1
|
Eroglu M, Derry WB. Regulation of MAP Kinase signaling by the insulin-like growth factor pathway during C. elegans vulval development. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001557. [PMID: 40191442 PMCID: PMC11971659 DOI: 10.17912/micropub.biology.001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Organ development depends on multiple signaling pathways working in concert to specify cell fates. Improper activity or inactivity of specific signaling pathways such as EGF-Ras-MAPK can lead to dedifferentiation and cancer. In C. elegans , gain of function mutations in Ras/ let-60 lead to ectopic development of multiple ventral vulva-like lesions resembling tumors. However, this phenotype depends on normal insulin-like growth factor (IGF) signaling. Here, we probe how factors downstream of the IGF receptor daf-2 modify Ras signaling. These investigations led us to identify regulators of cell fate such as the Zinc finger protein encoding gene mstr-1 ( F22D6.2 ), homologous to mammalian Zfand3 / 5 / 6 .
Collapse
Affiliation(s)
- Matthew Eroglu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - W. Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Scott K, Singh N, Gordon KL. An RNAi screen of Rab GTPase genes in C. elegans reveals that somatic cells of the reproductive system depend on rab-1 for morphogenesis but not stem cell niche maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626641. [PMID: 39677816 PMCID: PMC11642880 DOI: 10.1101/2024.12.03.626641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Membrane trafficking is a crucial function of all cells and is regulated at multiple levels from vesicle formation, packaging, and localization to fusion, exocytosis, and endocytosis. Rab GTPase proteins are core regulators of eukaryotic membrane trafficking, but developmental roles of specific Rab GTPases are less well characterized, potentially because of their essentiality for basic cellular function. C. elegans gonad development entails the coordination of cell growth, proliferation, and migration-processes in which membrane trafficking is known to be required. Here we take an organ-focused approach to Rab GTPase function in vivo to assess the roles of Rab genes in reproductive system development. We performed a whole-body RNAi screen of the entire Rab family in C. elegans to uncover Rabs essential for gonad development. Notable gonad defects resulted from RNAi knockdown of rab-1, the key regulator of ER-Golgi trafficking. We then examined the effects of tissue-specific RNAi knockdown of rab-1 in somatic reproductive system and germline cells. We interrogated the dual functions of the distal tip cell (DTC) as both a leader cell of gonad organogenesis and the germline stem cell niche. We find that rab-1 functions cell-autonomously and non-cell-autonomously to regulate both somatic gonad and germline development. Gonad migration, elongation, and gamete differentiation-but surprisingly not germline stem niche function-are highly sensitive to rab-1 RNAi.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- UNC Lineberger Comprehensive Cancer Center
| |
Collapse
|
3
|
Kiontke K, Fernandez P, Woronik A, Fitch DHA. Morphologically defined substages of tail morphogenesis in C. elegans males. Dev Dyn 2024; 253:1147-1164. [PMID: 38924277 PMCID: PMC11611696 DOI: 10.1002/dvdy.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Sex-specific morphogenesis occurs in Caenorhabditis elegans in the vulva of the hermaphrodite and in the male tail during the last larval stage. Temporal progression of vulva morphogenesis has been described in fine detail. However, a similar precise description of male tail morphogenesis was lacking. RESULTS We here describe morphogenesis of the male tail at time points matching vulva development with special focus on morphogenesis of the tail tip. Using fluorescent reporters, we follow changes in cell shapes, cell fusions, nuclear migration, modifications in the basement membrane, and formation of a new apical extracellular matrix at the end of the tail. CONCLUSION Our analysis answers two open questions about tail tip morphogenesis (TTM) by showing that one of the four tail tip cells, hyp11, remains largely separate, while the other cells fully fuse with each other and with two additional tail cells to form a ventral tail syncytium. This merger of cells begins at the apical surface early during TTM but is only completed toward the end of the process. This work provides a framework for future investigations of cell biological factors that drive male tail morphogenesis.
Collapse
Affiliation(s)
- Karin Kiontke
- Department of Biology, New York University, New York, New York, USA
| | | | | | - David H A Fitch
- Department of Biology, New York University, New York, New York, USA
| |
Collapse
|
4
|
Townley RA, Stacy KS, Cheraghi F, de la Cova CC. The Raf/LIN-45 C-terminal distal tail segment negatively regulates signaling in Caenorhabditis elegans. Genetics 2024; 228:iyae152. [PMID: 39288021 PMCID: PMC11538406 DOI: 10.1093/genetics/iyae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans Raf ortholog lin-45. Truncations removing the DTS strongly enhanced lin-45(S312A), a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We genetically defined three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), the mutation of each of these elements enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF within the activated heterotetramer complex. We propose the following distinct functions for the LIN-45 DTS elements: (1) the ASBS binds the kinase active site as an inhibitor; (2) phosphorylation of the KTP motif modulates the DTS-kinase domain interaction; and (3) the aromatic cluster anchors the DTS in an inhibitory conformation. Human RASopathy-associated variants in BRAF affect residues of the DTS, consistent with these predictions. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.
Collapse
Affiliation(s)
- Robert A Townley
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Kennedy S Stacy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Fatemeh Cheraghi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| |
Collapse
|
5
|
Laranjeira AC, Berger S, Kohlbrenner T, Greter NR, Hajnal A. Nutritional vitamin B12 regulates RAS/MAPK-mediated cell fate decisions through one-carbon metabolism. Nat Commun 2024; 15:8178. [PMID: 39289374 PMCID: PMC11408588 DOI: 10.1038/s41467-024-52556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin B12 is an essential nutritional co-factor for the folate and methionine cycles, which together constitute one-carbon metabolism. Here, we show that dietary uptake of vitamin B12 modulates cell fate decisions controlled by the conserved RAS/MAPK signaling pathway in C. elegans. A bacterial diet rich in vitamin B12 increases vulval induction, germ cell apoptosis and oocyte differentiation. These effects are mediated by different one-carbon metabolites in a tissue-specific manner. Vitamin B12 enhances via the choline/phosphatidylcholine metabolism vulval induction by down-regulating fat biosynthesis genes and increasing H3K4 tri-methylation, which results in increased expression of RAS/MAPK target genes. Furthermore, the nucleoside metabolism and H3K4 tri-methylation positively regulate germ cell apoptosis and oocyte production. Using mammalian cells carrying different activated KRAS and BRAF alleles, we show that the effects of methionine on RAS/MAPK-regulated phenotype are conserved in mammals. Our findings suggest that the vitamin B12-dependent one-carbon metabolism is a limiting factor for diverse RAS/MAPK-induced cellular responses.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nadja R Greter
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Townley RA, Stacy KS, Cheraghi F, de la Cova CC. The Raf/LIN-45 C-terminal distal tail segment negatively regulates signaling in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603803. [PMID: 39071268 PMCID: PMC11275798 DOI: 10.1101/2024.07.16.603803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans, which has a single Raf ortholog termed lin-45 . We discovered that truncations removing the DTS strongly enhanced lin-45(S312A) , a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We generated mutations to test three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), mutation of either the ASBS, KTP motif, or aromatic cluster enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF, within the activated heterotetramer complex. We propose distinct functions for the LIN-45 DTS elements: i) the ASBS binds the kinase active site as an inhibitor, ii) phosphorylation of the KTP motif modulates DTS-kinase domain interaction, and iii) the aromatic cluster anchors the DTS in an inhibitory conformation. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.
