1
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-like receptor response to Zika virus infection: progress toward infection control. NPJ VIRUSES 2025; 3:20. [PMID: 40295746 PMCID: PMC11906774 DOI: 10.1038/s44298-025-00102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025]
Abstract
Infection with the Zika virus (ZIKV) poses a threat to human health. An improved understanding of the host Toll-like receptor response, disease onset, and viral clearance in vivo and in vitro may lead to the development of therapeutic or prophylactic interventions against viral infections. Currently, no clinically approved ZIKV vaccine is available, highlighting the need for its development. In this study, we discuss the progress in the Zika vaccine, including advances in the use of Toll-like receptor agonists as vaccine adjuvants to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh.
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Bindu, Pandey HS, Seth P. Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination. Mol Neurobiol 2024; 61:9927-9944. [PMID: 37910284 DOI: 10.1007/s12035-023-03704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
The Zika virus (ZIKV) outbreaks and its co-relation with microcephaly have become a global health concern. It is primarily transmitted by a mosquito, but can also be transmitted from an infected mother to her fetus causing impairment in brain development, leading to microcephaly. However, the underlying molecular mechanism of ZIKV-induced microcephaly is poorly understood. In this study, we explored the role of ZIKV non-structural protein NS4A and NS4B in ZIKV pathogenesis in a well-characterized primary culture of human fetal neural stem cells (fNSCs). We observed that the co-transfection of NS4A and NS4B altered the neural stem cell fate by arresting proliferation and inducing premature neurogenesis. NS4A + NS4B transfection in fNSCs increased autophagy and dysregulated notch signaling. Further, it also altered the regulation of downstream genes controlling cell proliferation. Additionally, we reported that 3 methyl-adenine (3-MA), a potent autophagy inhibitor, attenuated the deleterious effects of NS4A and NS4B as evidenced by the rescue in Notch1 expression, enhanced proliferation, and reduced premature neurogenesis. Our attempts to understand the mechanism of autophagy induction indicate the involvement of mitochondrial fission and ROS. Collectively, our findings highlight the novel role of NS4A and NS4B in mediating NSC fate alteration through autophagy-mediated notch degradation. The study also helps to advance our understanding of ZIKV-induced neuropathogenesis and suggests autophagy as a potential target for anti-ZIKV therapeutic intervention.
Collapse
Affiliation(s)
- Bindu
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India
| | - Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
3
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Scotto G, Massa S, Spirito F, Fazio V. Congenital Zika Virus Syndrome: Microcephaly and Orofacial Anomalies. Life (Basel) 2023; 14:55. [PMID: 38255670 PMCID: PMC10820182 DOI: 10.3390/life14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The progressive reappearance of Zika virus (ZIKV) infections since October 2013 and its circulation in >70 countries and territories (from French Polynesia to Brazil and other countries in the Americas, with sporadic spread in Europe and the East) has long been reported as a global public health emergency. ZIKV is a virus transmitted by arthropods (arboviruses), mainly by Aedes mosquitoes. ZIKV can also be transmitted to humans through mechanisms other than vector infection such as sexual intercourse, blood transfusions, and mother-to-child transmission. The latter mode of transmission can give rise to a severe clinical form called congenital Zika syndrome (CZS), which can result in spontaneous abortion or serious pathological alterations in the fetus such as microcephaly or neurological and orofacial anomalies. In this study, beside a succinct overview of the etiological, microbiological, and epidemiological aspects and modes of transmission of Zika virus infections, we have focused our attention on the pathogenetic and histopathological aspects in pregnancy and the pathogenetic and molecular mechanisms that can determine microcephaly, and consequently the clinical alterations, typical of the fetus and newborns, in a subject affected by CZS.
Collapse
Affiliation(s)
- Gaetano Scotto
- Infectious Diseases Unit, University Hospital “OORR” Foggia, 71122 Foggia, Italy
| | - Salvatore Massa
- Department of Agriculture, Food, Natural Resource and Engineering, University of Foggia, 71122 Foggia, Italy;
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Vincenzina Fazio
- Clinical Chemistry Laboratory, Virology Unit, University Hospital “OORR” Foggia, 71122 Foggia, Italy;
| |
Collapse
|
5
|
Bery A, Etienne O, Mouton L, Mokrani S, Granotier-Beckers C, Gauthier LR, Feat-Vetel J, Kortulewski T, Pérès EA, Desmaze C, Lestaveal P, Barroca V, Laugeray A, Boumezbeur F, Abramovski V, Mortaud S, Menuet A, Le Bihan D, Villartay JPD, Boussin FD. XLF/Cernunnos loss impairs mouse brain development by altering symmetric proliferative divisions of neural progenitors. Cell Rep 2023; 42:112342. [PMID: 37027298 DOI: 10.1016/j.celrep.2023.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/20/2022] [Accepted: 03/19/2023] [Indexed: 04/08/2023] Open
Abstract
XLF/Cernunnos is a component of the ligation complex used in classical non-homologous end-joining (cNHEJ), a major DNA double-strand break (DSB) repair pathway. We report neurodevelopmental delays and significant behavioral alterations associated with microcephaly in Xlf-/- mice. This phenotype, reminiscent of clinical and neuropathologic features in humans deficient in cNHEJ, is associated with a low level of apoptosis of neural cells and premature neurogenesis, which consists of an early shift of neural progenitors from proliferative to neurogenic divisions during brain development. We show that premature neurogenesis is related to an increase in chromatid breaks affecting mitotic spindle orientation, highlighting a direct link between asymmetric chromosome segregation and asymmetric neurogenic divisions. This study reveals thus that XLF is required for maintaining symmetric proliferative divisions of neural progenitors during brain development and shows that premature neurogenesis may play a major role in neurodevelopmental pathologies caused by NHEJ deficiency and/or genotoxic stress.
