1
|
Lucchino L, Armentano M, Visioli G, Beccia A, Albanese GM, Mallone F, Putotto C, Pulvirenti F, Gharbiya M, Lambiase A, Marenco M. Assessment of vascular tortuosity in 22q11.2 deletion syndrome using optical coherence tomography angiography. Photodiagnosis Photodyn Ther 2025; 53:104598. [PMID: 40254227 DOI: 10.1016/j.pdpdt.2025.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE To quantify retinal vascular tortuosity and assess microvascular alterations in 22q11.2 deletion syndrome (22q11.2DS) using optical coherence tomography angiography (OCTA). METHODS This observational cross-sectional study analyzed 108 eyes from 27 patients with 22q11.2DS and 27 age- and sex-matched controls. OCTA parameters included vascular density in the superficial and deep capillary plexuses (SCP, DCP), radial peripapillary capillaries (RPC), and foveal avascular zone (FAZ). A skeletonized vascular model was generated from 6 mm × 6 mm OCTA images of the superficial plexus after Otsu binarization using Fiji (ImageJ). The vascular tortuosity index (VTI) was computed as the ratio of total vessel length to Euclidean distance via the AnalyzeSkeleton function. A generalized estimating equation (GEE) model accounted for intra-eye correlation, and a probit regression model identified OCTA predictors of 22q11.2DS. RESULTS OCTA revealed significantly lower vascular density in both SCP and DCP in 22q11.2DS patients. DCP density was reduced across all regions, including whole-image (p < 0.001), superior (p < 0.001), inferior (p < 0.001), and foveal regions (p = 0.020). No significant differences were found in FAZ area or RPC density. VTI was significantly higher in 22q11.2DS (p = 0.001). Probit regression identified DCP whole-image density (p = 0.009) and VTI (p = 0.028) as predictors of 22q11.2DS, with a pseudo-R² of 0.23. CONCLUSIONS VTI was identified as a predictor of 22q11.2DS, providing an objective measure of retinal vascular tortuosity. OCTA revealed previously unrecognized microvascular alterations, supporting its use as a non-invasive tool for vascular assessment in this population.
Collapse
Affiliation(s)
- Luca Lucchino
- Department of Sense Organs, Sapienza - University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marta Armentano
- Department of Sense Organs, Sapienza - University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Giacomo Visioli
- Department of Sense Organs, Sapienza - University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Alessandro Beccia
- Servicio de Oftalmologia - Hospital Universitario 12 de Octubre, Calle del Dr. Tolosa Latour, s/n, Usera, 28041 Madrid, Spain
| | - Giuseppe Maria Albanese
- Department of Sense Organs, Sapienza - University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza - University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carolina Putotto
- Department of Maternal Infantile and Urological Sciences - Sapienza University of Rome, Italy
| | - Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Policlinico Umberto I University Hospital I, Rome, Italy
| | - Magda Gharbiya
- Department of Sense Organs, Sapienza - University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; Head and Neck Department, Policlinico Umberto I University Hospital, Rome, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Sapienza - University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; Head and Neck Department, Policlinico Umberto I University Hospital, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza - University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; Head and Neck Department, Policlinico Umberto I University Hospital, Rome, Italy
| |
Collapse
|
2
|
Urbański B, Urbańska Z, Bąbol-Pokora K, Subocz E, Młynarski W, Janczar S. Inherited or Immunological Thrombocytopenia: The Complex Nature of Platelet Disorders in 22q11.2 Deletion Syndrome. Semin Thromb Hemost 2025. [PMID: 39805292 DOI: 10.1055/s-0044-1801383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is one of the most common congenital malformation syndromes resulting from disrupted embryonic development of pharyngeal pouches. The classical triad of symptoms described by Angelo DiGeorge is frequently accompanied by hematological and immune disorders. While it is well-established that patients with 22q11.2DS have an increased risk of recurrent autoimmune cytopenias, including immune thrombocytopenia, the platelet abnormalities in this population are more complex and multifaceted. Given this issue, we conducted a comprehensive literature review on platelet disorders in 22q11.2DS using accessible databases (PubMed and Scopus). We aimed to outline previous studies limitations and most urgent challenges concerning thrombocytopenia in these patients. One characteristic finding frequently observed in 22q11.2DS is mild macrothrombocytopenia caused presumably by the loss of one GP1BB allele, encoding the element of the GPIb-IX-V complex. This structure plays a central role in thrombocyte adhesion, aggregation, and subsequent activation. Recent studies suggest that defective megakaryopoiesis and impaired vasculogenesis may strongly influence platelet and hemostasis disorders in 22q11.2DS. Furthermore, the phenotypic manifestation may be modulated by epigenetic factors and gene expression modifiers located outside the deletion region. Although the final hemorrhagic phenotype is typically mild, these patients may require more frequent transfusions following major surgical procedures. Despite the risk of thrombocytopenia and thrombocytopathy, there is a lack of large-scale research on hematological anomalies in 22q11.2DS, and the available results are often inconclusive. Given the complexity of hemostatic disorders, it is essential to establish specific recommendations for perioperative management and autoimmune cytopenias treatment within this population.
Collapse
Affiliation(s)
- Bartosz Urbański
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Urbańska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Subocz
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Armentano M, Alisi L, Giovannetti F, Iannucci V, Lucchino L, Bruscolini A, Lambiase A. The Co-Occurrence of 22q11.2 Deletion Syndrome and Epithelial Basement Membrane Dystrophy: A Case Report and Review of the Literature. Life (Basel) 2024; 14:1006. [PMID: 39202748 PMCID: PMC11355887 DOI: 10.3390/life14081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11.2DS) is a genetic disorder caused by the deletion of the q11.2 band of chromosome 22. It may affect various systems, including the cardiovascular, immunological, gastrointestinal, endocrine, and neurocognitive systems. Additionally, several ocular manifestations have been described. RESULTS We report a case of a 34-year-old female diagnosed with 22q11.2DS who presented with visual discomfort and foreign body sensation in both eyes. She had no history of recurrent ocular pain. A comprehensive ophthalmological examination was performed, including anterior segment optical coherence tomography and in vivo confocal microscopy. Overall, the exams revealed bilateral corneal map-like lines, dots, and fingerprint patterns, consistent with a diagnosis of epithelial basement membrane dystrophy (EBMD). In addition to presenting with this novel corneal manifestation for 22q11.2 DS, we review the ocular clinical features of 22q11.2DS in the context of our case. CONCLUSIONS The EBMD may represent a new corneal manifestation associated with 22q11.2 syndrome, although the link between these conditions is unknown. Further research is warranted to investigate potentially shared genetic or molecular pathways to the understanding of the phenotypic variety observed among this rare syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | - Alice Bruscolini
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (L.A.); (F.G.); (V.I.); (L.L.); (A.L.)
| | | |
Collapse
|
4
|
Bolunduț AC, Nazarie F, Lazea C, Șufană C, Miclea D, Lazăr C, Mihu CM. A Pilot Study of Multiplex Ligation-Dependent Probe Amplification Evaluation of Copy Number Variations in Romanian Children with Congenital Heart Defects. Genes (Basel) 2024; 15:207. [PMID: 38397197 PMCID: PMC10887610 DOI: 10.3390/genes15020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Congenital heart defects (CHDs) have had an increasing prevalence over the last decades, being one of the most common congenital defects. Their etiopathogenesis is multifactorial in origin. About 10-15% of all CHD can be attributed to copy number variations (CNVs), a type of submicroscopic structural genetic alterations. The aim of this study was to evaluate the involvement of CNVs in the development of congenital heart defects. We performed a cohort study investigating the presence of CNVs in the 22q11.2 region and GATA4, TBX5, NKX2-5, BMP4, and CRELD1 genes in patients with syndromic and isolated CHDs. A total of 56 patients were included in the study, half of them (28 subjects) being classified as syndromic. The most common heart defect in our study population was ventricular septal defect (VSD) at 39.28%. There were no statistically significant differences between the two groups in terms of CHD-type distribution, demographical, and clinical features, with the exceptions of birth length, weight, and length at the time of blood sampling, that were significantly lower in the syndromic group. Through multiplex ligation-dependent probe amplification (MLPA) analysis, we found two heterozygous deletions in the 22q11.2 region, both in patients from the syndromic group. No CNVs involving GATA4, NKX2-5, TBX5, BMP4, and CRELD1 genes were identified in our study. We conclude that the MLPA assay may be used as a first genetic test in patients with syndromic CHD and that the 22q11.2 region may be included in the panels used for screening these patients.
