1
|
Das S, Murumulla L, Ghosh P, Challa S. Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders. Biometals 2025; 38:371-417. [PMID: 39960543 DOI: 10.1007/s10534-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 04/03/2025]
Abstract
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
Collapse
Affiliation(s)
- Shrabani Das
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Pritha Ghosh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
2
|
Qin Z, Chen Y, Zhao X, Yu S. [Research progress on metal pollutants inducing neurotoxicity through ferroptosis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:699-707. [PMID: 39686702 PMCID: PMC11726008 DOI: 10.3724/zdxbyxb-2024-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 12/18/2024]
Abstract
It has been confirmed that exposure to various metal pollutants can induce neurotoxicity, which is closely associated with the occurrence and development of neurological disorders. Ferroptosis is a form of cell death in response to metal pollutant exposure and it is closely related to oxidative stress, iron metabolism and lipid peroxidation. Recent studies have revealed that ferroptosis plays a significant role in the neurotoxicity induced by metals such as lead, cadmium, manganese, nickel, and antimony. Lead exposure triggers ferroptosis through oxidative stress, iron metabolism disorder and inflammation. Cadmium can induce ferroptosis through iron metabolism, oxidative stress and ferroptosis related signaling pathways. Manganese can promote ferroptosis through mitochondrial dysfunction, iron metabolism disorder and oxidative stress. Nickel can promote ferroptosis by influencing mitochondrial function, disrupting iron homeostasis and facilitating lipid peroxidation in the central nervous system. Antimony exposure can induce glutathione depletion by activating iron autophagy, resulting in excessive intracellular iron deposition and ultimately causing ferroptosis. This article reviews the effects of metal pollutants on ferroptosis-related indicators and discusses the specific mechanisms by which each metal triggers ferroptosis. It provides a reference for identifying targets for preventing neurotoxicity and for developing treatment strategies for neurological disorders.
Collapse
Affiliation(s)
- Ziyu Qin
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China.
| | - Yuqing Chen
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China.
| |
Collapse
|
3
|
Hao R, Li F, Sun-Waterhouse D, Li D. The roles of MicroRNAs in cadmium toxicity and in the protection offered by plant food-derived dietary phenolic bioactive substances against cadmium-induced toxicity. Food Chem 2024; 460:140483. [PMID: 39032304 DOI: 10.1016/j.foodchem.2024.140483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Cadmium, a harmful food contaminant, poses severe health risks. There are ongoing efforts to reduce cadmium pollution and alleviate its toxicity, including plant-based dietary intervention. This review hypothesizes that microRNAs (miRNAs), as regulatory eukaryotic transcripts, play crucial roles in modulating cadmium-induced organ damage, and plant food-derived bioactive compounds provide protective effects via miRNA-mediated mechanisms. The review reveals that there are interplays between certain miRNAs and plant food-derived dietary bioactive substances when these bioactives, especially phenolics, counteract cadmium toxicity through regulating physiologic and pathologic events (including oxidative stress, apoptosis, autophagy and inflammation). The review discusses common miRNA-associated physiologic/pathologic events and signal pathways shared by the cadmium toxicity and dietary intervention processes. This paper identifies the existing knowledge gaps and potential future work (e.g. joint actions between miRNAs and other noncoding RNAs in the fights against cadmium). The insights provided by this review can improve food safety strategies and public health outcomes.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
4
|
Fathima A, Bagang N, Kumar N, Dastidar SG, Shenoy S. Role of SIRT1 in Potentially Toxic Trace Elements (Lead, Fluoride, Aluminum and Cadmium) Associated Neurodevelopmental Toxicity. Biol Trace Elem Res 2024; 202:5395-5412. [PMID: 38416341 PMCID: PMC11502598 DOI: 10.1007/s12011-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous. Prenatally, the immature brain is extremely vulnerable and is therefore at high risk in pregnant women associated with occupational exposures. Lead, fluoride, aluminum, and cadmium are examples of possibly toxic trace elements that have been identified as an environmental concern in the aetiology of a number of neurological and neurodegenerative illnesses. SIRT1, a member of the sirtuin family has received most attention for its potential neuroprotective properties. SIRT1 is an intriguing therapeutic target since it demonstrates important functions to increase neurogenesis and cellular lifespan by modulating multiple pathways. It promotes axonal extension, neurite growth, and dendritic branching during the development of neurons. Additionally, it contributes to neurogenesis, synaptic plasticity, memory development, and neuroprotection. This review summarizes the possible role of SIRT1 signalling pathway in potentially toxic trace elements -induced neurodevelopmental toxicity, highlighting some molecular pathways such as mitochondrial biogenesis, CREB/BDNF and PGC-1α/NRF1/TFAM.
Collapse
Affiliation(s)
- Aqsa Fathima
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Newly Bagang
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial area Hajipur, Vaishali, Bihar, 844102, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Zhang J, Xiong YW, Zhu HL, Tan LL, Zhou H, Zheng XM, Zhang YF, Chang W, Xu DX, Wei T, Guan SZ, Wang H. Adolescent co-exposure to environmental cadmium and high-fat diet induces cognitive decline via Larp7 m6A-mediated SIRT6 inhibition. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135159. [PMID: 39002485 DOI: 10.1016/j.jhazmat.2024.135159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
The effects and underlying mechanisms of adolescent exposure to combined environmental hazards on cognitive function remain unclear. Here, using a combined exposure model, we found significant cognitive decline, hippocampal neuronal damage, and neuronal senescence in mice exposed to cadmium (Cd) and high-fat diet (HFD) during adolescence. Furthermore, we observed a significant downregulation of Sirtuin 6 (SIRT6) expression in the hippocampi of co-exposed mice. UBCS039, a specific SIRT6 activator, markedly reversed the above adverse effects. Further investigation revealed that co-exposure obviously reduced the levels of La ribonucleoprotein 7 (LARP7), disrupted the interaction between LARP7 and SIRT6, ultimately decreasing SIRT6 expression in mouse hippocampal neuronal cells. Overexpression of Larp7 reversed the combined exposure-induced SIRT6 decrease and senescence in mouse hippocampal neuronal cells. Additionally, the results showed notably elevated levels of Larp7 m6A and YTH domain family protein 2 (YTHDF2) in mouse hippocampal neuronal cells treated with the combined hazards. Ythdf2 short interfering RNA, RNA immunoprecipitation, and RNA stability assays further demonstrated that YTHDF2 mediated the degradation of Larp7 mRNA under combined exposure. Collectively, adolescent co-exposure to Cd and HFD causes hippocampal senescence and cognitive decline in mice by inhibiting LARP7-mediated SIRT6 expression in an m6A-dependent manner.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Su-Zhen Guan
- School of Public Health, Ningxia Medical University, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
6
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
7
|
Li R, Dai J, He Z, Gu S. Changes of LncRNAs during the Process of Antioxidants Antagonize Cadmium-Induced Oxidative Damage in Islet β Cells. Cell Biochem Biophys 2024; 82:827-837. [PMID: 38400990 DOI: 10.1007/s12013-024-01234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Long non-coding RNAs (LncRNAs) play important regulatory roles in oxidative damage. Resveratrol, curcumin, and cyanidin are phytogenic antioxidants widely existing in nature and they have been proved to antagonize certain heavy metal-induced oxidative damage in cells. However, can they antagonize oxidative damage induced by cadmium in islet β cells? Are their mechanisms of antagonizing oxidative damage related to LncRNAs? In this study, we first detected the cell viability of each group by CCK8 assay. Next, reactive oxygen species (ROS) were detected by the fluorescent probe. The contents of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) were detected according to the instructions of corresponding kits. At last, the levels of LncRNAs were detected by fluorescence quantitative real-time polymerase chain reaction (qPCR). The results showed that resveratrol, curcumin and cyanidin were able to reverse the reduction of cell viability induced by cadmium (CdSO4). Further determination revealed that SOD activities of the resveratrol+CdSO4, curcumin+CdSO4, and cyanidin+CdSO4 treatment groups increased significantly, and ROS levels and MDA contents dramatically decreased when compared with single CdSO4-treated group. More importantly, the levels of three CdSO4-elevated LncRNAs (NONMMUT029382, ENSMUST00000162103, ENSMUST00000117235) were all decreased and levels of three CdSO4-inhibited LncRNAs (NONMMUT036805, NONMMUT014565, NONMMUT065427) were increased after the pretreatment of resveratrol, curcumin and cyanidin. In summary, resveratrol, curcumin and cyanidin may effectly reverse the cadmium-induced oxidative damage and suggest that phytogenic antioxidants may prevent cells from cadmium-induced oxidative damage through changing the levels of LncRNAs.