Collapse
Affiliation(s)
- Amandine Bery
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Olivier Etienne
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Laura Mouton
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Sofiane Mokrani
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Christine Granotier-Beckers
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Laurent R Gauthier
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Justyne Feat-Vetel
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Elodie A Pérès
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; NeuroSpin, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chantal Desmaze
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Philippe Lestaveal
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, 92262 Fontenay-aux-Roses, France
| | - Vilma Barroca
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Antony Laugeray
- Immunologie et Neurogénétique Expérimentales et Moléculaires - UMR7355 CNRS - 3B, rue de la Férollerie, 45071 Orléans, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vincent Abramovski
- Université Paris Cité, Imagine Institute, Laboratory "Genome Dynamics in the Immune System", Equipe labellisée La LIGUE, INSERM UMR 1163, 75015 Paris, France
| | - Stéphane Mortaud
- Immunologie et Neurogénétique Expérimentales et Moléculaires - UMR7355 CNRS - 3B, rue de la Férollerie, 45071 Orléans, France; Université d'Orléans, Orléans, France
| | - Arnaud Menuet
- Immunologie et Neurogénétique Expérimentales et Moléculaires - UMR7355 CNRS - 3B, rue de la Férollerie, 45071 Orléans, France; Université d'Orléans, Orléans, France
| | - Denis Le Bihan
- NeuroSpin, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Pierre de Villartay
- Université Paris Cité, Imagine Institute, Laboratory "Genome Dynamics in the Immune System", Equipe labellisée La LIGUE, INSERM UMR 1163, 75015 Paris, France
| | - François D Boussin
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
6
|
Gilbert-Jaramillo J, Purnama U, Molnár Z, James WS. Zika virus-induces metabolic alterations in fetal neuronal progenitors that could influence in neurodevelopment during early pregnancy. Biol Open 2023; 12:bio059889. [PMID: 37093064 PMCID: PMC10151830 DOI: 10.1242/bio.059889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/25/2023] Open
Abstract
Cortical development consists of an orchestrated process in which progenitor cells exhibit distinct fate restrictions regulated by time-dependent activation of energetic pathways. Thus, the hijacking of cellular metabolism by Zika virus (ZIKV) to support its replication may contribute to damage in the developing fetal brain. Here, we showed that ZIKV replicates differently in two glycolytically distinct pools of cortical progenitors derived from human induced pluripotent stem cells (hiPSCs), which resemble the metabolic patterns of quiescence (early hi-NPCs) and immature brain cells (late hi-NPCs) in the forebrain. This differential replication alters the transcription of metabolic genes in both pools of cortical progenitors but solely upregulates the glycolytic capacity of early hi-NPCs. Analysis using Imagestream® revealed that, during early stages of ZIKV replication, in early hi-NPCs there is an increase in lipid droplet abundance and size. This stage of ZIKV replication significantly reduced the mitochondrial distribution in both early and late hi-NPCs. During later stages of ZIKV replication, late hi-NPCs show reduced mitochondrial size and abundance. The finding that there are alterations of cellular metabolism during ZIKV infection which are specific to pools of cortical progenitors at different stages of maturation may help to explain the differences in brain damage over each trimester.
Collapse
Affiliation(s)
- Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ujang Purnama
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
7
|
Leiva S, Bugnon Valdano M, Gardiol D. Unravelling the epidemiological diversity of Zika virus by analyzing key protein variations. Arch Virol 2023; 168:115. [PMID: 36943525 DOI: 10.1007/s00705-023-05726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 03/23/2023]
Abstract
The consequences of Zika virus (ZIKV) infections were limited to sporadic mild diseases until almost a decade ago, when epidemic outbreaks took place, with quick spread into the Americas. Simultaneously, novel severe neurological manifestations of ZIKV infections were identified, including congenital microcephaly. However, why the epidemic strains behave differently is not yet completely understood, and many questions remain about the actual significance of genetic variations in the epidemiology and biology of ZIKV. In this study, we analysed a large number of viral sequences to identify genes with different levels of variability and patterns of genomic variations that could be associated with ZIKV diversity. We compared numerous epidemic strains with pre-epidemic strains, using the BWA-mem algorithm, and we also examined specific variations among the epidemic ZIKV strains derived from microcephaly cases. We identified several viral genes with dissimilar mutation rates among the ZIKV strain groups and novel protein variation profiles that might be associated with epidemiological particularities. Finally, we assessed the impact of the detected changes on the structure and stability of the NS1, NS5, and E proteins using the I-TASSER, trRosetta, and RaptorX modelling algorithms, and we found some interesting variations that might help to explain the heterogeneous features of the diverse ZIKA strains. This work contributes to the identification of genetic differences in the ZIKV genome that might have a phenotypic impact, providing a basis for future experimental analysis to elucidate the genetic causes of the recent ZIKV emergency.
Collapse
Affiliation(s)
- Santiago Leiva
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Marina Bugnon Valdano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Daniela Gardiol
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
8
|
Vaziri S, Pour SH, Akrami-Mohajeri F. Zika virus as an emerging arbovirus of international public health concern. Osong Public Health Res Perspect 2022; 13:341-351. [DOI: 10.24171/j.phrp.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in a rhesus monkey during an investigation of the yellow fever virus in the Zika Forest of Uganda; it was also isolated later from humans in Nigeria. The main distribution areas of ZIKV were the African mainland and South-East Asia in the 1980s, Micronesia in 2007, and more recently the Americas in 2014. ZIKV belongs to the Flaviviridae family and Flavivirus genus. ZIKV infection, which is transmitted by Aedes mosquitoes, is an emerging arbovirus disease. The clinical symptoms of ZIKV infection are fever, headache, rashes, arthralgia, and conjunctivitis, which clinically resemble dengue fever syndrome. Sometimes, ZIKV infection has been associated with Guillain-Barré syndrome and microcephaly. At the end of 2015, following an increase in cases of ZIKV infection associated with Guillain-Barré syndrome and microcephaly in newborns in Brazil, the World Health Organization declared a global emergency. Therefore, considering the global distribution and pathogenic nature of this virus, the current study aimed at reviewing the virologic features, transmission patterns, clinical manifestations, diagnosis, treatment, and prevention of ZIKV infection.