Collapse
|
7
|
Kenny-Ganzert IW, Sherwood DR. The C. elegans anchor cell: A model to elucidate mechanisms underlying invasion through basement membrane. Semin Cell Dev Biol 2024; 154:23-34. [PMID: 37422376 PMCID: PMC10592375 DOI: 10.1016/j.semcdb.2023.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Cell invasion through basement membrane barriers is crucial during many developmental processes and in immune surveillance. Dysregulation of invasion also drives the pathology of numerous human diseases, such as metastasis and inflammatory disorders. Cell invasion involves dynamic interactions between the invading cell, basement membrane, and neighboring tissues. Owing to this complexity, cell invasion is challenging to study in vivo, which has hampered the understanding of mechanisms controlling invasion. Caenorhabditis elegans anchor cell invasion is a powerful in vivo model where subcellular imaging of cell-basement membrane interactions can be combined with genetic, genomic, and single-cell molecular perturbation studies. In this review, we outline insights gained by studying anchor cell invasion, which span transcriptional networks, translational regulation, secretory apparatus expansion, dynamic and adaptable protrusions that breach and clear basement membrane, and a complex, localized metabolic network that fuels invasion. Together, investigation of anchor cell invasion is building a comprehensive understanding of the mechanisms that underlie invasion, which we expect will ultimately facilitate better therapeutic strategies to control cell invasive activity in human disease.
Collapse
Affiliation(s)
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
8
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. An mTurq2-Col4a1 mouse model allows for live visualization of mammalian basement membrane development. J Cell Biol 2024; 223:e202309074. [PMID: 38051393 PMCID: PMC10697824 DOI: 10.1083/jcb.202309074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
9
|
Kiontke K, Fernandez P, Woronik A, Fitch DHA. Morphologically defined substages of tail morphogenesis in C. elegans males. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575265. [PMID: 38293029 PMCID: PMC10827050 DOI: 10.1101/2024.01.11.575265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Sex-specific morphogenesis occurs in C. elegans in the vulva of the hermaphrodite and in the male tail during the last larval stage. Temporal progression of vulva morphogenesis has been described in fine detail. However, a similar precise description of male tail morphogenesis was lacking. Results We here describe morphogenesis of the male tail at time points matching vulva development with special focus on morphogenesis of the tail tip. Using fluorescent reporters, we follow changes in cell shapes, cell fusions, nuclear migration, modifications in the basement membrane and formation of a new apical extracellular matrix at the end of the tail. Conclusion Our analysis answers two open questions about tail tip morphogenesis (TTM) by showing that one of the four tail tip cells, hyp11, remains separate while the other cells fuse with each other and with two additional tail cells to form a ventral tail syncytium. This fusion begins early during TTM but is only completed towards the end of the process. This work provides a framework for future investigations of cell-biological factors that drive male tail morphogenesis.
Collapse
Affiliation(s)
- Karin Kiontke
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| | - Porfirio Fernandez
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| | - Alyssa Woronik
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825
| | - David H A Fitch
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| |
Collapse
|
10
|
De A, Gupta B. pry-1 interacts with bar-1 to regulate vit-2 expression, lipid levels, and lifespan in Caenorhabditis elegans adults. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000987. [PMID: 37927912 PMCID: PMC10623142 DOI: 10.17912/micropub.biology.000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The C. elegans Axin homolog, PRY-1 , is essential for multiple biological processes including vulval development, lipid metabolism, and lifespan maintenance. pry-1 mutants exhibit lower lipid contents and knockdowns of vit genes in pry-1 mutants can restore lipid levels, implicating vitellogenins' involvement in PRY-1 -mediated lipid homeostasis. As a component of the canonical WNT signal transduction pathway, PRY-1 inhibits the function of the β-catenin ortholog BAR-1 during vulval development and other developmental events. We showed earlier that a constitutively active form of BAR-1 causes a reduction in lipid contents, however, whether PRY-1 interacts with BAR-1 to regulate lipid levels and other processes is unknown. To this end, we examined the phenotypes of pry-1 and bar-1 single and double mutants. Our data suggest that the pry-1 - bar-1 genetic pathway regulates vit-2 expression, lipid homeostasis, and the lifespan of animals.
Collapse
Affiliation(s)
- Atreyee De
- Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
11
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. A Window into Mammalian Basement Membrane Development: Insights from the mTurq2-Col4a1 Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559396. [PMID: 37808687 PMCID: PMC10557719 DOI: 10.1101/2023.09.27.559396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
12
|
Navarro KG, Chamberlin HM. Genetic characterization of C. elegans TMED genes. Dev Dyn 2023; 252:1149-1161. [PMID: 37204056 PMCID: PMC10524739 DOI: 10.1002/dvdy.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND p24/transmembrane Emp24 domain (TMED) proteins are a set of evolutionarily conserved, single pass transmembrane proteins that have been shown to facilitate protein secretion and selection of cargo proteins to transport vesicles in the cellular secretion pathway. However, their functions in animal development are incompletely understood. RESULTS The C. elegans genome encodes eight identified TMED genes, with at least one member from each defined subfamily (α, β, γ, δ). TMED gene mutants exhibit a shared set of defects in embryonic viability, animal movement, and vulval morphology. Two γ subfamily genes, tmed-1 and tmed-3, exhibit the ability to compensate for each other, as defects in movement and vulva morphology are only apparent in double mutants. TMED mutants also exhibit a delay in breakdown of basement membrane during vulva development. CONCLUSIONS The results establish a genetic and experimental framework for the study of TMED gene function in C. elegans, and argue that a functional protein from each subfamily is important for a shared set of developmental processes. A specific function for TMED genes is to facilitate breakdown of the basement membrane between the somatic gonad and vulval epithelial cells, suggesting a role for TMED proteins in tissue reorganization during animal development.