Collapse
Affiliation(s)
- Alexandru Cristian Bolunduț
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Florina Nazarie
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cecilia Lazea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Crina Șufană
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Diana Miclea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- Medical Genetics Compartment, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Călin Lazăr
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Buckingham M, Kelly RG. Cardiac Progenitor Cells of the First and Second Heart Fields. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:103-124. [PMID: 38884707 DOI: 10.1007/978-3-031-44087-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France.
| | - Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
6
|
Zhu C, Yang Y, Pan B, Wei H, Ju J, Si N, Xu Q. Genetic Screening of Targeted Region on the Chromosome 22q11.2 in Patients with Microtia and Congenital Heart Defect. Genes (Basel) 2023; 14:genes14040879. [PMID: 37107637 PMCID: PMC10137977 DOI: 10.3390/genes14040879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Microtia is a congenital malformation characterized by a small, abnormally shaped auricle (pinna) ranging in severity. Congenital heart defect (CHD) is one of the comorbid anomalies with microtia. However, the genetic basis of the co-existence of microtia and CHD remains unclear. Copy number variations (CNVs) of 22q11.2 contribute significantly to microtia and CHD, respectively, thus suggesting a possible shared genetic cause embedded in this genomic region. In this study, 19 sporadic patients with microtia and CHD, as well as a nuclear family, were enrolled for genetic screening of single nucleotide variations (SNVs) and CNVs in 22q11.2 by target capture sequencing. We detected a total of 105 potential deleterious variations, which were enriched in ear- or heart-development-related genes, including TBX1 and DGCR8. The gene burden analysis also suggested that these genes carry more deleterious mutations in the patients, as well as several other genes associated with cardiac development, such as CLTCL1. Additionally, a microduplication harboring SUSD2 was validated in an independent cohort. This study provides new insights into the underlying mechanisms for the comorbidity of microtia and CHD focusing on chromosome 22q11.2, and suggests that a combination of genetic variations, including SNVs and CNVs, may play a crucial role instead of single gene mutation.
Collapse
Affiliation(s)
- Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yang Yang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100144, China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100144, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jiahang Ju
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Nuo Si
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100144, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
7
|
Steele RE, Sanders R, Phillips HM, Bamforth SD. PAX Genes in Cardiovascular Development. Int J Mol Sci 2022; 23:7713. [PMID: 35887061 PMCID: PMC9324344 DOI: 10.3390/ijms23147713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
The mammalian heart is a four-chambered organ with systemic and pulmonary circulations to deliver oxygenated blood to the body, and a tightly regulated genetic network exists to shape normal development of the heart and its associated major arteries. A key process during cardiovascular morphogenesis is the septation of the outflow tract which initially forms as a single vessel before separating into the aorta and pulmonary trunk. The outflow tract connects to the aortic arch arteries which are derived from the pharyngeal arch arteries. Congenital heart defects are a major cause of death and morbidity and are frequently associated with a failure to deliver oxygenated blood to the body. The Pax transcription factor family is characterised through their highly conserved paired box and DNA binding domains and are crucial in organogenesis, regulating the development of a wide range of cells, organs and tissues including the cardiovascular system. Studies altering the expression of these genes in murine models, notably Pax3 and Pax9, have found a range of cardiovascular patterning abnormalities such as interruption of the aortic arch and common arterial trunk. This suggests that these Pax genes play a crucial role in the regulatory networks governing cardiovascular development.
Collapse
Affiliation(s)
| | | | | | - Simon D. Bamforth
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle NE1 3BZ, UK; (R.E.S.); (R.S.); (H.M.P.)
| |
Collapse
|
8
|
Funato N. Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. J Dev Biol 2022; 10:jdb10020018. [PMID: 35645294 PMCID: PMC9149807 DOI: 10.3390/jdb10020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The 22q11.2 deletion is one of the most common genetic microdeletions, affecting approximately 1 in 4000 live births in humans. A 1.5 to 2.5 Mb hemizygous deletion of chromosome 22q11.2 causes DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). DGS/VCFS are associated with prevalent cardiac malformations, thymic and parathyroid hypoplasia, and craniofacial defects. Patients with DGS/VCFS manifest craniofacial anomalies involving the cranium, cranial base, jaws, pharyngeal muscles, ear-nose-throat, palate, teeth, and cervical spine. Most craniofacial phenotypes of DGS/VCFS are caused by proximal 1.5 Mb microdeletions, resulting in a hemizygosity of coding genes, microRNAs, and long noncoding RNAs. TBX1, located on chromosome 22q11.21, encodes a T-box transcription factor and is a candidate gene for DGS/VCFS. TBX1 regulates the fate of progenitor cells in the cranial and pharyngeal apparatus during embryogenesis. Tbx1-null mice exhibit the most clinical features of DGS/VCFS, including craniofacial phenotypes. Despite the frequency of DGS/VCFS, there has been a limited review of the craniofacial phenotypes of DGC/VCFS. This review focuses on these phenotypes and summarizes the current understanding of the genetic factors that impact DGS/VCFS-related phenotypes. We also review DGS/VCFS mouse models that have been designed to better understand the pathogenic processes of DGS/VCFS.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Advanced Therapeutic Sciences, Medical and Dental Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
9
|
Anderson RH, Bamforth SD. Morphogenesis of the Mammalian Aortic Arch Arteries. Front Cell Dev Biol 2022; 10:892900. [PMID: 35620058 PMCID: PMC9127140 DOI: 10.3389/fcell.2022.892900] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
The major vessels in mammals that take blood away from the heart and deliver it to the arms and the head take their origin from the aortic arch and are derived from the arteries formed within the embryonic pharyngeal arches. These pharyngeal arch arteries, initially symmetrical, form in a cranial to caudal sequence within the pharyngeal mesenchyme. They then undergo a complex process of remodeling to produce the asymmetrical brachiocephalic arteries as seen in the adult. A complex interaction between the tissues of the pharyngeal arches and the genes they express is required to ensure that arterial formation and remodeling is able to proceed normally. If this process is disrupted, life-threatening congenital cardiovascular malformations can occur, such as interruption of the aortic arch, isolation of individual arteries, or so-called vascular rings. Here, using state-of-the-art imaging techniques, we describe the morphogenesis of the arteries in humans and mice and the cardiovascular defects in the Tbx1 mutant mouse model. We provide details of the process of remodeling, clarifying also the morphogenesis of the external carotid artery and the so-called "migration" of the left subclavian artery.
Collapse
|
10
|
Lee J, Jeong JS, Kim SY, Kim W, Lee SY, Park JD, Oh JH, Park D, Lee SJ, Baek SK, Quah Y, Nam SY, Yu WJ. Bis-diamine administration during pregnancy induces developmental and reproductive toxicities in rats. Birth Defects Res 2022; 114:509-524. [PMID: 35365952 DOI: 10.1002/bdr2.2006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Bis-diamine was developed as amebicidal and male contraceptive agents; however, it is also reported to induce characteristic congenital heart defects especially in the cardiac conotruncal area of rats. Because of its characteristic congenital heart defects, bis-diamine-induced animal models can be used for studying congenital heart defects. However, comprehensive toxicological information regarding bis-diamine-induced congenital heart defects in this animal model is not available. METHODS In this study, we investigated and characterized an animal model for bis-diamine-induced congenital heart defects. A single dose of 200-mg bis-diamine was administered by oral gavage to pregnant rats on gestation day 10, and then observed the representative toxicological endpoints for general systemic health of pregnant rats, embryo-fetal development, and parturition. RESULTS Characteristic congenital heart defects and other birth defects similar to DiGeorge syndrome were observed in bis-diamine-administered pregnant rats. In addition, developmental and reproductive toxicity findings, including increased postimplantation loss, decreased fetal weight, increased perinatal death, and increased gestation period, were observed in bis-diamine-administered pregnant rats. In particular, these developmental and reproductive toxicities were observed without maternal toxicity findings. CONCLUSION These results will be useful to use this animal model for further studies in congenital heart defects, cardiovascular defects, and understanding their mechanisms.
