothioconazole (PTC) is a high effective systemic fungicide, and one of its major metabolites is prothioconazole-desthio (PTC-d). Because of its wildly use in the farmland of China, the local eco-toxicological effects of PTC as well as PTC-d are needed to be concerned. This study investigated hepatoxicity of Chinese lizards (Eremias argus), a local non-target organism, after single dose oral treated (100 mg kg-1 BW) through pathological, enzyme activity and gene expression analysis. PTC treatment caused ballooning and PTC-d treatment led to macrovesicular steatosis of hepatocyte. The elevation of serum indexes, including the activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT), further confirmed the hepatic injury. PTC and PTC-d treatments altered oxidative status reflected by the inhibition of superoxide dismutase (SOD) activity , meanwhile, the stimulation of catalase (CAT) activity, glutathione peroxidase (GPx) activity and malondialdehyde (MDA) content. The mRNA expression changes of apoptosis-related factors and cytokines genes, including Bax, Bcl-2, TNF-α, NF-κB, Caspase-3 and Nrf2, deeply uncovered the potential mechanism of hepatotoxicity caused by PTC and PTC-d. In brief, the results indicated that both of these two compounds altered oxidative status, then were likely to trigger caspase-3 by affecting the ratio of pro- and anti-apoptotic factors which belong to intrinsic apoptosis pathway. Specifically, more serious impacts were induced by PTC-d than its parent compound. This study is the first to provide specific insight into potential hepatotoxicity resulted from PTC and PTC-d in male Chinese lizards.
Collapse
Affiliation(s)
- Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| |
Collapse
|
31
|
von Hellfeld R, Pannetier P, Braunbeck T. Specificity of time- and dose-dependent morphological endpoints in the fish embryo acute toxicity (FET) test for substances with diverse modes of action: the search for a "fingerprint". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16176-16192. [PMID: 34643865 PMCID: PMC8827326 DOI: 10.1007/s11356-021-16354-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The fish embryo acute toxicity (FET) test with the zebrafish (Danio rerio) embryo according to OECD TG 236 was originally developed as an alternative test method for acute fish toxicity testing according to, e.g., OECD TG 203. Given the versatility of the protocol, however, the FET test has found application beyond acute toxicity testing as a common tool in environmental hazard and risk assessment. Whereas the standard OECD guideline is restricted to four core endpoints (coagulation as well as lack of somite formation, heartbeat, and tail detachment) for simple, rapid assessment of acute toxicity, further endpoints can easily be integrated into the FET test protocol. This has led to the hypothesis that an extended FET test might allow for the identification of different classes of toxicants via a "fingerprint" of morphological observations. To test this hypothesis, the present study investigated a set of 18 compounds with highly diverse modes of action with respect to acute and sublethal endpoints. Especially at higher concentrations, most observations proved toxicant-unspecific. With decreasing concentrations, however, observations declined in number, but gained in specificity. Specific observations may at best be made at test concentrations ≤ EC10. The existence of a "fingerprint" based on morphological observations in the FET is, therefore, highly unlikely in the range of acute toxicity, but cannot be excluded for experiments at sublethal concentrations.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
- University of Aberdeen, Institute of Biological and Environmental Science, 23 St Machar Drive, AB24 3UU, Aberdeen, UK.
| | - Pauline Pannetier
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
The fungicide Tebuconazole induces electromechanical cardiotoxicity in murine heart and human cardiomyocytes derived from induced pluripotent stem cells. Toxicol Lett 2022; 359:96-105. [PMID: 35202779 DOI: 10.1016/j.toxlet.2022.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/05/2022] [Accepted: 02/15/2022] [Indexed: 02/02/2023]
Abstract
Tebuconazole (TEB) is an important fungicide that belongs to the triazole family. It is widely used in agriculture and its use has experienced a tremendous increase in the last decade. The long-term exposure of humans to this pesticide is a real threat because it is stable in water and soil. The association between long-term exposure to TEB and damage of several biological systems, including hepatotoxicity and cardiotoxicity is evident, however, acute toxicological studies to reveal the toxicity of TEB are limited. This research paper addressed the acute exposure of TEB in murine hearts, cardiomyocytes, and human cardiomyocytes derived from an induced pluripotent stem cell (hiPSC-CMs), spelling out TEB's impact on electromechanical properties of the cardiac tissue. In ex vivo experiments, TEB dose dependently, caused significant electrocardiogram (ECG) remodeling with prolonged PR and QTc interval duration. The TEB was also able to change the action potential waveform in murine cardiomyocytes and hiPSC-CMs. These effects were associated with the ability of the compound to block the L-type calcium current (IC50 = 33.2 ± 7.4 μmol.l-1) and total outward potassium current (IC50 = 5.7 ± 1.5 μmol.l-1). TEB also increased the sodium/calcium exchanger current in its forward and reverse modes. Additionally, sarcomere shortening and calcium transient in isolated cardiomyocytes were enhanced when cells were exposed to TEB at 30 μmol.l-1. Combined, our results demonstrated that acute TEB exposure affects the cardiomyocyte's electro-contractile properties and triggers the appearance of ECG abnormalities.
