1
|
Kundu S, Kues WA, Rehbock C, Barcikowski S. Inorganic Metal Nanoparticles in Reproductive Biology: Applications, Toxicities and Future Prospects. Chempluschem 2025; 90:e202400554. [PMID: 39913862 DOI: 10.1002/cplu.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/31/2025] [Indexed: 04/26/2025]
Abstract
The development of inorganic metal and metal oxide nanoparticles (MNPs) has attracted significant attention in diverse biomedical and biotechnological fields including bio-detection, drug delivery, imaging, and theranostics. An emerging field in this context is the use of MNPs for applications in reproductive biology. In this article, we offer a rational review of the development of MNPs employed in the field of reproductive biology by focusing on their interactions with highly delicate and specialized germ cells like spermatozoa, oocytes, and developing embryos. By their unique physicochemical properties, MNPs are versatile and strong candidates for targeted imaging and delivery of various therapeutic molecules to the specific sites of the gametes and reproductive cells. Functionalized MNPs can serve as transfection vectors for the generation of transgenic animals by spermatozoon-supported gene transfer. In addition, MNPs have shown great promise in application fields such as semen collection, nano-purification, cryopreservation, and sex sorting of sperm in the livestock industry. Recently, the potential toxicity of MNPs on maturing oocytes has been investigated, as well as the use of MNPs to preserve fertility by improving cryopreservation and reducing oxidative stress in oocytes. The article further elaborates on the uptake, translocation mechanism, and biocompatibility issues of the MNPs to reproduction-relevant sites on cellular and molecular levels. Based on these promising achievements, the current challenges and prospects for the development of these functionalized MNPs for clinical research in conjunction with the reproductive system will be discussed.
Collapse
Affiliation(s)
- Sangita Kundu
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Biotechnology/Stem Cell Unit, 31535, Neustadt Rbge, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| |
Collapse
|
2
|
Chen KL, Lu HI, Yen CY, Chen CY, Chien TM, Jeng JH, Chen BH, Chang HW. Antioral cancer effects of ginger derivative 3-HDM exert oxidative stress-associated apoptosis and DNA damage. Mol Biol Rep 2025; 52:414. [PMID: 40266430 DOI: 10.1007/s11033-025-10514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND 3-Hydroxy-1-(3',5'-dimethoxy-4'-hydroxy-phenyl)-hexan-5-one (3-HDM), a novel ginger Zingiber officinale-derived compound, lacks anti-cancer investigation, especially for oral cancer. This study addresses the antioral function and mechanism of 3-HDM against oral cancer cells (Ca9-22 and CAL 27). METHOD MTS, flow cytometry, and western blotting were used to determine cell viability and antioral function and mechanism. RESULTS 3-HDM inhibits oral cancer cell viability without normal cell (S-G) toxicity. This selective antiproliferation relies on oxidative stress validated by N-acetylcysteine (NAC), a reactive oxygen species (ROS) remover. 3-HDM upregulates subG1 and annexin V proportions, enhances caspases 3 and 8 activation to a greater extent in oral cancer than in normal cells, reverted by NAC. This process demonstrates the ROS-dependent selective apoptotic character of 3-HDM. 3-HDM also upregulates more ROS and mitochondrial superoxide and downregulates the mitochondrial membrane potential and glutathione in oral cancer than in normal cells in a ROS-dependent manner. Moreover, 3-HDM suppresses antioxidant signaling mRNA expressions such as NFE2L2, NQO1, and TXN and inhibits NFE2L2 phosphorylation in oral cancer cells compared to normal cells. NAC also downregulates the 3-HDM-induced γH2AX and 8-hydroxy-2-deoxyguanosine DNA damage markers. CONCLUSION 3-HDM shows selective antioral cancer effects and mechanisms without toxicity to normal cells via oxidative stress regulation.
Collapse
Affiliation(s)
- Kuan-Liang Chen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Hsin-I Lu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chung-Yi Chen
- School of Medical and Health Sciences, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, 820111, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Cancer Research and Research Center for Molecular Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
3
|
Bagheshzadeh P, Amini E, Baniasadi F, Tavana S, Mohammadikish M. Green Synthesis of Copper Nanoparticles using Rosmarinus officinalis L. Extract Improves the Developmental Competence of Mouse Oocytes during in Vitro Maturation. Reprod Sci 2025; 32:1241-1261. [PMID: 39971863 DOI: 10.1007/s43032-025-01816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
An effective approach to enrich the in vitro maturation (IVM) of oocyte medium as one of the main assisted reproduction technologies is the use of antioxidants to minimize oxidative stress. This study examined the effects of copper nanoparticles (CuNPs) synthesized by chemical (Ch-NPs) and green (G-CuNPs) methods on the IVM process of mouse oocytes and the development of the embryo in comparison to control oocytes (without nanoparticles treatment). Hydroalcoholic (G-H-CuNPs) and aqueous (G-A-CuNPs) Rosmarinus officinalis extracts were used for green synthesis. Here, Ch-NPs showed much less nuclear maturation and survival rate (44.92 ± 4.52; 66.21 ± 6.22) than the control (73.36 ± 7.40; 89.33 ± 4.40), respectively (P < 0.001). In contrast, G-H-CuNPs treated oocytes exhibited a significant increase (72.28 ± 5.51; 79.37 ± 6.29) compared to the Ch-NPs (P < 0.05). The level of ROS in Ch-NPs exposed oocytes was significantly higher than in the control (P < 0.001). The fertilization rate exhibited a significant elevation in the G-H-CuNPs (96.00 ± 2.45) compared to the control (71.14 ± 5.20) and Ch-NPs (50.00 ± 0.01) (P < 0.05). The 8-cell and blastocyst (BL) rates in the G-H-CuNPs (70.32 ± 3.78) revealed notably higher than those in the control (64.29 ± 3.69) and Ch-NPs (36.67 ± 10.22) (P < 0.05). In summary, results exhibited that G-CuNPs promote mouse oocyte maturation, fertilization, and embryo development more than Ch-NPs. The follow-up studies propose looking into the safety and applicability of green-synthesized CuNPs in human-assisted reproductive technologies.
Collapse
Affiliation(s)
- Parisa Bagheshzadeh
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Farzaneh Baniasadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Maryam Mohammadikish
- Department of Inorganic Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
4
|
Kim WI, Pak SW, Lee SJ, Park SH, Shin IS, Moon C, Yu WJ, Kim SH, Kim JC. In vitro study of silver nanoparticles-induced embryotoxicity using a rat whole embryo culture model. Toxicol Res 2025; 41:189-197. [PMID: 40013083 PMCID: PMC11850682 DOI: 10.1007/s43188-024-00274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025] Open
Abstract
Recently, our in vivo experiment showed that silver nanoparticles (AgNPs) did not cause developmental toxicity. However, the putative influences of direct exposure of AgNPs on the embryo-fetuses could not be elucidated because the embryo-fetus was exposed to AgNPs through their dams. In this study, the potential impact of AgNPs on embryonic development during the critical phase of organogenesis was examined utilizing a rat whole embryo culture model. This system could separate the direct effects of AgNPs from those that are maternally mediated. To evaluate the embryotoxic potential of AgNPs, embryos were exposed to 1.67, 5, and 15 μg/mL of AgNPs for 48 h. At the conclusion of the culture period, embryonic growth and development were assessed, and morphological abnormalities were systematically evaluated. Also, apoptosis induced by AgNPs was evaluated by TUNEL and immunohistochemistry for caspase-3. At 15 μg/mL, a retardation in embryonic growth and differentiation, accompanied by a heightened frequency of morphological abnormalities, including abnormal axial rotation, open neural tube, absent optic vesicle, and growth retarded were observed in a dose-dependent manner. At this concentration, caspase-3-positive cells appeared in the treated embryonic tissues compared to controls. At 5 μg/mL, AgNPs also caused a decrease in the embryonic otic system, somite number, and total morphological score. No adverse effects on embryonic growth and development associated with the treatment were observed at 1.67 μg/mL. The findings demonstrated that the direct exposure of AgNPs to rat embryos induces developmental delays and morphological abnormalities, and that AgNPs can induce a direct developmental toxicity and caspase-dependent apoptosis in rat embryos.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Wook-Jun Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 56212 Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212 Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
5
|
Lee CK, Wang FT, Huang CH, Chan WH. Dose-dependent effects of silver nanoparticles on cell death modes in mouse blastocysts induced via endoplasmic reticulum stress and mitochondrial apoptosis. Toxicol Res (Camb) 2024; 13:tfae158. [PMID: 39371680 PMCID: PMC11447381 DOI: 10.1093/toxres/tfae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/19/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
In view of the rapidly expanding medical and commercial applications of silver nanoparticles (AgNPs), their potential health risks and environmental effects are a significant growing concern. Earlier research by our group uncovered the embryotoxic potential of AgNPs, showing detrimental impacts of these nanoparticles on both pre- and post-implantation embryonic development. In the current study, we showed that low (50-100 μM) and high (200-400 μM) dose ranges of AgNPs trigger distinct cell death programs affecting mouse embryo development and further explored the underlying mechanisms. Treatment with low concentrations of AgNPs (50-100 μM) triggered ROS generation, in turn, inducing mitochondria-dependent apoptosis, and ultimately, harmful effects on embryo implantation, post-implantation development, and fetal development. Notably, high concentrations of AgNPs (200-400 μM) evoked more high-level ROS generation and endoplasmic reticulum (ER) stress-mediated necrosis. Interestingly, pre-incubation with Trolox, a strong antioxidant, reduced ROS generation in the group treated with 200-400 μM AgNPs to the level induced by 50-100 μM AgNPs, resulting in switching of the cell death mode from necrosis to apoptosis and a significant improvement in the impairment of embryonic development. Our findings additionally indicate that activation of PAK2 is a crucial step in AgNP-triggered apoptosis and sequent detrimental effects on embryonic development. Based on the collective results, we propose that the levels of ROS generated by AgNP treatment of embryos serve as a critical regulator of cell death type, leading to differential degrees of damage to embryo implantation, post-implantation development and fetal development through triggering apoptosis, necrosis or other cell death signaling cascades.
Collapse
Affiliation(s)
- Cheng-Kai Lee
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Chien-Hsun Huang
- Hungchi Gene IVF Center, Taoyuan District, Daxing West Road, Taoyuan District, Taoyuan City 330012, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
6
|
Nejadali Chaleshtari S, Amini E, Baniasadi F, Tavana S, Ghalamboran M. Oocyte maturation, fertilization, and embryo development in vitro by green and chemical iron oxide nanoparticles: a comparative study. Sci Rep 2024; 14:14157. [PMID: 38898126 PMCID: PMC11187103 DOI: 10.1038/s41598-024-65121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Oxidative stress is considered one of the main challenges for in vitro maturation (IVM) and makes assisted reproductive technology (ART), including IVF and embryonic development less effective. Reducing free radicals via biocompatible nanoparticles (NPs) is one of the most promising approaches for developing IVM. We investigated the comparative effect of green and chemically synthesized iron oxide nanoparticles (IONPs) with an aqueous extract of date palm pollen (DPP) on oocyte parameters related to the IVM process. To this end, IONPs were synthesized by chemical (Ch-IONPs) and green methods (G-IONPs using DPP) and characterized. The mature oocyte quality of the Ch-IONPs and G-IONPs groups was evaluated by JC1 and Hoechst staining, Annexin V-FITC-Propidium Iodide, 2', 7'-dichlorofluorescein diacetate, and dihydroethidium staining compared to the control group. Eventually, the mature oocytes were fertilized, promoted to blastocysts (BL), and evaluated in vitro. Compared with the control and G-IONPs groups, the Ch-IONPs-treated group produced more hydrogen peroxide and oxygen radicals. Compared with the Ch-IONPs group, the fertilization rate in the G-IONPs and control groups increased significantly. Finally, the G-IONPs and control groups exhibited a significant increase in the 2PN, 2-cell, 4-cell, 8-cell, compacted morula (CM), and BL rates compared with the Ch-IONPs group. Green synthesis of IONPs can reduce the toxicity of chemical IONPs during the IVM process. It can be concluded that G-IONPs encased with DPP compounds have the potential to protect against exogenous reactive oxygen species (ROS) production in an IVM medium, which can have a crucial effect on oocyte maturation and fertilization efficiency.