Collapse
Affiliation(s)
- Jinsoo Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Ji-Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Sang Yun Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Woojin Kim
- Toxicological Pathology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Sun-Young Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jeong-Dong Park
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, South Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, South Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Sang-Ki Baek
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| |
Collapse
|
11
|
Accinni T, Buzzanca A, Frascarelli M, Carlone L, Ghezzi F, Kotzalidis GD, Bucci P, Giordano GM, Girardi N, Panzera A, Montaldo S, Fanella M, Di Bonaventura C, Putotto C, Versacci P, Marino B, Pasquini M, Biondi M, Di Fabio F. Social Cognition Impairments in 22q11.2DS Individuals With and Without Psychosis: A Comparison Study With a Large Population of Patients With Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab049. [PMID: 39144801 PMCID: PMC11205897 DOI: 10.1093/schizbullopen/sgab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
BACKGROUND 22q11.2 Deletion Syndrome (22q11DS) represents one of the most important genetic risk factors for schizophrenia (SCZ) and a reliable biological model to study endophenotypic characters of SCZ. The aim of the study was to investigate Social Cognition impairments in subjects with 22q11.2DS compared to a considerable sample of schizophrenic patients. METHODS Forty-four individuals with 22q11.2DS (DEL) and 18 patients with 22q11.2DS and psychosis (DEL_SCZ) were enrolled; these groups were compared to 887 patients with schizophrenia (SCZ) and 780 healthy controls (HCs); the latter groups were recruited by the Italian Network for Research on Psychoses (NIRP) to which our Centre took part. Social cognition was evaluated through The Awareness of Social Inference Test (TASIT). A resampling procedure was employed to balance differences in samples size. RESULTS All clinical groups (DEL; DEL_SCZ; and SCZ) showed worse performance on TASIT than HCs, except in Sincere scale. No differences between-clinical groups were found, except for Simple Sarcasm, Paradoxical Sarcasm and Enriched Sarcasm scales. CONCLUSIONS SC was impaired in individuals with 22q11.2DS regardless of psychotic symptomatology, similarly to people with SCZ. Therefore, SC deficits may represent potential endophenotypes of SCZ contributing to the vulnerability to psychosis.
Collapse
Affiliation(s)
- Tommaso Accinni
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Antonino Buzzanca
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Marianna Frascarelli
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Luca Carlone
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Francesco Ghezzi
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Georgios D Kotzalidis
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Faculty of Medicine and Psychology, Rome, Italy
| | - Paola Bucci
- Department of Psychiatry, Campania University “Luigi Vanvitelli,”Naples, Italy
| | | | - Nicoletta Girardi
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Alessia Panzera
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Simone Montaldo
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Martina Fanella
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Carolina Putotto
- Department of Pediatrics, Sapienza Univerisity of Rome, Rome, Italy
| | - Paolo Versacci
- Department of Pediatrics, Sapienza Univerisity of Rome, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Sapienza Univerisity of Rome, Rome, Italy
| | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Massimo Biondi
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| | - Fabio Di Fabio
- Department of Human Neurosciences, Sapienza University of Rome, Faculty of Medicine and Dentistry, Rome, Italy
| |
Collapse
|
12
|
Winer KK, Ye S, Ferré EMN, Schmitt MM, Zhang B, Cutler GB, Lionakis MS. Therapy with PTH 1-34 or calcitriol and calcium in diverse etiologies of hypoparathyroidism over 27 years at a single tertiary care center. Bone 2021; 149:115977. [PMID: 33932619 DOI: 10.1016/j.bone.2021.115977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Hypoparathyroidism has heterogeneous genetic and acquired etiologies with a broad spectrum of severity. Herein we describe the clinical outcomes of the largest cohort of hypoparathyroid patients reported to date, who were followed over 27-years. DESIGN Pooled analysis of current and past studies describing the differential responses to PTH 1-34 injections vs conventional therapy among the varied hypoPT etiologies. METHODS 192 participants (ages 2-74 years) with hypoparathyroidism who received either calcitriol and calcium or PTH 1-34 by subcutaneous injection. RESULTS Among the 4 main etiologic categories of hypoparathyroidism (autoimmune polyglandular failure type 1, activating mutation of the calcium receptor, surgical, and idiopathic hypoparathyroidism), we reveal significant differences in PTH 1-34 dose requirements, prevalence of nephrocalcinosis, biomarkers of mineral homeostasis, and pharmacodynamic profiles. Serum 1,25-dihydroxyvitamin D3 increased significantly (P < 0.001) and 25-hydroxyvitamin D levels decreased during PTH 1-34 injections compared to calcitriol therapy (P < 0.01). Post-surgical patients achieved consistently lower urine calcium excretion over long-term PTH 1-34 therapy compared to conventional therapy (p < 0.001), but this was not achieved in the other etiologies. At study entry, patients had a high prevalence of renal insufficiency and nephrocalcinosis which were directly related to the duration of hypoparathyroidism (P < 0.03). Renal function remained stable during participation in our studies for both PTH 1-34 and conventional therapies. CONCLUSIONS We conclude that the effects and dose-response of PTH 1-34 treatment differ according to the etiology of hypoparathyroidism. Postsurgical hypoPT maintained mean serum calcium levels in the mid- to low-normal range while concurrently maintaining normal mean urine calcium during long-term twice-daily PTH 1-34 therapy.
Collapse
Affiliation(s)
- Karen K Winer
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA.
| | - Shangyuan Ye
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Elise M N Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Monica M Schmitt
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Bo Zhang
- Department of Neurology and ICCTR Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon B Cutler
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| |
Collapse
|
13
|
The Cardiac Neural Crest Cells in Heart Development and Congenital Heart Defects. J Cardiovasc Dev Dis 2021; 8:jcdd8080089. [PMID: 34436231 PMCID: PMC8397082 DOI: 10.3390/jcdd8080089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
The neural crest (NC) is a multipotent and temporarily migratory cell population stemming from the dorsal neural tube during vertebrate embryogenesis. Cardiac neural crest cells (NCCs), a specified subpopulation of the NC, are vital for normal cardiovascular development, as they significantly contribute to the pharyngeal arch arteries, the developing cardiac outflow tract (OFT), cardiac valves, and interventricular septum. Various signaling pathways are shown to orchestrate the proper migration, compaction, and differentiation of cardiac NCCs during cardiovascular development. Any loss or dysregulation of signaling pathways in cardiac NCCs can lead to abnormal cardiovascular development during embryogenesis, resulting in abnormalities categorized as congenital heart defects (CHDs). This review focuses on the contributions of cardiac NCCs to cardiovascular formation, discusses cardiac defects caused by a disruption of various regulatory factors, and summarizes the role of multiple signaling pathways during embryonic development. A better understanding of the cardiac NC and its vast regulatory network will provide a deeper insight into the mechanisms of the associated abnormalities, leading to potential therapeutic advancements.
Collapse
|
14
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
15
|
Yitsege G, Stokes BA, Sabatino JA, Sugrue KF, Banyai G, Paronett EM, Karpinski BA, Maynard TM, LaMantia A, Zohn IE. Variations in maternal vitamin A intake modifies phenotypes in a mouse model of 22q11.2 deletion syndrome. Birth Defects Res 2020; 112:1194-1208. [PMID: 32431076 PMCID: PMC7586978 DOI: 10.1002/bdr2.1709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin A regulates patterning of the pharyngeal arches, cranial nerves, and hindbrain that are essential for feeding and swallowing. In the LgDel mouse model of 22q11.2 deletion syndrome (22q11DS), morphogenesis of multiple structures involved in feeding and swallowing are dysmorphic. We asked whether changes in maternal dietary Vitamin A intake can modify cranial nerve, hindbrain and pharyngeal arch artery development in the embryo as well as lung pathology that can be a sign of aspiration dysphagia in LgDel pups. METHODS Three defined amounts of vitamin A (4, 10, and 16 IU/g) were provided in the maternal diet. Cranial nerve, hindbrain and pharyngeal arch artery development was evaluated in embryos and inflammation in the lungs of pups to determine the impact of altering maternal diet on these phenotypes. RESULTS Reduced maternal vitamin A intake improved whereas increased intake exacerbated lung inflammation in LgDel pups. These changes were accompanied by increased incidence and/or severity of pharyngeal arch artery and cranial nerve V (CN V) abnormalities in LgDel embryos as well as altered expression of Cyp26b1 in the hindbrain. CONCLUSIONS Our studies demonstrate that variations in maternal vitamin A intake can influence the incidence and severity of phenotypes in a mouse model 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Gelila Yitsege
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Bethany A. Stokes
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Julia A. Sabatino
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Kelsey F. Sugrue
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Gabor Banyai
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Elizabeth M. Paronett
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Beverly A. Karpinski
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Thomas M. Maynard
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
| | - Anthony‐S. LaMantia
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Irene E. Zohn
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
16
|
Legitimo A, Bertini V, Costagliola G, Baroncelli GI, Morganti R, Valetto A, Consolini R. Vitamin D status and the immune assessment in 22q11.2 deletion syndrome. Clin Exp Immunol 2020; 200:272-286. [PMID: 32149392 PMCID: PMC7231997 DOI: 10.1111/cei.13429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is characterized by a heterogeneous phenotype, including alterations in phospho-calcium metabolism and immunodeficiency. We analyzed vitamin D status and the immune assessment, focusing on T cell subpopulations and dendritic cells (DCs) in a cohort of 17 pediatric 22q11.2DS patients and 17 age-matched healthy subjects. As antigen-presenting cells, DCs are the main target of vitamin D, promoting a tolerogenic T cell response. Patients were subdivided into three groups according to the parameters of phospho-calcium metabolism and serum levels of 25OHD: normal values, vitamin D deficiency and hypoparathyroidism. Different degrees of T cell deficiency, ranging from normal to partial T cell numbers, were observed in the cohort of patients. The group with vitamin D deficiency showed a significant reduction of naive T cells and a significant increase of central memory T cells compared to controls. In this group the number of circulating DCs was significantly reduced. DC decrease affected both myeloid and plasmacytoid DC subsets (mDCs and pDCs), with the most relevant reduction involving pDCs. A direct correlation between 25OHD levels and recent thymic emigrant (RTE) and DC number was identified. Despite the limited cohort analyzed, our results show that deficiency of the pDC subset in patients with 22q11.2DS may be included among the causative factors of the progressive increase of risk of autoimmune diseases in these patients. As most patients suffer from increased susceptibility to infections and heightened prevalence of autoimmune disorders, we suggest a potential role of vitamin D supplementation in preventing autoimmune or proinflammatory diseases in 22q11.2DS.