Collapse
|
13
|
Perry JA, Werner ME, Rivenbark L, Maddox AS. Caenorhabditis elegans septins contribute to the development and structure of the oogenic germline. Cytoskeleton (Hoboken) 2023; 80:215-227. [PMID: 37265173 PMCID: PMC10524836 DOI: 10.1002/cm.21763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
Oocytes must be exceptionally large cells in order to support embryonic development. Throughout animal phylogeny, a specialized cell called a syncytium, wherein many nuclei share a continuous cytoplasm, achieves oogenesis. The syncytial nature of germline architecture is key to its function and depends on conserved components of the cortical cytoskeleton. Septins form non-polar cytoskeletal polymers that associate with membranes. In the syncytial germline of the nematode Caenorhabditis elegans, septins are highly enriched on the cortex and generally required for fertility, but the role of septins in the germline is poorly understood. We report that the C. elegans septins, UNC-59 and UNC-61, are important for germline extension during development, the maintenance of its syncytial architecture, and production of oocytes. While much of our findings substantiate the idea that the two C. elegans septins act together, we also found evidence that they have distinct functions. Loss of UNC-61 perturbed germline extension during germline development, while the loss of UNC-59 function severely affected germline architecture in adult hermaphrodites. Consultation of clustering results from a large-scale high-throughput screen suggested that septins are involved in germ cell proliferation and/or differentiation. In sum, our findings implicate a conserved cytoskeletal component in the complex architecture of a germline syncytium.
Collapse
Affiliation(s)
- Jenna A Perry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Larry Rivenbark
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Barker TJ, Chan FY, Carvalho AX, Sundaram MV. Apical-basal polarity of the spectrin cytoskeleton in the C. elegans vulva. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000863. [PMID: 37396793 PMCID: PMC10308243 DOI: 10.17912/micropub.biology.000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
The C. elegans vulva is a polarized epithelial tube that has been studied extensively as a model for cell-cell signaling, cell fate specification, and tubulogenesis. Here we used endogenous fusions to show that the spectrin cytoskeleton is polarized in this organ, with conventional beta-spectrin ( UNC-70 ) found only at basolateral membranes and beta heavy spectrin ( SMA-1 ) found only at apical membranes. The sole alpha-spectrin ( SPC-1 ) is present at both locations but requires SMA-1 for its apical localization. Thus, beta spectrins are excellent markers for vulva cell membranes and polarity.
Collapse
Affiliation(s)
- Trevor J. Barker
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Fung-Yi Chan
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Ana X. Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
15
|
Xiao Y, Yee C, Zhao CZ, Martinez MAQ, Zhang W, Shen K, Matus DQ, Hammell C. An expandable FLP-ON::TIR1 system for precise spatiotemporal protein degradation in Caenorhabditis elegans. Genetics 2023; 223:iyad013. [PMID: 36722258 PMCID: PMC10319979 DOI: 10.1093/genetics/iyad013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
The auxin-inducible degradation system has been widely adopted in the Caenorhabditis elegans research community for its ability to empirically control the spatiotemporal expression of target proteins. This system can efficiently degrade auxin-inducible degron (AID)-tagged proteins via the expression of a ligand-activatable AtTIR1 protein derived from A. thaliana that adapts target proteins to the endogenous C. elegans proteasome. While broad expression of AtTIR1 using strong, ubiquitous promoters can lead to rapid degradation of AID-tagged proteins, cell type-specific expression of AtTIR1 using spatially restricted promoters often results in less efficient target protein degradation. To circumvent this limitation, we have developed an FLP/FRT3-based system that functions to reanimate a dormant, high-powered promoter that can drive sufficient AtTIR1 expression in a cell type-specific manner. We benchmark the utility of this system by generating a number of tissue-specific FLP-ON::TIR1 drivers to reveal genetically separable cell type-specific phenotypes for several target proteins. We also demonstrate that the FLP-ON::TIR1 system is compatible with enhanced degron epitopes. Finally, we provide an expandable toolkit utilizing the basic FLP-ON::TIR1 system that can be adapted to drive optimized AtTIR1 expression in any tissue or cell type of interest.
Collapse
Affiliation(s)
- Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
16
|
Naturale VF, Pickett MA, Feldman JL. Context matters: Lessons in epithelial polarity from the Caenorhabditis elegans intestine and other tissues. Curr Top Dev Biol 2023; 154:37-71. [PMID: 37100523 DOI: 10.1016/bs.ctdb.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epithelia are tissues with diverse morphologies and functions across metazoans, ranging from vast cell sheets encasing internal organs to internal tubes facilitating nutrient uptake, all of which require establishment of apical-basolateral polarity axes. While all epithelia tend to polarize the same components, how these components are deployed to drive polarization is largely context-dependent and likely shaped by tissue-specific differences in development and ultimate functions of polarizing primordia. The nematode Caenorhabditis elegans (C. elegans) offers exceptional imaging and genetic tools and possesses unique epithelia with well-described origins and roles, making it an excellent model to investigate polarity mechanisms. In this review, we highlight the interplay between epithelial polarization, development, and function by describing symmetry breaking and polarity establishment in a particularly well-characterized epithelium, the C. elegans intestine. We compare intestinal polarization to polarity programs in two other C. elegans epithelia, the pharynx and epidermis, correlating divergent mechanisms with tissue-specific differences in geometry, embryonic environment, and function. Together, we emphasize the importance of investigating polarization mechanisms against the backdrop of tissue-specific contexts, while also underscoring the benefits of cross-tissue comparisons of polarity.
Collapse
Affiliation(s)
- Victor F Naturale
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA, United States; Department of Biological Sciences, San José State University, San José, CA, United States
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
17
|
Gianakas CA, Keeley DP, Ramos-Lewis W, Park K, Jayadev R, Kenny IW, Chi Q, Sherwood DR. Hemicentin-mediated type IV collagen assembly strengthens juxtaposed basement membrane linkage. J Cell Biol 2022; 222:213571. [PMID: 36282214 PMCID: PMC9597354 DOI: 10.1083/jcb.202112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Basement membrane (BM) matrices surround and separate most tissues. However, through poorly understood mechanisms, BMs of adjacent tissue can also stably link to support organ structure and function. Using endogenous knock-in fluorescent proteins, conditional RNAi, optogenetics, and quantitative live imaging, we identified extracellular matrix proteins mediating a BM linkage (B-LINK) between the uterine utse and epidermal seam cell BMs in Caenorhabditis elegans that supports the uterus during egg-laying. We found that hemicentin is secreted by the utse and promotes fibulin-1 assembly to jointly initiate the B-LINK. During egg-laying, however, both proteins' levels decline and are not required for B-LINK maintenance. Instead, we discovered that hemicentin recruits ADAMTS9/20, which facilitates the assembly of high levels of type IV collagen that sustains the B-LINK during the mechanically active egg-laying period. This work reveals mechanisms underlying BM-BM linkage maturation and identifies a crucial function for hemicentin and fibulin-1 in initiating attachment and type IV collagen in strengthening this specialized form of tissue linkage.