Collapse
Affiliation(s)
- Shamim Nejadali Chaleshtari
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Farzaneh Baniasadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohammadreza Ghalamboran
- Department of Plants Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Chien TM, Yang CW, Yen CH, Yeh BW, Wu WJ, Sheu JH, Chang HW. Excavatolide C/cisplatin combination induces antiproliferation and drives apoptosis and DNA damage in bladder cancer cells. Arch Toxicol 2024; 98:1543-1560. [PMID: 38424264 DOI: 10.1007/s00204-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Excavatolide C (EXCC), a marine coral-derived compound, exhibits an antiproliferation effect on bladder cancer cells. The present study evaluated the improvement in the antiproliferation ability of EXCC by co-treatment with cisplatin in bladder cancer cells. EXCC/cisplatin (12.5 and 1 μg/mL) showed higher antiproliferation effects on bladder cancer cells than single treatments (EXCC or cisplatin alone) in the 48 h ATP assay. EXCC/cisplatin also enhanced the increase in subG1, annexin V-mediated apoptosis, and activation of poly (ADP-ribose) polymerase (PARP) and several caspases (caspases 3, 8, and 9) compared to the single treatments. Cellular and mitochondrial oxidative stress was enhanced with EXCC/cisplatin compared to the single treatments according to analyses of reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial membrane potential; in addition, cellular antioxidants, such as glutathione (GSH), and the mRNA expressions of antioxidant signaling genes (catalase and NFE2-like bZIP transcription factor 2) were downregulated. EXCC/cisplatin treatment produced more DNA damage than the single treatments, as indicated by γH2AX and 8-hydroxy-2'-deoxyguanosine levels. Moreover, several DNA repair genes for homologous recombination (HR) and non-homologous end joining (NHEJ) were downregulated in EXCC/cisplatin compared to others. The addition of the GSH precursor N-acetylcysteine, which has ROS scavenging activity, attenuated all EXCC/cisplatin-induced changes. Notably, EXCC/cisplatin showed lower antiproliferation, apoptosis, ROS induction, GSH depletion, and γH2AX DNA damage in normal cells than in bladder cancer cells. Therefore, the co-treatment of EXCC/cisplatin reduces the proliferation of bladder cancer cells via oxidative stress-mediated mechanisms with normal cell safety.
Collapse
Affiliation(s)
- Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
8
|
Chuang YT, Yen CY, Shiau JP, Chang FR, Duh CY, Sung PJ, Chen KL, Tsai YH, Tang JY, Jeng JH, Sheu JH, Chang HW. Demethoxymurrapanine, an indole-naphthoquinone alkaloid, inhibits the proliferation of oral cancer cells without major side effects on normal cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:1221-1234. [PMID: 37921086 DOI: 10.1002/tox.24002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
Antioral cancer drugs need a greater antiproliferative impact on cancer than on normal cells. Demethoxymurrapanine (DEMU) inhibits proliferation in several cancer cells, but an in-depth investigation was necessary. This study evaluated the proliferation-modulating effects of DEMU, focusing on oral cancer and normal cells. DEMU (0, 2, 3, and 4 μg/mL) at 48 h treatments inhibited the proliferation of oral cancer cells (the cell viability (%) for Ca9-22 cells was 100.0 ± 2.2, 75.4 ± 5.6, 26.0 ± 3.8, and 15.4 ± 1.4, and for CAL 27 cells was 100.0 ± 9.4, 77.2 ± 5.9, 57.4 ± 10.7, and 27.1 ± 1.1) more strongly than that of normal cells (the cell viability (%) for S-G cells was 100.0 ± 6.6, 91.0 ± 4.6, 95.0 ± 2.6, and 95.8 ± 5.5), although this was blocked by the antioxidant N-acetylcysteine. The presence of oxidative stress was evidenced by the increase of reactive oxygen species and mitochondrial superoxide and the downregulation of the cellular antioxidant glutathione in oral cancer cells, but these changes were minor in normal cells. DEMU also caused greater induction of the subG1 phase, extrinsic and intrinsic apoptosis (annexin V and caspases 3, 8, and 9), and DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) in oral cancer than in normal cells. N-acetylcysteine attenuated all these DEMU-induced changes. Together, these data demonstrate the preferential antiproliferative function of DEMU in oral cancer cells, with the preferential induction of oxidative stress, apoptosis, and DNA damage in these cancer cells, and low cytotoxicity toward normal cells.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Yih Duh
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Kuan-Liang Chen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Yang KH, Yen CY, Wang SC, Chang FR, Chang MY, Chan CK, Jeng JH, Tang JY, Chang HW. 6- n-Butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.0 2,7]trideca-2,4,6,10-tetraene Improves the X-ray Sensitivity on Inhibiting Proliferation and Promoting Oxidative Stress and Apoptosis of Oral Cancer Cells. Biomedicines 2024; 12:458. [PMID: 38398060 PMCID: PMC10887088 DOI: 10.3390/biomedicines12020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
This in vitro study examines the anti-oral cancer effects and mechanisms of a combined X-ray/SK2 treatment, i.e., X-ray and 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetraene (SK2). ATP cell viability and flow cytometry-based cell cycle, apoptosis, oxidative stress, and DNA damage assessments were conducted. The X-ray/SK2 treatment exhibited lower viability in oral cancer (Ca9-22 and CAL 27) cells than in normal (Smulow-Glickman, S-G) cells, i.e., 32.0%, 46.1% vs. 59.0%, which showed more antiproliferative changes than with X-ray or SK2 treatment. Oral cancer cells under X-ray/SK2 treatment showed slight subG1 and G2/M increments and induced high annexin V-monitored apoptosis compared to X-ray or SK2 treatment. The X-ray/SK2 treatment showed higher caspase 3 and 8 levels for oral cancer cells than other treatments. X-ray/SK2 showed a higher caspase 9 level in CAL 27 cells than other treatments, while Ca9-22 cells showed similar levels under X-ray and/or SK2. The X-ray/SK2 treatment showed higher reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) depletion than other treatments. Meanwhile, the mitochondrial superoxide (MitoSOX) and glutathione levels in X-ray/SK2 treatment did not exhibit the highest rank compared to others. Moreover, oral cancer cells had higher γH2AX and/or 8-hydroxy-2-deoxyguanosine levels from X-ray/SK2 treatment than others. All these measurements for X-ray/SK2 in oral cancer cells were higher than in normal cells and attenuated by N-acetylcysteine. In conclusion, X-ray/SK2 treatment showed ROS-dependent enhanced antiproliferative, apoptotic, and DNA damage effects in oral cancer cells with a lower cytotoxic influence on normal cells.
Collapse
Affiliation(s)
- Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chieh-Kai Chan
- Department of Chemistry, University of Illinois Urbana, Champaign, IL 61820, USA;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
10
|
Lu HI, Chen KL, Yen CY, Chen CY, Chien TM, Shu CW, Chen YH, Jeng JH, Chen BH, Chang HW. Michelia compressa-Derived Santamarine Inhibits Oral Cancer Cell Proliferation via Oxidative Stress-Mediated Apoptosis and DNA Damage. Pharmaceuticals (Basel) 2024; 17:230. [PMID: 38399445 PMCID: PMC10892349 DOI: 10.3390/ph17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The anti-oral cancer effects of santamarine (SAMA), a Michelia compressa var. compressa-derived natural product, remain unclear. This study investigates the anticancer effects and acting mechanism of SAMA against oral cancer (OC-2 and HSC-3) in parallel with normal (Smulow-Glickman; S-G) cells. SAMA selectively inhibits oral cancer cell viability more than normal cells, reverted by the oxidative stress remover N-acetylcysteine (NAC). The evidence of oxidative stress generation, such as the induction of reactive oxygen species (ROS) and mitochondrial superoxide and the depletion of mitochondrial membrane potential and glutathione, further supports this ROS-dependent selective antiproliferation. SAMA arrests oral cancer cells at the G2/M phase. SAMA triggers apoptosis (annexin V) in oral cancer cells and activates caspases 3, 8, and 9. SAMA enhances two types of DNA damage in oral cancer cells, such as γH2AX and 8-hydroxy-2-deoxyguanosine. Moreover, all of these anticancer mechanisms of SAMA are more highly expressed in oral cancer cells than in normal cells in concentration and time course experiments. These above changes are attenuated by NAC, suggesting that SAMA exerts mechanisms of selective antiproliferation that depend on oxidative stress while maintaining minimal cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Hsin-I Lu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kuan-Liang Chen
- Department of Dentistry, Chi-Mei Medical Center, Tainan 71004, Taiwan; (K.-L.C.); (C.-Y.Y.)
| | - Ching-Yu Yen
- Department of Dentistry, Chi-Mei Medical Center, Tainan 71004, Taiwan; (K.-L.C.); (C.-Y.Y.)
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan;
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yu-Hsuan Chen
- Department of Biomedical Science and Environmental Biology, Bachelor Program of Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, Bachelor Program of Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Ning A, Xiao N, Wang H, Guan C, Ma X, Xia H. Oxidative damage contributes to bisphenol S-induced development block at 2-cell stage preimplantation embryos in mice through inhibiting of embryonic genome activation. Sci Rep 2023; 13:9232. [PMID: 37286763 DOI: 10.1038/s41598-023-36441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Although bisphenol S (BPS), as a bisphenol A (BPA) substitute, has been widely used in the commodity, it is embryotoxic in recent experiments. Nowadays, it remains unclear how BPS affects preimplantation embryos. Here, my team investigated the effects of BPS on preimplantation embryos and the possible molecular mechanisms in mice. The results showed that 10-6 mol/L BPS exposure delayed the blastocysts stage, and exposure to 10-4 mol/L BPS induced 2-cell block in mice preimplantation embryos. A significant increase in reactive oxygen species (ROS) level and antioxidant enzyme genes Sod1, Gpx1, Gpx6, and Prdx2 expression were shown, but the level of apoptosis was normal in 2-cell blocked embryos. Further experiments demonstrated that embryonic genome activation (EGA) specific genes Hsp70.1 and Hsc70 were significantly decreased, which implied that ROS and EGA activation have the potential to block 2-cell development. Antioxidant enzymes, including superoxide dismutase (SOD), coenzyme Q10 (CoQ10), and folic acid (FA) were used to further explore the roles of ROS and EGA in 2-cell block. Only 1200 U/mL SOD was found to alleviate the phenomenon of 2-cell block, reduce oxidative damage, and restore the expression of EGA-specific genes Hsp70.1 and Hsc70. Conclusively, this study demonstrates for the first time that BPS can induce 2-cell block, which is mainly mediated by ROS aggregation and results in the failure of EGA activation.