Collapse
Affiliation(s)
- A. Legitimo
- Department of Clinical and Experimental Medicine, Section of PediatricsUniversity of PisaPisaItaly
| | - V. Bertini
- Department of Medicine of Laboratory, Section of CytogeneticsAzienda Ospedaliero Universitaria PisanaPisaItaly
| | - G. Costagliola
- Department of Clinical and Experimental Medicine, Section of PediatricsUniversity of PisaPisaItaly
| | - G. I. Baroncelli
- Department of Clinical and Experimental Medicine, Section of PediatricsAzienda Ospedaliero Universitaria PisanaPisaItaly
| | - R. Morganti
- Section of StatisticsAzienda Ospedaliero Universitaria PisanaPisaItaly
| | - A. Valetto
- Department of Medicine of Laboratory, Section of CytogeneticsAzienda Ospedaliero Universitaria PisanaPisaItaly
| | - R. Consolini
- Department of Clinical and Experimental Medicine, Section of PediatricsUniversity of PisaPisaItaly
| |
Collapse
|
17
|
Stothard CA, Mazzotta S, Vyas A, Schneider JE, Mohun TJ, Henderson DJ, Phillips HM, Bamforth SD. Pax9 and Gbx2 Interact in the Pharyngeal Endoderm to Control Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7020020. [PMID: 32466118 PMCID: PMC7344924 DOI: 10.3390/jcdd7020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
The correct formation of the aortic arch arteries depends on a coordinated and regulated gene expression profile within the tissues of the pharyngeal arches. Perturbation of the gene regulatory networks in these tissues results in congenital heart defects affecting the arch arteries and the outflow tract of the heart. Aberrant development of these structures leads to interruption of the aortic arch and double outlet right ventricle, abnormalities that are a leading cause of morbidity in 22q11 Deletion Syndrome (DS) patients. We have recently shown that Pax9 functionally interacts with the 22q11DS gene Tbx1 in the pharyngeal endoderm for 4th pharyngeal arch artery morphogenesis, with double heterozygous mice dying at birth with interrupted aortic arch. Mice lacking Pax9 die perinatally with complex cardiovascular defects and in this study we sought to validate further potential genetic interacting partners of Pax9, focussing on Gbx2 which is down-regulated in the pharyngeal endoderm of Pax9-null embryos. Here, we describe the Gbx2-null cardiovascular phenotype and demonstrate a genetic interaction between Gbx2 and Pax9 in the pharyngeal endoderm during cardiovascular development.
Collapse
Affiliation(s)
- Catherine A. Stothard
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Silvia Mazzotta
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Arjun Vyas
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | | | | | - Deborah J. Henderson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Helen M. Phillips
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Simon D. Bamforth
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
- Correspondence: ; Tel.: +44-191-241-8764
| |
Collapse
|
18
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
19
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
20
|
Morrow BE, McDonald-McGinn DM, Emanuel BS, Vermeesch JR, Scambler PJ. Molecular genetics of 22q11.2 deletion syndrome. Am J Med Genet A 2019; 176:2070-2081. [PMID: 30380194 DOI: 10.1002/ajmg.a.40504] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023]
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is a congenital malformation and neuropsychiatric disorder caused by meiotic chromosome rearrangements. One of the goals of this review is to summarize the current state of basic research studies of 22q11.2DS. It highlights efforts to understand the mechanisms responsible for the 22q11.2 deletion that occurs in meiosis. This mechanism involves the four sets of low copy repeats (LCR22) that are dispersed in the 22q11.2 region and the deletion is mediated by nonallelic homologous recombination events. This review also highlights selected genes mapping to the 22q11.2 region that may contribute to the typical clinical findings associated with the disorder and explain that mutations in genes on the remaining allele can uncover rare recessive conditions. Another important aspect of 22q11.2DS is the existence of phenotypic heterogeneity. While some patients are mildly affected, others have severe medical, cognitive, and/or psychiatric challenges. Variability may be due in part to the presence of genetic modifiers. This review discusses current genome-wide efforts to identify such modifiers that could shed light on molecular pathways required for normal human development, cognition or behavior.
Collapse
Affiliation(s)
- Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Joris R Vermeesch
- Center for Human Genetics, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Peter J Scambler
- Institute of Child Health, University College London, London, UK
| |
Collapse
|
21
|
Phillips HM, Stothard CA, Shaikh Qureshi WM, Kousa AI, Briones-Leon JA, Khasawneh RR, O'Loughlin C, Sanders R, Mazzotta S, Dodds R, Seidel K, Bates T, Nakatomi M, Cockell SJ, Schneider JE, Mohun TJ, Maehr R, Kist R, Peters H, Bamforth SD. Pax9 is required for cardiovascular development and interacts with Tbx1 in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development 2019; 146:dev.177618. [PMID: 31444215 PMCID: PMC6765178 DOI: 10.1242/dev.177618] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022]
Abstract
Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in individuals with 22q11 deletion syndrome and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9-deficient mice are born with complex cardiovascular malformations that affect the outflow tract and aortic arch arteries with failure of the 3rd and 4th pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared with Tbx1 heterozygous mice. Using a novel Pax9Cre allele, we demonstrated that the site of this Tbx1-Pax9 genetic interaction is the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for crucial tissue interactions during normal morphogenesis of the pharyngeal arch artery system. Summary: A strong genetic interaction between Tbx1 and Pax9 that leads to 4th PAA-derived defects in double heterozygous mice is cell-autonomous within the pharyngeal endoderm.
Collapse
Affiliation(s)
- Helen M Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Catherine A Stothard
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | | | | | | | - Ramada R Khasawneh
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Chloe O'Loughlin
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Rachel Sanders
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Silvia Mazzotta
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Rebecca Dodds
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Kerstin Seidel
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Timothy Bates
- School of Dental Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4BW, UK
| | - Mitsushiro Nakatomi
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | - René Maehr
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ralf Kist
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK.,School of Dental Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4BW, UK
| | - Heiko Peters
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Simon D Bamforth
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| |
Collapse
|
22
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
23
|
Heude E, Tesarova M, Sefton EM, Jullian E, Adachi N, Grimaldi A, Zikmund T, Kaiser J, Kardon G, Kelly RG, Tajbakhsh S. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. eLife 2018; 7:40179. [PMID: 30451684 PMCID: PMC6310459 DOI: 10.7554/elife.40179] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/17/2018] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, head and trunk muscles develop from different mesodermal populations and are regulated by distinct genetic networks. Neck muscles at the head-trunk interface remain poorly defined due to their complex morphogenesis and dual mesodermal origins. Here, we use genetically modified mice to establish a 3D model that integrates regulatory genes, cell populations and morphogenetic events that define this transition zone. We show that the evolutionary conserved cucullaris-derived muscles originate from posterior cardiopharyngeal mesoderm, not lateral plate mesoderm, and we define new boundaries for neural crest and mesodermal contributions to neck connective tissue. Furthermore, lineage studies and functional analysis of Tbx1- and Pax3-null mice reveal a unique developmental program for somitic neck muscles that is distinct from that of somitic trunk muscles. Our findings unveil the embryological and developmental requirements underlying tetrapod neck myogenesis and provide a blueprint to investigate how muscle subsets are selectively affected in some human myopathies.