Collapse
Affiliation(s)
- Claire A. Gianakas
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kieop Park
- Department of Biology, Duke University, Durham, NC
| | | | | | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC
| | - David R. Sherwood
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC,Correspondence to David R. Sherwood:
| |
Collapse
|
18
|
Fergin A, Boesch G, Greter NR, Berger S, Hajnal A. Tissue-specific inhibition of protein sumoylation uncovers diverse SUMO functions during C. elegans vulval development. PLoS Genet 2022; 18:e1009978. [PMID: 35666766 PMCID: PMC9203017 DOI: 10.1371/journal.pgen.1009978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The sumoylation (SUMO) pathway is involved in a variety of processes during C. elegans development, such as gonadal and vulval fate specification, cell cycle progression and maintenance of chromosome structure. The ubiquitous expression and pleiotropic effects have made it difficult to dissect the tissue-specific functions of the SUMO pathway and identify its target proteins. To overcome these challenges, we have established tools to block protein sumoylation and degrade sumoylated target proteins in a tissue-specific and temporally controlled manner. We employed the auxin-inducible protein degradation system (AID) to down-regulate the SUMO E3 ligase GEI-17 or the SUMO ortholog SMO-1, either in the vulval precursor cells (VPCs) or in the gonadal anchor cell (AC). Our results indicate that the SUMO pathway acts in multiple tissues to control different aspects of vulval development, such as AC positioning, basement membrane (BM) breaching, VPC fate specification and morphogenesis. Inhibition of protein sumoylation in the VPCs resulted in abnormal toroid formation and ectopic cell fusions during vulval morphogenesis. In particular, sumoylation of the ETS transcription factor LIN-1 at K169 is necessary for the proper contraction of the ventral vulA toroids. Thus, the SUMO pathway plays several distinct roles throughout vulval development. Many proteins are chemically modified after they have been synthesized. In particular, conjugation with the Small Ubiquitin-like Modifier (SUMO) regulates the functions and activities of a large number of proteins in animal and plant cells. Here, we have used the Nematode Caenorhabditis elegans to study the various effects of SUMO protein modification on organ development. By applying a tissue-specific protein degradation system, we could selectively block the SUMO pathway in different tissues of the animals. We focused on the development of the egg-laying organ as a model, and found that the SUMO pathway acts in multiple tissues to regulate distinct cellular functions. Finally, we show that SUMO modification of one transcription factor, called LIN-1, is necessary for the proper morphogenesis of the organ. Our results indicate that the manifold effects of the SUMO pathway can be attributed to the combined action of a distinct number of SUMO modified proteins acting in different cell types.
Collapse
Affiliation(s)
- Aleksandra Fergin
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, Zürich, Switzerland
| | - Gabriel Boesch
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, Zürich, Switzerland
| | - Nadja R. Greter
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, Zürich, Switzerland
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 2022; 39:1261-1276. [PMID: 35501415 DOI: 10.1007/s10815-022-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Collapse
|
20
|
Spiri S, Berger S, Mereu L, DeMello A, Hajnal A. Reciprocal EGFR signaling in the anchor cell ensures precise inter-organ connection during Caenorhabditis elegans vulval morphogenesis. Development 2022; 149:dev199900. [PMID: 34982813 PMCID: PMC8783044 DOI: 10.1242/dev.199900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023]
Abstract
During Caenorhabditis elegans vulval development, the uterine anchor cell (AC) first secretes an epidermal growth factor (EGF) to specify the vulval cell fates and then invades the underlying vulval epithelium. By doing so, the AC establishes direct contact with the invaginating primary vulF cells and attaches the developing uterus to the vulva. The signals involved and the exact sequence of events joining these two organs are not fully understood. Using a conditional let-23 EGF receptor (EGFR) allele along with novel microfluidic short- and long-term imaging methods, we discovered a specific function of the EGFR in the AC during vulval lumen morphogenesis. Tissue-specific inactivation of let-23 in the AC resulted in imprecise alignment of the AC with the primary vulval cells, delayed AC invasion and disorganized adherens junctions at the contact site forming between the AC and the dorsal vulF toroid. We propose that EGFR signaling, activated by a reciprocal EGF cue from the primary vulval cells, positions the AC at the vulval midline, guides it during invasion and assembles a cytoskeletal scaffold organizing the adherens junctions that connect the developing uterus to the dorsal vulF toroid. Thus, EGFR signaling in the AC ensures the precise alignment of the two developing organs.
Collapse
Affiliation(s)
- Silvan Spiri
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institute for Chemical- and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Louisa Mereu
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Andrew DeMello
- Institute for Chemical- and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
21
|
Berger S, Spiri S, deMello A, Hajnal A. Microfluidic-based imaging of complete Caenorhabditis elegans larval development. Development 2021; 148:269282. [PMID: 34170296 PMCID: PMC8327290 DOI: 10.1242/dev.199674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022]
Abstract
Several microfluidic-based methods for Caenorhabditis elegans imaging have recently been introduced. Existing methods either permit imaging across multiple larval stages without maintaining a stable worm orientation, or allow for very good immobilization but are only suitable for shorter experiments. Here, we present a novel microfluidic imaging method that allows parallel live-imaging across multiple larval stages, while maintaining worm orientation and identity over time. This is achieved through an array of microfluidic trap channels carefully tuned to maintain worms in a stable orientation, while allowing growth and molting to occur. Immobilization is supported by an active hydraulic valve, which presses worms onto the cover glass during image acquisition only. In this way, excellent quality images can be acquired with minimal impact on worm viability or developmental timing. The capabilities of the devices are demonstrated by observing the hypodermal seam and P-cell divisions and, for the first time, the entire process of vulval development from induction to the end of morphogenesis. Moreover, we demonstrate feasibility of on-chip RNAi by perturbing basement membrane breaching during anchor cell invasion. Summary: Parallel microfluidic long-term imaging allows reliable long-term study of Caenorhabditis elegans development across multiple larval stages at high-resolution and with minimal effect on physiological development.
Collapse
Affiliation(s)
- Simon Berger
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Silvan Spiri
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
22
|
Abstract
The nematode Caenorhabditis elegans nociceptive PVD neurons have highly ordered dendritic branches, making this an ideal model to study the development and organization of dendrites. A ser-2-promoter-driven GFP reporter line wyIs592[ser-2prom-3p::myr-GFP] provides a comprehensive visualization of PVD anatomy. Here, we describe the detailed procedures for imaging a PVD neuron using wyIs592 at late L4 larval stage in vivo by confocal microscopy. This protocol can also be applied to imaging other cells in C. elegans. For complete details on the use and execution of this protocol, please refer to Feng et al. (2020). Protocol for fluorescence imaging in C. elegans Worm strain cultivation for stress-sensitive neurons Acquiring and assembling pictures for a large neuron with highly elaborate dendrites
Collapse
|
23
|
Stadler T, Pybus OG, Stumpf MPH. Phylodynamics for cell biologists. Science 2021; 371:371/6526/eaah6266. [PMID: 33446527 DOI: 10.1126/science.aah6266] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Multicellular organisms are composed of cells connected by ancestry and descent from progenitor cells. The dynamics of cell birth, death, and inheritance within an organism give rise to the fundamental processes of development, differentiation, and cancer. Technical advances in molecular biology now allow us to study cellular composition, ancestry, and evolution at the resolution of individual cells within an organism or tissue. Here, we take a phylogenetic and phylodynamic approach to single-cell biology. We explain how "tree thinking" is important to the interpretation of the growing body of cell-level data and how ecological null models can benefit statistical hypothesis testing. Experimental progress in cell biology should be accompanied by theoretical developments if we are to exploit fully the dynamical information in single-cell data.