Collapse
|
33
|
Khwanes SA, Mohamed RA, Ibrahim KA, Abd El-Rahman HA. Ginger reserves testicular spermatogenesis and steroidogenesis in difenoconazole-intoxicated rats by conducting oxidative stress, apoptosis and proliferation. Andrologia 2022; 54:e14241. [PMID: 34519103 DOI: 10.1111/and.14241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Difenoconazole, a triazole fungicide, can induce reproductive toxicity in aquatic species, but the probable mechanisms of this hazard in mammals are not formally reported. Here, we have examined the possible ameliorative efficiency of the ginger aqueous extract against the reproductive toxicity of difenoconazole in male rats. Thirty-six animals were equally divided into six groups: control, ginger aqueous extract (50 mg/kg), difenoconazole (15 mg/kg), difenoconazole (30 mg/kg) and ginger co-treated with two doses of difenoconazole. Difenoconazole markedly decreased sperm count, motility and normality percentage, together with the Johnson score. Difenoconazole also significantly reduced serum testosterone, luteinizing hormone and follicle-stimulating hormone levels, as well as the activities of testicular steroidogenic acute regulatory protein and 17 β-hydroxysteroid dehydrogenases. Furthermore, difenoconazole brought a significant decrease in the testicular activity of catalase, but it increased the activity of glutathione peroxidase. Moreover, difenoconazole upregulated the testicular transcripts of Bax and caspase-3, increased Ki-67 immunoreactivity and induced histoarchitecture alterations plus DNA damage. Remarkably, ginger co-treatment preserved sperm toxicity, restored hormone profiles, increased steroidogenic activity and prevented oxidative injury-promoted testicular apoptosis. In conclusion, phenolic acids and flavonoids of ginger can reserve spermatogenesis and steroidogenesis in difenoconazole-intoxicated rats by improving testicular redox status, inhibiting apoptosis and refining proliferation capacity.
Collapse
Affiliation(s)
- Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | | |
Collapse
|
34
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
35
|
Kuzukiran O, Simsek I, Yorulmaz T, Yurdakok-Dikmen B, Ozkan O, Filazi A. Multiresidues of environmental contaminants in bats from Turkey. CHEMOSPHERE 2021; 282:131022. [PMID: 34090000 DOI: 10.1016/j.chemosphere.2021.131022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Bat populations have been steadily declining, most likely because of anthropogenic factors. Identification and classification of these risks have crucial importance in ensuring the survival of this species. Bats often coexist with humans in urban, industrial, and agricultural areas and are potentially exposed to a range of environmental pollutants. Two bat species widely distributed in Turkey were selected, and the residues of pesticides and organic contaminants in their carcasses were analyzed using: gas chromatography-mass spectrometry, gas chromatography-tandem mass spectrometry, and liquid chromatography-tandem mass spectrometry. Species and sex specific differences were evaluated along with their potential to be used as bioindicators. During the rigor mortis period, 23 adult Pipistrellus pipistrellus (11 female and 12 male) and 19 adult Myotis myotis (9 female and 10 male) were collected and 322 contaminants (pesticides and organic contaminants) were analyzed in whole carcasses of bats by using a validated method. Multiple pesticides and organic contaminants were detected in all collected 42 bats. The most frequent contamination was detected as 4,4-DDE, followed by ethoprophos, quinalphos, methidation, paraoxon-methyl, phosalone and tetramethrin. The least common compounds were as follows: 2,4-DDD, endrin, HCH-alpha, fenamiphos sulfoxide, parathion ethyl, bitertanol, oxycarboxin, procymidone, fluazifop-butyl, trifluralin, bifenazate, DMF, fenpyroximate, PBDE-47, benzo(a)anthracene, benzo(b)fluoranthene, and benzo(g,h,i) perylene; of these only one was found in each bat. In terms of frequency and concentration, there was no significant difference between species and sex. An average of 26.1 pollutants was found in each bat. Thus, it was concluded that bats can be used as potential bioindicators in determining environmental pollution.