Collapse
Affiliation(s)
- Eglantine Heude
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Estelle Jullian
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Alexandre Grimaldi
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| |
Collapse
|
24
|
Loss of CXCL12/CXCR4 signalling impacts several aspects of cardiovascular development but does not exacerbate Tbx1 haploinsufficiency. PLoS One 2018; 13:e0207251. [PMID: 30408103 PMCID: PMC6224166 DOI: 10.1371/journal.pone.0207251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022] Open
Abstract
The CXCL12-CXCR4 pathway has crucial roles in stem cell homing and maintenance, neuronal guidance, cancer progression, inflammation, remote-conditioning, cell migration and development. Recently, work in chick suggested that signalling via CXCR4 in neural crest cells (NCCs) has a role in the 22q11.2 deletion syndrome (22q11.2DS), a disorder where haploinsufficiency of the transcription factor TBX1 is responsible for the major structural defects. We tested this idea in mouse models. Our analysis of genes with altered expression in Tbx1 mutant mouse models showed down-regulation of Cxcl12 in pharyngeal surface ectoderm and rostral mesoderm, both tissues with the potential to signal to migrating NCCs. Conditional mutagenesis of Tbx1 in the pharyngeal surface ectoderm is associated with hypo/aplasia of the 4th pharyngeal arch artery (PAA) and interruption of the aortic arch type B (IAA-B), the cardiovascular defect most typical of 22q11.2DS. We therefore analysed constitutive mouse mutants of the ligand (CXCL12) and receptor (CXCR4) components of the pathway, in addition to ectodermal conditionals of Cxcl12 and NCC conditionals of Cxcr4. However, none of these typical 22q11.2DS features were detected in constitutively or conditionally mutant embryos. Instead, duplicated carotid arteries were observed, a phenotype recapitulated in Tie-2Cre (endothelial) conditional knock outs of Cxcr4. Previous studies have demonstrated genetic interaction between signalling pathways and Tbx1 haploinsufficiency e.g. FGF, WNT, SMAD-dependent. We therefore tested for possible epistasis between Tbx1 and the CXCL12 signalling axis by examining Tbx1 and Cxcl12 double heterozygotes as well as Tbx1/Cxcl12/Cxcr4 triple heterozygotes, but failed to identify any exacerbation of the Tbx1 haploinsufficient arch artery phenotype. We conclude that CXCL12 signalling via NCC/CXCR4 has no major role in the genesis of the Tbx1 loss of function phenotype. Instead, the pathway has a distinct effect on remodelling of head vessels and interventricular septation mediated via CXCL12 signalling from the pharyngeal surface ectoderm and second heart field to endothelial cells.
Collapse
|
25
|
Britzolaki A, Saurine J, Flaherty E, Thelen C, Pitychoutis PM. The SERCA2: A Gatekeeper of Neuronal Calcium Homeostasis in the Brain. Cell Mol Neurobiol 2018; 38:981-994. [PMID: 29663107 PMCID: PMC11481958 DOI: 10.1007/s10571-018-0583-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Calcium (Ca2+) ions are prominent cell signaling regulators that carry information for a variety of cellular processes and are critical for neuronal survival and function. Furthermore, Ca2+ acts as a prominent second messenger that modulates divergent intracellular cascades in the nerve cells. Therefore, nerve cells have developed intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Notably, intracellular Ca2+ homeostasis greatly relies on the rapid redistribution of Ca2+ ions into the diverse subcellular organelles which serve as Ca2+ stores, including the endoplasmic reticulum (ER). It is well established that Ca2+ released into the neuronal cytoplasm is pumped back into the ER by the sarco-/ER Ca2+ ATPase 2 (SERCA2), a P-type ion-motive ATPase that resides on the ER membrane. Even though the SERCA2 is constitutively expressed in nerve cells, its precise role in brain physiology and pathophysiology is not well-characterized. Intriguingly, SERCA2-dependent Ca2+ dysregulation has been implicated in several disorders that affect cognitive function, including Darier's disease, schizophrenia, Alzheimer's disease, and cerebral ischemia. The current review summarizes knowledge on the expression pattern of the different SERCA2 isoforms in the nervous system, and further discusses evidence of SERCA2 dysregulation in various neuropsychiatric disorders. To the best of our knowledge, this is the first literature review that specifically highlights the critical role of the SERCA2 in the brain. Advancing knowledge on the role of SERCA2 in maintaining neuronal Ca2+ homeostasis may ultimately lead to the development of safer and more effective pharmacotherapies to combat debilitating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Emily Flaherty
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
26
|
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development. Cardiovasc Res 2018; 114:794-804. [PMID: 29538649 PMCID: PMC5909645 DOI: 10.1093/cvr/cvy061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit-Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT-ROBO signalling pathway as a candidate for an array of human congenital heart defects.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
27
|
Jyonouchi S, Jongco AM, Puck J, Sullivan KE. Immunodeficiencies Associated with Abnormal Newborn Screening for T Cell and B Cell Lymphopenia. J Clin Immunol 2017; 37:363-374. [PMID: 28353166 DOI: 10.1007/s10875-017-0388-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
Newborn screening for SCID has revealed the association of low T cells with a number of unexpected syndromes associated with low T cells, some of which were not appreciated to have this feature. This review will discuss diagnostic approaches and the features of some of the syndromes likely to be encountered following newborn screening for immune deficiencies.
Collapse
Affiliation(s)
- Soma Jyonouchi
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Artemio M Jongco
- Division of Allergy and Immunology, Cohen Children's Medical Center of New York, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Jennifer Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Li YJ, Yang YQ. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn 2017; 17:393-401. [PMID: 28274167 DOI: 10.1080/14737159.2017.1300062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan-Jie Li
- Department of Cardiology, Cardiovascular Research Laboratory, and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Cardiovascular Research Laboratory, and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Nouri N, Memarzadeh M, Salehi M, Nouri N, Meamar R, Behnam M, Derakhshandeh F, Kashkoolinejad T, Abdali H. Prevalence of 22q11.2 microdeletion syndrome in Iranian patients with cleft palate. Adv Biomed Res 2017; 5:201. [PMID: 28217639 PMCID: PMC5220684 DOI: 10.4103/2277-9175.192728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/05/2014] [Indexed: 01/17/2023] Open
Abstract
Background: 22q11.2 microdeletion syndrome is the most common multiple genetic disorder associated with learning disabilities, developmental delays, immune deficiency, hypocalcemia, and cleft palate. Finding some valid criteria for screening of 22q11.2 deletion syndromes in infants would be very helpful in early diagnosis and treatment. Materials and Methods: Since 69% of individuals with 22q11.2 deletion have a palatal abnormality, we studied the prevalence of 22q11.2 deletion syndrome in 378 Iranian patients during a 5-year period, including 291 patients affected with cleft palate only without cleft lip (CPO) and 87 patients affected with velopharyngeal incompetence (VPI) and/or submucous cleft palate (SMCP). DNA copy number was analyzed with multiplex ligation-dependent probe amplification (MLPA) technique. Results: In our study, 15/378 (3.97%) patients with palatal anomalies showed 22q11.2 deletion. Interestingly, this prevalence between syndromic patients was 15/104 (14.42%). Conclusion: It seems that SMCP or VPI, in addition to one or more another features of 22q11.2 deletions, especially developmental delay, may be good criteria for molecular investigation of 22q11.2 region.