Collapse
|
9
|
Santos LKB, Mendonça PD, Assis LKS, Prudêncio CR, Guedes MIF, Marques ETA, Dutra RF. A Redox-Probe-Free Immunosensor Based on Electrocatalytic Prussian Blue Nanostructured Film One-Step-Prepared for Zika Virus Diagnosis. BIOSENSORS 2022; 12:623. [PMID: 36005020 PMCID: PMC9406047 DOI: 10.3390/bios12080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The Zika virus (ZIKV) is a great concern for global health due to its high transmission, including disseminating through blood, saliva, urine, semen and vertical transmission. In some cases, ZIKV has been associated with microcephaly, neurological disorders, and Guillain−Barré syndrome. There is no vaccine, and controlling the disease is a challenge, especially with the co-circulation of the Dengue virus, which causes a severe cross-reaction due to the similarity between the two arboviruses. Considering that electrochemical immunosensors are well-established, sensitive, and practical tools for diagnosis, in this study we developed a sensor platform with intrinsic redox activity that facilitates measurement readouts. Prussian blue (PB) has a great ability to form electrocatalytic surfaces, dispensing redox probe solutions in voltammetric measurements. Herein, PB was incorporated into a chitosan−carbon nanotube hybrid, forming a nanocomposite that was drop-casted on a screen-printed electrode (SPE). The immunosensor detected the envelope protein of ZIKV in a linear range of 0.25 to 1.75 µg/mL (n = 8, p < 0.01), with a 0.20 µg/mL limit of detection. The developed immunosensor represents a new method for electrochemical measurements without additional redox probe solutions, and it is feasible for application in point-of-care diagnosis.
Collapse
Affiliation(s)
- Lorenna K. B. Santos
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Avenida Professor Moraes Rego 1235, Recife 50670-90, Brazil
| | - Priscila D. Mendonça
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Avenida Professor Moraes Rego 1235, Recife 50670-90, Brazil
| | - LiLian K. S. Assis
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Avenida Professor Moraes Rego 1235, Recife 50670-90, Brazil
| | | | | | - Ernesto T. A. Marques
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rosa Fireman Dutra
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Avenida Professor Moraes Rego 1235, Recife 50670-90, Brazil
| |
Collapse
|
10
|
Fair SR, Schwind W, Julian DL, Biel A, Guo G, Rutherford R, Ramadesikan S, Westfall J, Miller KE, Kararoudi MN, Hickey SE, Mosher TM, McBride KL, Neinast R, Fitch J, Lee DA, White P, Wilson RK, Bedrosian TA, Koboldt DC, Hester ME. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 2022; 146:387-404. [PMID: 35802027 PMCID: PMC9825673 DOI: 10.1093/brain/awac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-β-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Wesley Schwind
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gongbo Guo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Swetha Ramadesikan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Reid Neinast
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Correspondence may also be addressed to: Daniel C. Koboldt, MS E-mail:
| | - Mark E Hester
- Correspondence to: Mark E. Hester, PhD 575 Children’s Crossroad Columbus OH 43205-2716, USA E-mail:
| |
Collapse
|
11
|
Vav Proteins in Development of the Brain: A Potential Relationship to the Pathogenesis of Congenital Zika Syndrome? Viruses 2022; 14:v14020386. [PMID: 35215978 PMCID: PMC8874935 DOI: 10.3390/v14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/07/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.
Collapse
|
12
|
Fikatas A, Dehairs J, Noppen S, Doijen J, Vanderhoydonc F, Meyen E, Swinnen JV, Pannecouque C, Schols D. Deciphering the Role of Extracellular Vesicles Derived from ZIKV-Infected hcMEC/D3 Cells on the Blood-Brain Barrier System. Viruses 2021; 13:v13122363. [PMID: 34960632 PMCID: PMC8708812 DOI: 10.3390/v13122363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
To date, no vaccines or antivirals are available against Zika virus (ZIKV). In addition, the mechanisms underlying ZIKV-associated pathogenesis of the central nervous system (CNS) are largely unexplored. Getting more insight into the cellular pathways that ZIKV recruits to facilitate infection of susceptible cells will be crucial for establishing an effective treatment strategy. In general, cells secrete a number of vesicles, known as extracellular vesicles (EVs), in response to viral infections. These EVs serve as intercellular communicators. Here, we investigated the role of EVs derived from ZIKV-infected human brain microvascular endothelial cells on the blood–brain barrier (BBB) system. We demonstrated that ZIKV-infected EVs (IEVs) can incorporate viral components, including ZIKV RNA, NS1, and E-protein, and further transfer them to several types of CNS cells. Using label-free impedance-based biosensing, we observed that ZIKV and IEVs can temporally disturb the monolayer integrity of BBB-mimicking cells, possibly by inducing structural rearrangements of the adherent protein VE-cadherin (immunofluorescence staining). Finally, differences in the lipidomic profile between EVs and their parental cells possibly suggest a preferential sorting mechanism of specific lipid species into the vesicles. To conclude, these data suggest that IEVs could be postulated as vehicles (Trojan horse) for ZIKV transmission via the BBB.
Collapse
Affiliation(s)
- Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Jordi Doijen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Frank Vanderhoydonc
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Eef Meyen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (J.D.); (F.V.); (J.V.S.)
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (A.F.); (S.N.); (J.D.); (E.M.); (C.P.)