Collapse
Affiliation(s)
- Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Nansong Xiao
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hu Wang
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chunyi Guan
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
12
|
Yu TJ, Shiau JP, Tang JY, Farooqi AA, Cheng YB, Hou MF, Yen CH, Chang HW. Physapruin A Exerts Endoplasmic Reticulum Stress to Trigger Breast Cancer Cell Apoptosis via Oxidative Stress. Int J Mol Sci 2023; 24:ijms24108853. [PMID: 37240198 DOI: 10.3390/ijms24108853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
13
|
Lee MY, Shiau JP, Tang JY, Hou MF, Primus PS, Kao CL, Choo YM, Chang HW. Boesenbergia stenophylla-Derived Stenophyllol B Exerts Antiproliferative and Oxidative Stress Responses in Triple-Negative Breast Cancer Cells with Few Side Effects in Normal Cells. Int J Mol Sci 2023; 24:ijms24097751. [PMID: 37175458 PMCID: PMC10178828 DOI: 10.3390/ijms24097751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is insensitive to target therapy for non-TNBC and needs novel drug discovery. Extracts of the traditional herb Boesenbergia plant in Southern Asia exhibit anticancer effects and contain novel bioactive compounds but merely show cytotoxicity. We recently isolated a new compound from B. stenophylla, stenophyllol B (StenB), but the impact and mechanism of its proliferation-modulating function on TNBC cells remain uninvestigated. This study aimed to assess the antiproliferative responses of StenB in TNBC cells and examine the drug safety in normal cells. StenB effectively suppressed the proliferation of TNBC cells rather than normal cells in terms of an ATP assay. This preferential antiproliferative function was alleviated by pretreating inhibitors for oxidative stress (N-acetylcysteine (NAC)) and apoptosis (Z-VAD-FMK). Accordingly, the oxidative-stress-related mechanisms were further assessed. StenB caused subG1 and G2/M accumulation but reduced the G1 phase in TNBC cells, while normal cells remained unchanged between the control and StenB treatments. The apoptosis behavior of TNBC cells was suppressed by StenB, whereas that of normal cells was not suppressed according to an annexin V assay. StenB-modulated apoptosis signaling, such as for caspases 3, 8, and 9, was more significantly activated in TNBC than in normal cells. StenB also caused oxidative stress in TNBC cells but not in normal cells according to a flow cytometry assay monitoring reactive oxygen species, mitochondrial superoxide, and their membrane potential. StenB induced greater DNA damage responses (γH2AX and 8-hydroxy-2-deoxyguanosine) in TNBC than in normal cells. All these StenB responses were alleviated by NAC pretreatment. Collectively, StenB modulated oxidative stress responses, leading to the antiproliferation of TNBC cells with little cytotoxicity in normal cells.
Collapse
Affiliation(s)
- Min-Yu Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Phoebe Sussana Primus
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Oxidative-Stress-Mediated ER Stress Is Involved in Regulating Manoalide-Induced Antiproliferation in Oral Cancer Cells. Int J Mol Sci 2023; 24:ijms24043987. [PMID: 36835397 PMCID: PMC9965613 DOI: 10.3390/ijms24043987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Manoalide provides preferential antiproliferation of oral cancer but is non-cytotoxic to normal cells by modulating reactive oxygen species (ROS) and apoptosis. Although ROS interplays with endoplasmic reticulum (ER) stress and apoptosis, the influence of ER stress on manoalide-triggered apoptosis has not been reported. The role of ER stress in manoalide-induced preferential antiproliferation and apoptosis was assessed in this study. Manoalide induces a higher ER expansion and aggresome accumulation of oral cancer than normal cells. Generally, manoalide differentially influences higher mRNA and protein expressions of ER-stress-associated genes (PERK, IRE1α, ATF6, and BIP) in oral cancer cells than in normal cells. Subsequently, the contribution of ER stress on manoalide-treated oral cancer cells was further examined. ER stress inducer, thapsigargin, enhances the manoalide-induced antiproliferation, caspase 3/7 activation, and autophagy of oral cancer cells rather than normal cells. Moreover, N-acetylcysteine, an ROS inhibitor, reverses the responses of ER stress, aggresome formation, and the antiproliferation of oral cancer cells. Consequently, the preferential ER stress of manoalide-treated oral cancer cells is crucial for its antiproliferative effect.
Collapse
|
15
|
Peng SY, Yen CY, Lan TH, Jeng JH, Tang JY, Chang HW. Combined Treatment (Ultraviolet-C/Physapruin A) Enhances Antiproliferation and Oxidative-Stress-Associated Mechanism in Oral Cancer Cells. Antioxidants (Basel) 2022; 11:2227. [PMID: 36421413 PMCID: PMC9686797 DOI: 10.3390/antiox11112227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Physapruin A (PHA), a Physalis peruviana-derived withanolide, exhibits antiproliferation activity against oral and breast cancer cells. However, its potential antitumor effects in combined treatments remain unclear. This investigation focused on evaluating the impact of the combined treatment of ultraviolet-C with PHA (UVC/PHA) on the proliferation of oral cancer cells. The UVC-caused antiproliferation was enhanced by combination with PHA in oral cancer (Ca9-22 and CAL 27) but not normal cells (SG), as evidenced by ATP detection, compared with UVC or PHA alone. UVC/PHA showed a greater extent of subG1 increase, G2/M arrest, annexin-V-assessed apoptosis, caspase 3/7 activation, and reactive oxygen species (ROS) in the UVC or PHA treatment of oral cancer compared to normal cells. Moreover, the mitochondrial functions, such as mitochondrial superoxide bursts and mitochondrial membrane potential destruction, of oral cancer cells were also enhanced by UVC/PHA compared to UVC or PHA alone. These oxidative stresses triggered γH2AX and 8-hydroxyl-2'-deoxyguanosine-assessed DNA damage to a greater extent under UVC/PHA treatment than under UVC or PHA treatment alone. The ROS inhibitor N-acetylcysteine reversed all these UVC/PHA-promoted changes. In conclusion, UVC/PHA is a promising strategy for decreasing the proliferation of oral cancer cells but shows no inhibitory effect on normal cells.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Hsun Lan
- Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
16
|
Elzoheiry A, Ayad E, Omar N, Elbakry K, Hyder A. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci Rep 2022; 12:18403. [PMID: 36319750 PMCID: PMC9626641 DOI: 10.1038/s41598-022-23276-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis results from the hepatic accumulation of the extracellular matrix accompanied by a failure of the mechanisms responsible for matrix dissolution. Pathogenesis of liver fibrosis is associated with many proteins from different cell types. In the present study, in silico molecular docking analysis revealed that curcumin may inhibit the fibrosis-mediating proteins PDGF, PDGFRB, TIMP-1, and TLR-9 by direct binding. Nano-formulation can overcome curcumin problems, increasing the efficacy of curcumin as a drug by maximizing its solubility and bioavailability, enhancing its membrane permeability, and improving its pharmacokinetics, pharmacodynamics and biodistribution. Therefore, green silver nanoparticles (AgNPs) were synthesized in the presence of sunlight by means of the metabolite of Streptomyces malachiticus, and coated with curcumin-chitosan mixture to serve as a drug delivery tool for curcumin to target CCl4-induced liver fibrosis mouse model. Fibrosis induction significantly increased hepatic gene expression of COL1A1, α-SMA, PDGFRB, and TIMP1, elevated hepatic enzymes, increased histopathological findings, and increased collagen deposition as determined by Mason's trichrome staining. Treatment with naked AgNPs tended to increase these inflammatory effects, while their coating with chitosan, similar to treatment with curcumin only, did not prevent the fibrogenic effect of CCl4. The induction of liver fibrosis was reversed by concurrent treatment with curcumin/chitosan-coated AgNPs. In this nano form, curcumin was found to be efficient as anti-liver fibrosis drug, maintaining the hepatic architecture and function during fibrosis development. This efficacy can be attributed to its inhibitory role through a direct binding to fibrosis-mediating proteins such as PDGFRB, TIMP-1, TLR-9 and TGF-β.
Collapse
Affiliation(s)
- Alya Elzoheiry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Esraa Ayad
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Nahed Omar
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Kadry Elbakry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
17
|
Chen YN, Chan CK, Yen CY, Shiau JP, Chang MY, Wang CC, Jeng JH, Tang JY, Chang HW. Antioral Cancer Effects by the Nitrated [6,6,6]Tricycles Compound (SK1) In Vitro. Antioxidants (Basel) 2022; 11:2072. [PMID: 36290795 PMCID: PMC9598307 DOI: 10.3390/antiox11102072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2023] Open
Abstract
A novel nitrated [6,6,6]tricycles-derived compound containing nitro, methoxy, and ispropyloxy groups, namely SK1, was developed in our previous report. However, the anticancer effects of SK1 were not assessed. Moreover, SK1 contains two nitro groups (NO2) and one nitrogen-oxygen (N-O) bond exhibiting the potential for oxidative stress generation, but this was not examined. The present study aimed to evaluate the antiproliferation effects and oxidative stress and its associated responses between oral cancer and normal cells. Based on the MTS assay, SK1 demonstrated more antiproliferation ability in oral cancer cells than normal cells, reversed by N-acetylcysteine. This suggests that SK1 causes antiproliferation effects preferentially in an oxidative stress-dependent manner. The oxidative stress-associated responses were further validated, showing higher ROS/MitoSOX burst, MMP, and GSH depletion in oral cancer cells than in normal cells. Meanwhile, SK1 caused oxidative stress-causing apoptosis, such as caspases 3/8/9, and DNA damages, such as γH2AX and 8-OHdG, to a greater extent in oral cancer cells than in normal cells. Siilar to cell viability, these oxidative stress responses were partially diminished by NAC, indicating that SK1 promoted oxidative stress-dependent responses. In conclusion, SK1 exerts oxidative stress, apoptosis, and DNA damage to a greater extent to oral cancer cells than in normal cells.
Collapse
Affiliation(s)
- Yan-Ning Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei 115024, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | | | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
18
|
Fucoidan/UVC Combined Treatment Exerts Preferential Antiproliferation in Oral Cancer Cells but Not Normal Cells. Antioxidants (Basel) 2022; 11:antiox11091797. [PMID: 36139871 PMCID: PMC9495684 DOI: 10.3390/antiox11091797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/29/2022] Open
Abstract
Combined treatment is a promising anticancer strategy for improving antiproliferation compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan (FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation, the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells. A combined treatment (UVC/FN) reduced cell viability of oral cancer cells (Ca9-22 and CAL 27) more than single treatments (FN or UVC), i.e., 53.7%/54.6% vs. 71.2%/91.6%, and 89.2%/79.4%, respectively, while the cell viability of UVC/FN treating on non-malignant oral (S–G) was higher than oral cancer cells, ranging from 106.0 to 108.5%. Mechanistically, UVC/FN preferentially generated higher subG1 accumulation and apoptosis-related inductions (annexin V, caspases 3, 8, and 9) in oral cancer cells than single treatments. UVC/FN preferentially generated higher oxidative stress than single treatments, as evidenced by flow cytometry-detecting reactive oxygen species, mitochondrial superoxide, and glutathione. Moreover, UVC/FN preferentially caused more DNA damage (γH2AX and 8-hydroxy-2’-deoxyguanosine) in oral cancer cells than in single treatments. N-acetylcysteine pretreatment validated the oxidative stress effects in these UVC/FN-induced changes. Taken together, FN effectively enhances UVC-triggered antiproliferation to oral cancer cells. UVC/FN provides a promising potential for preferential and synergistic antiproliferation in antioral cancer therapy.
Collapse
|
19
|
Methanol Extract of Clavularia inflata Exerts Apoptosis and DNA Damage to Oral Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11091777. [PMID: 36139851 PMCID: PMC9495492 DOI: 10.3390/antiox11091777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Antiproliferation effects of Clavularia-derived natural products against cancer cells have been reported on, but most studies have focused on identifying bioactive compounds, lacking a detailed investigation of the molecular mechanism. Crude extracts generally exhibit multiple targeting potentials for anticancer effects, but they have rarely been assessed for methanol extracts of Clavularia inflata (MECI). This investigation aims to evaluate the antiproliferation of MECI and to examine several potential mechanisms between oral cancer and normal cells. A 24 h MTS assay demonstrated that MECI decreased cell viability in several oral cancer cell lines more than in normal cells. N-acetylcysteine (NAC), an oxidative stress inhibitor, recovered these antiproliferation effects. Higher oxidative stress was stimulated by MECI in oral cancer cells than in normal cells, as proven by examining reactive oxygen species and mitochondrial superoxide. This preferential induction of oxidative stress was partly explained by downregulating more cellular antioxidants, such as glutathione, in oral cancer cells than in normal cells. Consequently, the MECI-generated high oxidative stress in oral cancer cells was preferred to trigger more subG1 population, apoptosis expression (annexin V and caspase activation), and DNA damage, reverted by NAC. In conclusion, MECI is a potent marine natural product showing preferential antiproliferation against oral cancer cells.