Collapse
Affiliation(s)
- Ozgur Kuzukiran
- Eldivan Vocational School of Health Services, Cankiri Karatekin University, Eldivan, Cankiri, Turkey.
| | - Ilker Simsek
- Eldivan Vocational School of Health Services, Cankiri Karatekin University, Eldivan, Cankiri, Turkey.
| | - Tarkan Yorulmaz
- Hunting and Wildlife Program, Department of Forestry, Yaprakli Vocational School, Cankiri Karatekin University, Cankiri, Turkey.
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Turkey.
| | - Ozcan Ozkan
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey.
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Turkey.
| |
Collapse
|
36
|
Danjou AMN, Pérol O, Coste A, Faure E, Béranger R, Boyle H, Belladame E, Grassot L, Dubuis M, Spinosi J, Bouaoun L, Fléchon A, Bujan L, Drouineaud V, Eustache F, Berthaut I, Perrin J, Brugnon F, Charbotel B, Schüz J, Fervers B, For the TESTIS study group. Domestic use of pesticides during early periods of development and risk of testicular germ cell tumors in adulthood: a French nationwide case-control study. Environ Health 2021; 20:111. [PMID: 34706722 PMCID: PMC8554827 DOI: 10.1186/s12940-021-00795-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Testicular germ cell tumours (TGCT) are the most frequent cancers in young men in developed countries and their incidence rate has doubled worldwide over the past 40 years. Early life exposures to pesticides are suspected to increase TGCT risk. Our research aimed at estimating adult TGCT risk associated with parental domestic use of pesticides during early periods of child development. METHODS We conducted a case-control study of 304 TGCT cases, aged 18-45 years old, recruited in 20 French university hospitals, and 274 controls frequency-matched on hospital and birth year. Participants' mothers provided information on their domestic use of pesticides from 1 year before start of pregnancy to 1 year after their son's birth, for gardening activities, treatment of indoor plants, pets, wood and mold, and pest control. Odds ratios (OR) for TGCT (overall and by histological subtype) and 95% confidence intervals (CI) were estimated using conditional logistic regression. RESULTS Prevalence of reported domestic use of pesticides was 77.3% for insecticides, 15.9% for fungicides and 12.1% for herbicides. While no association was found for any use of insecticides (OR = 1.27, CI = 0.80-2.01) or herbicides (OR = 1.15, CI = 0.67-2.00), elevated risks of TGCT overall (OR = 1.73, CI = 1.04-2.87) and non-seminoma subtype (OR = 2.44, CI = 1.26-4.74) were observed for any use of fungicides. When specific purposes were examined, using fungicides and/or insecticides for woodwork (OR = 2.35, CI = 1.06-5.20) and using insecticides on cats and dogs (OR = 1.95, CI = 1.12-3.40) were associated with increased risk of non-seminoma subtype. We found no association for seminoma subtype. CONCLUSIONS Although recall bias may partially explain the elevated ORs, our study provides some evidence of a positive association between domestic use of pesticides during early periods of development, particularly fungicides and risk of adult TGCT and non-seminoma. Given the common domestic use of pesticides in France, further research on TGCT risk is warranted.
Collapse
Affiliation(s)
- Aurélie M. N. Danjou
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, 150 cours Albert Thomas, 69372 Lyon, Cedex 08 France
| | - Olivia Pérol
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
- INSERM UMR1296 Radiation: Defense, Health, Environment, Lyon, France
| | - Astrid Coste
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
- INSERM UMR1296 Radiation: Defense, Health, Environment, Lyon, France
| | - Elodie Faure
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, INSERM, Gustave Roussy, Équipe “Exposome et Hérédité”, CESP, 94805 Villejuif, France
| | - Rémi Béranger
- IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR S 1085, INSERM, EHESP, CHU Rennes, Rennes University, Rennes, France
| | - Helen Boyle
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Elodie Belladame
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Lény Grassot
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Matthieu Dubuis
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Johan Spinosi
- Direction Santé Travail, équipe associée à L’UMRESTTE (UMR T 9405 Université Lyon 1, IFSTTAR), Santé publique France, Lyon, France
| | - Liacine Bouaoun
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, 150 cours Albert Thomas, 69372 Lyon, Cedex 08 France
| | - Aude Fléchon
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Louis Bujan