Collapse
Affiliation(s)
- T Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - O G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
| | - M P H Stumpf
- Melbourne Integrative Genomics, School of BioSciences and School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
24
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
25
|
Abstract
During multicellular organism development, complex structures are sculpted to form organs and tissues, which are maintained throughout adulthood. Many of these processes require cells to fuse with one another, or with themselves. These plasma membrane fusions merge endoplasmic cellular content across external, exoplasmic, space. In the nematode Caenorhabditis elegans, such cell fusions serve as a unique sculpting force, involved in the embryonic morphogenesis of the skin-like multinuclear hypodermal cells, but also in refining delicate structures, such as valve openings and the tip of the tail. During post-embryonic development, plasma membrane fusions continue to shape complex neuron structures and organs such as the vulva, while during adulthood fusion participates in cell and tissue repair. These processes rely on two fusion proteins (fusogens): EFF-1 and AFF-1, which are part of a broader family of structurally related membrane fusion proteins, encompassing sexual reproduction, viral infection, and tissue remodeling. The established capabilities of these exoplasmic fusogens are further expanded by new findings involving EFF-1 and AFF-1 in endocytic vesicle fission and phagosome sealing. Tight regulation by cell-autonomous and non-cell autonomous mechanisms orchestrates these diverse cell fusions at the correct place and time-these processes and their significance are discussed in this review.
Collapse
|
26
|
Mata-Cabana A, Pérez-Nieto C, Olmedo M. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. ADVANCES IN GENETICS 2020; 107:33-87. [PMID: 33641748 DOI: 10.1016/bs.adgen.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developmental programs are under strict genetic control that favors robustness of the process. In order to guarantee the same outcome in different environmental situations, development is modulated by input pathways, which inform about external conditions. In the nematode Caenorhabditis elegans, the process of postembryonic development involves a series of stereotypic cell divisions, the progression of which is controlled by the nutritional status of the animal. C. elegans can arrest development at different larval stages, leading to cell arrest of the relevant divisions of the stage. This means that studying the nutritional control of development in C. elegans we can learn about the mechanisms controlling cell division in an in vivo model. In this work, we reviewed the current knowledge about the nutrient sensing pathways that control the progression or arrest of development in response to nutrient availability, with a special focus on the arrest at the L1 stage.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - Carmen Pérez-Nieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain.
| |
Collapse
|
27
|
Choi J, Sung JY, Lee S, Yoo J, Rongo C, Kim YN, Shim J. Rab8 and Rabin8-Mediated Tumor Formation by Hyperactivated EGFR Signaling via FGFR Signaling. Int J Mol Sci 2020; 21:ijms21207770. [PMID: 33092268 PMCID: PMC7589727 DOI: 10.3390/ijms21207770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling is important for normal development, such as vulval development in Caenorhabditis elegans, and hyperactivation of the EGFR is often associated with cancer development. Our previous report demonstrated the multivulva (Muv) phenotype, a tumor model in C. elegans (jgIs25 strain) by engineering LET-23/EGFR with a TKI-resistant human EGFR T790-L858 mutant. Because Rab proteins regulate vesicle transport, which is important for receptor signaling, we screened the RNAi in the jgIs25 strain to find the Rabs critical for Muv formation. Herein, we show that rab-8 RNAi and the rab-8 (-/-) mutation effectively reduce Muv formation. We demonstrate that RABN-8, an ortholog of Rabin8, known as a GEF for Rab8, is also required for Muv formation by promoting the secretion of EGL-17/FGF from vulval precursor cells. In addition, FGFR inhibitors decreased Muv formation mediated by mutant EGFR. Our data suggest that Rab8 and Rabin8 mediate Muv formation through FGF secretion in the EGFR-TKI-resistant nematode model. Furthermore, FGFR-TKIs more effectively inhibit the growth of lung cancer cell lines in H1975 (EGFR T790M-L858R; EGFR-TKI-resistant) than H522 (wild-type EGFR) and H1650 (EGFR exon 19 deletion; EGFR-TKI-sensitive) cells, suggesting that FGFR-TKIs could be used to control cancers with EGFR-TKI-resistant mutations.
Collapse
Affiliation(s)
- Junghwa Choi
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Jee Young Sung
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Saerom Lee
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Jungyoen Yoo
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Yong-Nyun Kim
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
- Correspondence: (Y.-N.K.); (J.S.); Tel.: +82-31-920-2415 (Y.-N.K.); +82-31-920-2262 (J.S.)
| | - Jaegal Shim
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
- Correspondence: (Y.-N.K.); (J.S.); Tel.: +82-31-920-2415 (Y.-N.K.); +82-31-920-2262 (J.S.)
| |
Collapse
|
28
|
Cohen JD, Sparacio AP, Belfi AC, Forman-Rubinsky R, Hall DH, Maul-Newby H, Frand AR, Sundaram MV. A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. eLife 2020; 9:e57874. [PMID: 32975517 PMCID: PMC7544507 DOI: 10.7554/elife.57874] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Biological tubes must develop and maintain their proper diameter to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The Caenorhabditis elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1°) and Notch-dependent (2°) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alessandro P Sparacio
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alexandra C Belfi
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Rachel Forman-Rubinsky
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Hannah Maul-Newby
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alison R Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| |
Collapse
|
29
|
Massri AJ, Schiebinger GR, Berrio A, Wang L, Wray GA, McClay DR. Methodologies for Following EMT In Vivo at Single Cell Resolution. Methods Mol Biol 2020; 2179:303-314. [PMID: 32939729 DOI: 10.1007/978-1-0716-0779-4_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An epithelial-mesenchymal transition (EMT) occurs in almost every metazoan embryo at the time mesoderm begins to differentiate. Several embryos have a long record as models for studying an EMT given that a known population of cells enters the EMT at a known time thereby enabling a detailed study of the process. Often, however, it is difficult to learn the molecular details of these model EMT systems because the transitioning cells are a minority of the population of cells in the embryo and in most cases there is an inability to isolate that population. Here we provide a method that enables an examination of genes expressed before, during, and after the EMT with a focus on just the cells that undergo the transition. Single cell RNA-seq (scRNA-seq) has advanced as a technology making it feasible to study the trajectory of gene expression specifically in the cells of interest, in vivo, and without the background noise of other cell populations. The sea urchin skeletogenic cells constitute only 5% of the total number of cells in the embryo yet with scRNA-seq it is possible to study the genes expressed by these cells without background noise. This approach, though not perfect, adds a new tool for uncovering the mechanism of EMT in this cell type.
