1
|
Sapan V, Simsek SZ, Filoğlu G, Bulbul O. Forensic DNA phenotyping using Oxford Nanopore Sequencing system. Electrophoresis 2025; 46:198-211. [PMID: 38794987 PMCID: PMC11865696 DOI: 10.1002/elps.202300252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
In forensic science, the demand for precision, consistency, and cost-effectiveness has driven the exploration of next-generation sequencing technologies. This study investigates the potential of Oxford Nanopore Sequencing (ONT) Technology for analyzing the HIrisPlex-S panel, a set of 41 single nucleotide polymorphism (SNP) markers used to predict eye, hair, and skin color. Using ONT sequencing, we assessed the accuracy and reliability of ONT-generated data by comparing it with conventional capillary electrophoresis (CE) in 18 samples. The Guppy v6.1 was used as a basecaller, and sample profiles were obtained using Burrows-Wheeler Aligner, Samtools, BCFtools, and Python. Comparing accuracy with CE, we found that 62% of SNPs in ONT-unligated samples were correctly genotyped, with 36% showing allele dropout, and 2% being incorrectly genotyped. In the ONT-ligated samples, 85% of SNPs were correctly genotyped, with 10% showing allele dropout, and 5% being incorrectly genotyped. Our findings indicate that ONT, particularly when combined with ligation, enhances genotyping accuracy and coverage, thereby reducing allele dropouts. However, challenges associated with the technology's error rates and the impact on genotyping accuracy are recognized. Phenotype predictions based on ONT data demonstrate varying degrees of success, with the technology showing high accuracy in several cases. Although ONT technology holds promise in forensic genetics, further optimization and quality control measures are essential to harness its full potential. This study contributes to the ongoing efforts to refine sequence read tuning and improve correction tools in the context of ONT technology's application in forensic genetics.
Collapse
Affiliation(s)
- Veysel Sapan
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Sumeyye Zulal Simsek
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Gonul Filoğlu
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ozlem Bulbul
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
2
|
Ren Z, Zhang J, Zhang Y, Yang T, Sun P, Xue J, Bo X, Zhou B, Yan J, Ni M. NASTRA: accurate analysis of short tandem repeat markers by nanopore sequencing with repeat-structure-aware algorithm. Brief Bioinform 2024; 25:bbae472. [PMID: 39322627 PMCID: PMC11424183 DOI: 10.1093/bib/bbae472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Short-tandem repeats (STRs) are the type of genetic markers extensively utilized in biomedical and forensic applications. Due to sequencing noise in nanopore sequencing, accurate analysis methods are lacking. We developed NASTRA, an innovative tool for Nanopore Autosomal Short Tandem Repeat Analysis, which overcomes traditional database-based methods' limitations and provides a precise germline analysis of STR genetic markers without the need for allele sequence reference. Demonstrating high accuracy in cell line authentication testing and paternity testing, NASTRA significantly surpasses existing methods in both speed and accuracy. This advancement makes it a promising solution for rapid cell line authentication and kinship testing, highlighting the potential of nanopore sequencing for in-field applications.