Collapse
Affiliation(s)
- Rongxian Li
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China
| | - Jiao Dai
- Qujing Medical College, Qujing, Yunnan, China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| |
Collapse
|
8
|
Ruczaj A, Brzóska MM, Rogalska J. The Protective Impact of Aronia melanocarpa L. Berries Extract against Prooxidative Cadmium Action in the Brain-A Study in an In Vivo Model of Current Environmental Human Exposure to This Harmful Element. Nutrients 2024; 16:502. [PMID: 38398826 PMCID: PMC10891719 DOI: 10.3390/nu16040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Cadmium (Cd) is a prooxidant that adversely affects human health, including the nervous system. As exposure of the general population to this heavy metal is inevitable, it is crucial to look for agents that can prevent the effects of its toxic action. An experimental model on female rats of current lifetime human exposure to cadmium (3-24-months' treatment with 1 or 5 mg Cd/kg diet) was used to test whether low-level and moderate intoxication can exert a prooxidative impact in the brain and whether supplementation with a 0.1% extract from the berries of Aronia melanocarpa L. (Michx.) Elliott (AE; chokeberry extract) can protect against this action. Numerous parameters of the non-enzymatic and enzymatic antioxidative barrier, as well as total antioxidative and oxidative status (TAS and TOS, respectively), were determined and the index of oxidative stress (OSI) was calculated. Moreover, chosen prooxidants (myeloperoxidase, xanthine oxidase, and hydrogen peroxide) and biomarkers of oxidative modifications of lipids, proteins, and deoxyribonucleic acid were assayed. Cadmium dysregulated the balance between oxidants and antioxidants in the brain and led to oxidative stress and oxidative injury of the cellular macromolecules, whereas the co-administration of AE alleviated these effects. To summarize, long-term, even low-level, cadmium exposure can pose a risk of failure of the nervous system by the induction of oxidative stress in the brain, whereas supplementation with products based on aronia berries seems to be an effective protective strategy.
Collapse
Affiliation(s)
- Agnieszka Ruczaj
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
9
|
Arruebarrena MA, Hawe CT, Lee YM, Branco RC. Mechanisms of Cadmium Neurotoxicity. Int J Mol Sci 2023; 24:16558. [PMID: 38068881 PMCID: PMC10706630 DOI: 10.3390/ijms242316558] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cadmium is a heavy metal that increasingly contaminates food and drink products. Once ingested, cadmium exerts toxic effects that pose a significant threat to human health. The nervous system is particularly vulnerable to prolonged, low-dose cadmium exposure. This review article provides an overview of cadmium's primary mechanisms of neurotoxicity. Cadmium gains entry into the nervous system via zinc and calcium transporters, altering the homeostasis for these metal ions. Once within the nervous system, cadmium disrupts mitochondrial respiration by decreasing ATP synthesis and increasing the production of reactive oxygen species. Cadmium also impairs normal neurotransmission by increasing neurotransmitter release asynchronicity and disrupting neurotransmitter signaling proteins. Cadmium furthermore impairs the blood-brain barrier and alters the regulation of glycogen metabolism. Together, these mechanisms represent multiple sites of biochemical perturbation that result in cumulative nervous system damage which can increase the risk for neurological and neurodegenerative disorders. Understanding the way by which cadmium exerts its effects is critical for developing effective treatment and prevention strategies against cadmium-induced neurotoxic insult.
Collapse
Affiliation(s)
- Madelyn A. Arruebarrena
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Calvin T. Hawe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Young Min Lee
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Rachel C. Branco
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| |
Collapse
|
10
|
Luo Y, Hu N, Zhao Y, Lai J, Luo X, Liu J. Resveratrol‑mediated activation of SIRT1 inhibits the PERK‑eIF2α‑ATF4 pathway and mitigates bupivacaine‑induced neurotoxicity in PC12 cells. Exp Ther Med 2023; 26:433. [PMID: 37602306 PMCID: PMC10433439 DOI: 10.3892/etm.2023.12132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and apoptosis play significant roles in the development of neurotoxicity caused by bupivacaine (BUP). By activating sirtuin 1 (SIRT1), resveratrol (RSV) can regulate various cellular processes associated with anti-oxidative stress, anti-apoptosis and anti-inflammatory responses, thereby exerting neuroprotective effects. However, it remains unknown whether the activation of SIRT1 by RSV is able to attenuate BUP-induced ER stress and apoptosis. Therefore, the present study aimed to explore the effect of RSV on BUP-induced cytotoxicity in PC12 cells and the underlying mechanism. Cell Counting Kit-8 assays, flow cytometry and inverted phase-contrast microscopy were used to assess the viability, apoptosis rate and morphological changes of the cells, respectively. Western blotting and immunofluorescence staining were used to analyze the levels of SIRT1, the apoptosis-related proteins Bax, Bcl-2 and cleaved caspase-3, the ER stress-related proteins glucose-regulated protein 78, caspase-12 and CHOP, and the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2 α (eIF2α)-activating transcription factor 4 (ATF4) pathway-associated proteins phosphorylated (p)-PERK, PERK, p-eIF2α, eIF2α and ATF4. The results revealed that BUP induced cell apoptosis and decreased cell viability, accompanied by the downregulation of SIRT1. However, RSV restored SIRT1 protein expression, downregulated the expression of the pro-apoptotic protein Bax, upregulated the expression of the anti-apoptotic protein Bcl-2, decreased the apoptosis rate of the cells and increased cell viability. Furthermore, the anti-apoptotic effects exhibited by RSV were associated with inhibition of the PERK-eIF2α-ATF4 pathway of ER stress. However, the protective effect of RSV was significantly mitigated by the SIRT1 inhibitor EX527. These results indicate that the activation of SIRT1 by RSV alleviates BUP-induced PC12 cell ER stress and apoptosis via regulation of the PERK-eIF2α-ATF4 pathway. These findings offer insights into the molecular mechanism underlying BUP-induced apoptosis and suggest the potential of RSV as a therapeutic agent against the neurotoxicity caused by BUP.