- DEFE (Développement Embryonnaire, Fertilité, Environnement) INSERM 1202 Universités Montpellier et Toulouse 3, CECOS Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France
- Fédération Française des CECOS, Paris, France
| | - Véronique Drouineaud
- Fédération Française des CECOS, Paris, France
- CECOS Hôpital Cochin, Paris, France
| | - Florence Eustache
- Fédération Française des CECOS, Paris, France
- Laboratoire d’Histologie, Biologie de la Reproduction, CECOS Hôpital Tenon, Paris, France
| | - Isabelle Berthaut
- Fédération Française des CECOS, Paris, France
- Laboratoire d’Histologie, Biologie de la Reproduction, CECOS Hôpital Tenon, Paris, France
- APHP Sorbonne University, Paris, France
| | - Jeanne Perrin
- Fédération Française des CECOS, Paris, France
- CNRS, IRD, IMBE, Avignon University, Aix Marseille University, Marseille, France
- Centre Clinico-Biologique d’AMP-CECOS, AP-HM La Conception University Hospital, Marseille, France
| | - Florence Brugnon
- Fédération Française des CECOS, Paris, France
- CHU Clermont-Ferrand, CHU Estaing, AMP, CECOS, Clermont-Ferrand, France
- IMOST, INSERM U1240, Faculté Médecine Clermont-Ferrand, Clermont-Ferrand, France
| | - Barbara Charbotel
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
- UMRESTTE, UMR T 9405, IFSTTAR, Lyon 1 University, Lyon University, Eiffel University, Lyon, France
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, 150 cours Albert Thomas, 69372 Lyon, Cedex 08 France
| | - Béatrice Fervers
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
- INSERM UMR1296 Radiation: Defense, Health, Environment, Lyon, France
| | - For the TESTIS study group
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, 150 cours Albert Thomas, 69372 Lyon, Cedex 08 France
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
- INSERM UMR1296 Radiation: Defense, Health, Environment, Lyon, France
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, INSERM, Gustave Roussy, Équipe “Exposome et Hérédité”, CESP, 94805 Villejuif, France
- IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR S 1085, INSERM, EHESP, CHU Rennes, Rennes University, Rennes, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- Direction Santé Travail, équipe associée à L’UMRESTTE (UMR T 9405 Université Lyon 1, IFSTTAR), Santé publique France, Lyon, France
- DEFE (Développement Embryonnaire, Fertilité, Environnement) INSERM 1202 Universités Montpellier et Toulouse 3, CECOS Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France
- Fédération Française des CECOS, Paris, France
- CECOS Hôpital Cochin, Paris, France
- Laboratoire d’Histologie, Biologie de la Reproduction, CECOS Hôpital Tenon, Paris, France
- APHP Sorbonne University, Paris, France
- CNRS, IRD, IMBE, Avignon University, Aix Marseille University, Marseille, France
- Centre Clinico-Biologique d’AMP-CECOS, AP-HM La Conception University Hospital, Marseille, France
- CHU Clermont-Ferrand, CHU Estaing, AMP, CECOS, Clermont-Ferrand, France
- IMOST, INSERM U1240, Faculté Médecine Clermont-Ferrand, Clermont-Ferrand, France
- UMRESTTE, UMR T 9405, IFSTTAR, Lyon 1 University, Lyon University, Eiffel University, Lyon, France
| |
Collapse
|
37
|
Ku T, Zhou M, Hou Y, Xie Y, Li G, Sang N. Tebuconazole induces liver injury coupled with ROS-mediated hepatic metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112309. [PMID: 34015629 DOI: 10.1016/j.ecoenv.2021.112309] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Tebuconazole, the most widely used fungicide, is reported to cause various environmental problems and have serious health risks in humans. Despite numerous advances in toxicity studies, its internal metabolic process and the underlying mechanisms have not been systemically studied. The present study administered low doses (0.02 g/kg bw and 0.06 g/kg bw) of tebuconazole to C57BL/6 mice in vivo. The high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed and validated to analyze the tebuconazole in different organs, and our data revealed that tebuconazole mainly accumulated in the liver and that histopathological damage were exhibited in this organ. Tebuconazole significantly dysregulated phase Ⅰ- and phase II-metabolizing enzymes, ATP-binding cassette (ABC) efflux transporters (Abcc2 and Abcc3) and fatty acid metabolism-related genes (Cdkn1a and Fasn), thereby directly causing liver hypertrophy and steatosis. Importantly, the excessive induction of reactive oxygen species (ROS) and oxidative stress partially accounted for the metabolic abnormalities mediated by tebuconazole. Moreover, these alterations were related to the abnormal transcriptional levels of peroxisome proliferator-activated receptor α (PPAR-α) and liver x receptor α (LXR-α), which were predicted to bind to tebuconazole via hydrogen bonding interactions. The current findings provide new insight into the molecular mechanisms of metabolic abnormalities induced by tebuconazole at low concentration, and are conducive to a better understanding of the environmental risk posed by this fungicide.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Mengmeng Zhou