Collapse
Affiliation(s)
- Narges Nouri
- Isfahan Cleft Lip and Palate Clinic, Faculty of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Memarzadeh
- Isfahan Cleft Lip and Palate Clinic, Faculty of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pediatric Surgery, Emam Hossein University Hospital, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Genetics Laboratory, Alzahra University Hospital, Isfahan, Iran
| | - Nayereh Nouri
- Isfahan Cleft Lip and Palate Clinic, Faculty of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Genetics Laboratory, Alzahra University Hospital, Isfahan, Iran
| | - Rokhsareh Meamar
- Department of Medical Sciences, Najafabad Branch, Islamic Azad University, Isfahan, Iran; Isfahan Neurosciences Research Center, Alzahra Hospital, Isfahan, Iran
| | - Mahdiyeh Behnam
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan, Iran
| | - Fatemeh Derakhshandeh
- Isfahan Cleft Lip and Palate Clinic, Faculty of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran; Faculty of Rehabilitation, Speech Language Pathologist of Isfahan Cleft Care Team, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahereh Kashkoolinejad
- Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Abdali
- Isfahan Cleft Lip and Palate Clinic, Faculty of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity. PLoS Biol 2016; 14:e2000504. [PMID: 27893754 PMCID: PMC5125711 DOI: 10.1371/journal.pbio.2000504] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although retinoic acid (RA) teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT) malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF) progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs), and second, a loss of first heart field (FHF) ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a) expression and positively regulates matrix metalloproteinase 9 (mmp9) expression. Although restoring Fibroblast growth factor (FGF) signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP) function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity. Retinoic acid (RA) is the most active metabolic product of vitamin A. The embryonic heart is particularly sensitive to inappropriate RA levels, with cardiac outflow tract (OFT) defects among the most common RA-induced malformations. However, the mechanisms underlying these RA-induced defects are not understood. Cyp26 enzymes facilitate degradation of RA and thus are required to limit RA levels in early development. Here, we present evidence that loss of Cyp26 enzymes induces cardiac OFT defects through two mechanisms. First, we find that Cyp26-deficient zebrafish embryos fail to add later-differentiating ventricular cardiac progenitors to the OFT, with some of these progenitors instead contributing to the nearby arch arteries. Second, Cyp26-deficient embryos cannot maintain the integrity of the nascent heart tube, with ventricular cells within the heart tube losing their polarity and being extruded. Our data indicate that excess expression of matrix metalloproteinase 9, an enzyme that degrades the extracellular matrix, underlies both the cardiac progenitor addition and heart tube integrity defects seen in Cyp26-deficient embryos. Our findings highlight perturbation of the extracellular matrix as a major cause of RA-induced cardiac OFT defects that specifically disrupt ventricular development at later stages than previously appreciated.
Collapse
|
31
|
Sweeney WM, Lanier ST, Purnell CA, Gosain AK. Genetics of Cleft Palate and Velopharyngeal Insufficiency. J Pediatr Genet 2016; 4:9-16. [PMID: 27617110 DOI: 10.1055/s-0035-1554978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Velopharyngeal insufficiency (VPI) can occur in the setting of an unrepaired or repaired cleft lip and palate. The rate of VPI has been documented as high as 33% in some studies with higher rates of recurrences following surgery associated with genetic syndromes such as 22q11.2 deletions. The primary cause of VPI in these groups is still identified as the anatomic abnormalities of the velum. In this review, the anatomy and physiology of the velum are discussed along with genetic mutations associated with VPI.
Collapse
Affiliation(s)
- Walter M Sweeney
- Division of Plastic Surgery, Ann and Robert H. Lurie Children's Hospital of Northwestern University, Chicago, Illinois, United States
| | - Steve T Lanier
- Division of Plastic Surgery, Ann and Robert H. Lurie Children's Hospital of Northwestern University, Chicago, Illinois, United States
| | - Chad A Purnell
- Division of Plastic Surgery, Ann and Robert H. Lurie Children's Hospital of Northwestern University, Chicago, Illinois, United States
| | - Arun K Gosain
- Division of Plastic Surgery, Ann and Robert H. Lurie Children's Hospital of Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
32
|
Affiliation(s)
- Stephanie J Drew
- Hofstra School of Medicine, Hempstead, New York, USA; Stony Brook University Medical Center, 101 Nicolls Road, Stony Brook, NY 11794, USA; Private Practice, The New York Center for Orthognathic and Maxillofacial Surgery, 474 Montauk Highway, West Islip, NY 11795, USA.
| |
Collapse
|
33
|
Kim JH, Shin YL, Yang S, Cheon CK, Cho JH, Lee BH, Kim GH, Lee JO, Seo EJ, Choi JH, Yoo HW. Diverse genetic aetiologies and clinical outcomes of paediatric hypoparathyroidism. Clin Endocrinol (Oxf) 2015; 83:790-6. [PMID: 26384470 DOI: 10.1111/cen.12944] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/28/2015] [Accepted: 09/03/2015] [Indexed: 11/28/2022]
Abstract
CONTEXT Hypoparathyroidism is characterized by hypocalcaemia, hyperphosphataemia, and low or inappropriately normal parathyroid hormone (PTH) levels. Idiopathic or genetic drivers are the predominant causes of hypoparathyroidism in paediatric-age patients. OBJECTIVE This study investigated the aetiology and clinical course of primary hypoparathyroidism in infancy and childhood. SUBJECTS AND MEASUREMENTS This study included 37 patients (23 males, 14 females) with primary hypoparathyroidism diagnosed prior to 18 years of age. We analysed aetiologies, initial presentation, age at diagnosis, endocrine and radiological findings, and outcomes. RESULTS The median age at presentation was 1·7 months (range 1 day-17 years), and the mean follow-up duration was 7·0 ± 5·3 years (range 0·5-16·8 years). Our cohort included 22 cases (59·5%) of 22q11·2 microdeletion syndrome. Other aetiologies included hypoparathyroidism-deafness-renal dysplasia syndrome (5/37, 13·5%) and one patient each with autoimmune polyglandular syndrome type 1, Kearns-Sayre syndrome and Kenny-Caffey syndrome. The remaining 7 (18·9%) patients were classified as idiopathic hypoparathyroidism cases. Among the 15 patients who underwent brain imaging, 5 (33·3%) had basal ganglia calcification. Among the 26 patients examined by renal imaging, 5 (19·2%) had either nephrocalcinosis or a renal stone. After 11 months of calcium or calcitriol supplementation, 16 patients (43·2%) discontinued medication. The final PTH levels were significantly higher in patients with transient hypoparathyroidism than those with permanent hypoparathyroidism. CONCLUSIONS Identification of the genetic aetiologies of hypoparathyroidism makes it possible to predict patient outcomes and provide appropriate genetic counselling. Long-term treatment with calcium and calcitriol necessitates monitoring for renal complications.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Paediatrics, Asan Medical Centre Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Lim Shin
- Department of Paediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Seung Yang
- Department of Paediatrics, Gangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chong Kun Cheon
- Department of Paediatrics, Children's Hospital, Pusan National University, Yangsan, Korea
| | - Ja Hyang Cho
- Department of Paediatrics, Asan Medical Centre Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Paediatrics, Asan Medical Centre Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
- Medical Genetics Centre, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Centre, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Ok Lee
- Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul Joo Seo
- Department of Laboratory Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Paediatrics, Asan Medical Centre Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Paediatrics, Asan Medical Centre Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
- Medical Genetics Centre, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Abstract
22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.
Collapse
|
35
|
Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol 2015; 407:195-210. [PMID: 26434918 DOI: 10.1016/j.ydbio.2015.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023]
Abstract
Fibronectin (Fn1) is an evolutionarily conserved extracellular matrix glycoprotein essential for embryonic development. Global deletion of Fn1 leads to mid-gestation lethality from cardiovascular defects. However, severe morphogenetic defects that occur early in embryogenesis in these embryos precluded assigning a direct role for Fn1 in cardiovascular development. We noticed that Fn1 is expressed in strikingly non-uniform patterns during mouse embryogenesis, and that its expression is particularly enriched in the pharyngeal region corresponding with the pharyngeal arches 3, 4, and 6. This region bears a special importance for the developing cardiovascular system, and we hypothesized that the localized enrichment of Fn1 in the pharyngeal region may be essential for cardiovascular morphogenesis. To test this hypothesis, we ablated Fn1 using the Isl1(Cre) knock-in strain of mice. Deletion of Fn1 using the Isl1(Cre) strain resulted in defective formation of the 4th pharyngeal arch arteries (PAAs), aberrant development of the cardiac outflow tract (OFT), and ventricular septum defects. To determine the cell types responding to Fn1 signaling during cardiovascular development, we deleted a major Fn1 receptor, integrin α5 using the Isl1(Cre) strain, and observed the same spectrum of abnormalities seen in the Fn1 conditional mutants. Additional conditional mutagenesis studies designed to ablate integrin α5 in distinct cell types within the Isl1(+) tissues and their derivatives, suggested that the expression of integrin α5 in the pharyngeal arch mesoderm, endothelium, surface ectoderm and the neural crest were not required for PAA formation. Our studies suggest that an (as yet unknown) integrin α5-dependent signal extrinsic to the pharyngeal endothelium mediates the formation of the 4th PAAs.