Collapse
Affiliation(s)
- Yunpeng Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Na Hu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yang Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xi Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jingchen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Chang H, Yang F, Bai H, Lu Z, Xing C, Dai X, Wan W, Liao S, Cao H. Molybdenum and/or cadmium induce NLRP3 inflammasome production by causing mitochondria-associated endoplasmic reticulum membrane dysfunction in sheep hepatocytes. Chem Biol Interact 2023; 382:110617. [PMID: 37385403 DOI: 10.1016/j.cbi.2023.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Accumulation of the heavy metals molybdenum (Mo) and cadmium (Cd) in the liver can induce organelle damage and inflammation, resulting in hepatotoxicity. The effect of Mo and/or Cd on sheep hepatocytes was investigated by determining the relationship between the mitochondria-associated endoplasmic reticulum membrane (MAM) and NLRP3 inflammasome. Sheep hepatocytes were divided into four groups: the control group, Mo group (600 μM Mo), Cd group (4 μM Cd) and Mo + Cd group (600 μM Mo+4 μM Cd). The results showed that Mo and/or Cd exposure increased the levels of lactate dehydrogenase (LDH) and nitric oxide (NO) in the cell culture supernatant, elevated the levels of intracellular Ca2+ and mitochondrial Ca2+, downregulated the expression of MAM-related factors (IP3R, GRP75, VDAC1, PERK, ERO1-α, Mfn1, Mfn2, ERP44), shortened the length of the MAM and reduced the formation of the MAM structure, eventually causing MAM dysfunction. Moreover, the expression levels of NLRP3 inflammasome-related factors (NLRP3, Caspase1, IL-1β, IL-6, TNF-α) were also dramatically increased after Mo and Cd exposure, triggering NLRP3 inflammasome production. However, an IP3R inhibitor, 2-APB treatment significantly alleviated these changes. Overall, the data indicate that Mo and Cd coexposure leads to structural disruption and dysfunction of MAM, disrupts cellular Ca2+ homeostasis, and increases NLRP3 inflammasome production in sheep hepatocytes. However, the inhibition of IP3R alleviates NLRP3 inflammasome production induced by Mo and Cd.
Collapse
Affiliation(s)
- Huifeng Chang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - He Bai
- Medical Research Center, Mudanjiang Medical University, No. 3 Tongxiang street, Aimin District, Mudanjiang, 157011, Heilongjiang, PR China
| | - Zengting Lu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Wengen Wan
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330096, Jiangxi, PR China
| | - Shuxian Liao
- Fengxin County Modern Agricultural Technology Service Center, Fengxin, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
12
|
Zhang T, Sun S, Gavrilović A, Li D, Tang R. Selenium alleviates cadmium-induced oxidative stress, endoplasmic reticulum stress, and apoptosis in L8824 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115337. [PMID: 37567109 DOI: 10.1016/j.ecoenv.2023.115337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Cadmium (Cd) is a toxic pollutant in industrial production that induces organ damage and apoptosis, While, selenium (Se) has the biological function of antagonizing Cd toxicity. Hence, to gain further insight into the protective mechanisms of selenium against Cd-induced damage in Ctenopharyngodon idella liver (L8824) cells, L8824 were exposed to 5 μM, 15 μM, 25 μM cadmium chloride for 24 h after pre-incubation with 25 μM sodium selenite for 9 h. Cell proliferation and morphological changes, the levels of reactive oxygen species (ROS) and antioxidant enzyme activity, mitochondrial membrane potential (MMP), endoplasmic reticulum stress (ERS)-related pathway genes expression, intracellular calcium levels and apoptosis were assessed to explore the protective effect of selenium in Cd-induced L8824 cell damage. The results showed that Cd caused decreased cell viability, ROS accumulation, reduced activity of antioxidant enzymes (SOD, CAT GPx and T-AOC) and apoptosis in L8824 cells. The incubation of Se prominently ameliorated cell proliferation, activated the Keap1-Nrf2 pathway, and restored antioxidant enzyme activity. Furthermore, the expression of grp78, perk, eif-2α, atf4, chop bax, jnk, caspase-3 and caspase-9 was significantly upregulated after Cd exposure, while the expression of bcl-2 was significantly downregulated. Se supplementation alleviated Cd-induced ERS and apoptosis. Moreover, Cd-induced elevation of intracellular Ca2+ levels were alleviated by dantrolene and 2-APB, suggesting that intracellular calcium disorders were caused by Ca2+ released by RyR and IP3R-mediated ER. The results of this study suggested that Cd could induce oxidative stress, ERS, mitochondrial damage and evoke apoptosis, whereas Se had protective effects in preventing Cd induced damage by inhibiting ERS, maintaining intracellular calcium homeostasis, enhancing the antioxidant capacity of L8824 cells and downregulating the Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyuan Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ana Gavrilović
- University of Zagreb, Faculty of Agriculture, 10000 Zagreb, Croatia
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry, Yangtze River Economic Belt, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry, Yangtze River Economic Belt, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
13
|
Wen S, Xu M, Zhang W, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Cadmium induces mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress in neuronal cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:743-753. [PMID: 36527706 DOI: 10.1002/tox.23724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Cadmium is a widespread environmental contaminant and its neurotoxicity has raised serious concerns. Mitochondrial dysfunction is a key event in Cd-induced nervous system disease; however, the exact molecular mechanism involved has not been fully elucidated. Increasing evidences have shown that Sirtuin 1 (SIRT1) is the key target protein impaired in Cd-induced mitochondrial dysfunction. In this study, the role of SIRT1 in Cd-induced mitochondrial dysfunction and cell death and the underlying mechanisms were evaluated in vitro using PC12 cells and primary rat cerebral cortical neurons. The results showed that Cd exposure caused cell death by inhibiting SIRT1 expression, thus inducing oxidative stress and mitochondrial dysfunction in vitro. However, inhibition of oxidative stress by the antioxidant puerarin alleviated Cd-induced mitochondrial dysfunction. Furthermore, activation of SIRT1 using the agonist Srt1720 significantly abolished Cd-induced oxidative stress and mitochondrial dysfunction and ultimately alleviated Cd-induced neuronal cell death. Collectively, our data indicate that Cd induced mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress, leading to the death of PC12 cells and primary rat cerebral cortical neurons. These findings suggest a novel mechanism for Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
14
|