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yanwen Hou
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuanyuan Xie
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
38
|
Freitas RMP, Linhares BS, Oliveira JM, Leite JPV, da Matta SLP, Gonçalves RV, Freitas MB. Tebuconazole-induced toxicity and the protective effect of Ficus carica extract in Neotropical fruit-eating bats. CHEMOSPHERE 2021; 275:129985. [PMID: 33640742 DOI: 10.1016/j.chemosphere.2021.129985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Tebuconazole (TEB) is a triazole fungicide widely used in agriculture known to cause metabolic and endocrine disorders in mammals. Several plant extracts have shown to be beneficial against pesticide effects due to their hepatoprotective, antioxidant and anti-inflammatory properties. As fruit bats play a critical role in rainforest regeneration and are constantly exposed to pesticides, we aimed at evaluating TEB-induced toxicity and the possible protective effect of the Ficus carica plant extract in Neotropical fruit-eating bats (Artibeus lituratus). Bats were captured and assigned to 4 experimental groups, offered: 1) CTL (n = 6): papaya; 2) DMSO (n = 6): papaya treated with 1.25% dimethyl sulfoxide (DMSO); 3) TEB (n = 6): papaya treated with tebuconazole (commercial formulation) 0.1%; and 4) TEBFC (n = 6): papaya treated with tebuconazole 0.1% and Ficus carica extract (20%) in DMSO (1.25%). After seven days of exposure, TEB bats showed increased lipid peroxidation, increased superoxide dismutase (SOD) and catalase (CAT) activities, vascular congestion and inflammatory infiltrate in the liver, and increased serum transaminase enzyme activities. We found the same alterations in oxidative stress parameters in the breast muscles of TEB-exposed bats. In the testes, all oxidative stress markers were increased in TEB bats and corroborate findings of histopathological and increased serum testosterone levels observed following TEB exposure. The co-administration of the fungicide with the F. carica plant extract attenuated most oxidative stress markers in exposed bats' liver and testes and decreased liver damage, but failed to revert the steroid imbalance caused by the fungicide exposure.
Collapse
Affiliation(s)
- Renata M P Freitas
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Barbara S Linhares
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Jerusa M Oliveira
- Institute of Biological and Health Sciences, Histology and Embryology Sector, Federal University of Alagoas, Maceió, AL, Brazil
| | - João Paulo V Leite
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | - Mariella B Freitas
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
39
|
Kabakci R, Kaya A, Yigit AA, Varisli O. Assessment of tebuconazole exposure on bovine testicular cells and epididymal spermatozoa. Acta Vet Hung 2021; 69:180-188. [PMID: 34214047 DOI: 10.1556/004.2021.00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
This study is the first to investigate the effects of tebuconazole (TEB) on the physiological functions of bovine testicular cells and epididymal spermatozoa. Motility and plasma membrane integrity of spermatozoa exposed to TEB (0.001-100 µM) were evaluated at different incubation times (0-6 h), while TEB-induced spermiotoxicity was assessed after 24 h in cell cultures. Testicular cells, obtained from the parenchyma of bovine testes, were seeded at 1.0 × 104 and 1.5 × 106 cells/well in 96- and 12-well culture plates and incubated for 48 h in culture media containing TEB (0.001-100 µM) to evaluate cytotoxicity and hormone release, respectively. TEB did not affect the motility and plasma membrane integrity. However, significant spermiotoxicity occurred at higher TEB (1-100 µM) concentrations (P < 0.05) compared to control and lower doses. Although no dose caused cytotoxicity in testicular cells (P > 0.05), 1 and 100 µM TEB caused a significant increase in testosterone secretion (P < 0.05). As a result, high doses of TEB (1-100 µM) had slightly suppressive effects on spermatozoa; however, these doses had stimulatory effects on testosterone secretion by testicular cells. It appears that the disruption of hormonal homeostasis of testicular cells after TEB exposure may result in metabolic and especially reproductive adverse effects in bulls.