Collapse
|
20
|
Yu TJ, Yen CY, Cheng YB, Yen CH, Jeng JH, Tang JY, Chang HW. Physapruin A Enhances DNA Damage and Inhibits DNA Repair to Suppress Oral Cancer Cell Proliferation. Int J Mol Sci 2022; 23:ijms23168839. [PMID: 36012104 PMCID: PMC9408722 DOI: 10.3390/ijms23168839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 12/13/2022] Open
Abstract
The selective antiproliferation to oral cancer cells of Physalis peruviana-derived physapruin A (PHA) is rarely reported. Either drug-induced apoptosis and DNA damage or DNA repair suppression may effectively inhibit cancer cell proliferation. This study examined the selective antiproliferation ability of PHA and explored detailed mechanisms of apoptosis, DNA damage, and repair. During an ATP assay, PHA provided high cytotoxicity to two oral cancer cell lines (CAL 27 and Ca9-22) but no cytotoxicity to two non-malignant oral cells (HGF-1 and SG). This selective antiproliferation of PHA was associated with the selective generation of reactive oxygen species (ROS) in oral cancer cells rather than in non-malignant oral cells, as detected by flow cytometry. Moreover, PHA induced other oxidative stresses in oral cancer cells, such as mitochondrial superoxide generation and mitochondrial membrane potential depletion. PHA also demonstrated selective apoptosis in oral cancer cells rather than non-malignant cells in annexin V/7-aminoactinmycin D and caspase 3/7 activity assays. In flow cytometry and immunofluorescence assays, PHA induced γH2AX expressions and increased the γH2AX foci number of DNA damages in oral cancer cells. In contrast, the mRNA expressions for DNA repair signaling, including homologous recombination (HR) and non-homologous end joining (NHEJ)-associated genes, were inhibited by PHA in oral cancer cells. Moreover, the PHA-induced changes were alleviated by the oxidative stress inhibitor N-acetylcysteine. Therefore, PHA generates selective antiproliferation, oxidative stress, and apoptosis associated with DNA damage induction and DNA repair suppression in oral cancer cells.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
21
|
Yang CW, Chien TM, Yen CH, Wu WJ, Sheu JH, Chang HW. Antibladder Cancer Effects of Excavatolide C by Inducing Oxidative Stress, Apoptosis, and DNA Damage In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15080917. [PMID: 35893741 PMCID: PMC9329968 DOI: 10.3390/ph15080917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Excavatolide C (EXCC) is a bioactive compound derived from the gorgonian octocoral Briareum excavatum, and its anticancer effects are rarely addressed, particularly for bladder cancer. This investigation aimed to explore the potential impacts of EXCC on inhibiting the proliferation of three kinds of bladder cancer cells (5637, BFTC905, and T24). EXCC inhibits bladder cancer cell proliferation based on 48 h ATP assay. This antiproliferation function is validated to be oxidative stress dependent. Cellular and mitochondrial oxidative stresses were upregulated by EXCC, accompanied by depleting glutathione and mitochondrial membrane potential. These antiproliferation and oxidative stress events were suppressed by N-acetylcysteine (NAC), indicating that EXCC has an oxidative stress-regulating function for antiproliferation of bladder cancer cells. Oxidative stress-related responses such as apoptosis, caspase activation, and DNA damage were upregulated by EXCC and reverted by NAC. Taken together, the antiproliferation function of EXCC provides a potential treatment against bladder cancer cells via oxidative stress modulation.
Collapse
Affiliation(s)
- Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-W.Y.); (C.-H.Y.)
| | - Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (T.-M.C.); (W.-J.W.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-W.Y.); (C.-H.Y.)
| | - Wen-Jeng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (T.-M.C.); (W.-J.W.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
22
|
Yu TJ, Shiau JP, Tang JY, Yen CH, Hou MF, Cheng YB, Shu CW, Chang HW. Physapruin A Induces Reactive Oxygen Species to Trigger Cytoprotective Autophagy of Breast Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11071352. [PMID: 35883843 PMCID: PMC9311569 DOI: 10.3390/antiox11071352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Physalis peruviana-derived physapruin A (PHA) is a potent compound that selectively generates reactive oxygen species (ROS) and induces cancer cell death. Autophagy, a cellular self-clearance pathway, can be induced by ROS and plays a dual role in cancer cell death. However, the role of autophagy in PHA-treated cancer cells is not understood. Our study initially showed that autophagy inhibitors such as bafilomycin A1 enhanced the cytotoxic effects of PHA in breast cancer cell lines, including MCF7 and MDA-MB-231. PHA treatment decreased the p62 protein level and increased LC3-II flux. PHA increased the fluorescence intensity of DAPGreen and DALGreen, which are used to reflect the formation of autophagosome/autolysosome and autolysosome, respectively. ROS scavenger N-acetylcysteine (NAC) decreased PHA-elevated autophagy activity, implying that PHA-induced ROS may be required for autophagy induction in breast cancer cells. Moreover, the autophagy inhibitor increased ROS levels and enhanced PHA-elevated ROS levels, while NAC scavenges the produced ROS resulting from PHA and autophagy inhibitor. In addition, the autophagy inhibitor elevated the PHA-induced proportion of annexin V/7-aminoactinmycin D and cleavage of caspase-3/8/9 and poly (ADP-ribose) polymerase. In contrast, NAC and apoptosis inhibitor Z-VAD-FMK blocked the proportion of annexin V/7-aminoactinmycin D and the activation of caspases. Taken together, PHA induced ROS to promote autophagy, which might play an antioxidant and anti-apoptotic role in breast cancer cells.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (C.-W.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5828) (C.-W.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5828) (C.-W.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
23
|
Huang CH, Wang FT, Chan WH. Low-dose silver nanoparticles plus methyl mercury exert embryotoxic effects on mouse blastocysts via endoplasmic reticulum stress and mitochondrial apoptosis. Toxicol Res (Camb) 2022; 11:460-474. [PMID: 35782646 PMCID: PMC9244727 DOI: 10.1093/toxres/tfac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 07/30/2023] Open
Abstract
The health and environmental impacts of the increasing commercial use of silver nanoparticles (AgNPs) are a growing concern. Methyl mercury (MeHg) is a potent toxin that biotransforms from mercury or inorganic mercury compounds in waterways and causes dangerous environmental contamination. However, the potential interactions and combined effects of AgNPs and MeHg are yet to be established. In the current study, we showed that low/non-embryotoxic doses of AgNPs and MeHg interact synergistically to induce embryotoxicity and further explored the underlying mechanisms affecting mouse embryo development. Notably, co-treatment with noncytotoxic concentrations of AgNPs (10 μM) and MeHg (0.1 μM) triggered apoptotic processes and embryotoxicity in mouse blastocysts and evoked intracellular reactive oxygen species (ROS) generation, which was effectively blocked by preincubation with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), a classic antioxidant. Further experiments demonstrated that ROS serve as a key upstream inducer of endoplasmic reticulum (ER) stress and mitochondria-dependent apoptotic processes in AgNP/MeHg-induced injury of mouse embryo implantation and pre- and postimplantation development. Our results collectively indicate that AgNP and MeHg at non-embryotoxic concentrations can synergistically evoke ROS, ultimately causing embryotoxicity through promotion of ER stress and mitochondria-dependent apoptotic signaling cascades.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Wen-Hsiung Chan
- Corresponding author: Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| |
Collapse
|
24
|
Wang SC, Yen CY, Shiau JP, Chang MY, Hou MF, Tang JY, Chang HW. Combined Treatment of Nitrated [6,6,6]Tricycles Derivative (SK2)/Ultraviolet C Highly Inhibits Proliferation in Oral Cancer Cells In Vitro. Biomedicines 2022; 10:biomedicines10051196. [PMID: 35625933 PMCID: PMC9138449 DOI: 10.3390/biomedicines10051196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Combined treatment is an effective strategy to improve anticancer therapy, but severe side effects frequently limit this application. Drugs inhibiting the proliferation of cancer cells, but not normal cells, display preferential antiproliferation to cancer cells. It shows the benefits of avoiding side effects and enhancing antiproliferation for combined treatment. Nitrated [6,6,6]tricycles derivative (SK2), a novel chemical exhibiting benzo-fused dioxabicyclo[3.3.1]nonane core with an n-butyloxy substituent, exhibiting preferential antiproliferation, was chosen to evaluate its potential antioral cancer effect in vitro by combining it with ultraviolet C (UVC) irradiation. Combination treatment (UVC/SK2) caused lower viability in oral cancer cells (Ca9-22 and OC-2) than single treatment (20 J/m2 UVC or 10 μg/mL SK2), i.e., 42.3%/41.1% vs. 81.6%/69.2%, and 89.5%/79.6%, respectively. In contrast, it showed a minor effect on cell viability of normal oral cells (HGF-1), ranging from 82.2 to 90.6%. Moreover, UVC/SK2 caused higher oxidative stress in oral cancer cells than normal cells through the examination of reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential. UVC/SK2 also caused subG1 increment associated with apoptosis detections by assessing annexin V; panaspase; and caspases 3, 8, and 9. The antiproliferation and oxidative stress were reverted by N-acetylcysteine, validating the involvement of oxidative stress in antioral cancer cells. UVC/SK2 also caused DNA damage by detecting γH2AX and 8-hydroxy-2′-deoxyguanosine in oral cancer cells. In conclusion, SK2 is an effective enhancer for improving the UVC-caused antiproliferation against oral cancer cells in vitro. UVC/SK2 demonstrated a preferential and synergistic antiproliferation ability towards oral cancer cells with little adverse effects on normal cells.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan;
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Jun-Ping Shiau
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Feng Hou
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +7-886-7-312-1101 (ext. 7158) (J.-Y.T.); +7-886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +7-886-7-312-1101 (ext. 7158) (J.-Y.T.); +7-886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
25
|
Wang SC, Yen CY, Shiau JP, Chang MY, Hou MF, Jeng JH, Tang JY, Chang HW. Synergistic Antiproliferation of Cisplatin and Nitrated [6,6,6]Tricycle Derivative (SK2) for a Combined Treatment of Oral Cancer Cells. Antioxidants (Basel) 2022; 11:926. [PMID: 35624790 PMCID: PMC9137724 DOI: 10.3390/antiox11050926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/19/2022] Open
Abstract
SK2, a nitrated [6,6,6]tricycle derivative with an n-butyloxy group, showed selective antiproliferation effects on oral cancer but not on normal oral cells. This investigation assessed for the first time the synergistic antiproliferation potential of cisplatin/SK2 in oral cancer cells. Cell viability assay at 24 h showed that a low dose of combined cisplatin/SK2 (10 μM/10 μg/mL) provided more antiproliferation than cisplatin or SK2 alone. Cisplatin/SK2 triggered also more apoptosis inductions in terms of subG1 accumulation, annexin V, pancaspase, and caspase 3/8/9 measurements. Moreover, cisplatin/SK2 provided more oxidative stress and DNA damage in oral cancer cells than independent treatments. Oxidative stress inhibitors rescued the cisplatin/SK2-induced antiproliferation and oxidative stress generation. Moreover, cisplatin/SK2 induced more antiproliferation, apoptosis, oxidative stress, and DNA damage in oral cancer cells than in normal oral cells (S-G). In conclusion, low-dose cisplatin/SK2 combined treatment promoted selective and synergistic antiproliferation in oral cancer cells depending on oxidative-stress-associated responses.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Feng Hou
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
26
|
Shiau JP, Chuang YT, Yang KH, Chang FR, Sheu JH, Hou MF, Jeng JH, Tang JY, Chang HW. Brown Algae-Derived Fucoidan Exerts Oxidative Stress-Dependent Antiproliferation on Oral Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11050841. [PMID: 35624705 PMCID: PMC9138104 DOI: 10.3390/antiox11050841] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoidan is a dietary brown algae-derived fucose-rich polysaccharide. However, the anticancer effects of fucoidan for oral cancer treatment remain unclear, particularly in terms of its preferential antiproliferation ability and oxidative-stress-associated responses. This study first evaluated the effects and mechanisms of the preferential antiproliferation of fucoidan between oral cancer and non-malignant oral cells (S–G). In a 48 h MTS assay, fucoidan showed higher antiproliferation in response to five types of oral cancer cells, but not S–G cells, demonstrating preferential antiproliferation of oral cancer cells. Oral cancer cells (Ca9-22 and CAL 27) showing high sensitivity to fucoidan were selected to explore the antiproliferation mechanism compared to S–G cells. Fucoidan showed subG1 accumulation and an annexin V increase in apoptosis, accompanied by caspase 8, 9, and 3 activations in oral cancer cells, but not in S–G cells. Fucoidan increased reactive oxygen species and mitochondrial superoxide levels and decreased cellular glutathione in oral cancer cells compared with S–G cells. These oxidative stress effects were attributed to the downregulation of antioxidant signaling genes (NRF2, TXN, and HMOX1) in oral cancer cells rather than S–G cells. Fucoidan showed DNA damage-inducible effects (γH2AX and 8-hydroxy-2-deoxyguanosine) in oral cancer cells but not in S–G cells. Accordingly, these preferential changes in oral cancer but not in non-malignant cells contribute to the preferential antiproliferation mechanism of fucoidan. Furthermore, these changes were reverted by pretreatment with the antioxidant N-acetylcysteine. Therefore, for the first time, this study provides a detailed understanding of the preferential antiproliferation effects and mechanisms of fucoidan in oral cancer cells.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
27
|
Yu TJ, Tang JY, Shiau JP, Hou MF, Yen CH, Ou-Yang F, Chen CY, Chang HW. Gingerenone A Induces Antiproliferation and Senescence of Breast Cancer Cells. Antioxidants (Basel) 2022; 11:587. [PMID: 35326237 PMCID: PMC8945794 DOI: 10.3390/antiox11030587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/08/2023] Open
Abstract
Ginger is a popular spice and consists of several bioactive antioxidant compounds. Gingerenone A (Gin A), a novel compound isolated from Zingiber officinale, is rarely investigated for its anti-breast-cancer properties. Some ginger extracts have been reported to initiate senescence, an anticancer strategy. However, the anticancer effects of Gin A on breast cancer cells remain unclear. The present study aims to assess the modulating impact of Gin A acting on proliferation and senescence to breast cancer cells. Gin A diminished the cellular ATP content and decreased the cell viability of the MTS assay in several breast cancer cell lines. It also showed a delayed G2/M response to breast cancer cells (MCF7 and MDA-MB-231). N-acetylcysteine (NAC), an oxidative stress inhibitor, can revert these responses of antiproliferation and G2/M delay. The oxidative stress and senescence responses of Gin A were further validated by increasing reactive oxygen species, mitochondrial superoxide, and β-galactosidase activity, which were reverted by NAC. Gin A also upregulated senescence-associated gene expressions. In addition to oxidative stress, Gin A also induced DNA damage responses by increasing γH2AX level and foci and generating 8-hydroxyl-2'-deoxyguanosine in breast cancer cells, which were reverted by NAC. Therefore, Gin A promotes antiproliferation and senescence of breast cancer cells induced by oxidative stress.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.); (F.O.-Y.)