Shen Y, You Y, Zhu K, Li G, Huang X, Chen D, Yang F, Dong L, Li J, Yu X. The traditional Chinese medicine Qiangjing tablet prevents blood-testis barrier injury induced by CdCl 2 through the PI3K/Akt/Rictor signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:591-603. [PMID: 36370150 DOI: 10.1002/tox.23706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Environmental contaminants such as cadmium (Cd) may have a deleterious impact on sperm and reduce male fertility by compromising the blood-testis barrier (BTB). Hence, the effects of the traditional Chinese medicine Qiangjing tablet (QJP) on sperm quality and BTB alterations induced by Cd in mouse testes were examined. METHODS Adult KM mice challenged with Cd chloride were examined, QJP was administered to mice as an oral drug by gavage, and the experiments lasted 2 weeks. Testicular and epididymal weights, sperm quality, anti-sperm antibodies (AsAb), hormone levels, and histology were evaluated. Changes in the levels of N-cadherin, occludin, ZO-1, claudin-11, F-actin, and β-tubulin and their mRNAs were evaluated. The effects of QJP on the PI3K/Akt/Rictor pathway were evaluated. RESULTS CdCl2 decreased reproductive organ weight, sperm quality, and testosterone (T) levels; increased AsAb, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels; induced structural damage in testicles with BTB disruption; increased BTB permeability; and decreased N-cadherin, occludin, ZO-1, claudin-11, F-actin, and β-tubulin expression. After treatment, QJP blocked the effects of Cd on reproductive organ weight, sperm quality, and T; mitigated germinal epithelium compartment alterations; decreased AsAb, FSH, and LH levels; and preserved BTB ultrastructure and function. In addition, QJP induced increases in N-cadherin, occludin, ZO-1, claudin-11, F-actin, and β-tubulin levels and the expression of their mRNAs through the PI3K/Akt/Rictor pathway. After the application of JRAB2011, the levels of a specific mTORC2 suppressor, Rictor, and the BTB-protective effect of QJP were greatly reduced. CONCLUSIONS We demonstrated the effect of QJP against Cd-induced damage to the BTB, and the results indicate that QJP may play a significant role in opposing the effects of Cd through the PI3K/Akt/Rictor pathway.
Collapse
Affiliation(s)
- Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaodong You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangsen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Diang Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Yang
- Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Dong
- Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junjun Li
- Chengdu Fifth People's Hospital/The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xujun Yu
- Chengdu Fifth People's Hospital/The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Liu C, Zhang R, Yang L, Ji T, Zhu C, Liu B, Zhang H, Xu C, Zhang N, Huang S, Chen L. Neuroprotection of resveratrol against cadmium-poisoning acts through dual inhibition of mTORC1/2 signaling. Neuropharmacology 2022; 219:109236. [PMID: 36049535 PMCID: PMC9524506 DOI: 10.1016/j.neuropharm.2022.109236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Resveratrol is a natural polyphenol with neuroprotective function. The underlying mechanism is not well understood. Our previous studies have identified that resveratrol antagonizes cadmium (Cd) neurotoxicity via targeting PP2A/PP5-mediated Erk1/2 and JNK pathways. Here we show that resveratrol protected against Cd-poisoning also by blocking Cd-induced activation of mTORC1 and mTORC2 pathways in PC12 cells and murine primary neurons. Co-treatment with inhibitors of mTORC1 (rapamycin), mTORC1/2 (PP242), Erk1/2 (U0126) and/or JNK (SP600125), knockdown of mTOR, or disruption of mTORC1 and/or mTORC2 by silencing raptor, rictor or raptor/rictor, respectively, markedly potentiated the inhibitory effects of resveratrol on Cd-induced phosphorylation of S6K1/4E-BP1 (mTORC1 substrates), Akt (mTORC2 substrate), Erk1/2 and/or JNK/c-Jun, cleavage of caspase-3 and cell death in PC12 cells and/or primary neurons. Knockdown of S6K1 or 4E-BP1, or ectopic expression of constitutively hypophosphorylated 4E-BP1 (4E-BP1-5A) reinforced the resveratrol's inhibition on Cd-evoked cell death, whereas ectopic expression of constitutively active S6K1 or knockdown of 4E-BP1 attenuated the resveratrol's inhibition on Cd-induced cell death. Co-treatment with Akt inhibitor or overexpression of dominant negative Akt (dn-Akt) strengthened the resveratrol's suppression on Cd-induced ROS, Erk1/2 activation and apoptosis, whereas overexpression of constitutively active Akt (myr-Akt) conferred high resistance to the resveratrol's inhibitory effects in the neuronal cells. Taken together, the results indicate that resveratrol attenuates Cd-induced neuronal apoptosis partly through inhibition of mTORC1/2 pathways. Our studies highlight that resveratrol can be exploited for the prevention of Cd toxicity related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunxiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China; Department of Medical Technology, Suzhou Vocational Health College, Suzhou, 215009, PR China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China; College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Liu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tong Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Cuilan Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Nana Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Shreveport, LA, 71130-3932, USA; Department of Hematology and Oncology, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
16
|
IL10/AMPK pathway was associated with the hippocampal anti-inflammatory response to high-sugar and high-fat diet withdrawal. Inflamm Res 2022; 71:1365-1374. [PMID: 36083322 DOI: 10.1007/s00011-022-01632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The present experimental study aimed to evaluate the effect of consuming an obesogenic diet (OD) on serum and hippocampal inflammation and proteins related to energy metabolism, alongside, we evaluated how the same parameters responded to an OD withdrawal. SUBJECTS Thirty male 60-days-old Wistar rats were used. METHODS The control group (n = 10) was fed the control diet across the whole experiment. The remaining animals were fed a high-sugar/high-fat (HSHF) diet for 30 days (n = 20) and half of them were placed on the control diet for 48 h (n = 10) afterwards. RESULTS OD intake decreased hippocampal AMPK phosphorylation, although, it did not increase serum inflammation and only increased hippocampal pNFκBp65 levels without any increase in the cytokines assessed. Moreover, OD withdrawal led to higher inflammatory markers in the serum and hippocampus and higher hippocampal AMPK phosphorylation. The mediation models applied suggested that the effect of OD withdrawal on hippocampal inflammation was driven by serum inflammation, which activated the hippocampal IL10/AMPK anti-inflammatory pathway as a response. CONCLUSION Our analyses suggest that OD withdrawal increases serum inflammation with hippocampal consequent inflammatory alterations. Despite the general assumption that improving diet improves health, this may not be immediate.