Collapse
Affiliation(s)
| | | | | | - Lingyu Wang
- Department of Biology, Duke University, Durham, NC, USA
| | | | - David R McClay
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the C. elegans Egg-Laying Circuit. J Neurosci 2020; 40:7475-7488. [PMID: 32847964 DOI: 10.1523/jneurosci.1357-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
Maps of the synapses made and neurotransmitters released by all neurons in model systems, such as Caenorhabditis elegans have left still unresolved how neural circuits integrate and respond to neurotransmitter signals. Using the egg-laying circuit of C. elegans as a model, we mapped which cells express each of the 26 neurotransmitter GPCRs of this organism and also genetically analyzed the functions of all 26 GPCRs. We found that individual neurons express many distinct receptors, epithelial cells often express neurotransmitter receptors, and receptors are often positioned to receive extrasynaptic signals. Receptor knockouts reveal few egg-laying defects under standard laboratory conditions, suggesting that the receptors function redundantly or regulate egg-laying only in specific conditions; however, increasing receptor signaling through overexpression more efficiently reveals receptor functions. This map of neurotransmitter GPCR expression and function in the egg-laying circuit provides a model for understanding GPCR signaling in other neural circuits.SIGNIFICANCE STATEMENT Neurotransmitters signal through GPCRs to modulate activity of neurons, and changes in such signaling can underlie conditions such as depression and Parkinson's disease. To determine how neurotransmitter GPCRs together help regulate function of a neural circuit, we analyzed the simple egg-laying circuit in the model organism C. elegans We identified all the cells that express every neurotransmitter GPCR and genetically analyzed how each GPCR affects the behavior the circuit produces. We found that many neurotransmitter GPCRs are expressed in each neuron, that neurons also appear to use these receptors to communicate with other cell types, and that GPCRs appear to often act redundantly or only under specific conditions to regulate circuit function.
Collapse
|
31
|
Martinez MAQ, Kinney BA, Medwig-Kinney TN, Ashley G, Ragle JM, Johnson L, Aguilera J, Hammell CM, Ward JD, Matus DQ. Rapid Degradation of Caenorhabditis elegans Proteins at Single-Cell Resolution with a Synthetic Auxin. G3 (BETHESDA, MD.) 2020; 10:267-280. [PMID: 31727633 PMCID: PMC6945041 DOI: 10.1534/g3.119.400781] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
As developmental biologists in the age of genome editing, we now have access to an ever-increasing array of tools to manipulate endogenous gene expression. The auxin-inducible degradation system allows for spatial and temporal control of protein degradation via a hormone-inducible Arabidopsis F-box protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a substrate-recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal degradation. Here, we optimize the Caenorhabditis elegans AID system by utilizing 1-naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via quantitative high-resolution microscopy that rapid degradation of target proteins can be detected in single cells within 30 min of exposure. Additionally, we show that NAA works robustly in both standard growth media and physiological buffer. We also demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into how the AID system functions in C. elegans by determining that TIR1 depends on C. elegans SKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present highly penetrant defects from NAA-mediated degradation of the FTZ-F1 nuclear hormone receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work improves our use and understanding of the AID system for dissecting gene function at the single-cell level during C. elegans development.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Brian A Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, and
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Guinevere Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - James M Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - Londen Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | | | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794,
| |
Collapse
|
32
|
Cuentas-Condori A, Mulcahy B, He S, Palumbos S, Zhen M, Miller DM. C. elegans neurons have functional dendritic spines. eLife 2019; 8:e47918. [PMID: 31584430 PMCID: PMC6802951 DOI: 10.7554/elife.47918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.
Collapse
Affiliation(s)
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - Siwei He
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Sierra Palumbos
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - David M Miller
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleUnited States
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| |
Collapse
|
33
|
Keeley DP, Sherwood DR. Tissue linkage through adjoining basement membranes: The long and the short term of it. Matrix Biol 2019; 75-76:58-71. [PMID: 29803937 PMCID: PMC6252152 DOI: 10.1016/j.matbio.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
34
|
Goh KY, Inoue T. A large transcribed enhancer region regulates C. elegans bed-3 and the development of egg laying muscles. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:519-533. [PMID: 29481869 DOI: 10.1016/j.bbagrm.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
Gene expression is regulated by the interaction of the RNA polymerase with various transcription factors at promoter and enhancer elements. Transcriptome analyses found that many non-protein-coding regions are transcribed to produce long non-coding RNAs and enhancer-associated RNAs. Production of these transcripts is associated with activation of nearby protein-coding genes, and at least in some cases, the transcripts themselves mediate this activation. Non-coding transcripts are also reported from large enhancers or clusters of enhancers. However, not much is known about the function of large transcribed enhancer regions during organismal development. Here we investigated a transcribed 10.6 kb intergenic region located upstream of the C. elegans bed-3 gene. We found that parts of this region exhibit tissue-specific promoter and enhancer activities. Deletion of the region disrupts egg laying, a phenotype also observed in bed-3 mutants, but with the severity correlating with the size of the deletion. This phenotype is not caused by overall reduction in bed-3 expression. Rather, deletions reduce bed-3 expression specifically in the mesoderm lineage. We found that bed-3 has a previously unknown function in the generation of sex myoblast (SM) cells from the M lineage, and deletions cause loss of SM cells leading to loss of vulval muscles required for egg laying. Furthermore, injection of dsRNA targeting non-coding transcripts from this region disrupted egg laying in the wild type but not in RNAi-defective mutants. Therefore, the region upstream of bed-3 is required for robust expression of bed-3 in a specific tissue, and non-coding transcripts may mediate this interaction.
Collapse
Affiliation(s)
- Kah Yee Goh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | - Takao Inoue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597.
| |
Collapse
|
35
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
36
|
Sjöqvist M, Andersson ER. Do as I say, Not(ch) as I do: Lateral control of cell fate. Dev Biol 2017; 447:58-70. [PMID: 28969930 DOI: 10.1016/j.ydbio.2017.09.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 01/19/2023]
Abstract
Breaking symmetry in populations of uniform cells, to induce adoption of an alternative cell fate, is an essential developmental mechanism. Similarly, domain and boundary establishment are crucial steps to forming organs during development. Notch signaling is a pathway ideally suited to mediating precise patterning cues, as both receptors and ligands are membrane-bound and can thus act as a precise switch to toggle cell fates on or off. Fine-tuning of signaling by positive or negative feedback mechanisms dictate whether signaling results in lateral induction or lateral inhibition, respectively, allowing Notch to either induce entire regions of cell specification, or dictate binary fate choices. Furthermore, pathway activity is modulated by Fringe modification of receptors or ligands, co-expression of receptors with ligands, mode of ligand presentation, and cell surface area in contact. In this review, we describe how Notch signaling is fine-tuned to mediate lateral induction or lateral inhibition cues, and discuss examples from C.elegans, D. melanogaster and M. musculus. Identifying the cellular machinery dictating the choice between lateral induction and lateral inhibition highlights the versatility of the Notch signaling pathway in development.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden.