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.); (F.O.-Y.)
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Fu Ou-Yang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.); (F.O.-Y.)
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
28
|
Combined Treatment with Cryptocaryone and Ultraviolet C Promotes Antiproliferation and Apoptosis of Oral Cancer Cells. Int J Mol Sci 2022; 23:ijms23062981. [PMID: 35328402 PMCID: PMC8950770 DOI: 10.3390/ijms23062981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Cryptocaryone (CPC) was previously reported as preferential for killing natural products in oral cancer cells. However, its radiosensitizing potential combined with ultraviolet C (UVC) cell killing of oral cancer cells remains unclear. This study evaluates the combined anti-proliferation effect and clarifies the mechanism of combined UVC/CPC effects on oral cancer cells. UVC/CPC shows higher anti-proliferation than individual and control treatments in a low cytotoxic environment on normal oral cells. Mechanistically, combined UVC/CPC generates high levels of reactive oxygen species and induces mitochondrial dysfunction by generating mitochondrial superoxide, increasing mitochondrial mass and causing the potential destruction of the mitochondrial membrane compared to individual treatments. Moreover, combined UVC/CPC causes higher G2/M arrest and triggers apoptosis, with greater evidence of cell cycle disturbance, annexin V, pancaspase, caspases 3/7 expression or activity in oral cancer cells than individual treatments. Western blotting further indicates that UVC/CPC induces overexpression for cleaved types of poly (ADP-ribose) polymerase and caspase 3 more than individual treatments. Additionally, UVC/CPC highly induces γH2AX and 8-hydroxy-2'-deoxyguanosine adducts as DNA damage in oral cancer cells. Taken together, CPC shows a radiosensitizing anti-proliferation effect on UVC irradiated oral cancer cells with combined effects through oxidative stress, apoptosis and DNA damage.
Collapse
|
29
|
Chen YC, Yang CW, Chan TF, Farooqi AA, Chang HS, Yen CH, Huang MY, Chang HW. Cryptocaryone Promotes ROS-Dependent Antiproliferation and Apoptosis in Ovarian Cancer Cells. Cells 2022; 11:cells11040641. [PMID: 35203294 PMCID: PMC8870566 DOI: 10.3390/cells11040641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Cryptocaryone (CPC) is a bioactive dihydrochalcone derived from Cryptocarya plants, and its antiproliferation was rarely reported, especially for ovarian cancer (OVCA). This study aimed to examine the regulation ability and mechanism of CPC on three histotypes of OVCA cells (SKOV3, TOV-21G, and TOV-112D). In a 24 h MTS assay, CPC showed antiproliferation effects to OVCA cells, i.e., IC50 values 1.5, 3, and 9.5 μM for TOV-21G, SKOV3, and TOV-112D cells. TOV-21G and SKOV3 cells showed hypersensitivity to CPC when applied for exposure time and concentration experiments. For biological processes, CPC stimulated the generation of reactive oxygen species and mitochondrial superoxide and promoted mitochondrial membrane potential dysfunction in TOV-21G and SKOV3 cells. Apoptosis was detected in OVCA cells through subG1 accumulation and annexin V staining. Apoptosis signaling such as caspase 3/7 activities, cleaved poly (ADP-ribose) polymerase, and caspase 3 expressions were upregulated by CPC. Specifically, the intrinsic and extrinsic apoptotic caspase 9 and caspase 8 were overexpressed in OVCA cells following CPC treatment. Moreover, CPC also stimulated DNA damages in terms of γH2AX expression and increased γH2AX foci. CPC also induced 8-hydroxy-2’-deoxyguanosine DNA damages. These CPC-associated principal biological processes were validated to be oxidative stress-dependent by N-acetylcysteine. In conclusion, CPC is a potential anti-OVCA natural product showing oxidative stress-dependent antiproliferation, apoptosis, and DNA damaging functions.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (Y.-C.C.); (T.-F.C.)
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-W.Y.); (H.-S.C.); (C.-H.Y.)
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (Y.-C.C.); (T.-F.C.)
- Department of Obstetrics and Gynecology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan;
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-W.Y.); (H.-S.C.); (C.-H.Y.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-W.Y.); (H.-S.C.); (C.-H.Y.)
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-Y.H.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (M.-Y.H. & H.-W.C.)
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-Y.H.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (M.-Y.H. & H.-W.C.)
| |
Collapse
|
30
|
Liu SL, Yang KH, Yang CW, Lee MY, Chuang YT, Chen YN, Chang FR, Chen CY, Chang HW. Burmannic Acid Inhibits Proliferation and Induces Oxidative Stress Response of Oral Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10101588. [PMID: 34679723 PMCID: PMC8533162 DOI: 10.3390/antiox10101588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Burmannic acid (BURA) is a new apocarotenoid bioactive compound derived from Indonesian cinnamon; however, its anticancer effect has rarely been investigated in oral cancer cells. In this investigation, the consequences of the antiproliferation of oral cancer cells effected by BURA were evaluated. BURA selectively suppressed cell proliferation of oral cancer cells (Ca9-22 and CAL 27) but showed little cytotoxicity to normal oral cells (HGF-1). In terms of mechanism, BURA perturbed cell cycle distribution, upregulated mitochondrial superoxide, induced mitochondrial depolarization, triggered γH2AX and 8-hydroxy-2-deoxyguanosine DNA damage, and induced apoptosis and caspase 3/8/9 activation in oral cancer cells. Application of N-acetylcysteine confirmed oxidative stress as the critical factor in promoting antiproliferation, apoptosis, and DNA damage in oral cancer cells.
Collapse
Affiliation(s)
- Su-Ling Liu
- Experimental Forest College of Bioresources and Agriculture, National Taiwan University, Zhushan Township, Nantou County 55750, Taiwan;
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Min-Yu Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Yan-Ning Chen
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: (C.-Y.C.); (H.-W.C.); Tel.: +886-7-781-1151 (ext. 6200) (C.-Y.C.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (C.-Y.C.); (H.-W.C.); Tel.: +886-7-781-1151 (ext. 6200) (C.-Y.C.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
31
|
Silva JRV, Barroso PAA, Nascimento DR, Figueira CS, Azevedo VAN, Silva BR, Santos RPD. Benefits and challenges of nanomaterials in assisted reproductive technologies. Mol Reprod Dev 2021; 88:707-717. [PMID: 34553442 DOI: 10.1002/mrd.23536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
Assisted reproductive technology (ART) have contributed to preserve fertility in humans and to increase multiplication of genetically superior animals. Despite being highly practiced worldwide, ART presents some challenges, especially because gametes and embryos are kept in vitro for a variable period of time, and the oxidative stress in vitro can have negative impact on oocyte competence and embryo development. Nanotechnology needs to be considered to help overcome some of those impairments, since it can provide strategies to deliver antioxidants and hormones to gametes and embryos in vitro. The application of nanotechnology to ART can allow the development of new protocols using nanomaterials to improve in vitro oocyte competence and embryo production. This review discusses the applicability of nanomaterials to improve sperm selection, to deliver antioxidants and hormones to preantral follicles, oocytes, and embryos in vitro, as well as the concerns about using nanotechnology in ART.
Collapse
Affiliation(s)
- José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| | | | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ricardo Pires Dos Santos
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| |
Collapse
|
32
|
Yang KH, Tang JY, Chen YN, Chuang YT, Tsai IH, Chiu CC, Li LJ, Chien TM, Cheng YB, Chang FR, Yen CY, Chang HW. Nepenthes Extract Induces Selective Killing, Necrosis, and Apoptosis in Oral Cancer Cells. J Pers Med 2021; 11:871. [PMID: 34575651 PMCID: PMC8469227 DOI: 10.3390/jpm11090871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Ethyl acetate Nepenthes extract (EANT) from Nepenthes thorellii × (ventricosa × maxima) shows antiproliferation and apoptosis but not necrosis in breast cancer cells, but this has not been investigated in oral cancer cells. In the present study, EANT shows no cytotoxicity to normal oral cells but exhibits selective killing to six oral cancer cell lines. They were suppressed by pretreatment of the antioxidant inhibitor N-acetylcysteine (NAC), demonstrating that EANT-induced cell death was mediated by oxidative stress. Concerning high sensitivity to EANT, Ca9-22 and CAL 27 oral cancer cells were chosen for exploring detailed selective killing mechanisms. EANT triggers a mixture of necrosis and apoptosis as determined by annexin V/7-aminoactinmycin D analysis. Still, they show differential switches from necrosis at a low (10 μg/mL) concentration to apoptosis at high (25 μg/mL) concentration of EANT in oral cancer cells. NAC induces necrosis but suppresses annexin V-detected apoptosis in oral cancer cells. Necrostatin 1 (NEC1), a necroptosis inhibitor, moderately suppresses necrosis but induces apoptosis at 10 μg/mL EANT. In contrast, Z-VAD-FMK, a pancaspase inhibitor, slightly causes necrosis but suppresses apoptosis at 10 μg/mL EANT. Furthermore, the flow cytometry-detected pancaspase activity is dose-responsively increased but is suppressed by NAC and ZVAD, although not for NEC1 in oral cancer cells. EANT causes several oxidative stress events such as reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane depolarization. In response to oxidative stresses, the mRNA for antioxidant signaling, such as nuclear factor erythroid 2-like 2 (NFE2L2), catalase (CAT), heme oxygenase 1 (HMOX1), and thioredoxin (TXN), are overexpressed in oral cancer cells. Moreover, EANT also triggers DNA damage, as detected by γH2AX and 8-oxo-2'-deoxyguanosine adducts. The dependence of oxidative stress is validated by the evidence that NAC pretreatment reverts the changes of cellular and mitochondrial stress and DNA damage. Therefore, EANT exhibits antiproliferation involving an oxidative stress-dependent necrosis/apoptosis switch and DNA damage in oral cancer cells.