Collapse
|
17
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
18
|
Liu Y, Wang X, Si B, Wang T, Wu Y, Liu Y, Zhou Y, Tong H, Zheng X, Xu A. Zinc oxide/graphene oxide nanocomposites efficiently inhibited cadmium-induced hepatotoxicity via releasing Zn ions and up-regulating MRP1 expression. ENVIRONMENT INTERNATIONAL 2022; 165:107327. [PMID: 35667343 DOI: 10.1016/j.envint.2022.107327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Environmental cadmium (Cd) pollution has been verified to associated with various hepatic diseases, as Cd has been classified as one of the TOP 20 Hazardous Substances and liver is the main target of Cd poisoning. However, to design efficient hepatic antidotes with excellent detoxification capacity and reveal their underlying mechanism(s) are still challenges in Cd detoxification. Herein, ZnO/GO nanocomposites with favorable biocompatibility was uncovered their advanced function against Cd-elicited liver damage at the in situ level in vivo by 9.4 T magnetic resonance imaging (MRI). To explore the cellular detoxification mechanism, ZnO/GO nanocomposites was found to effectively inhibit the cyto- and geno-toxicity of Cd with the maximum antagonistic efficiency to be approximately 90%. Mechanistically, ZnO/GO nanocomposites competitively inhibited the cellular Cd uptake through releasing Zn ions, and significantly promoted Cd excretion via targeting the efflux pump of multidrug resistance associated protein1 (MRP1), which was confirmed by mass spectra and immunohistochemical analysis in kidney, a main excretion organ of Cd. Our data provided a novel approach against Cd-elicited hepatotoxic responses by constructed ZnO/GO nanocomposites both in vitro and in vivo, which may have promising application in prevention and detoxification for Cd poisoning.
Collapse
Affiliation(s)
- Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Xue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Bo Si
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yun Wu
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Haiyang Tong
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Xinwei Zheng
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China.
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
19
|
Wang S, Gong L, Mo Y, Zhang J, Jiang Z, Tian Z, Shao C. Resveratrol attenuates inflammation and apoptosis through alleviating endoplasmic reticulum stress via Akt/mTOR pathway in fungus-induced allergic airways inflammation. Int Immunopharmacol 2021; 103:108489. [PMID: 34968999 DOI: 10.1016/j.intimp.2021.108489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Resveratrol has shown pleiotropic effects against inflammation and oxidative response. The present study aimed to investigate the effects and mechanisms of resveratrol on fungus-induced allergic airway inflammation. METHODS Female BALB/c mice were injected intraperitoneally with Aspergillus fumigatus (Af) extract emulsified with aluminum on day 0 and 7 and intranasally challenged with Af extracts on day 14 and 15. Resveratrol or dexamethasone or a vehicle was injected intraperitoneally 1 h before each challenge. Mice were sacrificed for serum, bronchoalveolar lavage fluid (BALF), and lungs 24 h after the last challenge. The control group was administered with saline. BEAS-2B was used for the experiments in vitro that Af-exposed airway epithelial cells. RESULTS Resveratrol and dexamethasone attenuated the airway inflammation and eosinophilia, and reduced not only the production of IL-4, IL-5, and IL-13 in the BALF and lung tissues but also the mRNA levels of lung IL-6, TNF-α, and TGF-β induced by Af challenge (P < 0.05). Furthermore, Af-induced lung endoplasmic reticulum (ER) stress-related proteins PERK, CHOP, and GRP78 and the apoptosis markers including cleaved caspase-3 and cleaved caspase-7 were both suppressed significantly by resveratrol (P < 0.05). In vitro, activation of ER stress and the Akt/mTOR pathway in Af-exposed BEAS-2B cells were effectively ameliorated by resveratrol. Inhibition of the Akt/mTOR pathway using LY294002 suppressed the ER stress while ER stress inhibitor 4-PBA decreased the apoptosis in Af-exposed BEAS-2B cells. CONCLUSIONS Our findings collectively revealed that resveratrol alleviated the Af-exposed allergic inflammation and apoptosis through inhibiting ER stress via Akt/mTOR pathway, exerting therapeutic effects on the fungus-induced allergic lung disorder.
Collapse
Affiliation(s)
- Sijiao Wang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Linjing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqing Mo
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhengan Tian
- Shanghai International Travel Health Care Center, Shanghai 200335, China
| | - Changzhou Shao
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China.
| |
Collapse
|
20
|
Marín-Hernández Á, Rodríguez-Zavala JS, Jasso-Chávez R, Saavedra E, Moreno-Sánchez R. Protein acetylation effects on enzyme activity and metabolic pathway fluxes. J Cell Biochem 2021; 123:701-718. [PMID: 34931340 DOI: 10.1002/jcb.30197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.
Collapse
Affiliation(s)
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | |
Collapse
|
21
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
22
|
Wu MH, Hui SC, Chen YS, Chiou HL, Lin CY, Lee CH, Hsieh YH. Norcantharidin combined with paclitaxel induces endoplasmic reticulum stress mediated apoptotic effect in prostate cancer cells by targeting SIRT7 expression. ENVIRONMENTAL TOXICOLOGY 2021; 36:2206-2216. [PMID: 34272796 DOI: 10.1002/tox.23334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Prostate cancer (PCa), an extremely common malignancy in males, is the most prevalent disease in several countries. Norcantharidin (NCTD) has antiproliferation, antimetastasis, apoptosis, and autophagy effects in various tumor cells. Nevertheless, the antitumor effect of NCTD combined with paclitaxel (PTX), a chemotherapeutic drug, in PCa remains unknown. The cell growth, proliferative rate, cell cycle distribution, and cell death were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, colony formation assay, PI staining, and Annexin V/PI staining by flow cytomertry, whereas the mitochondrial membrane potential (MMP) and endoplasmic reticulum (ER) stress was evaluated using the MitoPotential assay and ER-ID red assay. We also evaluated the protein and mRNA expression of SIRTs by Western blotting and qRTPCR assay. Overexpression effectivity was measured by DNA transfection assay. Our study showed that cell viability and proliferative PC3 and DU145 rates were effectively inhibited after NCTD-PTX combination. We also found that NCTD-PTX combination treatment significantly enhance G2/M phase arrest, induction of cell death and ER stress, loss of MMP, and ER- or apoptotic-related protein expression. Furthermore, NCTD-PTX combination treatment was significantly decreasing the protein and mRNA expression of SIRT7 in PCa cells. Combination therapy effectively reduced cell viability, ER stress-mediated apoptosis and p-eIF2α/ATF4/CHOP/cleaved-PARP expression inhibition in SIRT7 overexpression of PCa cells. These results indicate that NCTD combined with PTX induces ER stress-mediated apoptosis of PCa cells by regulating the SIRT7 expression axis. Moreover, combination therapy may become a potential therapeutic strategy against human PCa.