| |
Collapse
|
37
|
Yang Q, Roiz D, Mereu L, Daube M, Hajnal A. The Invading Anchor Cell Induces Lateral Membrane Constriction during Vulval Lumen Morphogenesis in C. elegans. Dev Cell 2017; 42:271-285.e3. [PMID: 28787593 DOI: 10.1016/j.devcel.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 05/15/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
During epithelial tube morphogenesis, linear arrays of cells are converted into tubular structures through actomyosin-generated intracellular forces that induce tissue invagination and lumen formation. We have investigated lumen morphogenesis in the C. elegans vulva. The first discernible event initiating lumen formation is the apical constriction of the two innermost primary cells (VulF). The VulF cells thereafter constrict their lateral membranes along the apicobasal axis to extend the lumen dorsally. Lateral, but not apical, VulF constriction requires the prior invasion of the anchor cell (AC). The invading AC extends actin-rich protrusions toward VulF, resulting in the formation of a direct AC-VulF interface. The recruitment of the F-BAR-domain protein TOCA-1 to the AC-VulF interface induces the accumulation of force-generating actomyosin, causing a switch from apical to lateral membrane constriction and the dorsal extension of the lumen. Invasive cells may induce shape changes in adjacent cells to penetrate their target tissues.
Collapse
Affiliation(s)
- Qiutan Yang
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Daniel Roiz
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Louisa Mereu
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Michael Daube
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
38
|
Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nat Protoc 2017; 12:2081-2096. [PMID: 28880279 DOI: 10.1038/nprot.2017.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell invasion through basement membrane (BM) barriers is crucial in development, leukocyte trafficking and the spread of cancer. The mechanisms that direct invasion, despite their importance in normal and disease states, are poorly understood, largely because of the inability to visualize dynamic cell-BM interactions in vivo. This protocol describes multichannel time-lapse confocal imaging of anchor-cell invasion in live Caenorhabditis elegans. Methods presented include outline-slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min) and quantitative analysis (variable timing). The acquired images enable direct measurement of invasive dynamics including formation of invadopodia and cell-membrane protrusions, and removal of BM. This protocol can be combined with genetic analysis, molecular-activity probes and optogenetic approaches to uncover the molecular mechanisms underlying cell invasion. These methods can also be readily adapted by any worm laboratory for real-time analysis of cell migration, BM turnover and cell-membrane dynamics.
Collapse
|
39
|
The C. elegans hox gene lin-39 controls cell cycle progression during vulval development. Dev Biol 2016; 418:124-134. [DOI: 10.1016/j.ydbio.2016.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
|
40
|
McClatchey ST, Wang Z, Linden LM, Hastie EL, Wang L, Shen W, Chen A, Chi Q, Sherwood DR. Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling. eLife 2016; 5. [PMID: 27661254 PMCID: PMC5061546 DOI: 10.7554/elife.17218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells and their underlying basement membranes (BMs) slide along each other to renew epithelia, shape organs, and enlarge BM openings. How BM sliding is controlled, however, is poorly understood. Using genetic and live cell imaging approaches during uterine-vulval attachment in C. elegans, we have discovered that the invasive uterine anchor cell activates Notch signaling in neighboring uterine cells at the boundary of the BM gap through which it invades to promote BM sliding. Through an RNAi screen, we found that Notch activation upregulates expression of ctg-1, which encodes a Sec14-GOLD protein, a member of the Sec14 phosphatidylinositol-transfer protein superfamily that is implicated in vesicle trafficking. Through photobleaching, targeted knockdown, and cell-specific rescue, our results suggest that CTG-1 restricts BM adhesion receptor DGN-1 (dystroglycan) trafficking to the cell-BM interface, which promotes BM sliding. Together, these studies reveal a new morphogenetic signaling pathway that controls BM sliding to remodel tissues.
Collapse
Affiliation(s)
| | - Zheng Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital, Wuhan, China.,Development and Molecular Oncology Laboratory, Union Hospital, Wuhan, China
| | - Lara M Linden
- Department of Biology, Duke University, Durham, United States
| | - Eric L Hastie
- Department of Biology, Duke University, Durham, United States
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanqing Shen
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alan Chen
- Department of Biology, Duke University, Durham, United States
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, United States
| | | |
Collapse
|
41
|
Grimbert S, Tietze K, Barkoulas M, Sternberg PW, Félix MA, Braendle C. Anchor cell signaling and vulval precursor cell positioning establish a reproducible spatial context during C. elegans vulval induction. Dev Biol 2016; 416:123-135. [PMID: 27288708 DOI: 10.1016/j.ydbio.2016.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/05/2016] [Accepted: 05/31/2016] [Indexed: 01/26/2023]
Abstract
How cells coordinate their spatial positioning through intercellular signaling events is poorly understood. Here we address this topic using Caenorhabditis elegans vulval patterning during which hypodermal vulval precursor cells (VPCs) adopt distinct cell fates determined by their relative positions to the gonadal anchor cell (AC). LIN-3/EGF signaling by the AC induces the central VPC, P6.p, to adopt a 1° vulval fate. Exact alignment of AC and VPCs is thus critical for correct fate patterning, yet, as we show here, the initial AC-VPC positioning is both highly variable and asymmetric among individuals, with AC and P6.p only becoming aligned at the early L3 stage. Cell ablations and mutant analysis indicate that VPCs, most prominently 1° cells, move towards the AC. We identify AC-released LIN-3/EGF as a major attractive signal, which therefore plays a dual role in vulval patterning (cell alignment and fate induction). Additionally, compromising Wnt pathway components also induces AC-VPC alignment errors, with loss of posterior Wnt signaling increasing stochastic vulval centering on P5.p. Our results illustrate how intercellular signaling reduces initial spatial variability in cell positioning to generate reproducible interactions across tissues.
Collapse
Affiliation(s)
- Stéphanie Grimbert
- Centre National de la Recherche Scientifique (CNRS) UMR7277 - Institut National de la Santé et de la Recherche Médicale (INSERM) U1091, Université Nice Sophia Antipolis, 06108 Nice cedex 02, France
| | - Kyria Tietze
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Michalis Barkoulas
- Institute of Biology of the Ecole Normale Supérieure, CNRS UMR 8197 and INSERM U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Marie-Anne Félix
- Institute of Biology of the Ecole Normale Supérieure, CNRS UMR 8197 and INSERM U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | - Christian Braendle
- Centre National de la Recherche Scientifique (CNRS) UMR7277 - Institut National de la Santé et de la Recherche Médicale (INSERM) U1091, Université Nice Sophia Antipolis, 06108 Nice cedex 02, France.
| |
Collapse
|
42
|
Lohmer LL, Kelley LC, Hagedorn EJ, Sherwood DR. Invadopodia and basement membrane invasion in vivo. Cell Adh Migr 2015; 8:246-55. [PMID: 24717190 DOI: 10.4161/cam.28406] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over 20 years ago, protrusive, F-actin-based membrane structures, termed invadopodia, were identified in highly metastatic cancer cell lines. Invadopodia penetrate artificial or explanted extracellular matrices in 2D culture conditions and have been hypothesized to facilitate the migration of cancer cells through basement membrane, a thin, dense, barrier-like matrix surrounding most tissues. Despite intensive study, the identification of invadopodia in vivo has remained elusive and until now their possible roles during invasion or even existence have remained unclear. Studies in remarkably different cellular contexts-mouse tumor models, zebrafish intestinal epithelia, and C. elegans organogenesis-have recently identified invadopodia structures associated with basement membrane invasion. These studies are providing the first in vivo insight into the regulation, function, and role of these fascinating subcellular devices with critical importance to both development and human disease.