- Correspondence: ; Tel.: +32-16-32-19-98
| |
Collapse
|
13
|
Candelo E, Sanz AM, Ramirez-Montaño D, Diaz-Ordoñez L, Granados AM, Rosso F, Nevado J, Lapunzina P, Pachajoa H. A Possible Association Between Zika Virus Infection and CDK5RAP2 Mutation. Front Genet 2021; 12:530028. [PMID: 33815457 PMCID: PMC8018576 DOI: 10.3389/fgene.2021.530028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Flaviviridae family belongs to the Spondweni serocomplex, which is mainly transmitted by vectors from the Aedes genus. Zika virus (ZIKV) is part of this genus. It was initially reported in Brazil in December 2014 as an unknown acute generalized exanthematous disease and was subsequently identified as ZIKV infection. ZIKV became widespread all over Brazil and was linked with potential cases of microcephaly. Case report We report a case of a 28-year-old Colombian woman, who came to the Obstetric Department with an assumed conglomerate of fetal abnormalities detected via ultrasonography, which was performed at 29.5 weeks of gestation. The patient presented with multiple abnormalities, which range from a suggested Arnold–Chiari malformation, compromising the lateral and third ventricles, liver calcifications, bilateral pyelocalic dilatations, other brain anomalies, and microcephaly. At 12 weeks of gestation, the vertical transmission of ZIKV was suspected. At 38.6 weeks of gestation, the newborn was delivered, with the weight in the 10th percentile (3,180 g), height in the 10th percentile (48 cm), and cephalic circumference under the 2nd percentile (31 cm). Due to the physical findings, brain magnetic resonance imaging (MRI) was performed, revealing a small and deviated brain stem, narrowing of the posterior fossa, a giant posterior fossa cyst with ventricular dilatation, a severe cortical and white matter thinning, cerebellar vermis with hypoplasia, and superior and lateral displacement of the cerebellum. In addition, hydrocephalus was displayed by the axial sequence, and the cerebral cortex was also compromised with lissencephaly. Schizencephaly was found with left frontal open-lip, and no intracranial calcifications were found. Two novel heterozygous nonsense mutations were identified using whole-exome sequencing, and both are located in exon 8 under the affection of ZIKV congenital syndrome (CZS) that produced a premature stop codon resulting in the truncation of the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) protein. Conclusion We used molecular and microbiological assessments to report the initial case of vertically transmitted ZIKV infection with congenital syndrome associated with a neurological syndrome, where a mutation in the CDK5RAP2 gene was also identified. The CDK5RAP2 gene encodes a pericentriolar protein that intervenes in microtubule nucleation and centriole attachment. Diallelic mutation has previously been associated with primary microcephaly.
Collapse
Affiliation(s)
- Estephania Candelo
- Universidad Icesi, Ear Institute University College London and Fundación Valle del Lili, Cali, Colombia.,Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Colombia
| | | | - Diana Ramirez-Montaño
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Colombia
| | - Lorena Diaz-Ordoñez
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Colombia
| | | | | | - Julian Nevado
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, HospitalUniversitario La Paz, Madrid, CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, HospitalUniversitario La Paz, Madrid, CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Harry Pachajoa
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Colombia.,Genetics Department, Fundación Valledel Lili, Cali, Colombia
| |
Collapse
|
14
|
Zika Virus Growth in Human Kidney Cells Is Restricted by an Elevated Glucose Level. Int J Mol Sci 2021; 22:ijms22052495. [PMID: 33801335 PMCID: PMC7958337 DOI: 10.3390/ijms22052495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mosquito-borne Zika virus (ZIKV) became a real threat to human health due to the lack of vaccine and effective antiviral treatment. The virus has recently been responsible for a global outbreak leading to millions of infected cases. ZIKV complications were highlighted in adults with Guillain–Barré syndrome and in newborns with increasing numbers of congenital disorders ranging from mild developmental delays to fatal conditions. The ability of ZIKV to establish a long-term infection in diverse organs including the kidneys has been recently documented but the consequences of such a viral infection are still debated. Our study aimed to determine whether the efficiency of ZIKV growth in kidney cells relates to glucose concentration. Human kidney HK-2 cells were infected with different ZIKV strains in presence of normal and high glucose concentrations. Virological assays showed a decrease in viral replication without modifying entry steps (viral binding, internalization, fusion) under high glucose conditions. This decrease replication was associated with a lower virus progeny and increased cell viability when compared to ZIKV-infected HK-2 cells in normal glucose concentration. In conclusion, we showed for the first time that an elevated glucose level influences ZIKV replication level with an effect on kidney cell survival.
Collapse
|
15
|
Karuppan MKM, Ojha CR, Rodriguez M, Lapierre J, Aman MJ, Kashanchi F, Toborek M, Nair M, El-Hage N. Reduced-Beclin1-Expressing Mice Infected with Zika-R103451 and Viral-Associated Pathology during Pregnancy. Viruses 2020; 12:v12060608. [PMID: 32498399 PMCID: PMC7354588 DOI: 10.3390/v12060608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Here, we used a mouse model with defective autophagy to further decipher the role of Beclin1 in the infection and disease of Zika virus (ZIKV)-R103451. Hemizygous (Becn1+/−) and wild-type (Becn1+/+) pregnant mice were transiently immunocompromised using the anti-interferon alpha/beta receptor subunit 1 monoclonal antibody MAR1-5A3. Despite a low mortality rate among the infected dams, 25% of Becn1+/− offspring were smaller in size and had smaller, underdeveloped brains. This phenotype became apparent after 2-to 3-weeks post-birth. Furthermore, the smaller-sized pups showed a decrease in the mRNA expression levels of insulin-like growth factor (IGF)-1 and the expression levels of several microcephaly associated genes, when compared to their typical-sized siblings. Neuronal loss was also noticeable in brain tissues that were removed postmortem. Further analysis with murine mixed glia, derived from ZIKV-infected Becn1+/− and Becn1+/+ pups, showed greater infectivity in glia derived from the Becn1+/− genotype, along with a significant increase in pro-inflammatory molecules. In the present study, we identified a link by which defective autophagy is causally related to increased inflammatory molecules, reduced growth factor, decreased expression of microcephaly-associated genes, and increased neuronal loss. Specifically, we showed that a reduced expression of Beclin1 aggravated the consequences of ZIKV infection on brain development and qualifies Becn1 as a susceptibility gene of ZIKV congenital syndrome.
Collapse
Affiliation(s)
- Mohan Kumar Muthu Karuppan
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Chet Raj Ojha
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Jessica Lapierre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - M. Javad Aman
- Integrated Biotherapeutics, Rockville, MD 20850, USA;
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA;
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
- Correspondence: ; Tel.: +1-(305)-348-4346; Fax: +1-(305)-348-1109
| |
Collapse
|
16
|
Kesari AS, Heintz VJ, Poudyal S, Miller AS, Kuhn RJ, LaCount DJ. Zika virus NS5 localizes at centrosomes during cell division. Virology 2020; 541:52-62. [PMID: 32056715 DOI: 10.1016/j.virol.2019.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) nonstructural protein 5 (NS5) plays a critical role in viral RNA replication and mediates key virus-host cell interactions. As with other flavivirus NS5 proteins, ZIKV NS5 is primarily found in the nucleus. We previously reported that the NS5 protein of dengue virus, another flavivirus, localized to centrosomes during cell division. Here we show that ZIKV NS5 also relocalizes from the nucleus to centrosomes during mitosis. In infected cells with supernumerary centrosomes, NS5 was present at all centrosomes. Transient expression of NS5 in uninfected cells confirmed that centrosomal localization was independent of other viral proteins. Live-cell imaging demonstrated that NS5-GFP accumulated at centrosomes shortly after break down of nuclear membrane and remained there through mitosis. Cells expressing NS5-GFP took longer to complete mitosis than control cells. Finally, an analysis of ZIKV NS5 binding partners revealed several centrosomal proteins, providing potential direct links between NS5 and centrosomes.