Collapse
Affiliation(s)
- Min-Hua Wu
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Chunghua, Taiwan
| | - Su-Chun Hui
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Yi Lin
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Department of Surgery, China Medical University Children's Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
Ye H, Meng Y. Honokiol regulates endoplasmic reticulum stress by promoting the activation of the sirtuin 1-mediated protein kinase B pathway and ameliorates high glucose/high fat-induced dysfunction in human umbilical vein endothelial cells. Endocr J 2021; 68:981-992. [PMID: 33952780 DOI: 10.1507/endocrj.ej20-0747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Honokiol plays an important role in anti-oxidation, but its role in diabetic vascular complications is unclear. In this study, the effects of honokiol in high glucose/high fat (HG/HF)-induced human umbilical vein endothelial cells (HUVECs) were explored. After pre-treatment with honokiol, the cells were transferred to an HG/HF medium, and cell viability and apoptosis were respectively measured by methyl tetrazolium and flow cytometry. Moreover, the contents of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured. The expressions of C/EBP homologous protein (CHOP), glucose-regulated protein 78 (GRP78), phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), phosphorylated-inositol requiring enzyme-1α (p-IRE1α), cleaved caspase-3 and SIRT1 were determined by Western blot or quantitative reverse transcription PCR, respectively. Finally, the viability, apoptosis, and the contents of ROS, MDA, and SOD, as well as the expressions of CHOP, GRP78, p-PERK, p-IRE1α, cleaved caspase-3, Akt, p-Akt, and SIRT1 in the cells transfected with small interfering RNA SIRT1 (siSIRT1) were detected by the previously mentioned methods. Honokiol reversed the effect of HG/HF on promoting cell apoptosis, ROS and MDA contents, and the expressions of CHOP, GRP78, p-PERK, p-IRE1α and cleaved caspase-3, and also reversed the inhibitory effect of HG/HF on cell viability, SOD content and SIRT1 expression. However, siSIRT1 reversed the above effects caused by honokiol. Honokiol activated SIRT1 promoter. SIRT1 interacted with Akt, consequently promoting the activity of Akt. Therefore, honokiol activates the Akt pathway by regulating SIRT1 expression to regulate endoplasmic reticulum stress, promotes cell viability and inhibits the apoptosis of HG/HF-induced HUVECs.
Collapse
Affiliation(s)
- Hong Ye
- Department of Cardiovascular Medicine, Anhui Chest Hospital, Hefei City, Anhui Province, 230000, China
| | - Ying Meng
- Department of Cardiology, Hefei Binhu Hospital, Hefei City, Anhui Province, 230011, China
| |
Collapse
|
24
|
Shati AA, El-Kott AF. Resolvin D1 protects against cadmium chloride-induced memory loss and hippocampal damage in rats: A comparison with docosahexaenoic acid. Hum Exp Toxicol 2021; 40:S215-S232. [PMID: 34405727 DOI: 10.1177/09603271211038739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Intoxication with cadmium (Cd) ions leads to hippocampal damage and cognitive impairment. However, omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert neuroprotective effects in different animal models of neurodegeneration. PURPOSE This study compared the neuroprotective effect of the n-3 PUFA, docosahexaenoic acid (DHA), and its downstream metabolite, resolvin D1 (RVD1), on hippocampal damage and memory deficits in cadmium chloride (CdCl2)-treated rats. RESEARCH DESIGN Control or CdCl2 (0.5 mg/kg)-treated rats were subdivided into three groups (n = 18/each) and treated for 6 weeks as follows: (1) fed control diet, (2) fed DHA-rich diets (0.7 g/100 g), or (3) treated with RVD1 (0.2 μg/kg, i.p). RESULTS Treatment with a DHA-rich diet or RVD1 significantly increased the levels of docosahexaenoic acid and RVD1, respectively, in the hippocampal of CdCl2-treated rats without affecting the reduction in the expression of the 15-lipooxygenase-1 (ALOX15). These effects were associated with improvements in rats' memory function and hippocampal structure, as well as a redction in the hippocampal levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear localization of the nuclear factor-kappa beta p65 (NF-κB p65), and expression of cleaved caspase-3. Concomitantly, hippocampi of both groups of rats showed significantly higher levels of Bcl-2, superoxide dismutase (SOD), and glutathione (GSH), as well as enhanced nuclear levels of the nuclear factor erythroid 2-related factor 2 (Nrf-2). The effects of RVD1 on all these markers in the CdCl2-induced rats were more profound than those of DHA. Also, the increase in the nuclear protein levels of Nrf-2 and the decrease in the levels of Bax and nuclear protein levels of NF-κB p65 were only seen in the hippocampal of CdCl2 + RVD1-treated rats. CONCLUSION RVD1 is more powerful than DHA in preventing CdCl2-induced memory loss and hippocampal damage in rats.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
25
|
Tinkov AA, Nguyen TT, Santamaria A, Bowman AB, Buha Djordjevic A, Paoliello MMB, Skalny AV, Aschner M. Sirtuins as molecular targets, mediators, and protective agents in metal-induced toxicity. Arch Toxicol 2021; 95:2263-2278. [PMID: 34028595 DOI: 10.1007/s00204-021-03048-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Metal dyshomeostasis, and especially overexposure, is known to cause adverse health effects due to modulation of a variety of metabolic pathways. An increasing body of literature has demonstrated that metal exposure may affect SIRT signaling, although the existing data are insufficient. Therefore, in this review we discuss the available data (PubMed-Medline, Google Scholar) on the influence of metal overload on sirtuin (SIRT) signaling and its association with other mechanisms involved in metal-induced toxicity. The existing data demonstrate that cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), aluminium (Al), hexavalent chromium (CrVI), manganese (Mn), iron (Fe), and copper (Cu) can inhibit SIRT1 activity. In addition, an inhibitory effect of Cd, Pb, As, and Fe on SIRT3 has been demonstrated. In turn, metal-induced inhibition of SIRT was shown to affect deacetylation of target proteins including FOXO, PGC1α, p53 and NF-kB. Increased acetylation downregulates PGC1α signaling pathway, resulting in cellular altered redox status and increased susceptibility to oxidative stress, as well as decreased mitochondrial biogenesis. Lower rates of LKB1 deacetylation may be responsible for metal-induced decreases in AMPK activity and subsequent metabolic disturbances. A shift to the acetylated FOXO results in increased expression of pro-apoptotic genes which upregulates apoptosis together with increased p53 signaling. Correspondingly, decreased NF-kB deacetylation results in upregulation of target genes of proinflammatory cytokines, enzymes, and cellular adhesion molecules thus promoting inflammation. Therefore, alterations in sirtuin activity may at least partially mediate metal-induced metabolic disturbances that have been implicated in neurotoxicity, nephrotoxicity, cardiotoxicity, and other toxic effects of heavy metals.