Collapse
Affiliation(s)
- Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yan-Ning Chen
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Li-Jie Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
| | - Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Fang-Rong Chang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
33
|
Modified Spirulina maxima Pectin Nanoparticles Improve the Developmental Competence of In Vitro Matured Porcine Oocytes. Animals (Basel) 2021; 11:ani11092483. [PMID: 34573449 PMCID: PMC8469918 DOI: 10.3390/ani11092483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Poor in vitro embryo development is a major obstacle in porcine assisted reproduction. In the current study, we utilized modified Spirulina maxima pectin nanoparticles as a supplement to improve porcine in vitro maturation medium. Results showed that modified Spirulina maxima pectin nanoparticles at 2.5 µg/mL improved oocyte maturation in form of first polar body extrusion, reduced oxidative stress, and increased the developmental competence of the oocytes after parthenogenetic activation and somatic cell nuclear transfer. Moreover, the relative transcripts quantification showed significant increase in the pluripotency-associated transcripts in the resultant cloned embryos after modified Spirulina maxima pectin nanoparticles supplementation. Therefore, we provide an optimum in vitro maturation condition to improve the in vitro embryo production in porcine. Abstract Molecular approaches have been used to determine metabolic substrates involved in the early embryonic processes to provide adequate culture conditions. To investigate the effect of modified Spirulina maxima pectin nanoparticles (MSmPNPs) on oocyte developmental competence, cumulus–oocyte complexes (COCs) retrieved from pig slaughterhouse ovaries were subjected to various concentrations of MSmPNPs (0, 2.5, 5.0, and 10 µg/mL) during in vitro maturation (IVM). In comparison to the control, MSmPNPs-5.0, and MSmPNPs-10 groups, oocytes treated with 2.5 µg/mL MSmPNPs had significantly increased glutathione (GSH) levels and lower levels of reactive oxygen species (ROS). Following parthenogenetic activation, the MSmPNPs-2.5 group had a considerably higher maturation and cleavage rates, blastocyst development, total cell number, and ratio of inner cell mass/trophectoderm (ICM:TE) cells, when compared with those in the control and all other treated groups. Furthermore, similar findings were reported for the developmental competence of somatic cell nuclear transfer (SCNT)-derived embryos. Additionally, the relative quantification of POU5F1, DPPA2, and NDP52 mRNA transcript levels were significantly higher in the MSmPNPs-2.5 group than in the control and other treated groups. Taken together, the current findings suggest that MSmPNP treatment alleviates oxidative stress and enhances the developmental competence of porcine in vitro matured oocytes after parthenogenetic activation and SCNT.
Collapse
|
34
|
Silver nanoparticles offer a synergistic effect with fluconazole against fluconazole-resistant Candida albicans by abrogating drug efflux pumps and increasing endogenous ROS. INFECTION GENETICS AND EVOLUTION 2021; 93:104937. [PMID: 34029724 DOI: 10.1016/j.meegid.2021.104937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES A frequent emergence of drug resistance has been observed and posed great threat to global public health recently. This work aimed to investigate the potential synergistic effect and the underlying mechanisms of AgNPs-fluconazole combination more extensively through 2 clinically isolated fluconazole-resistant Candida albicans (C. albicans) strains. METHODS Antifungal properties of AgNPs and fluconazole alone or together against planktonic cells and biofilms were tested. Cellular and molecular targets associated with fluconazole resistance were monitored after AgNPs treatment. Antifungal potential of AgNPs-fluconazole combination was also explored in vivo using a mouse model of disseminated candidiasis. Tissue burden and survival rate were analyzed. RESULTS The results indicated that AgNPs worked synergistically with fluconazole against both planktonic cells of fluconazole-resistant C. albicans and biofilms formed <12 h. AgNPs treatment down-regulated ERG1, ERG11, ERG25, and CDR2, decreased membrane ergosterol levels and membrane fluidity, reduced membrane content of Cdr1p, Cdr2p, and thus efflux bump activity. The elevated ROS production was also a likely cause of the synergistic effect. In vivo, AgNPs and fluconazole combination significantly decreased the fungal burden and improved the survival rate of infected mice. CONCLUSION In conclusion, these results further confirm that AgNPs-fluconazole combination is a hopeful strategy for the treatment of fluconazole-resistant fungal infections.
Collapse
|
35
|
Peng SY, Tang JY, Li RN, Huang HW, Wu CY, Chiu CC, Chang FR, Zhang HW, Lee YJ, Sheu JH, Chang HW. Oxidative Stress-Dependent Synergistic Antiproliferation, Apoptosis, and DNA Damage of Ultraviolet-C and Coral-Derived Sinularin Combined Treatment for Oral Cancer Cells. Cancers (Basel) 2021; 13:cancers13102450. [PMID: 34070049 PMCID: PMC8158103 DOI: 10.3390/cancers13102450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Combined treatment is increasingly used to improve cancer therapy. Non-ionizing radiation ultraviolet-C (UVC) and sinularin, a coral Sinularia flexibilis-derived cembranolide, were separately reported to provide an antiproliferation function to some kinds of cancer cells. However, an antiproliferation function using the combined treatment of UVC/sinularin has not been investigated as yet. This study aimed to examine the combined antiproliferation function and explore the combination of UVC/sinularin in oral cancer cells compared to normal oral cells. Regarding cell viability, UVC/sinularin displays the synergistic and selective killing of two oral cancer cell lines, but remains non-effective for normal oral cell lines compared to treatments in terms of MTS and ATP assays. In tests using the flow cytometry, luminescence, and Western blotting methods, UVC/sinularin-treated oral cancer cells exhibited higher reactive oxygen species production, mitochondrial superoxide generation, mitochondrial membrane potential destruction, annexin V, pan-caspase, caspase 3/7, and cleaved-poly (ADP-ribose) polymerase expressions than that in normal oral cells. Accordingly, oxidative stress and apoptosis are highly induced in a combined UVC/sinularin treatment. Moreover, UVC/sinularin treatment provides higher G2/M arrest and γH2AX/8-hydroxyl-2'deoxyguanosine-detected DNA damages in oral cancer cells than in the separate treatments. A pretreatment can revert all of these changes of UVC/sinularin treatment with the antioxidant N-acetylcysteine. Taken together, UVC/sinularin acting upon oral cancer cells exhibits a synergistic and selective antiproliferation ability involving oxidative stress-dependent apoptosis and cellular DNA damage with low toxic side effects on normal oral cells.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ruei-Nian Li
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-J.L.)
| | - Hong-Wei Zhang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yun-Jou Lee
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-J.L.)
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
36
|
Novel ε-polylysine/polyethyleneimine -coated Ag nanoparticles for in vitro treatment of Pseudomonas aeruginosa. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Physalis peruviana-Derived Physapruin A (PHA) Inhibits Breast Cancer Cell Proliferation and Induces Oxidative-Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) 2021; 10:antiox10030393. [PMID: 33807834 PMCID: PMC7998541 DOI: 10.3390/antiox10030393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer expresses clinically heterogeneous characteristics and requires multipurpose drug development for curing the different tumor subtypes. Many withanolides have been isolated from Physalis species showing anticancer effects, but the anticancer function of physapruin A (PHA) has rarely been investigated. In this study, the anticancer properties of PHA in breast cancer cells were examined by concentration and time-course experiments. In terms of cellular ATP content, PHA inhibited the proliferation of three kinds of breast cancer cells: MCF7 (estrogen receptor (ER)+, progesterone receptor (PR)+/−, human epidermal growth factor receptor 2 (HER2)−), SKBR3 (ER−/PR−/HER2+), and MDA-MB-231 (triple-negative). Moreover, PHA induced G2/M arrest in MCF7 and MDA-MB-231 cells. In terms of flow cytometry, PHA induced the generation of reactive oxygen species (ROS), the generation of mitochondrial superoxide, mitochondrial membrane potential depletion, and γH2AX-detected DNA damage in breast cancer MCF7 and MDA-MB-231 cells, which were suppressed by the ROS inhibitor N-acetylcysteine (NAC). In terms of flow cytometry and Western blotting, PHA induced apoptotic expression (annexin V, and intrinsic and extrinsic apoptotic signaling), which was suppressed by NAC and an apoptosis inhibitor (Z-VAD-FMK), in breast cancer cells. Therefore, PHA is a potential anti-breast-cancer natural product that modulates the oxidative-stress response, cell-cycle disturbance, apoptosis, and γH2AX-detected DNA damage.
Collapse
|
38
|
Manoalide Shows Mutual Interaction between Cellular and Mitochondrial Reactive Species with Apoptosis in Oral Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6667355. [PMID: 33747349 PMCID: PMC7943270 DOI: 10.1155/2021/6667355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
We previously found that marine sponge-derived manoalide induced antiproliferation and apoptosis of oral cancer cells as well as reactive species generations probed by dichloro-dihydrofluorescein diacetate (DCFH-DA) and MitoSOX Red. However, the sources of cellular and mitochondrial redox stresses and the mutual interacting effects between these redox stresses and apoptosis remain unclear. To address this issue, we examined a panel of reactive species and used the inhibitors of cellular reactive species (N-acetylcysteine (NAC)), mitochondrial reactive species (MitoTEMPO), and apoptosis (Z-VAD-FMK; ZVAD) to explore their interactions in manoalide-treated oral cancer Ca9-22 and CAL 27 cells. Hydroxyl (˙OH), nitrogen dioxide (NO2˙), nitric oxide (˙NO), carbonate radical-anion (CO3 ˙-), peroxynitrite (ONOO-), and superoxide (O2 ˙-) were increased in oral cancer cells following manoalide treatments in terms of fluorescence staining and flow cytometry. Cellular reactive species (˙OH, NO2 ·, ˙NO, CO3 ˙-, and ONOO-) as well as cellular and mitochondrial reactive species (O2 ˙-) were induced in oral cancer cells following manoalide treatment for 6 h. NAC, MitoTEMPO, and ZVAD inhibit manoalide-induced apoptosis in terms of annexin V and pancaspase activity assays. Moreover, NAC inhibits mitochondrial reactive species and MitoTEMPO inhibits cellular reactive species, suggesting that cellular and mitochondrial reactive species can crosstalk to regulate each other. ZVAD shows suppressing effects on the generation of both cellular and mitochondrial reactive species. In conclusion, manoalide induces reciprocally activation between cellular and mitochondrial reactive species and apoptosis in oral cancer cells.