Collapse
Affiliation(s)
- Ruhi Kabakci
- 1Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, 71450, Kirikkale, Turkey
| | - Abdulkadir Kaya
- 2Department of Artificial Insemination and Reproduction, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ayse Arzu Yigit
- 1Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, 71450, Kirikkale, Turkey
| | - Omer Varisli
- 2Department of Artificial Insemination and Reproduction, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
40
|
Othmène YB, Salem IB, Hamdi H, Annabi E, Abid-Essefi S. Tebuconazole induced cytotoxic and genotoxic effects in HCT116 cells through ROS generation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104797. [PMID: 33838701 DOI: 10.1016/j.pestbp.2021.104797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Tebuconazole (TEB) is a common triazole fungicide that has been widely used for the control of plant pathogenic fungi, suggesting that mammal exposure occurs regularly. Several studies demonstrated that TEB exposure has been linked to a variety of toxic effects, including neurotoxicity, immunotoxicity, reprotoxicity and carcinogenicity. However, there is a few available data regarding the molecular mechanism involved in TEB-induced toxicity. The current study was undertaken to investigate the toxic effects of TEB in HCT116 cells. Our results showed that TEB caused cytotoxicity by inhibiting cell viability as assessed by the MTT assay. Furthermore, we have demonstrated that TEB induced a significant increase in the reactive oxygen species (ROS) production leading to the induction of lipid peroxidation and DNA fragmentation and increased superoxide dismutase (SOD) and catalase (CAT) activities. Moreover, TEB exposure induced mitochondrial membrane potential loss and caspase-9/-3 activation. Treatment with general caspases inhibitor (Z-VAD-fmk) significantly prevented the TEB-induced cell death, indicating that TEB induced caspases-dependent cell death. These findings suggest the involvement of oxidative stress and apoptosis in TEB-induced toxicity in HCT116.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia
| | - Intidhar Ben Salem
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia; University of Sousse, Faculty of Medicine of Sousse, 4000, Tunisia
| | - Hiba Hamdi
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia
| | - Emna Annabi
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia
| | - Salwa Abid-Essefi
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia.
| |
Collapse
|
41
|
Kuhn EC, Jacques MT, Teixeira D, Meyer S, Gralha T, Roehrs R, Camargo S, Schwerdtle T, Bornhorst J, Ávila DS. Ecotoxicological assessment of Uruguay River and affluents pre- and post-pesticides' application using Caenorhabditis elegans for biomonitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21730-21741. [PMID: 33411293 DOI: 10.1007/s11356-020-11986-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Uruguay River is the most important river in western Rio Grande do Sul, separating Brazil from Argentina and Uruguay. However, its pollution is of great concern due to agricultural activities in the region and the extensive use of pesticides. In a long term, this practice leads to environmental pollution, especially to the aquatic system. The objective of this study was to analyze the physicochemical characteristics, metals and pesticides levels in water samples obtained before and after the planting and pesticides' application season from three sites: Uruguay River and two minor affluents, Mezomo Dam and Salso Stream. For biomonitoring, the free-living nematode Caenorhabditis elegans was used, which were exposed for 24 h. We did not find any significant alteration in physicochemical parameters. In the pre- and post-pesticides' samples we observed a residual presence of three pesticides (tebuconazole, imazethapyr, and clomazone) and metals which levels were above the recommended (As, Hg, Fe, and Mn). Exposure to both pre- and post-pesticides' samples impaired C. elegans reproduction and post-pesticides samples reduced worms' survival rate and lifespan. PCA analysis indicated that the presence of metals and pesticides are important variables that impacted C. elegans biological endpoints. Our data demonstrates that Uruguay River and two affluents are contaminated independent whether before or after pesticides' application season. In addition, it reinforces the usefulness of biological indicators, since simple physicochemical analyses are not sufficient to attest water quality and ecological safety.
Collapse
Affiliation(s)
- Eugênia Carla Kuhn
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa- UNIPAMPA, Campus Uruguaiana, BR 472 - Km 592 - Caixa Postal 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Maurício Tavares Jacques
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa- UNIPAMPA, Campus Uruguaiana, BR 472 - Km 592 - Caixa Postal 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Daniela Teixeira
- Laboratório de Estudos Físico-químicos e Produtos Naturais, Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, Brazil
| | - Sören Meyer
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Thiago Gralha
- Núcleo de Pesquisa em Ictiologia, Limnologia e aquicultura da Bacia do Rio Uruguai, Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, Brazil
| | - Rafael Roehrs
- Laboratório de Estudos Físico-químicos e Produtos Naturais, Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, Brazil
| | - Sandro Camargo
- Programa de Pós-Graduação em Computação Aplicada (PPGCAP), Universidade Federal do Pampa, Campus Bagé, Bagé, Brazil
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Daiana Silva Ávila
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa- UNIPAMPA, Campus Uruguaiana, BR 472 - Km 592 - Caixa Postal 118, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
42
|
Lasch A, Marx-Stoelting P, Braeuning A, Lichtenstein D. More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells. Arch Toxicol 2021; 95:1397-1411. [PMID: 33575850 PMCID: PMC8032629 DOI: 10.1007/s00204-021-02997-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/28/2021] [Indexed: 12/30/2022]
Abstract