Collapse
Affiliation(s)
- Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Yaroslavl State University, Yaroslavl, Russia
| | - Thuy T Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Monica Maria Bastos Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.,Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Anatoly V Skalny
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia. .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
26
|
Wen G, Eder K, Ringseis R. Resveratrol Alleviates the Inhibitory Effect of Tunicamycin-Induced Endoplasmic Reticulum Stress on Expression of Genes Involved in Thyroid Hormone Synthesis in FRTL-5 Thyrocytes. Int J Mol Sci 2021; 22:ijms22094373. [PMID: 33922129 PMCID: PMC8122728 DOI: 10.3390/ijms22094373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, ER stress induced by tunicamycin (TM) was reported to inhibit the expression of key genes involved in thyroid hormone synthesis, such as sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and their regulators such as thyrotropin receptor (TSHR), thyroid transcription factor-1 (TTF-1), thyroid transcription factor-2 (TTF-2) and paired box gene 8 (PAX-8), in FRTL-5 thyrocytes. The present study tested the hypothesis that resveratrol (RSV) alleviates this effect of TM in FRTL-5 cells. While treatment of FRTL-5 cells with TM alone (0.1 µg/mL) for 48 h strongly induced the ER stress-sensitive genes heat shock protein family A member 5 (HSPA5) and DNA damage inducible transcript 3 (DDIT3) and repressed NIS, TPO, TG, TSHR, TTF-1, TTF-2 and PAX-8, combined treatment with TM (0.1 µg/mL) and RSV (10 µM) for 48 h attenuated this effect of TM. In conclusion, RSV alleviates TM-induced ER stress and attenuates the strong impairment of expression of genes involved in thyroid hormone synthesis and their regulators in FRTL-5 thyrocytes exposed to TM-induced ER stress. Thus, RSV may be useful for the treatment of specific thyroid disorders, provided that strategies with improved oral bioavailability of RSV are applied.
Collapse
|
27
|
Wu H, Zheng S, Zhang J, Xu S, Miao Z. Cadmium induces endoplasmic reticulum stress-mediated apoptosis in pig pancreas via the increase of Th1 cells. Toxicology 2021; 457:152790. [PMID: 33891997 DOI: 10.1016/j.tox.2021.152790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd), an environmental pollutant, causes several adverse reactions in animals. High dose of Cd has serious cytotoxicities, including the induction of programmed cell necrosis, autophagy and apoptosis, which has aroused wide public concern. The balance of cytokine network is affected by Th1/Th2 balance which is closely related to immune response and the occurrence, development, treatment and outcome of various diseases. Cd can induce severe apoptosis, but the relationship between Cd induced apoptosis and Th1/Th2 balance has not been clarified. In this study, we established a pig Cd poisoning model, exposing to CdCl2 for 40 days (20 mg Cd/kg diet). Firstly, deviation of Th1/Th2 balance was observed by fluorescence staining, and apoptosis was observed by TUNEL staining. Then, real-time fluorescence quantitative analysis and Western blot were used to detect the expression of related proteins. The results show that Cd can interfere with the balance of Th1/Th2 and shift the balance towards Th1. In addition, through the experiments, we found that Cd exposure can increase the expression of glucose-regulated protein 94 (GRP94) and glucose-regulated protein 78 (GRP78), marker proteins of unfolded protein response (UPR). Cd exposure can increase the expression of pancreatic endoplasmic reticulum kinase (PERK), CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring enzyme 1 (IRE-1), activating transcription factor 6 (ATF-6), cysteinyl aspartate specific proteinase (Caspase12), indicating the three branches (ATF6, PERK and IRE-1) of endoplasmic reticulum stress (ER-stress) were activated. Moreover, we found that the expression of pro-apoptosis genes in the downstream pathway of ER-stress increased. In summary, our results indicated that Cd exposure upregulated the expression of pro-apoptosis related genes and caused apoptosis via the activation of the ER-stress signaling pathways in pancreas cells. And these negative effects were correlated with the equilibrium drift of Th1/Th2, increase in the expression and secretion of Th1 cytokines.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
28
|
Chen X, Wu W, Gong B, Hou L, Dong X, Xu C, Zhao R, Yu Q, Zhou Z, Huang S, Chen L. Metformin attenuates cadmium-induced neuronal apoptosis in vitro via blocking ROS-dependent PP5/AMPK-JNK signaling pathway. Neuropharmacology 2020; 175:108065. [PMID: 32209321 PMCID: PMC7492486 DOI: 10.1016/j.neuropharm.2020.108065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd), a toxic environment contaminant, induces reactive oxygen species (ROS)-mediated neuronal apoptosis and consequential neurodegenerative disorders. Metformin, an anti-diabetic drug, has recently received a great attention owing to its protection against neurodegenerative diseases. However, little is known regarding the effect of metformin on Cd-induced neurotoxicity. Here we show that metformin effectively prevented Cd-evoked apoptotic cell death in neuronal cells, by suppressing Cd activation of c-Jun N-terminal kinases (JNK), which was attributed to blocking Cd inactivation of protein phosphatase 5 (PP5) and AMP-activated protein kinase (AMPK). Inhibition of JNK with SP600125, knockdown of c-Jun, or overexpression of PP5 potentiated metformin's inhibitory effect on Cd-induced phosphorylation of JNK/c-Jun and apoptosis. Activation of AMPK with AICAR or ectopic expression of constitutively active AMPKα strengthened the inhibitory effects of metformin on Cd-induced phosphorylation of JNK/c-Jun and apoptosis, whereas expression of dominant negative AMPKα weakened these effects of metformin. Metformin repressed Cd-induced ROS, thereby diminishing cell death. N-acetyl-l-cysteine enhanced the inhibitory effects of metformin on Cd-induced ROS and apoptosis. Moreover, using Mito-TEMPO, we further demonstrated that metformin attenuated Cd-induced cell death by suppressing induction of mitochondrial ROS. Taken together, these results indicate that metformin prevents mitochondrial ROS inactivation of PP5 and AMPK, thus attenuating Cd-induced JNK activation and apoptosis in neuronal cells. Our data highlight that metformin may be a promising drug for prevention of Cd-induced oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Wen Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoming Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
29
|
Tu W, Li W, Zhu X, Xu L. Di-2-ethylhexyl phthalate (DEHP) induces apoptosis of mouse HT22 hippocampal neuronal cells via oxidative stress. Toxicol Ind Health 2020; 36:844-851. [PMID: 32909914 DOI: 10.1177/0748233720947205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry and can affect memory; however, the underlying mechanism remains unclear. In the present study, mouse HT22 cells, an immortalized hippocampal neuronal cell line, was utilized as an in vitro model. We showed that DEHP dramatically inhibited cell viability and increased lactate dehydrogenase (LDH) release from the cells in a dose-dependent manner, suggesting that DEHP could cause cytotoxicity of mouse HT22 cells. The protein levels of cleaved Caspase-8, cleaved Caspase-3, and Bax markedly increased in the DEHP-treated cells, whereas there was a significant decrease in the Bcl-2 protein level, implying that DEHP could induce apoptosis of mouse HT22 cells. DEHP exposure significantly increased the content of malondialdehyde, whereas it markedly decreased the level of glutathione and the activities of glutathione peroxidase and superoxide dismutase, suggesting that DEHP induced oxidative stress of the cells. Compared with the DEHP-treated group, the inhibition of cell viability and the release of LDH were rescued in the N-acetyl-l-cysteine plus DEHP group. Furthermore, inhibition of oxidative stress could rescue the induction of apoptosis by DEHP. Collectively, our results indicated that DEHP could induce apoptosis of mouse HT22 cells via oxidative stress.