Collapse
|
39
|
Bidian C, Filip GA, David L, Florea A, Moldovan B, Robu DP, Olteanu D, Radu T, Clichici S, Mitrea DR, Baldea I. The impact of silver nanoparticles phytosynthesized with Viburnum opulus L. extract on the ultrastrastructure and cell death in the testis of offspring rats. Food Chem Toxicol 2021; 150:112053. [PMID: 33577941 DOI: 10.1016/j.fct.2021.112053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
AIM To investigate the effects of prenatal exposure to AgNPs obtained by green synthesis with Viburnum opulus L. extract on the testis in male offspring rats. MATERIAL AND METHODS Two different doses of AgNPs (0.8 and 1.5 mg/kg b.w.) and vehicle (PBS) were administered to Wistar female rats on days 3-14 of gestation. At 6 weeks after birth, the ultrastructural changes in correlation with the amount of silver as well as the parameters of oxidative stress, inflammation and cell death mechanisms in the testis of male offspring were evaluated. RESULTS AgNPs administered during pregnancy crossed the placental and testicular barriers and induced oxidative stress, DNA damage and autophagy as mechanism of cell toxicity. The markers of inflammation and apoptosis decreased after AgNPs exposure while the NFkB activation increased. TEM examination revealed important ultrastructural changes of Sertoli cells, numerous vacuoles and cytoplasmic changes suggestive of the cell's evolution towards necrosis. CONCLUSION Phytoreduced silver nanoparticles with polyphenols from Viburnum opulus L. fruit extract, administered during the embryological development of the male gonad, have testicular toxic effects in offspring even at 6 weeks after birth.
Collapse
Affiliation(s)
- Cristina Bidian
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania.
| | - Luminita David
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering "Babes-Bolyai" University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj Napoca, Romania
| | - Bianca Moldovan
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering "Babes-Bolyai" University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Daniela Popa Robu
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Teodora Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293, Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Daniela-Rodica Mitrea
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
40
|
Yu TJ, Hsieh CY, Tang JY, Lin LC, Huang HW, Wang HR, Yeh YC, Chuang YT, Ou-Yang F, Chang HW. Antimycin A shows selective antiproliferation to oral cancer cells by oxidative stress-mediated apoptosis and DNA damage. ENVIRONMENTAL TOXICOLOGY 2020; 35:1212-1224. [PMID: 32662599 DOI: 10.1002/tox.22986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/26/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The antibiotic antimycin A (AMA) is commonly used as an inhibitor for the electron transport chain but its application in anticancer studies is rare. Recently, the repurposing use of AMA in antiproliferation of several cancer cell types has been reported. However, it is rarely investigated in oral cancer cells. The purpose of this study is to investigate the selective antiproliferation ability of AMA treatment on oral cancer cells. Cell viability, flow cytometry, and western blotting were applied to explore its possible anticancer mechanism in terms of both concentration- and exposure time-effects. AMA shows the higher antiproliferation to two oral cancer CAL 27 and Ca9-22 cell lines than normal oral HGF-1 cell lines. Moreover, AMA induces the production of higher reactive oxygen species (ROS) levels and pan-caspase activation in oral cancer CAL 27 and Ca9-22 cells than in normal oral HGF-1 cells, providing the possible mechanism for its selective antiproliferation effect of AMA. In addition to ROS, AMA induces mitochondrial superoxide (MitoSOX) generation and depletes mitochondrial membrane potential (MitoMP). This further supports the AMA-induced oxidative stress changes in oral cancer CAL 27 and Ca9-22 cells. AMA also shows high expressions of annexin V in CAL 27 and Ca9-22 cells and cleaved forms of poly (ADP-ribose) polymerase (PARP), caspase 9, and caspase 3 in CAL 27 cells, supporting the apoptosis-inducing ability of AMA. Furthermore, AMA induces DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine [8-oxodG]) in CAL 27 and Ca9-22 cells. Notably, the AMA-induced selective antiproliferation, oxidative stress, and DNA damage were partly prevented from N-acetylcysteine (NAC) pretreatments. Taken together, AMA selectively kills oral cancer cells in an oxidative stress-dependent mechanism involving apoptosis and DNA damage.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Yu Hsieh
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
- Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yun-Chiao Yeh
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu Ou-Yang
- Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Yu TJ, Tang JY, Lin LC, Lien WJ, Cheng YB, Chang FR, Ou-Yang F, Chang HW. Withanolide C Inhibits Proliferation of Breast Cancer Cells via Oxidative Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) 2020; 9:antiox9090873. [PMID: 32947878 PMCID: PMC7555407 DOI: 10.3390/antiox9090873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some withanolides, particularly the family of steroidal lactones, show anticancer effects, but this is rarely reported for withanolide C (WHC)—especially anti-breast cancer effects. The subject of this study is to evaluate the ability of WHC to regulate the proliferation of breast cancer cells, using both time and concentration in treatment with WHC. In terms of ATP depletion, WHC induced more antiproliferation to three breast cancer cell lines, SKBR3, MCF7, and MDA-MB-231, than to normal breast M10 cell lines. SKBR3 and MCF7 cells showing higher sensitivity to WHC were used to explore the antiproliferation mechanism. Flow cytometric apoptosis analyses showed that subG1 phase and annexin V population were increased in breast cancer cells after WHC treatment. Western blotting showed that cleaved forms of the apoptotic proteins poly (ADP-ribose) polymerase (c-PARP) and cleaved caspase 3 (c-Cas 3) were increased in breast cancer cells. Flow cytometric oxidative stress analyses showed that WHC triggered reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX) production as well as glutathione depletion. In contrast, normal breast M10 cells showed lower levels of ROS and annexin V expression than breast cancer cells. Flow cytometric DNA damage analyses showed that WHC triggered γH2AX and 8-oxo-2′-deoxyguanosine (8-oxodG) expression in breast cancer cells. Moreover, N-acetylcysteine (NAC) pretreatment reverted oxidative stress-mediated ATP depletion, apoptosis, and DNA damage. Therefore, WHC kills breast cancer cells depending on oxidative stress-associated mechanisms.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Wan-Ju Lien
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
42
|
Peng SY, Lin LC, Yang ZW, Chang FR, Cheng YB, Tang JY, Chang HW. Combined Treatment with Low Cytotoxic Ethyl Acetate Nepenthes Extract and Ultraviolet-C Improves Antiproliferation to Oral Cancer Cells via Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9090876. [PMID: 32948007 PMCID: PMC7555961 DOI: 10.3390/antiox9090876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet-C (UVC) irradiation provides an alternative radiotherapy to X-ray. UVC sensitizer from natural products may improve radiotherapy at low cytotoxic side effects. The aim of this study is to assess the regulation for oral cancer cell proliferation by a combined treatment of UVC and our previously reported anti-oral cancer natural product (ethyl acetate extract of Nepenthes adrianii × clipeata; EANA). The detailed possible UVC sensitizing mechanisms of EANA such as effects on cell proliferation, cell cycle, apoptosis, and DNA damage are investigated individually and in combination using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) assay, flow cytometry, and western blotting at low dose conditions. In a 24 h MTS assay, the low dose EANA (5 μg/mL) and low dose UVC (12 J/m2) individually show 80% and combinedly 57% cell proliferation in oral cancer Ca9-22 cells; but no cytotoxicity to normal oral HGF-1 cells. Mechanistically, low dose EANA and low dose UVC individually induce apoptosis (subG1 accumulation, pancaspase activation, and caspases 3, 8, 9), oxidative stress (reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential depletion), and DNA damage (γH2AX and 8-hydroxy-2′-deoxyguanosine). Moreover, the combined treatment (UVC/EANA) synergistically induces these changes. Combined low dose treatment-induced antiproliferation, apoptosis, oxidative stress, and DNA damage were suppressed by the ROS scavenger N-acetylcysteine. In conclusion, UVC/EANA shows synergistic antiproliferation, oxidative stress, apoptosis, and DNA damage to oral cancer cells in an oxidative stress-dependent manner. With the selective killing properties of low dose EANA and low dose UVC, EANA provides a novel UVC sensitizing agent to improve the anti-oral cancer therapy.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Zhe-Wei Yang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-B.C.)
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-B.C.)
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
43
|
Methanol Extract of Usnea barbata Induces Cell Killing, Apoptosis, and DNA Damage against Oral Cancer Cells through Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9080694. [PMID: 32756347 PMCID: PMC7465944 DOI: 10.3390/antiox9080694] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Some lichens provide the resources of common traditional medicines and show anticancer effects. However, the anticancer effect of Usnproliea barbata (U. barbata) is rarely investigated, especially for oral cancer cells. The aim of this study was to investigate the cell killing function of methanol extracts of U. barbata (MEUB) against oral cancer cells. MEUB shows preferential killing against a number of oral cancer cell lines (Ca9-22, OECM-1, CAL 27, HSC3, and SCC9) but rarely affects normal oral cell lines (HGF-1). Ca9-22 and OECM-1 cells display the highest sensitivity to MEUB and were chosen for concentration effect and time course experiments to address its cytotoxic mechanisms. MEUB induces apoptosis of oral cancer cells in terms of the findings from flow cytometric assays and Western blotting, such as subG1 accumulation, annexin V detection, and pancaspase activation as well as poly (ADP-ribose) polymerase (PARP) cleavage. MEUB induces oxidative stress and DNA damage of oral cancer cells following flow cytometric assays, such as reactive oxygen species (ROS)/mitochondrial superoxide (MitoSOX) production, mitochondrial membrane potential (MMP) depletion as well as overexpression of γH2AX and 8-oxo-2'deoxyguanosine (8-oxodG). All MEUB-induced changes in oral cancer cells were triggered by oxidative stress which was validated by pretreatment with antioxidant N-acetylcysteine (NAC). In conclusion, MEUB causes preferential killing of oral cancer cells and is associated with oxidative stress, apoptosis, and DNA damage.
Collapse
|
44
|
Yu TJ, Tang JY, Ou-Yang F, Wang YY, Yuan SSF, Tseng K, Lin LC, Chang HW. Low Concentration of Withaferin a Inhibits Oxidative Stress-Mediated Migration and Invasion in Oral Cancer Cells. Biomolecules 2020; 10:E777. [PMID: 32429564 PMCID: PMC7277689 DOI: 10.3390/biom10050777] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Withaferin A (WFA) has been reported to inhibit cancer cell proliferation based on high cytotoxic concentrations. However, the low cytotoxic effect of WFA in regulating cancer cell migration is rarely investigated. The purpose of this study is to investigate the changes in migration and mechanisms of oral cancer Ca9-22 cells after low concentrations of WFA treatment. WFA under 0.5 μM at 24 h treatment shows no cytotoxicity to oral cancer Ca9-22 cells (~95% viability). Under this condition, WFA triggers reactive oxygen species (ROS) production and inhibits 2D (wound healing) and 3D cell migration (transwell) and Matrigel invasion. Mechanically, WFA inhibits matrix metalloproteinase (MMP)-2 and MMP-9 activities but induces mRNA expression for a group of antioxidant genes, such as nuclear factor, erythroid 2-like 2 (NFE2L2), heme oxygenase 1 (HMOX1), glutathione-disulfide reductase (GSR), and NAD(P)H quinone dehydrogenase 1 (NQO1)) in Ca9-22 cells. Moreover, WFA induces mild phosphorylation of the mitogen-activated protein kinase (MAPK) family, including extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 expression. All WFA-induced changes were suppressed by the presence of ROS scavenger N-acetylcysteine (NAC). Therefore, these results suggest that low concentration of WFA retains potent ROS-mediated anti-migration and -invasion abilities for oral cancer cells.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yen-Yun Wang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Shyng-Shiou F. Yuan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Kevin Tseng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
45
|
Gallo A, Boni R, Tosti E. Gamete quality in a multistressor environment. ENVIRONMENT INTERNATIONAL 2020; 138:105627. [PMID: 32151884 DOI: 10.1016/j.envint.2020.105627] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 05/25/2023]
Abstract
Over the past few decades, accumulated evidence confirms that the global environment conditions are changing rapidly. Urban industrialization, agriculture and globalization have generated water, air and soil pollution, giving rise to an environment with a growing number of stress factors, which has a serious impact on the fitness, reproduction and survival of living organisms. The issue raises considerable concern on biodiversity conservation, which is now at risk: it is estimated that a number of species will be extinct in the near future. Sexual reproduction is the process that allows the formation of a new individual and is underpinned by gamete quality defined as the ability of spermatozoa and oocytes to interact during fertilization leading to the creation and development of a normal embryo. This review aimed to provide the current state of knowledge regarding the impact of a broad spectrum of environmental stressors on diverse parameters used to estimate and evaluate gamete quality in humans and in canonical animal models used for experimental research. Effects of metals, biocides, herbicides, nanoparticles, plastics, temperature rise, ocean acidification, air pollution and lifestyle on the physiological parameters that underlie gamete fertilization competence are described supporting the concept that environmental stressors represent a serious hazard to gamete quality with reproductive disorders and living organism failure. Although clear evidence is still limited, gamete capacity to maintain and/or recover physiological conditions is recently demonstrated providing further clues about the plasticity of organisms and their tolerance to the pressures of pollution that may facilitate the reproduction and the persistence of species within the scenario of global change. Changes in the global environment must be urgently placed at the forefront of public attention, with a massive effort invested in further studies aimed towards implementing current knowledge and identifying new methodologies and markers to predict impairment of gamete quality.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy.