Collapse
Affiliation(s)
- Aditi S Kesari
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Veronica J Heintz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew S Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
17
|
Bos S, Viranaicken W, Frumence E, Li G, Desprès P, Zhao RY, Gadea G. The Envelope Residues E152/156/158 of Zika Virus Influence the Early Stages of Virus Infection in Human Cells. Cells 2019; 8:cells8111444. [PMID: 31731738 PMCID: PMC6912530 DOI: 10.3390/cells8111444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Emerging infections of mosquito-borne Zika virus (ZIKV) pose an increasing threat to human health, as documented over the recent years in South Pacific islands and the Americas in recent years. To better understand molecular mechanisms underlying the increase in human cases with severe pathologies, we recently demonstrated the functional roles of structural proteins capsid (C), pre-membrane (prM), and envelop (E) of ZIKV epidemic strains with the initiation of viral infection in human cells. Specifically, we found that the C-prM region contributes to permissiveness of human host cells to ZIKV infection and ZIKV-induced cytopathic effects, whereas the E protein is associated with viral attachment and early infection. In the present study, we further characterize ZIKV E proteins by investigating the roles of residues isoleucine 152 (Ile152), threonine 156 (Thr156), and histidine 158 (His158) (i.e., the E-152/156/158 residues), which surround a unique N-glycosylation site (E-154), in permissiveness of human host cells to epidemic ZIKV infection. For comparison purpose, we generated mutant molecular clones of epidemic BeH819015 (BR15) and historical MR766-NIID (MR766) strains that carry each other's E-152/156/158 residues, respectively. We observed that the BR15 mutant containing the E-152/156/158 residues from MR766 was less infectious in A549-Dual™ cells than parental virus. In contrast, the MR766 mutant containing E-152/156/158 residues from BR15 displayed increased infectivity. The observed differences in infectivity were, however, not correlated with changes in viral binding onto host-cells or cellular responses to viral infection. Instead, the E-152/156/158 residues from BR15 were associated with an increased efficiency of viral membrane fusion inside infected cells due to conformational changes of E protein that enhance exposure of the fusion loop. Our data highlight an important contribution of E-152/156/158 residues to the early steps of ZIKV infection in human cells.
Collapse
Affiliation(s)
- Sandra Bos
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (S.B.); (W.V.); (E.F.); (P.D.)
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (S.B.); (W.V.); (E.F.); (P.D.)
| | - Etienne Frumence
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (S.B.); (W.V.); (E.F.); (P.D.)
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (S.B.); (W.V.); (E.F.); (P.D.)
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: (R.Y.Z.); (G.G.); Tel.: +33-262-262-938-806 (G.G.)
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (S.B.); (W.V.); (E.F.); (P.D.)
- Correspondence: (R.Y.Z.); (G.G.); Tel.: +33-262-262-938-806 (G.G.)
| |
Collapse
|
18
|
Ferraris P, Yssel H, Missé D. Zika virus infection: an update. Microbes Infect 2019; 21:353-360. [DOI: 10.1016/j.micinf.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
|
19
|
Spatiotemporal Gradient of Cortical Neuron Death Contributes to Microcephaly in Knock-In Mouse Model of Ligase 4 Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2440-2449. [PMID: 31541646 DOI: 10.1016/j.ajpath.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 11/20/2022]
Abstract
Cells of the developing central nervous system are particularly susceptible to formation of double-stranded DNA breaks (DSBs) arising from physiological and/or environmental insults. Therefore, efficient repair of DSBs is especially vital for maintaining cellular health and proper functioning in the developing brain. Here, increased expression of DSB initiating and nonhomologous end joining repair machinery in newborn neurons in the developing brains of both mouse and human are demonstrated. In parallel, the first characterization is provided of the brain phenotype in the Lig4R278H/R278H (Lig4R/R) mouse model of DNA Ligase 4 (LIG4) syndrome, in which a hypomorphic Lig4 mutation, originally identified in patients, impedes nonhomologous end joining. It is shown that Lig4R/R mice develop nonprogressive microcephaly, resulting primarily from apoptotic death of newborn neurons that is both spatially and temporally specific during peak cortical neurogenesis. This apoptosis leads to a reduction in neurons throughout the postnatal cerebral cortex, but with a more prominent impact on those of the lower cortical layers. Together, these findings begin to uncover the pathogenesis of microcephaly in LIG4 syndrome and open avenues to more focused investigations on the critical roles of DSB formation and repair in vulnerable neuronal populations of the brain.
Collapse
|
20
|
Gilbert‐Jaramillo J, Garcez P, James W, Molnár Z, Clarke K. The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. J Anat 2019; 235:468-480. [PMID: 30793304 PMCID: PMC6704275 DOI: 10.1111/joa.12959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
The Zika virus (ZIKV) became a major worldwide public concern in 2015 due to the congenital syndrome which presents the highest risk during the first trimester of pregnancy and includes microcephaly and eye malformations. Several cellular, genetic and molecular studies have shown alterations in metabolic pathways, endoplasmic reticulum (ER) stress, immunity and dysregulation of RNA and energy metabolism both in vivo and in vitro. Here we summarise the main metabolic complications, with a particular focus on the possibility that brain energy metabolism is altered following ZIKV infection, contributing to developmental abnormalities. Brain energetic failure has been implicated in neurological conditions such as autism disorder and epilepsy, as well as in metabolic diseases with severe neurodevelopmental complications such as Glut-1 deficiency syndrome. Therefore, these energetic alterations are of wide-ranging interest as they might be directly implicated in congenital ZIKV syndrome. Data showing increased glycolysis during ZIKV infection, presumably required for viral replication, might support the idea that the virus can cause energetic stress in the developing brain cells. Consequences may include neuroinflammation, cell cycle dysregulation and cell death. Ketone bodies are non-glycolytic brain fuels that are produced during neonatal life, starvation or fasting, ingestion of high-fat low-carbohydrate diets, and following supplementation with ketone esters. We propose that dietary ketones might alter the course of the disease and could even provide some degree of prevention of ZIKV-associated abnormalities and potentially related neurological conditions characterised by brain glucose impairment.