Collapse
Affiliation(s)
- Wei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Weifeng Li
- Department of Oncology, Feng Cheng People’s Hospital, Fengcheng, People’s Republic of China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Linlin Xu
- Medical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
30
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biol Trace Elem Res 2020; 197:52-62. [PMID: 31786752 DOI: 10.1007/s12011-019-01980-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
There are concerns about the spread of heavy metals in the environment, and human activities are one of the most important factors in their spread. These agents have the high half-life resulting in their persistence in the environment. So, prevention of their spread is the first step. However, heavy metals are an inevitable part of modern and industrial life and they are applied in different fields. Cadmium is one of the heavy metals which has high carcinogenesis ability. Industrial waste, vehicle emissions, paints, and fertilizers are ways of exposing human to cadmium. This potentially toxic agent harmfully affects the various organs and systems of body such as the liver, kidney, brain, and cardiovascular system. Oxidative stress is one of the most important pathways of cadmium toxicity. So, improving the antioxidant defense system can be considered as a potential target. On the other hand, the Nrf2 signaling pathway involves improving the antioxidant capacity by promoting the activity of antioxidant enzymes such as catalase and superoxide dismutase. At the present review, we demonstrate how Nrf2 signaling pathway can be modulated to diminish the cadmium toxicity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
31
|
Caffeic acid phenethyl ester reversed cadmium-induced cell death in hippocampus and cortex and subsequent cognitive disorders in mice: Involvements of AMPK/SIRT1 pathway and amyloid-tau-neuroinflammation axis. Food Chem Toxicol 2020; 144:111636. [PMID: 32739455 DOI: 10.1016/j.fct.2020.111636] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
Exposure to nonbiodegradable cadmium (Cd) causes many health problems including the damage to the nervous system. This study aimed to increase knowledge about its neurotoxic effects and the neuroprotective potential of caffeic acid phenethyl ester (CAPE, a polyphenol abundant in honeybee propolis). In mice, CAPE (10 μmol/kg/day body weight) attenuated significantly learning and memory deficits induced by CdCl2 (1.5 mg/kg/day body weight). For the CdCl2-treated mice, CAPE increased crossing number in open field test, decreased the alternation in Y-maze test, and increased the latency time and error number in step down test. CAPE also inhibited CdCl2-initiated Aβ accumulation and activation of pro-inflammatory factors and microglia in the brains. Therefore, CAPE could be a food-derived neuroprotective agent against Cd-induced neurotoxicity and neurodegenerative disorders, through attenuating neuronal apoptosis and neuroinflammation via the AMPK/SIRT1 pathway and amyloid-tau-neuroinflammation axis.
Collapse
|
32
|
Moraes DS, Moreira DC, Andrade JMO, Santos SHS. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep 2020; 9:46-51. [PMID: 33336103 PMCID: PMC7733131 DOI: 10.1016/j.ibror.2020.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Sirtuins (SIRTs) are a protein family with high preservation degree among evolutionary scale. SIRTs are histone deacetylases regulatory enzymes of genetic material deeply involved in numerous physiological tasks including metabolism, brain function and aging. Mammals sirtuins comprise seven enzymatic components (SIRT1–SIRT7). The highest studied sirtuin is SIRT1, which plays an essential position in the prevention and evolution of neuro-disorders. Resveratrol (3,5,4-trihydroxystylbene) (RSV) is a polyphenol, which belongs to a family compounds identified as stilbenes, predominantly concentrated in grapes and red wine. RSV is the must studied Sirtuin activator and is used as food supplementary compound. Resveratrol exhibits strong antioxidant activity, reducing free radicals, diminishing quinone-reductase-2 activity and exerting positive regulation of several endogenous enzymes. Resveratrol is also able to inhibit pro-inflammatory factors, reducing the stimulation of the nuclear factor kB (NF-kB) and the release of endogenous cytokines. Resveratrol treatment can modulate multiple signaling pathway effectors related to programmed cell death, cell survival, and synaptic plasticity. In this context, the present review looks over news and the role of Sirtuins activation and resveratrol effects on modulating target genes, cognition and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel Silva Moraes
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daniele Cristina Moreira
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil.,Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
33
|
Wang C, Li L, Jiang J, Li L, Li J, Xu C, Jin S, Zhu L, Yan G. Pterostilbene Inhibits FcεRI Signaling through Activation of the LKB1/AMPK Pathway in Allergic Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3456-3465. [PMID: 32096633 DOI: 10.1021/acs.jafc.9b07126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the role and mechanism of pterostilbene (Pts) in mast cell degranulation in vitro and in vivo were investigated. The results showed that Pts inhibited mast cell-mediated local passive allergic reactions in mice. In addition, treatment with Pts reduced both histamine release and calcium influx in rat peritoneal mast cells and RBL-2H3 cells and reduced IgE-mediated mast cell activation. Furthermore, the mechanism underlying Pts inhibition of mast cell signaling was probed via studying the effects of Pts on liver kinase B1 (LKB1), including the use of the LKB1 activator metformin and siRNA knockdown of LKB1. The data showed that Pts reduced the release of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, leukotriene C4, and prostaglandin D2 in mast cells by activating the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Furthermore, Pts inhibited phosphorylation of FcεRI and FcεRI-mediated degranulation in RBL-2H3 cells. These effects were attenuated after LKB1 knockdown. Taken together, Pts could inhibit FcεRI signaling through activation of the LKB1/AMPK signaling pathway in IgE-mediated mast cell activation. Thus, Pts might be an effective therapeutic agent for mast cell-mediated allergic diseases.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Liangchang Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Jingzhi Jiang
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Li Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Junfeng Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Chang Xu
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Shan Jin
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
- Department of Dermatology, Yanbian University Hospital, Yanji 133002, P. R. China
| | - Lianhua Zhu
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
- Department of Dermatology, Yanbian University Hospital, Yanji 133002, P. R. China
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| |
Collapse
|