| |
Collapse
|
46
|
Wang HR, Tang JY, Wang YY, Farooqi AA, Yen CY, Yuan SSF, Huang HW, Chang HW. Manoalide Preferentially Provides Antiproliferation of Oral Cancer Cells by Oxidative Stress-Mediated Apoptosis and DNA Damage. Cancers (Basel) 2019; 11:cancers11091303. [PMID: 31487907 PMCID: PMC6770486 DOI: 10.3390/cancers11091303] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Marine sponge-derived manoalide has a potent anti-inflammatory effect, but its potential application as an anti-cancer drug has not yet been extensively investigated. The purpose of this study is to evaluate the antiproliferative effects of manoalide on oral cancer cells. MTS assay at 24 h showed that manoalide inhibited the proliferation of six types of oral cancer cell lines (SCC9, HSC3, OC2, OECM-1, Ca9-22, and CAL 27) but did not affect the proliferation of normal oral cell line (human gingival fibroblasts (HGF-1)). Manoalide also inhibits the ATP production from 3D sphere formation of Ca9-22 and CAL 27 cells. Mechanically, manoalide induces subG1 accumulation in oral cancer cells. Manoalide also induces more annexin V expression in oral cancer Ca9-22 and CAL 27 cells than that of HGF-1 cells. Manoalide induces activation of caspase 3 (Cas 3), which is a hallmark of apoptosis in oral cancer cells, Ca9-22 and CAL 27. Inhibitors of Cas 8 and Cas 9 suppress manoalide-induced Cas 3 activation. Manoalide induces higher reactive oxygen species (ROS) productions in Ca9-22 and CAL 27 cells than in HGF-1 cells. This oxidative stress induction by manoalide is further supported by mitochondrial superoxide (MitoSOX) production and mitochondrial membrane potential (MitoMP) destruction in oral cancer cells. Subsequently, manoalide-induced oxidative stress leads to DNA damages, such as γH2AX and 8-oxo-2’-deoxyguanosine (8-oxodG), in oral cancer cells. Effects, such as enhanced antiproliferation, apoptosis, oxidative stress, and DNA damage, in manoalide-treated oral cancer cells were suppressed by inhibitors of oxidative stress or apoptosis, or both, such as N-acetylcysteine (NAC) and Z-VAD-FMK (Z-VAD). Moreover, mitochondria-targeted superoxide inhibitor MitoTEMPO suppresses manoalide-induced MitoSOX generation and γH2AX/8-oxodG DNA damages. This study validates the preferential antiproliferation effect of manoalide and explores the oxidative stress-dependent mechanisms in anti-oral cancer treatment.
Collapse
Affiliation(s)
- Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Yen-Yun Wang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan.
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Shyng-Shiou F Yuan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
47
|
Huang CH, Wang FT, Chan WH. Dosage-related beneficial and deleterious effects of ginsenoside Rb1 on mouse oocyte maturation and fertilization and fetal development. ENVIRONMENTAL TOXICOLOGY 2019; 34:1001-1012. [PMID: 31112002 DOI: 10.1002/tox.22771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Ginsenoside Rb1 (GRb1), the major saponin component of ginseng root, has a wide range of therapeutic applications for various diseases. Previously, our group showed that GRb1 triggers ROS-mediated apoptotic cascades in mouse blastocysts, leading to decreased cell viability and impairment of pre- and postimplantation embryonic development, both in vitro and in vivo. In this study, we further found that GRb1 exerted dose-dependent effects on oocyte maturation and sequent development in vitro. Oocytes preincubated with 25 μg/mL GRB1 displayed significantly enhanced maturation and in vitro fertilization (IVF) rates, along with progression of subsequent embryonic development. In contrast, treatment with 50 and 100 μg/mL GRB1 led to impairment of mouse oocyte maturation, decreased IVF rates, and injurious effects on subsequent embryonic development. In vivo, intravenous injection of 1 mg/kg body weight GRb1 significantly promoted mouse oocyte maturation, IVF, and early-stage embryo development after fertilization while administration of 5 mg/kg body weight GRb1 led to a marked decrease in oocyte maturation and IVF rates concomitant with impairment of early embryonic development in our animal model. In terms of the mechanisms underlying the regulatory effects of GRb1 demonstrated increased intracellular reactive oxygen species (ROS) production and apoptosis in the 100 μg/mL GRb1 treatment group. However, we observed a significant decrease in total intracellular ROS content and inhibition of apoptosis events in the 25 μg/mL GRb1 treatment group, signifying that the intracellular ROS content serves as a key upstream regulator of GRb1 that influences its dose-dependent beneficial or deleterious effects on oocyte maturation and sequent embryonic development. For further clarification of the mechanisms underlying GRb1-triggered injurious effects, oocytes were pretreated with Ac-DEVD-CHO, a caspase-3-specific inhibitor, which effectively blocked injury to oocyte maturation, fertilization, and sequent development. In sum, study findings highlight the potential involvement of p53-, p21-, and caspase-3-dependent regulatory signaling cascades in GRb1-mediated apoptotic processes.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
48
|
Tang JY, Peng SY, Cheng YB, Wang CL, Farooqi AA, Yu TJ, Hou MF, Wang SC, Yen CH, Chan LP, Ou-Yang F, Chang HW. Ethyl acetate extract of Nepenthes adrianii x clipeata induces antiproliferation, apoptosis, and DNA damage against oral cancer cells through oxidative stress. ENVIRONMENTAL TOXICOLOGY 2019; 34:891-901. [PMID: 31157515 DOI: 10.1002/tox.22748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 05/27/2023]
Abstract
Nepenthes plants are regarded as a kind of Traditional Chinese Medicine for several diseases but its anticancer activity remain unclear. The subject of this study is to evaluate the antiproliferation effects on oral cancer cells by Nepenthes plants using ethyl acetate extract of Nepenthes adrianii x clipeata (EANA). Cell viability was detected using MTS assay. Its detailed mechanisms including cell cycle, apoptosis, oxidative stress, and DNA damage were explored by flow cytometry or western blotting. For 24 hours EANA treatment, five kinds of oral cancer cells (CAL 27, Ca9-22, OECM-1, HSC-3, and SCC9) show IC50 values of cell viability ranging from 8 to 17 μg/mL but the viability of normal oral cells (HGF-1) remains over 80%. Subsequently, CAL 27 and Ca9-22 cells with high sensitivity to EANA were chosen to investigate the detailed mechanism. EANA displays the time course and concentration effects for inducing apoptosis based on flow cytometry (subG1 and annexin V analyses) and western blotting [cleaved poly (ADP-ribose) polymerase (c-PARP)]. Oxidative stress and DNA damage were induced by EANA treatments in oral cancer cells through reactive oxygen species (ROS), mitochondrial membrane potential disruption, mitochondrial superoxide, and γH2AX. All these changes of EANA treatments in oral cancer cells were reverted by the ROS scavenger N-acetylcysteine pretreatment. Therefore, EANA induces preferential killing, apoptosis, and DNA damage against oral cancer cells through oxidative stress.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Faculty of Medicine, Department of Radiation Oncology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Yao Peng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | - Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Chieh Wang
- College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Tang JY, Yu TJ, Lin LC, Peng SY, Wang CL, Ou-Yang F, Cheng YB, Chang HW. Ethyl acetate extracts of Nepenthes ventricosa x sibuyanensis leaves cause growth inhibition against oral cancer cells via oxidative stress. Onco Targets Ther 2019; 12:5227-5239. [PMID: 31308694 PMCID: PMC6614826 DOI: 10.2147/ott.s190460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction: The genus Nepenthes of the pitcher plants contains several natural and hybrid species that are commonly used in herbal medicine in several countries, but its possible use in cancer applications remains unknown as yet. Methods: In this study, we investigated the antioral cancer properties using ethyl acetate extracts of the Nepenthes hybrid (Nepenthes ventricosa x sibuyanensis), namely EANS. The bioactivity was detected by a MTS-based cell proliferation assay and flow cytometric or Western blot analysis for apoptosis, oxidative stress, and DNA damage. Results: Treatment for 24 hrs of EANS inhibited all three types of oral cancer cells that were tested (Ca9-22, CAL 27, and SCC9), with just a small difference to normal oral cells (HGF-1). This antiproliferation was inhibited by pretreatments with the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC), and the apoptosis inhibitor (Z-VAD). EANS treatment increased the subG1 population and it also dose- and time-dependently induced annexin V- and pancaspase-detected apoptosis as well as cleaved caspases 3 and 9 overexpressions in the oral cancer cells (Ca9-22). After EANS treatment of Ca9-22 cells, intracellular ROS and mitochondrial superoxide (MitoSOX) were overexpressed and mitochondrial membrane potential (MMP) was disrupted. Moreover, DNA damages such as γH2AX and 8-oxo-2ʹ-deoxyguanosine (8-oxodG) were increased after EANS treatment to Ca9-22 cells. The EANS-induced effects (namely, oxidative stress, apoptosis, and DNA damage) were suppressed by ROS scavenger. Conclusion: Our findings demonstrated that EANS inhibits ROS-mediated proliferation against oral cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan.,School of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Sheng-Yao Peng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
50
|
Ou-Yang F, Tsai IH, Tang JY, Yen CY, Cheng YB, Farooqi AA, Chen SR, Yu SY, Kao JK, Chang HW. Antiproliferation for Breast Cancer Cells by Ethyl Acetate Extract of Nepenthes thorellii x ( ventricosa x maxima). Int J Mol Sci 2019; 20:ijms20133238. [PMID: 31266224 PMCID: PMC6651324 DOI: 10.3390/ijms20133238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Extracts from the Nepenthes plant have anti-microorganism and anti-inflammation effects. However, the anticancer effect of the Nepenthes plant is rarely reported, especially for breast cancer cells. Here, we evaluate the antitumor effects of the ethyl acetate extract of Nepenthesthorellii x (ventricosa x maxima) (EANT) against breast cancer cells. Cell viability and flow cytometric analyses were used to analyze apoptosis, oxidative stress, and DNA damage. EANT exhibits a higher antiproliferation ability to two breast cancer cell lines (MCF7 and SKBR3) as compared to normal breast cells (M10). A mechanistic study demonstrates that EANT induces apoptosis in breast cancer cells with evidence of subG1 accumulation and annexin V increment. EANT also induces glutathione (GSH) depletion, resulting in dramatic accumulations of reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX), as well as the depletion of mitochondrial membrane potential (MMP). These oxidative stresses attack DNA, respectively leading to DNA double strand breaks and oxidative DNA damage in γH2AX and 8-oxo-2′deoxyguanosine (8-oxodG) assays. Overall these findings clearly revealed that EANT induced changes were suppressed by the ROS inhibitor. In conclusion, our results have shown that the ROS-modulating natural product (EANT) has antiproliferation activity against breast cancer cells through apoptosis, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11050, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Shu-Rong Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Kai Kao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, Changhua 50006, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|