Collapse
Affiliation(s)
- Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, No. 573 Yujinxiang Street, Jingyue District, Changchun 130012, China
- School of Information Science and Technology, Northeast Normal University, No. 2555 Jingyue Street, Jingyue District, Changchun 130117, China
| | - Jiarong Zhang
- School of Forensic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Yuci District, Taiyuan 030001, China
| | - Yixiang Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, No. 573 Yujinxiang Street, Jingyue District, Changchun 130012, China
- School of Information Science and Technology, Northeast Normal University, No. 2555 Jingyue Street, Jingyue District, Changchun 130117, China
| | - Tingting Yang
- School of Forensic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Yuci District, Taiyuan 030001, China
| | - Pingping Sun
- School of Information Science and Technology, Northeast Normal University, No. 2555 Jingyue Street, Jingyue District, Changchun 130117, China
| | - Jiguo Xue
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xiaochen Bo
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, No. 573 Yujinxiang Street, Jingyue District, Changchun 130012, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Yuci District, Taiyuan 030001, China
| | - Ming Ni
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
3
|
Casanova-Adán L, Mosquera-Miguel A, González-Bao J, Ambroa-Conde A, Ruiz-Ramírez J, Cabrejas-Olalla A, González-Martín E, Freire-Aradas A, Rodríguez-López A, Phillips C, Lareu MV, de la Puente M. Adapting an established Ampliseq microhaplotype panel to nanopore sequencing through direct PCR. Forensic Sci Int Genet 2023; 67:102937. [PMID: 37812882 DOI: 10.1016/j.fsigen.2023.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
We have adapted an established Ampliseq microhaplotype panel for nanopore sequencing with the Oxford Nanopore Technologies (ONT) system, as a cost-effective and highly scalable solution for forensic genetics applications. For this purpose, we designed a protocol combining direct PCR amplification from unextracted DNA with ONT library construction and sequencing using the MinION device and workflow. The analysis of reference samples at input amounts of 5-10 ng of DNA demonstrates stable coverage patterns, allele balance, and strand bias, reaching profile completeness and concordance rates of ∼95%. Similar levels were achieved when using direct-PCR from blood, buccal and semen swabs. Dilution series results indicate sensitivity is maintained down to 250 pg of input DNA, and informative profiles are produced down to 62.5 pg. Finally, we demonstrated the forensic utility of the nanopore workflow by analyzing two third degree pedigrees that showed low likelihood ratio values after the analysis of an extended panel of 38 STRs, achieving likelihood ratios 2-3 orders of magnitude higher when testing with the MinION-based haplotype data.
Collapse
Affiliation(s)
- L Casanova-Adán
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - J González-Bao
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Ambroa-Conde
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - J Ruiz-Ramírez
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Cabrejas-Olalla
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - E González-Martín
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Rodríguez-López
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M de la Puente
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Cardinali I, Tancredi D, Lancioni H. The Revolution of Animal Genomics in Forensic Sciences. Int J Mol Sci 2023; 24:ijms24108821. [PMID: 37240167 DOI: 10.3390/ijms24108821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, the coexistence between humans and domestic animals (especially dogs and cats) has become a common scenario of daily life. Consequently, during a forensic investigation in civil or criminal cases, the biological material from a domestic animal could be considered "evidence" by law enforcement agencies. Animal genomics offers an important contribution in attacks and episodes of property destruction or in a crime scene where the non-human biological material is linked to the victim or perpetrator. However, only a few animal genetics laboratories in the world are able to carry out a valid forensic analysis, adhering to standards and guidelines that ensure the admissibility of data before a court of law. Today, forensic sciences focus on animal genetics considering all domestic species through the analysis of STRs (short tandem repeats) and autosomal and mitochondrial DNA SNPs (single nucleotide polymorphisms). However, the application of these molecular markers to wildlife seems to have gradually gained a strong relevance, aiming to tackle illegal traffic, avoid the loss of biodiversity, and protect endangered species. The development of third-generation sequencing technologies has glimmered new possibilities by bringing "the laboratory into the field", with a reduction of both the enormous cost management of samples and the degradation of the biological material.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