Collapse
Affiliation(s)
| | - Patricia Garcez
- Institute of Biomedical SciencesFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - William James
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
21
|
Tan CW, Huan Hor CH, Kwek SS, Tee HK, Sam IC, Goh ELK, Ooi EE, Chan YF, Wang LF. Cell surface α2,3-linked sialic acid facilitates Zika virus internalization. Emerg Microbes Infect 2019; 8:426-437. [PMID: 30898036 PMCID: PMC6455136 DOI: 10.1080/22221751.2019.1590130] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The emergence of neurotropic Zika virus (ZIKV) raised a public health emergency of global concern. ZIKV can cross the placental barrier and infect foetal brains, resulting in microcephaly, but the pathogenesis of ZIKV is poorly understood. With recent findings reporting AXL as a type I interferon antagonist rather than an entry receptor, the exact entry mechanism remains unresolved. Here we report that cell surface sialic acid plays an important role in ZIKV infection. Removal of cell surface sialic acid by neuraminidase significantly abolished ZIKV infection in Vero cells and human induced-pluripotent stem cells-derived neural progenitor cells. Furthermore, knockout of the sialic acid biosynthesis gene encoding UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase resulted in significantly less ZIKV infection of both African and Asian lineages. Huh7 cells deficient in α2,3-linked sialic acid through knockout of ST3 β-galactoside-α2,3-sialyltransferase 4 had significantly reduced ZIKV infection. Removal of membrane-bound, un-internalized virus with pronase treatment revealed the role of sialic acid in ZIKV internalization but not attachment. Sialyllactose inhibition studies showed that there is no direct interaction between sialic acid and ZIKV, implying that sialic acid could be mediating ZIKV-receptor complex internalization. Identification of α2,3-linked sialic acid as an important host factor for ZIKV internalization provides new insight into ZIKV infection and pathogenesis.
Collapse
Affiliation(s)
- Chee Wah Tan
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| | - Catherine Hong Huan Hor
- b Neuroscience Academic Clinical Programme , Duke-NUS Medical School , Singapore , Singapore
| | - Swee Sen Kwek
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| | - Han Kang Tee
- c Department of Medical Microbiology, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - I-Ching Sam
- c Department of Medical Microbiology, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Eyleen L K Goh
- b Neuroscience Academic Clinical Programme , Duke-NUS Medical School , Singapore , Singapore
| | - Eng Eong Ooi
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| | - Yoke Fun Chan
- c Department of Medical Microbiology, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Lin-Fa Wang
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| |
Collapse
|
22
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
23
|
Friedman JM. Editorial In Bed with The Devil: Recognizing Human Teratogenic Exposures. Birth Defects Res 2019; 109:1407-1413. [PMID: 29152923 DOI: 10.1002/bdr2.1134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/26/2017] [Accepted: 08/30/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Jan M Friedman
- Department of Medical Genetics and Genomics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Human T cell leukemia virus type 1 and Zika virus: tale of two reemerging viruses with neuropathological sequelae of public health concern. J Neurovirol 2019; 25:289-300. [PMID: 30693421 DOI: 10.1007/s13365-019-00720-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/16/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) and Zika virus (ZIKV) have been considered neglected viruses of low public health concern until recently when incidences of HTLV-1 and ZIKV were observed to be linked to serious immune-related disease and neurological complications. This review will discuss the epidemiology, genomic evolution, virus-host interactions, virulence factors, neuropathological sequelae, and current perspectives of these reemerging viruses. There are no FDA-approved therapeutics or vaccines against these viruses, and as such, it is important for clinical trials to focus on developing vaccines that can induce cell-mediated immune response to confer long-term protective immunity. Furthermore, attention should be paid to reducing the transmission of these viruses through unprotected sex, infected blood during sharing of contaminated needles, donated blood and organs, and vertical transmission from mother to baby via breastfeeding. There is an urgent need to re-evaluate repurposing current antiviral therapies as well as developing novel antiviral agents with enhanced efficacy due to the high morbidity rate associated with these two reemerging chronic viral diseases.
Collapse
|
25
|
Ferraris P, Cochet M, Hamel R, Gladwyn-Ng I, Alfano C, Diop F, Garcia D, Talignani L, Montero-Menei CN, Nougairède A, Yssel H, Nguyen L, Coulpier M, Missé D. Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerg Microbes Infect 2019; 8:1003-1016. [PMID: 31282298 PMCID: PMC6691766 DOI: 10.1080/22221751.2019.1637283] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne Flavivirus that causes Zika disease with particular neurological complications, including Guillain-Barré Syndrome and congenital microcephaly. Although ZIKV has been shown to directly infect human neural progenitor cells (hNPCs), thereby decreasing their viability and growth, it is as yet unknown which of the cellular pathways involved in the disruption of neurogenesis are affected following ZIKV infection. By comparing the effect of two ZIKV strains in vitro on hNPCs, the differentiation process of the latter cells was found to lead to a decreased susceptibility to infection and cell death induced by each of the ZIKV strains, which was associated with an earlier and stronger antiviral innate immune response in infected, differentiated hNPCs, as compared to undifferentiated cells. Moreover, ZIKV modulated, both in hNPCs and in vivo in fetal brain in an experimental mouse model, the expression of the Notch pathway which is involved in cellular proliferation, apoptosis and differentiation during neurogenesis. These results show that the differentiation state of hNPCs is a significant factor contributing to the outcome of ZIKV infection and furthermore suggest that ZIKV infection might initiate early activation of the Notch pathway resulting in an abnormal differentiation process, implicated in ZIKV-induced brain injury.