Collapse
|
43
|
Weinstein N, Ortiz-Gutiérrez E, Muñoz S, Rosenblueth DA, Álvarez-Buylla ER, Mendoza L. A model of the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva. BMC Bioinformatics 2015; 16:81. [PMID: 25884811 PMCID: PMC4367908 DOI: 10.1186/s12859-015-0498-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/16/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes. RESULTS Here we propose a simplified model of the regulatory network that includes sufficient molecules involved in the control of both the cell cycle and cell differentiation in the C. elegans vulva to recover their dynamic behavior. We first infer both the topology and the update rules of the cell cycle module from an expected time series. Next, we use a symbolic algorithmic approach to find which interactions must be included in the regulatory network. Finally, we use a continuous-time version of the update rules for the cell cycle module to validate the cyclic behavior of the network, as well as to rule out the presence of potential artifacts due to the synchronous updating of the discrete model. We analyze the dynamical behavior of the model for the wild type and several mutants, finding that most of the results are consistent with published experimental results. CONCLUSIONS Our model shows that the regulation of Notch signaling by the cell cycle preserves the potential of the VPCs and the three vulval fates to differentiate and de-differentiate, allowing them to remain completely responsive to the concentration of LIN-3 and lateral signal in the extracellular microenvironment.
Collapse
Affiliation(s)
- Nathan Weinstein
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de, México, DF, México.
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Elizabeth Ortiz-Gutiérrez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de, México, DF, México.
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Stalin Muñoz
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad, Nacional Autónoma de México, México, DF, México.
| | - David A Rosenblueth
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad, Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| |
Collapse
|
44
|
Schindler AJ, Sherwood DR. Should I stay or should I go? Identification of novel nutritionally regulated developmental checkpoints in C. elegans. WORM 2014; 3:e979658. [PMID: 26430552 DOI: 10.4161/21624054.2014.979658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
After embryogenesis, developing organisms typically secure their own nutrients to enable further growth. The fitness of an organism depends on developing when food is abundant and slowing or stopping development during periods of scarcity. Although several key pathways that link nutrition with development have been identified, a mechanistic understanding of how these pathways coordinate growth with nutritional conditions is lacking. We took advantage of the stereotyped development and experimental accessibility of C. elegans to study nutritional control of late larval development. We discovered that C. elegans larval development is punctuated by precisely time checkpoints that globally arrest growth when nutritional conditions are unfavorable. Arrest at the checkpoints is regulated by insulin- and insulin-like signaling and steroid hormone signaling. These pathways are conserved in mammals, suggesting that similar mechanisms could regulate growth and development in humans. We highlight several implications of our research, including quiescence of diverse cellular behaviors as an adaptive response to unfavorable growth conditions, the existence of oscillatory checkpoints that coordinate development across tissues, and the connections between systemic and cell-autonomous regulators of nutritional response. Together, our findings describe a fascinating developmental strategy in C. elegans that we expect will not only provide insight into nutritional regulation of development, but also into poorly understood cellular processes such as quiescence and aging.
Collapse
|
45
|
Escobar-Restrepo JM, Hajnal A. An intimate look at LET-23 EGFR trafficking in the vulval cells of live C. elegans larvae. WORM 2014; 3:e965605. [PMID: 26430550 PMCID: PMC4588154 DOI: 10.4161/21624046.2014.965605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 01/07/2023]
Abstract
Precise cell fate specification is essential for organ formation. A simple view is that one or several signal sending cells emit a ligand to a group of signal receiving cells that express the corresponding receptor, which transduces the signal through intracellular enzyme pathways. All these events must be spatio-temporally regulated to achieve the proper strength, duration and output of the signaling pathways. In particular, the production and secretion of the ligand has to be coordinated with the expression and accessibility of the receptor in the signal receiving cells. Furthermore, removal of the ligand or receptor is key to achieve proper signal termination and prevent excess cell differentiation and proliferation. Improper regulation of any of these events may cause developmental defects and human disease. C. elegans is an excellent model to systematically identify genes that control the localization and activity of the Epidermal Growth Factor Receptor (EGFR) homolog LET-23. To identify regulators of LET-23 trafficking, Haag et al. observed LET-23 localization in the vulva precursor cells (VPCs) of RNAi treated larvae by live fluorescent microscopy. In this comment, we provide an overview of the newly identified regulators of LET-23 trafficking and discuss the role of the Ezrin/Radixin/Moesin homolog ERM-1 as a temporal regulator of EGFR signaling.
Collapse
Affiliation(s)
- Juan M Escobar-Restrepo
- University of Zurich; Institute of Molecular Life Sciences; Winterthurerstrasse; Zurich, Switzerland
| | - Alex Hajnal
- University of Zurich; Institute of Molecular Life Sciences; Winterthurerstrasse; Zurich, Switzerland
| |
Collapse
|
46
|
Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways. PLoS Genet 2014; 10:e1004426. [PMID: 24945623 PMCID: PMC4063711 DOI: 10.1371/journal.pgen.1004426] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/20/2014] [Indexed: 01/10/2023] Open
Abstract
Organisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint. Organisms in the wild often face long periods in which food is scarce. This may occur due to seasonal effects, loss of territory, or changes in predator-to-prey ratio. During periods of scarcity, organisms undergo adaptations to conserve resources and prolong survival. When nutrient deprivation occurs during development, physical growth and maturation to adulthood is delayed. These effects are also observed in malnourished individuals, who are smaller and reach puberty at later ages. Developmental arrest in response to nutrient scarcity requires a means of sensing changing nutrient conditions and coordinating an organism-wide response. How this occurs is not well understood. We assessed the developmental response to nutrient withdrawal in the nematode worm Caenorhabditis elegans. By removing food in the late larval stages, a period of extensive tissue formation, we have uncovered previously unknown checkpoints that occur at precise times in development. Diverse tissues and cellular processes arrest at the checkpoints. Insulin-like signaling and steroid hormone signaling regulate tissue arrest following nutrient withdrawal. These pathways are conserved in mammals and are linked to growth processes and diseases. Given that the pathways that respond to nutrition are conserved in animals, it is possible that similar checkpoints may also be important in human development.
Collapse
|