5
|
Matsumoto Y, Nakamura S. Rapid and Comprehensive Identification of Nontuberculous Mycobacteria. Methods Mol Biol 2023; 2632:247-255. [PMID: 36781733 DOI: 10.1007/978-1-0716-2996-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Next-generation sequencing is a powerful tool to accurately identify pathogens. The MinION sequencer is best suited for the rapid identification of bacterial species due to its real-time sequence output. In this chapter, we introduce a method to identify nontuberculous mycobacteria (NTM) in one sequencing analysis from culture isolates using the MinION sequencer. NTM disease is now recognized as a growing global health concern due to its increasing incidence and prevalence. There are over 200 NTM species, of which the major pathogens are further classified into many subspecies showing different antibiotic susceptibilities. Therefore, identifying the pathogens at the subspecies level of NTM is necessary to select an appropriate treatment regimen. The protocol described here includes DNA extraction by lysis using silica beads, library preparation, sequencing by the MinION sequencer, and analysis of multilocus sequence typing using the software "mlstverse" and enables rapid and comprehensive identification of 175 species of NTM at the subspecies level with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
6
|
Tounsi WA, Lenis VP, Tammi SM, Sainio S, Haimila K, Avent ND, Madgett TE. Rh Blood Group D Antigen Genotyping Using a Portable Nanopore-based Sequencing Device: Proof of Principle. Clin Chem 2022; 68:1196-1201. [PMID: 35652461 DOI: 10.1093/clinchem/hvac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Nanopore sequencing is direct sequencing of a single-stranded DNA molecule using biological pores. A portable nanopore-based sequencing device from Oxford Nanopore Technologies (MinION) depends on driving a DNA molecule through nanopores embedded in a membrane using a voltage. Changes in current are then measured by a sensor, thousands of times per second and translated to nucleobases. METHODS Genomic DNA (gDNA) samples (n = 13) were tested for Rh blood group D antigen (RHD) gene zygosity using droplet digital PCR. The RHD gene was amplified in 6 overlapping amplicons using long-range PCR. Amplicons were purified, and the sequencing library was prepared following the 1D Native barcoding gDNA protocol. Sequencing was carried out with 1D flow cells R9 version. Data analysis included basecalling, aligning to the RHD reference sequence, and calling variants. Variants detected were compared to the results acquired previously by the Ion Personal Genome Machine (Ion PGM). RESULTS Up to 500× sequence coverage across the RHD gene allowed accurate variant calling. Exonic changes in the RHD gene allowed RHD allele determination for all samples sequenced except 1 RHD homozygous sample, where 2 heterozygous RHD variant alleles are suspected. There were 3 known variant RHD alleles (RHD*01W.02, RHD*11, and RHD*15) and 6 novel RHD variant alleles, as previously seen in Ion PGM sequencing data for these samples. CONCLUSIONS MinION was effective in blood group genotyping, provided enough sequencing data to achieve high coverage of the RHD gene, and enabled confident calling of variants and RHD allele determination.
Collapse
Affiliation(s)
- Wajnat A Tounsi
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Vasileios P Lenis
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, UK
| | - Silja M Tammi
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Susanna Sainio
- Blood Group Unit, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Katri Haimila
- Blood Group Unit, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Neil D Avent
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Tracey E Madgett
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| |
Collapse
|
7
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
8
|
Chauhan N, Saxena K, Jain U. Single molecule detection; from microscopy to sensors. Int J Biol Macromol 2022; 209:1389-1401. [PMID: 35413320 DOI: 10.1016/j.ijbiomac.2022.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
Single molecule detection is necessary to find out physical, chemical properties and their mechanism involved in the normal functioning of body cells. In this way, they can provide a new direction to the healthcare system. Various techniques have been developed and employed for their successful detection. Herein, we have emphasized various traditional methods as well as biosensing technology which offer single molecule sensitivity. The various methods including plasmonic resonance, nanopores, whispering gallery mode, Simoa assay and recognition tunneling are discussed in the initial part which has been followed by a discussion about biosensor-based detection. Plasmonic, SERS, CRISPR/Cas, and other types of biosensors are focused in this review and found to be highly sensitive for single molecule detection. This review provides an overview of progression in different techniques employed for single molecule detection.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India.