Collapse
Affiliation(s)
| | - Marielle Cochet
- UMR1161 Virologie, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Rodolphe Hamel
- MIVEGEC, IRD, Univ. Montpellier, CNRS, Montpellier, France
| | - Ivan Gladwyn-Ng
- GIGA-Neuroscience, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Christian Alfano
- GIGA-Neuroscience, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Fodé Diop
- MIVEGEC, IRD, Univ. Montpellier, CNRS, Montpellier, France
| | - Déborah Garcia
- MIVEGEC, IRD, Univ. Montpellier, CNRS, Montpellier, France
| | - Loïc Talignani
- MIVEGEC, IRD, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Antoine Nougairède
- UVE, Aix Marseille Univ-IRD 190, Inserm 1207-IHU Méditerranée Infection, Marseille, France
| | - Hans Yssel
- Centre d’Immunologie et des Maladies Infectieuses, Inserm, U1135, Sorbonne Universités, UPMC, APHP Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurent Nguyen
- GIGA-Neuroscience, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Muriel Coulpier
- UMR1161 Virologie, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Dorothée Missé
- MIVEGEC, IRD, Univ. Montpellier, CNRS, Montpellier, France
| |
Collapse
|
26
|
Beaufrère A, Bessières B, Bonnière M, Driessen M, Alfano C, Couderc T, Thiry M, Thelen N, Lecuit M, Attié-Bitach T, Vekemans M, Ville Y, Nguyen L, Leruez-Ville M, Encha-Razavi F. A clinical and histopathological study of malformations observed in fetuses infected by the Zika virus. Brain Pathol 2018; 29:114-125. [PMID: 30020561 DOI: 10.1111/bpa.12644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recent outbreak of Zika virus (ZIKV) infection and the associated increased prevalence of microcephaly in Brazil underline the impact of viral infections on embryo fetal development. The aim of the present study is to provide a detailed clinical and histopathological study of the fetal disruption caused by the ZIKV, with a special focus on the associated neuropathological findings. METHODS A detailed feto-placental examination, as well as neuropathological and neurobiological studies were performed on three fetuses collected after pregnancy termination between 22 and 25 weeks of gestation (WG), because brain malformations associated with a maternal and fetal ZIKV infection was diagnosed. RESULTS In all three cases, the maternal infection occurred during the first trimester of pregnancy. A small head was observed on the ultrasound examination of the second trimester of pregnancy and led to the diagnosis of ZIKV fetopathy and pregnancy termination. The fetal histopathological examination was unremarkable on the viscera but showed on the testis an interstitial lymphocytic infiltrate. The placenta contained a Hofbauer cells hyperplasia with signs of inflammation. Neuropathological findings included a meningoencephalitis and an ex vacuo hydrocephalus. Immunohistochemical studies showed the presence of T lymphocytic and histiocytic meningitis associated with an abundant cerebral astroglial and macrophagic reaction. In situ hybridization demonstrated, abundant ZIKV particles within the cerebral parenchyma mainly in the ventricular/subventricular zone and in the cortical plate. In addition massive cells death and endoplasmic reticulum damage were present. CONCLUSION The present study reports on the clinical and histopathological findings observed in three fetuses infected by the ZIKV. It emphasizes the severity of brain damages and the minimal visceral and placental changes observed upon ZIKV infection. This confirms the selective neurotropism of ZIKV. Finally, it allows us to describe the cascade of multifactorial developmental defects leading to microcephaly.
Collapse
Affiliation(s)
- Aurélie Beaufrère
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| | - Bettina Bessières
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| | - Maryse Bonnière
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| | - Marine Driessen
- Service de Gynécologie-Obstétrique, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| | | | - Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France
| | - Marc Thiry
- GIGA-Neurosciences, Université de Liège, Liège, Belgique
| | - Nicolas Thelen
- GIGA-Neurosciences, Université de Liège, Liège, Belgique
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France.,Paris-Descartes University, Sorbonne Paris Cité, Centre d'Infectiologie Necker-Pasteur, Necker-Enfants Malades, Paris, France
| | - Tania Attié-Bitach
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France.,INSERM U-1163, Institut Imagine, Paris, France.,Université Paris Descartes, Paris, France
| | - Michel Vekemans
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France.,INSERM U-1163, Institut Imagine, Paris, France.,Université Paris Descartes, Paris, France
| | - Yves Ville
- Service de Gynécologie-Obstétrique, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France.,Université Paris Descartes, Paris, France
| | - Laurent Nguyen
- GIGA-Neurosciences, Université de Liège, Liège, Belgique
| | - Marianne Leruez-Ville
- Université Paris Descartes, Paris, France.,Laboratoire de Virologie, Hôpital Universitaire Necker Enfants Malades, APHP, Paris, France
| | - Férechté Encha-Razavi
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| |
Collapse
|
27
|
de Sousa JR, Azevedo RDSDS, Martins Filho AJ, de Araujo MTF, Cruz EDRM, Vasconcelos BCB, Cruz ACR, de Oliveira CS, Martins LC, Vasconcelos BHB, Casseb LMN, Chiang JO, Quaresma JAS, Vasconcelos PFDC. In situ inflammasome activation results in severe damage to the central nervous system in fatal Zika virus microcephaly cases. Cytokine 2018; 111:255-264. [PMID: 30199767 DOI: 10.1016/j.cyto.2018.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) has caused substantial concern worldwide owing to its association with severe birth defects, such as microcephaly and other congenital malformations. Inflammasomes, i.e., multi-protein complexes that induce inflammation and pyroptosis, are predicted to contribute to the immune response to this flavivirus. Accordingly, in this study, the in situ inflammasome response was evaluated in fatal cases of ZIKV-linked microcephaly. Brain tissue samples were collected from eight babies, including four ZIKV-positive microcephalic neonates who died after birth and four flavivirus-negative neonatal controls who died of other causes and whose central nervous system (CNS) architecture was preserved. In the ZIKV-positive newborn/stillbirth babies, the major histopathological alterations included atrophy of the cortical layer, a predominance of mononuclear cell infiltration in the Virchow-Robin space, neuronal necrosis, vacuolization and neuronal degeneration, neuronophagy, and gliosis. An immunohistochemical analysis of tissues in the neural parenchyma showed significantly higher expression of the receptors NLRP1, NLRP3, and AIM2, cytokines IL-1β, IL-18, and IL-33, and enzymes caspase 1, iNOS, and arginase 1 in ZIKV-positive microcephaly cases than in flavivirus-negative controls. These results suggest that inflammasome activation can aggravate the neuroinflammatory response and consequently increase CNS damage in neonates with fetal neural ZIKV infection and microcephaly.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | | | | | | | | | | | - Ana Cecilia Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
| | - Consuelo Silva de Oliveira
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Livia Caricio Martins
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | | | - Livia Medeiros Neves Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Juarez Antonio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil; Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil; Center of Biological and Health Sciences, State University of Pará, Belém, Brazil.