Collapse
Affiliation(s)
- Dongying Chen
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xia Wang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Dong Liang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Julie Gordon
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ashok Mittal
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Nancy Manley
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
36
|
Danescu A, Mattson M, Dool C, Diewert VM, Richman JM. Analysis of human soft palate morphogenesis supports regional regulation of palatal fusion. J Anat 2015; 227:474-86. [PMID: 26299693 DOI: 10.1111/joa.12365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 01/31/2023] Open
Abstract
It is essential to complete palate closure at the correct time during fetal development, otherwise a serious malformation, cleft palate, will ensue. The steps in palate formation in humans take place between the 7th and 12th week and consist of outgrowth of palatal shelves from the paired maxillary prominences, reorientation of the shelves from vertical to horizontal, apposition of the medial surfaces, formation of a bilayered seam, degradation of the seam and bridging of mesenchyme. However, in the soft palate, the mechanism of closure is unclear. In previous studies it is possible to find support for both fusion and the alternative mechanism of merging. Here we densely sample the late embryonic-early fetal period between 54 and 74 days post-conception to determine the timing and mechanism of soft palate closure. We found the epithelial seam extends throughout the soft palates of 57-day specimens. Cytokeratin antibody staining detected the medial edge epithelium and distinguished clearly that cells in the midline retained their epithelial character. Compared with the hard palate, the epithelium is more rapidly degraded in the soft palate and only persists in the most posterior regions at 64 days. Our results are consistent with the soft palate following a developmentally more rapid program of fusion than the hard palate. Importantly, the two regions of the palate appear to be independently regulated and have their own internal clocks regulating the timing of seam removal. Considering data from human genetic and mouse studies, distinct anterior-posterior signaling mechanisms are likely to be at play in the human fetal palate.
Collapse
Affiliation(s)
- Adrian Danescu
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Mattson
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Carly Dool
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Virginia M Diewert
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joy M Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Deng H, Zheng W, Jankovic J. Genetics and molecular biology of brain calcification. Ageing Res Rev 2015; 22:20-38. [PMID: 25906927 DOI: 10.1016/j.arr.2015.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
Brain calcification is a common neuroimaging finding in patients with neurological, metabolic, or developmental disorders, mitochondrial diseases, infectious diseases, traumatic or toxic history, as well as in otherwise normal older people. Patients with brain calcification may exhibit movement disorders, seizures, cognitive impairment, and a variety of other neurologic and psychiatric symptoms. Brain calcification may also present as a single, isolated neuroimaging finding. When no specific cause is evident, a genetic etiology should be considered. The aim of the review is to highlight clinical disorders associated with brain calcification and provide summary of current knowledge of diagnosis, genetics, and pathogenesis of brain calcification.
Collapse
Affiliation(s)
- Hao Deng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Wen Zheng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
Swillen A, McDonald-McGinn D. Developmental trajectories in 22q11.2 deletion. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2015; 169:172-81. [PMID: 25989227 DOI: 10.1002/ajmg.c.31435] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS), a neurogenetic condition, is the most common microdeletion syndrome affecting 1 in 2,000-4,000 live births and involving haploinsufficiency of ∼50 genes resulting in a multisystem disorder. Phenotypic expression is highly variable and ranges from severe life-threatening conditions to only a few associated features. Most common medical problems include: congenital heart disease, in particular conotruncal anomalies; palatal abnormalities, most frequently velopharyngeal incompetence (VPI); immunodeficiency; hypocalcemia due to hypoparathyroidism; genitourinary anomalies; severe feeding/gastrointestinal differences; and subtle dysmorphic facial features. The neurocognitive profile is also highly variable, both between individuals and during the course of development. From infancy onward, motor delays (often with hypotonia) and speech/language deficits are commonly observed. During the preschool and primary school ages, learning difficulties are very common. The majority of patients with 22q11.2DS have an intellectual level that falls in the borderline range (IQ 70-84), and about one-third have mild to moderate intellectual disability. More severe levels of intellectual disability are uncommon in children and adolescents but are more frequent in adults. Individuals with 22q11.2DS are at an increased risk for developing several psychiatric disorders including attention deficit with hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety and mood disorders, and psychotic disorders and schizophrenia. In this review, we will focus on the developmental phenotypic transitions regarding cognitive development in 22q11.2DS from early preschool to adulthood, and on the changing behavioral/psychiatric phenotype across age, on a background of frequently complex medical conditions.
Collapse
|
39
|
Keshavan MS, Mehta UM, Padmanabhan JL, Shah JL. Dysplasticity, metaplasticity, and schizophrenia: Implications for risk, illness, and novel interventions. Dev Psychopathol 2015; 27:615-35. [PMID: 25997775 PMCID: PMC6283269 DOI: 10.1017/s095457941500019x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the history of the concept of neuroplasticity as it relates to the understanding of neuropsychiatric disorders, using schizophrenia as a case in point. We briefly review the myriad meanings of the term neuroplasticity, and its neuroscientific basis. We then review the evidence for aberrant neuroplasticity and metaplasticity associated with schizophrenia as well as the risk for developing this illness, and discuss the implications of such understanding for prevention and therapeutic interventions. We argue that the failure and/or altered timing of plasticity of critical brain circuits might underlie cognitive and deficit symptoms, and may also lead to aberrant plastic reorganization in other circuits, leading to affective dysregulation and eventually psychosis. This "dysplastic" model of schizophrenia can suggest testable etiology and treatment-relevant questions for the future.
Collapse
Affiliation(s)
- Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jaya L. Padmanabhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Jai L. Shah
- Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Turner CJ, Badu-Nkansah K, Crowley D, van der Flier A, Hynes RO. α5 and αv integrins cooperate to regulate vascular smooth muscle and neural crest functions in vivo. Development 2015; 142:797-808. [PMID: 25670798 DOI: 10.1242/dev.117572] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The RGD-binding α5 and αv integrins have been shown to be key regulators of vascular smooth muscle cell (vSMC) function in vitro. However, their role on vSMCs during vascular development in vivo remains unclear. To address this issue, we have generated mice that lack α5, αv or both α5 and αv integrins on their vSMCs, using the SM22α-Cre transgenic mouse line. To our surprise, neither α5 nor αv mutants displayed any obvious vascular defects during embryonic development. By contrast, mice lacking both α5 and αv integrins developed interrupted aortic arches, large brachiocephalic/carotid artery aneurysms and cardiac septation defects, but developed extensive and apparently normal vasculature in the skin. Cardiovascular defects were also found, along with cleft palates and ectopically located thymi, in Wnt1-Cre α5/αv mutants, suggesting that α5 and αv cooperate on neural crest-derived cells to control the remodelling of the pharyngeal arches and the septation of the heart and outflow tract. Analysis of cultured α5/αv-deficient vSMCs suggests that this is achieved, at least in part, through proper assembly of RGD-containing extracellular matrix proteins and the correct incorporation and activation of latent TGF-β.
Collapse
Affiliation(s)
- Christopher J Turner
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kwabena Badu-Nkansah
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Denise Crowley
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium. Proc Natl Acad Sci U S A 2015; 112:1446-51. [PMID: 25605943 DOI: 10.1073/pnas.1424538112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.
Collapse
|
42
|
Francou A, Saint-Michel E, Mesbah K, Kelly RG. TBX1 regulates epithelial polarity and dynamic basal filopodia in the second heart field. Development 2015; 141:4320-31. [PMID: 25371366 DOI: 10.1242/dev.115022] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elongation of the vertebrate heart occurs by progressive addition of second heart field (SHF) cardiac progenitor cells from pharyngeal mesoderm to the poles of the heart tube. The importance of these cells in the etiology of congenital heart defects has led to extensive research into the regulation of SHF deployment by signaling pathways and transcription factors. However, the basic cellular features of these progenitor cells, including epithelial polarity, cell shape and cell dynamics, remain poorly characterized. Here, using immunofluorescence, live imaging and embryo culture, we demonstrate that SHF cells constitute an atypical, apicobasally polarized epithelium in the dorsal pericardial wall, characterized by apical monocilia and dynamic actin-rich basal filopodia. We identify the 22q11.2 deletion syndrome gene Tbx1, required in the SHF for outflow tract development, as a regulator of the epithelial properties of SHF cells. Cell shape changes in mutant embryos include increased circularity, a reduced basolateral membrane domain and impaired filopodial activity, and are associated with elevated aPKCζ levels. Activation of aPKCζ in embryo culture similarly impairs filopodia activity and phenocopies proliferative defects and ectopic differentiation observed in the SHF of Tbx1 null embryos. Our results reveal that epithelial and progenitor cell status are coupled in the SHF, identifying control of cell shape as a regulatory step in heart tube elongation and outflow tract morphogenesis.