The liver is constantly exposed to mixtures of hepatotoxic compounds, such as food contaminants and pesticides. Dose addition is regularly assumed for mixtures in risk assessment, which however might not be sufficiently protective in case of synergistic effects. Especially the prediction of combination effects of substances which do not share a common adverse outcome (AO) might be problematic. In this study, the focus was on the endpoint liver triglyceride accumulation in vitro, an indicator of hepatic fatty acid changes. The hepatotoxic compounds difenoconazole, propiconazole and tebuconazole were chosen which cause hepatic fatty acid changes in vivo, whereas fludioxonil was chosen as a hepatotoxic substance not causing fatty acid changes. Triglyceride accumulation was analyzed for combinations of steatotic and non-steatotic pesticides in human HepaRG hepatocarcinoma cells. Investigations revealed a potentiation of triglyceride accumulation by mixtures of the steatotic compounds with the non-steatotic fludioxonil, as compared to the single compounds. Mathematical modeling of combination effects indicated more than additive effects for the tested combinations if the method by Chou was applied, and a decrease in EC50 values of the steatotic compounds when applied in mixtures. Use of an adverse outcome pathway (AOP)-driven testing strategy for liver steatosis showed interactions of the test compounds with the nuclear receptors AHR, CAR and PXR, as well as a downregulation of ACOX2. An ACOX2-dependent mechanism underlying the observed mixture effect could not be verified using a siRNA approach. By contrast, a toxicokinetic interaction was identified including an inhibition of the metabolic enzyme CYP3A4 by fludioxonil and a decreased metabolic conversion of the CYP3A4 substrate difenoconazole when used in mixture experiments. In conclusion, an interaction by a steatotic and a non-steatotic compound at the toxicokinetic level on the endpoint triglyceride accumulation in vitro was described.
Collapse
Affiliation(s)
- Alexandra Lasch
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Dajana Lichtenstein
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
43
|
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R. Birds feeding on tebuconazole treated seeds have reduced breeding output. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116292. [PMID: 33388683 DOI: 10.1016/j.envpol.2020.116292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| |
Collapse
|
44
|
Torquetti CG, Guimarães ATB, Soto-Blanco B. Exposure to pesticides in bats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142509. [PMID: 33032135 DOI: 10.1016/j.scitotenv.2020.142509] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Bats provide a variety of ecological services that are essential to the integrity of ecosystems. Indiscriminate use of pesticides has been a threat to biodiversity, and the exposure of bats to these xenobiotics is a threat to their populations. This study presents a review of articles regarding the exposure of bats to pesticides published in the period from January 1951 to July 2020, addressing the temporal and geographical distribution of research, the studied species, and the most studied classes of pesticides. The research was concentrated in the 1970s and 1980s, mostly in the Northern Hemisphere, mainly in the USA. Of the total species in the world, only 5% of them have been studied, evaluating predominantly insectivorous species of the Family Vespertilionidae. Insecticides, mainly organochlorines, were the most studied pesticides. Most research was observational, with little information available on the effects of pesticides on natural bat populations. Despite the advances in analytical techniques for detecting contaminants, the number of studies is still insufficient compared to the number of active ingredients used. The effects of pesticides on other guilds and tropical species remain poorly studied. Future research should investigate the effects of pesticides, especially in sublethal doses causing chronic exposure. It is crucial to assess the impact of these substances on other food guilds and investigate how natural populations respond to the exposure to mixtures of pesticides found in the environment.
Collapse
Affiliation(s)
- Camila Guimarães Torquetti
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Investigações Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Cascavel, PR 85819-110, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil.
| |
Collapse
|
45
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Othmène YB, Hamdi H, Amara I, Abid-Essefi S. Tebuconazole induced oxidative stress and histopathological alterations in adult rat heart. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104671. [PMID: 32980069 DOI: 10.1016/j.pestbp.2020.104671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
TEB belongs to the family of triazole fungicides and it is used to protect agricultural crop plants from fungal pathogens. The information regarding its cardiotoxic effects through different pathways particularly by perturbing the oxidative balance and causing damage to the myocardium is still limited. In the present study, oxidative and histopathologic damages caused by TEB in the cardiac tissue of male adult rats, were evaluated. Rats were exposed orally to TEB at 0.9, 9, 27 and 45 mg/kg b.w. for 28 days. Results showed that following TEB treatment malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP), antioxidant enzyme activities (GPx and GR) and GSSG levels increased, while GSH levels and thus the GSH/GSSG ratio decreased. Superoxide dismutase (SOD) and catalase (CAT) initially increased at the doses of 0.9, 9 and 27 mg/kg b.w. and then decreased at the dose of 45 mg/kg b.w. Moreover, western blot analysis showed that TEB increased SOD1, CAT and HSP70 protein levels after 24 h. Furthermore, TEB induced various histological changes in the myocardium, including leucocytic infiltration, hemorrhage congestion of cardiac blood vessels and cytoplasmic vacuolization. Therefore, our investigation revealed, that TEB exhibits cardiotoxic effects by changing oxidative balance and damaging the cardiac tissue.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000 Monastir, Tunisia
| | - Hiba Hamdi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000 Monastir, Tunisia
| | - Ines Amara
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000 Monastir, Tunisia
| | - Salwa Abid-Essefi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000 Monastir, Tunisia..
