1
|
Yuan T, Zheng Y, Chen J, Yin H, Yin J. Long-term chronic exposure to benzo[a]pyrene and catechol induced multidrug resistance in lung cancer cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125859. [PMID: 39954765 DOI: 10.1016/j.envpol.2025.125859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Multiple studies have raised concerns about the impact of long-term exposure to environmental pollutants on the occurrence and progression of cancer, but little is known about how these compounds affect the treatment of cancer patients. In this work, two common pollutants including benzo [a]pyrene (B [a]P) and catechol (CL) were tested for their chronic effects on the efficacy of common chemotherapeutic drug in lung cancer (A549) cells. Both pollutants were unlikely to be the substrates of ABC transporters, as their toxicity was unaffected by ABC transporter inhibitors. However, their repeated exposure led to the generation of chemoresistance to doxorubicin (DOX) and cisplatin (CDDP), indicating the formation of multidrug-resistance (MDR) cells. Compared with DOX-resistant cells, decreased expression of ABC transporters but increased responses were found in pollutants-resistant cells. In addition, pollutants-resistant cells were more potent in up-regulating anti-apoptosis, proliferation, and migration pathways, which were confirmed by the wound-healing and apoptosis assays. Overall, these results indicated a distinct MDR mechanism induced by non-substrate pollutants, and could be beneficial for understanding the environmental risk of pollutants in their "safe" concentrations.
Collapse
Affiliation(s)
- Tongkuo Yuan
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yu Zheng
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Jing Chen
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Huancai Yin
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Jian Yin
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China.
| |
Collapse
|
2
|
Deng J, Wei L, Chen Y, Li X, Zhang H, Wei X, Feng X, Qiu X, Liang B, Zhang J. Identification of benzo(a)pyrene-related toxicological targets and their role in chronic obstructive pulmonary disease pathogenesis: a comprehensive bioinformatics and machine learning approach. BMC Pharmacol Toxicol 2025; 26:33. [PMID: 39962573 PMCID: PMC11834632 DOI: 10.1186/s40360-025-00842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) pathogenesis is influenced by environmental factors, including Benzo(a)pyrene (BaP) exposure. This study aims to identify BaP-related toxicological targets and elucidate their roles in COPD development. METHODS A comprehensive bioinformatics approach was employed, including the retrieval of BaP-related targets from the Comparative Toxicogenomics Database (CTD) and Super-PRED database, identification of differentially expressed genes (DEGs) from the GSE76925 dataset, and protein-protein interaction (PPI) network analysis. Functional enrichment and immune infiltration analyses were conducted using GO, KEGG, and ssGSEA algorithms. Feature genes related to BaP exposure were identified using SVM-RFE, Lasso, and RF machine learning methods. A nomogram was constructed and validated for COPD risk prediction. Molecular docking was performed to evaluate the binding affinity of BaP with proteins encoded by the feature genes. RESULTS We identified 72 differentially expressed BaP-related toxicological targets in COPD. Functional enrichment analysis highlighted pathways related to oxidative stress and inflammation. Immune infiltration analysis revealed significant increases in B cells, DC, iDC, macrophages, T cells, T helper cells, Tcm, and TFH in COPD patients compared to controls. Correlation analysis showed strong links between oxidative stress, inflammation pathway scores, and the infiltration of immune cells, including aDC, macrophages, T cells, Th1 cells, and Th2 cells. Seven feature genes (ACE, APOE, CDK1, CTNNB1, GATA6, IRF1, SLC1A3) were identified across machine learning methods. A nomogram based on these genes showed high diagnostic accuracy and clinical utility. Molecular docking revealed the highest binding affinity of BaP with CDK1, suggestive of its pivotal role in BaP-induced COPD pathogenesis. CONCLUSIONS The study elucidates the molecular mechanisms of BaP-induced COPD, specifically highlighting the role of oxidative stress and inflammation pathways in promoting immune cell infiltration. The identified feature genes may serve as potential biomarkers and therapeutic targets. Additionally, the constructed nomogram demonstrates high accuracy in predicting COPD risk, providing a valuable tool for clinical application in BaP-exposed individuals.
Collapse
Affiliation(s)
- Jiehua Deng
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Zhong Lu, Shenzhen City, Guangdong Province, 518033, China
| | - Lixia Wei
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Zhong Lu, Shenzhen City, Guangdong Province, 518033, China.