Collapse
Affiliation(s)
- Alexandre Francou
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille 13288, France
| | | | - Karim Mesbah
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille 13288, France
| | - Robert G Kelly
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille 13288, France
| |
Collapse
|
43
|
Papaioannou VE. The T-box gene family: emerging roles in development, stem cells and cancer. Development 2014; 141:3819-33. [PMID: 25294936 DOI: 10.1242/dev.104471] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T-box family of transcription factors exhibits widespread involvement throughout development in all metazoans. T-box proteins are characterized by a DNA-binding motif known as the T-domain that binds DNA in a sequence-specific manner. In humans, mutations in many of the genes within the T-box family result in developmental syndromes, and there is increasing evidence to support a role for these factors in certain cancers. In addition, although early studies focused on the role of T-box factors in early embryogenesis, recent studies in mice have uncovered additional roles in unsuspected places, for example in adult stem cell populations. Here, I provide an overview of the key features of T-box transcription factors and highlight their roles and mechanisms of action during various stages of development and in stem/progenitor cell populations.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
44
|
Rana MS, Théveniau-Ruissy M, De Bono C, Mesbah K, Francou A, Rammah M, Domínguez JN, Roux M, Laforest B, Anderson RH, Mohun T, Zaffran S, Christoffels VM, Kelly RG. Tbx1 Coordinates Addition of Posterior Second Heart Field Progenitor Cells to the Arterial and Venous Poles of the Heart. Circ Res 2014; 115:790-9. [DOI: 10.1161/circresaha.115.305020] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- M. Sameer Rana
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Magali Théveniau-Ruissy
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Christopher De Bono
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Karim Mesbah
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Alexandre Francou
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Mayyasa Rammah
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Jorge N. Domínguez
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Marine Roux
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Brigitte Laforest
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Robert H. Anderson
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Timothy Mohun
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Stephane Zaffran
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Vincent M. Christoffels
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| | - Robert G. Kelly
- From the Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.S.R., V.M.C.); CNRS, IBDM UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K.) and Inserm, GMGF UMR S910, Faculté de Médecine de la Timone (M.R., B.L., S.Z.), Aix Marseille Université, IBDM, CNRS UMR 7288 (M.T.-R., C.D.B., K.M., A.F., M.R., R.G.K) and GMGF Inserm URM S910 (M.R., B.L., S.Z.), Marseille, France; Department of
| |
Collapse
|
45
|
Snider TN, Mishina Y. Cranial neural crest cell contribution to craniofacial formation, pathology, and future directions in tissue engineering. ACTA ACUST UNITED AC 2014; 102:324-32. [PMID: 25227212 DOI: 10.1002/bdrc.21075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
Abstract
This review provides an overview of the state and future directions of development and pathology in the craniofacial complex in the context of Cranial Neural Crest Cells (CNCC). CNCC are a multipotent cell population that is largely responsible for forming the vertebrate head. We focus on findings that have increased the knowledge of gene regulatory networks and molecular mechanisms governing CNCC migration and the participation of these cells in tissue formation. Pathology due to aberrant migration or cell death of CNCC, termed neurocristopathies, is discussed in addition to craniosynostoses. Finally, we discuss tissue engineering applications that take advantage of recent advancements in genome editing and the multipotent nature of CNCC. These applications have relevance to treating diseases due directly to the failure of CNCC, and also in restoring tissues lost due to a variety of reasons.
Collapse
Affiliation(s)
- Taylor Nicholas Snider
- Department for Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | | |
Collapse
|
46
|
p53 Suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proc Natl Acad Sci U S A 2014; 111:13385-90. [PMID: 25197075 DOI: 10.1073/pnas.1401923111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T-box 1 (Tbx1), a gene encoding a T-box transcription factor, is required for embryonic development in humans and mice. Half dosage of this gene in humans causes most of the features of the DiGeorge or Velocardiofacial syndrome phenotypes, including aortic arch and cardiac outflow tract abnormalities. Here we found a strong genetic interaction between Tbx1 and transformation related protein 53 (Trp53). Indeed, genetic ablation of Trp53, or pharmacological inhibition of its protein product p53, rescues significantly the cardiovascular defects of Tbx1 heterozygous and hypomorphic mutants. We found that the Tbx1 and p53 proteins do not interact directly but both occupy a genetic element of Gbx2, which is required for aortic arch and cardiac outflow tract development, and is a known genetic interactor of Tbx1. We found that Gbx2 expression is down-regulated in Tbx1(+/-) embryos and is restored to normal levels in Tbx1(+/-);Trp53(+/-) embryos. In addition, we found that the genetic element that binds both Tbx1 and p53 is highly enriched in H3K27 trimethylation, and upon p53 suppression H3K27me3 levels are reduced, along with Ezh2 enrichment. This finding suggests that the rescue of Gbx2 expression in Tbx1(+/-);Trp53(+/-) embryos is due to reduction of repressive chromatin marks. Overall our data identify unexpected genetic interactions between Tbx1 and Trp53 and provide a proof of principle that developmental defects associated with reduced dosage of Tbx1 can be rescued pharmacologically.
Collapse
|
47
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
48
|
Lingman Framme J, Borte S, von Döbeln U, Hammarström L, Oskarsdóttir S. Retrospective analysis of TREC based newborn screening results and clinical phenotypes in infants with the 22q11 deletion syndrome. J Clin Immunol 2014; 34:514-9. [PMID: 24610337 DOI: 10.1007/s10875-014-0002-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Population-based newborn screening using T-cell receptor excision circles (TREC) identifies infants with severe T-lymphopenia, seen in severe combined immunodeficiencies (SCID), but also infants with the 22q11 deletion syndrome (22q11DS). Methods for analysis of kappa-deleting recombination excision circles (KREC) help identifying infants with B-lymphopenia. We aimed to evaluate the occurrence of abnormal TREC or KREC newborn screening results in 22q11DS patients and assessed the clinical relevance of abnormal screening reports. METHODS Simultaneous TREC and KREC analysis was performed on stored original Guthrie cards. Patients with abnormal screening reports were compared to patients with normal reports, regarding lymphocyte counts and clinical severity, obtained by retrospective analysis of medical charts. RESULTS Of 48 included patients, nine (19 %) had abnormal TREC copy numbers. All 22q11DS patients with abnormal TRECs had CD3+ T-lymphopenia at the time of diagnosis, but only one patient had the complete DiGeorge syndrome. Identified 22q11DS patients with abnormal TREC copy numbers showed significantly lower CD8+ T-lymphocytes at time-of-diagnosis and were significantly more prone to viral infections, compared to 22q11DS patients with normal TREC copy numbers. All 22q11DS patients showed KREC copies within the normal range. CONCLUSIONS In this retrospective study a high proportion of 22q11DS patients were identified by TREC-based newborn screening. Although only one of them had the complete DiGeorge syndrome with no T-lymphocytes, all of them had T-lymphopenia and most of them had recurrent viral infections, as well as other medical problems, warranting early recognition of the syndrome.
Collapse
Affiliation(s)
- Jenny Lingman Framme
- Department of Pediatrics, Halland Hospital Halmstad, S-301 85, Halmstad, Sweden,
| | | | | | | | | |
Collapse
|
49
|
Davies EG. Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia. Front Immunol 2013; 4:322. [PMID: 24198816 PMCID: PMC3814041 DOI: 10.3389/fimmu.2013.00322] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 11/13/2022] Open
Abstract
The commonest association of thymic stromal deficiency resulting in T-cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete athymia. In the most severe group, correction of the immunodeficiency can be achieved using thymus allografts which can support thymopoiesis even in the absence of donor-recipient matching at the major histocompatibility loci. This review focuses on the causes of DGS, the immunological features of the disorder, and the approaches to correction of the immunodeficiency including the use of thymus transplantation.
Collapse
Affiliation(s)
- E Graham Davies
- Centre for Immunodeficiency, Institute of Child Health, University College London and Great Ormond Street Hospital , London , UK
| |
Collapse
|
50
|
Reis LM, Tyler RC, Zori R, Burgess J, Mueller J, Semina EV. A case of 22q11.2 deletion syndrome with Peters anomaly, congenital glaucoma, and heterozygous mutation in CYP1B1. Ophthalmic Genet 2013; 36:92-4. [PMID: 24024747 DOI: 10.3109/13816810.2013.835432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We read with interest the recent publication by Tarlan and colleagues 1 describing a patient with 22q11.2 deletion syndrome and ocular features of right microphthalmia and left anterior segment dysgenesis. While anterior segment dysgenesis disorders are occasionally reported with 22q11.2 deletions, 2-5 this remains a rare association. We report here an 8-year-old patient with 22q11.2 deletion syndrome and bilateral Peters anomaly with congenital glaucoma; in addition, our patient was found to have a single heterozygous mutation in CYP1B1, c.83C > T, p.(Ser28Trp).
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin , Milwaukee, WI , USA
| | | | | | | | | | | |
Collapse
|