| |
Collapse
|
28
|
Coyaud E, Ranadheera C, Cheng D, Gonçalves J, Dyakov BJA, Laurent EMN, St-Germain J, Pelletier L, Gingras AC, Brumell JH, Kim PK, Safronetz D, Raught B. Global Interactomics Uncovers Extensive Organellar Targeting by Zika Virus. Mol Cell Proteomics 2018; 17:2242-2255. [PMID: 30037810 DOI: 10.1074/mcp.tir118.000800] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Zika virus (ZIKV) is a membrane enveloped Flavivirus with a positive strand RNA genome, transmitted by Aedes mosquitoes. The geographical range of ZIKV has dramatically expanded in recent decades resulting in increasing numbers of infected individuals, and the spike in ZIKV infections has been linked to significant increases in both Guillain-Barré syndrome and microcephaly. Although a large number of host proteins have been physically and/or functionally linked to other Flaviviruses, very little is known about the virus-host protein interactions established by ZIKV. Here we map host cell protein interaction profiles for each of the ten polypeptides encoded in the ZIKV genome, generating a protein topology network comprising 3033 interactions among 1224 unique human polypeptides. The interactome is enriched in proteins with roles in polypeptide processing and quality control, vesicle trafficking, RNA processing and lipid metabolism. >60% of the network components have been previously implicated in other types of viral infections; the remaining interactors comprise hundreds of new putative ZIKV functional partners. Mining this rich data set, we highlight several examples of how ZIKV may usurp or disrupt the function of host cell organelles, and uncover an important role for peroxisomes in ZIKV infection.
Collapse
Affiliation(s)
- Etienne Coyaud
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charlene Ranadheera
- §Public Health Agency of Canada, Zoonotic Diseases and Special Pathogens Program, Winnipeg, Manitoba, Canada
| | - Derrick Cheng
- ¶Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,‖Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - João Gonçalves
- **Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Boris J A Dyakov
- **Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,‡‡Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Estelle M N Laurent
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laurence Pelletier
- **Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,‡‡Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- **Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,‡‡Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John H Brumell
- ¶Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,‡‡Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,§§Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,¶¶Sick Kids IBD Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter K Kim
- ¶Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,‖Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David Safronetz
- §Public Health Agency of Canada, Zoonotic Diseases and Special Pathogens Program, Winnipeg, Manitoba, Canada
| | - Brian Raught
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; .,‖‖Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
29
|
Marsakatla P, Suneetha S, Lee J, Swaminathan PD, Vasudevan L, Supriya R, Suneetha LM. Insights from the sequence similarity of Zika virus proteins with the Human nerve proteins. Bioinformation 2018; 14:194-200. [PMID: 30108415 PMCID: PMC6077820 DOI: 10.6026/97320630014194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Massive peptide sharing between the Zika virus polyprotein and host tissue proteins could elicit significant host-pathogen interactions and cross-reactions leading to autoimmune diseases. This study found similarities in the Zika V proteins and human nerve tissue proteins. 63 human nerve proteins were screened for similarities with the Zika V of which Neuromodulin, Nestin, Galanin, Bombesin, Calcium-binding protein were found to have similarities to the Zika V poly protein C at different sequence regions. These sequence similarities could be significant in regulating pathogenic interactions/autoimmunity, as Polyprotein C is known to be a virulent factor.
Collapse
Affiliation(s)
| | - Sujai Suneetha
- CODEWEL Nireekshana ACET, Narayanaguda, Hyderabad -500029, Telangana, India
| | - Joshua Lee
- York University, Department of Science, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | | | | | - Rachael Supriya
- CODEWEL Nireekshana ACET, Narayanaguda, Hyderabad -500029, Telangana, India
| | | |
Collapse
|
30
|
Bos S, Viranaicken W, Turpin J, El-Kalamouni C, Roche M, Krejbich-Trotot P, Desprès P, Gadea G. The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells. Virology 2018; 516:265-273. [PMID: 29395111 DOI: 10.1016/j.virol.2017.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Mosquito-borne Zika virus (ZIKV) recently emerged in South Pacific islands and Americas where large epidemics were documented. In the present study, we investigated the contribution of the structural proteins C, prM and E in the permissiveness of human host cells to epidemic strains of ZIKV. To this end, we evaluated the capacity of the epidemic strain BeH819015 to infect epithelial A549 and neuronal SH-SY5Y cells in comparison to the African historical MR766 strain. For that purpose, we generated a molecular clone of BeH819015 and a chimeric clone of MR766 which contains the BeH819015 structural protein region. We showed that ZIKV containing BeH819015 structural proteins was much less efficient in cell-attachment leading to a reduced susceptibility of A549 and SH-SY5Y cells to viral infection. Our data illustrate a previously underrated role for C, prM, and E in ZIKV epidemic strain ability to initiate viral infection in human host cells.
Collapse
Affiliation(s)
- Sandra Bos
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Jonathan Turpin
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Chaker El-Kalamouni
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Marjolaine Roche
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Pascale Krejbich-Trotot
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| |
Collapse
|
31
|
Bukrejewska M, Derewenda U, Radwanska M, Engel DA, Derewenda ZS. Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:767-774. [DOI: 10.1107/s2059798317010737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 11/10/2022]
Abstract
Two nonstructural proteins encoded byZika virusstrain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Å resolution, respectively. The NS5 methyltransferase contains a boundS-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.
Collapse
|