| |
Collapse
|
47
|
Ben Othmène Y, Monceaux K, Karoui A, Ben Salem I, Belhadef A, Abid-Essefi S, Lemaire C. Tebuconazole induces ROS-dependent cardiac cell toxicity by activating DNA damage and mitochondrial apoptotic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111040. [PMID: 32798748 DOI: 10.1016/j.ecoenv.2020.111040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole (TEB) is a common triazole fungicide that is widely used throughout the world in agriculture applications. We previously reported that TEB induces cardiac toxicity in rats. The aim of this study was to investigate the underlying mechanism of the toxicity induced by TEB in cardiac cells. TEB induced dose-dependent cell death in H9c2 cardiomyoblasts and in adult rat ventricular myocytes (ARVM). The comet assay and western blot analysis showed a concentration-dependent increase in DNA damage and in p53 and p21 protein levels 24 h after TEB treatment. Our findings also showed that TEB triggered the mitochondrial pathway of apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm), an increase in Bax/Bcl-2 ratio, an activation of caspase-9 and caspase-3, a cleavage of poly (ADP-ribose) polymerase (PARP) and an increase in the proportion of cells in the sub-G1 phase. In addition, TEB promoted ROS production in cardiac cells and consequently increased the amounts of MDA, the end product of lipid peroxidation. Treatment of cardiomyocytes with the ROS scavenger N-acetylcysteine reduced TEB-induced DNA damage and activation of the mitochondrial pathway of apoptosis. These results indicate that the genotoxic and cytotoxic effects of TEB are mediated through a ROS-dependent pathway in cardiac cells.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia
| | - Kevin Monceaux
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| | - Ahmed Karoui
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| | - Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia; University of Sousse, Faculty of Medicine of Sousse, 4000, Tunisia
| | - Anissa Belhadef
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia.
| | - Christophe Lemaire
- Université Versailles St-Quentin, Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| |
Collapse
|
48
|
Pyo MC, Shin HS, Jeon GY, Lee KW. Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biol Pharm Bull 2020; 43:1346-1355. [DOI: 10.1248/bpb.b20-00282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Hye Soo Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Gyeong Yun Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| |
Collapse
|
49
|
Ben Othmène Y, Hamdi H, Annabi E, Amara I, Ben Salem I, Neffati F, Najjar MF, Abid-Essefi S. Tebuconazole induced cardiotoxicity in male adult rat. Food Chem Toxicol 2020; 137:111134. [DOI: 10.1016/j.fct.2020.111134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 01/04/2023]
|
50
|
Lu Q, Bu Y, Ma L, Liu R. Transgenerational reproductive and developmental toxicity of tebuconazole in Caenorhabditis elegans. J Appl Toxicol 2020; 40:578-591. [PMID: 31960463 DOI: 10.1002/jat.3927] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transgenerational reproductive and developmental toxicity of tebuconazole (TEB) in Caenorhabditis elegans was investigated over five generations (P0 - F4). Only parental C.elegans (P0) were exposed to TEB (0, 0.01, 0.1, 1, and 10 μg/L) for 24 h and the subsequent offspring (F1-F4) were grown under TEB-free conditions. TEB exposure caused dose-dependent reproductive defects and developmental impairments in C.elegans. In the P0 generation reproductive defects were observed such as: reduced brood size and embryo hatchability, prolonged generation time, retarded gonadal development, and slower germline proliferation, even at 0.01 μg/L, together with developmental toxicity with significant reduced body length and narrowed body width at 10 μg/L. Additionally, the brood size significantly reduced in F2, which began to recover from F3, but was still lower than the control in F4. The proportion of abnormalities increased significantly in F2 and reduced from F3, but was still higher than the control, suggesting that TEB could have cumulative potential and be passed to offspring through parental exposure. Furthermore, exposure to TEB (10 μg/L) in P0 significantly reduced the body length in F1, which began to recover from F2, and was the same level as the control in F4. There was a concentration-dependent increase in body width in F1-F4, with a significant increase only observed in F1 at 10 μg/L. Thus, parental exposure to TEB induced transgenerational defects in both reproduction and development, emphasizing the significance of considering bio-toxicity over multiple generations to conduct accurate assessment of environmental risks of toxicants.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuanqing Bu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, China
| | - Lingyi Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|