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Yongyu Chen
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaofeng Li
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hui Zhang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xuan Wei
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xin Feng
- Gastroenterology and Respiratory Internal Medicine Department, The Afliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xue Qiu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bin Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jianquan Zhang
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Zhong Lu, Shenzhen City, Guangdong Province, 518033, China.
| |
Collapse
|
3
|
Tang L, Chen B, Wang B, Xu J, Yan H, Shan Y, Zhao X. Mediation of FOXA2/IL-6/IL-6R/STAT3 signaling pathway mediates benzo[a]pyrene-induced airway epithelial mesenchymal transformation in asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124384. [PMID: 38901818 DOI: 10.1016/j.envpol.2024.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Benzo [a]pyrene (BaP), a toxic pollutant, increases the incidence and severity of asthma. However, the molecular mechanisms underlying the effects of BaP in asthma remain unclear. In terms of research methods, we used BaP to intervene in the animal model of asthma and the human bronchial epithelial (16HBE) cells, and the involved mechanisms were found from the injury, inflammation, and airway epithelial to mesenchymal transition (EMT) in asthma. We also constructed small interfering RNAs and overexpression plasmids to knockdown/overexpress IL-6R and FOXA2 in 16HBE cells and a serotype 9 adeno-associated viral vector for lung tissue overexpression of FOXA2 in mice to determine the mechanism of action of BaP-exacerbated asthma airway EMT. We observed that BaP aggravated inflammatory cell infiltration into the lungs, reduced the Penh value, increased collagen fibres in the lung tissue, and increased serum IgE levels in asthmatic mice. After BaP intervention, the expression of FOXA2 in the lung tissue of asthmatic mice decreased, the production and secretion of IL-6 were stimulated, and STAT3 phosphorylation and nuclear translocation increased, leading to changes in EMT markers. However, EMT decreased after increasing FOXA2 expression and decreasing that of IL-6R and was further enhanced after low FOXA2 expression. Our results revealed that BaP exacerbated airway epithelial cell injury and interfered with FOXA2, activating the IL-6/IL-6R/STAT3 signaling pathway to promote airway EMT in asthma. These findings provide toxicological evidence for the mechanism underlying the contribution of BaP to the increased incidence of asthma and its exacerbations.
Collapse
Affiliation(s)
- Lingling Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bailei Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bohan Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China
| | - Jing Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yiwen Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
4
|
Wang L, Lin F, Liu Y, Li W, Ding Q, Duan X, Yang L, Bai Z, Zhang M, Guo Y. Wogonin protects against bleomycin-induced mouse pulmonary fibrosis via the inhibition of CDK9/p53-mediated cell senescence. Front Pharmacol 2024; 15:1407891. [PMID: 39040475 PMCID: PMC11260675 DOI: 10.3389/fphar.2024.1407891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Pulmonary fibrosis (PF) is a fatal interstitial lung disease associated with declining pulmonary function but currently with few effective drugs. Cellular senescence has been implicated in the pathogenesis of PF and could be a potential therapeutic target. Emerging evidence suggests wogonin, the bioactive compound isolated from Scutellaria baicalensis, owns the anti-senescence properties, however, the possible impact of wogonin on PF and the potential mechanisms remain unclear. In this study, a well-established mouse model of PF was utilized which mice were administrated with bleomycin (BLM). Strikingly, wogonin treatment significantly reduced fibrosis deposition in the lung induced by BLM. In vitro, wogonin also suppressed fibrotic markers of cultured epithelial cells stimulated by BLM or hydrogen peroxide. Mechanistic investigation revealed that wogonin attenuated the expressions of DNA damage marker γ-H2AX and senescence-related markers including phosphorylated p53, p21, retinoblastoma protein (pRB), and senescence-associated β-galactosidase (SA-β-gal). Moreover, wogonin, as a direct and selective inhibitor of cyclin-dependent kinase 9 (CDK9), exhibited anti-fibrotic capacity by inhibiting CDK9 and p53/p21 signalling. In conclusion, wogonin protects against BLM-induced PF in mice through the inhibition of cell senescence via the regulation of CDK9/p53 and DNA damage pathway. This is the first study to demonstrate the beneficial effect of wogonin on PF, and its implication as a novel candidate for PF therapy.
Collapse
Affiliation(s)
- Libo Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Fei Lin
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Youli Liu
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qingjie Ding
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xulei Duan
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Min Zhang
- King’s College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, London, United Kingdom
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
5
|
Kim M, Jee SC, Sung JS. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants (Basel) 2024; 13:180. [PMID: 38397778 PMCID: PMC10886006 DOI: 10.3390/antiox13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.); (S.-C.J.)
| |
Collapse
|
6
|
Ferguson DT, Taka E, Tilghman SL, Womble T, Redmond BV, Gedeon S, Flores-Rozas H, Reed SL, Soliman KFA, Kanga KJW, Darling-Reed SF. The Anticancer Effects of the Garlic Organosulfide Diallyl Trisulfide through the Attenuation of B[a]P-Induced Oxidative Stress, AhR Expression, and DNA Damage in Human Premalignant Breast Epithelial (MCF-10AT1) Cells. Int J Mol Sci 2024; 25:923. [PMID: 38255999 PMCID: PMC10815401 DOI: 10.3390/ijms25020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1β, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS's co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.
Collapse
Affiliation(s)
- Dominique T. Ferguson
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Equar Taka
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Syreeta L. Tilghman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Tracy Womble
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Bryan V. Redmond
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Shasline Gedeon
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Hernan Flores-Rozas
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Sarah L. Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Karam F. A. Soliman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Konan J. W. Kanga
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | - Selina F. Darling-Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| |
Collapse
|