| |
Collapse
|
9
|
Bengtson M, Bharadwaj M, Franch O, van der Torre J, Meerdink V, Schallig H, Dekker C. CRISPR-dCas9 based DNA detection scheme for diagnostics in resource-limited settings. NANOSCALE 2022; 14:1885-1895. [PMID: 35044397 PMCID: PMC8812997 DOI: 10.1039/d1nr06557b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 05/17/2023]
Abstract
Nucleic-acid detection is crucial for basic research as well as for applications in medicine such as diagnostics. In resource-limited settings, however, most DNA-detection diagnostic schemes are inapplicable since they rely on expensive machinery, electricity, and trained personnel. Here, we present an isothermal DNA detection scheme for the diagnosis of pathogenic DNA in resource-limited settings. DNA was extracted from urine and blood samples using two different instrument-free methods, and amplified using Recombinase Polymerase Amplification with a sensitivity of <10 copies of DNA within 15 minutes. Target DNA was bound by dCas9/sgRNA that was labelled with a DNA oligomer to subsequently induce Rolling Circle Amplification. This second amplification step produced many copies of a G-quadruplex DNA structure that facilitates a colorimetric readout that is visible to the naked eye. This isothermal DNA-detection scheme can be performed at temperatures between 20-45 °C. As an example of the applicability of the approach, we isothermally (23 °C) detected DNA from a parasite causing visceral leishmaniasis that was spiked into buffer and resulted in a sensitivity of at least 1 zeptomole. For proof of principle, DNA spiked into blood was coupled to the CRISPR-dCas9-based detection scheme yielding a colorimetric readout visible to the naked eye. Given the versatility of the guide-RNA programmability of targets, we envision that this DNA detection scheme can be adapted to detect any DNA with minimal means, which facilitates applications such as point-of-care diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Michel Bengtson
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Mitasha Bharadwaj
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Oskar Franch
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Veronique Meerdink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Henk Schallig
- Amsterdam University Medical Centers, Academic Medical Centre at the University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory for Experimental Parasitology, Amsterdam institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
10
|
Kuno A, Ikeda Y, Ayabe S, Kato K, Sakamoto K, Suzuki SR, Morimoto K, Wakimoto A, Mikami N, Ishida M, Iki N, Hamada Y, Takemura M, Daitoku Y, Tanimoto Y, Dinh TTH, Murata K, Hamada M, Muratani M, Yoshiki A, Sugiyama F, Takahashi S, Mizuno S. DAJIN enables multiplex genotyping to simultaneously validate intended and unintended target genome editing outcomes. PLoS Biol 2022; 20:e3001507. [PMID: 35041655 PMCID: PMC8765641 DOI: 10.1371/journal.pbio.3001507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Genome editing can introduce designed mutations into a target genomic site. Recent research has revealed that it can also induce various unintended events such as structural variations, small indels, and substitutions at, and in some cases, away from the target site. These rearrangements may result in confounding phenotypes in biomedical research samples and cause a concern in clinical or agricultural applications. However, current genotyping methods do not allow a comprehensive analysis of diverse mutations for phasing and mosaic variant detection. Here, we developed a genotyping method with an on-target site analysis software named Determine Allele mutations and Judge Intended genotype by Nanopore sequencer (DAJIN) that can automatically identify and classify both intended and unintended diverse mutations, including point mutations, deletions, inversions, and cis double knock-in at single-nucleotide resolution. Our approach with DAJIN can handle approximately 100 samples under different editing conditions in a single run. With its high versatility, scalability, and convenience, DAJIN-assisted multiplex genotyping may become a new standard for validating genome editing outcomes.
Collapse
Affiliation(s)
- Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Yoshihisa Ikeda
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kotaro Sakamoto
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Sayaka R. Suzuki
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kento Morimoto
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Natsuki Mikami
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Natsumi Iki
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Megumi Takemura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Wang Z, Qin L, Liu J, Jiang L, Zou X, Chen X, Song F, Dai H, Hou Y. Forensic nanopore sequencing of microhaplotype markers using QitanTech's QNome. Forensic Sci Int Genet 2021; 57:102657. [PMID: 34973558 DOI: 10.1016/j.fsigen.2021.102657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022]
Abstract
In recent years, extraordinary progress has been made in genome sequencing technologies, which has led to a decrease in cost and an increase in the diversity of sequenced genomes. Nanopore sequencing is one of the latest genome sequencing technologies. It aims to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions, and provides a new approach for forensic genetics to detect longer markers in real time. To date, multiple studies have been conducted to sequence forensic markers using MinION from Oxford Nanopore Technologies (ONT), and the results indicate that nanopore sequencing holds promise for forensic applications. Qitan Technology (QitanTech) recently launched its first commercial nanopore genome sequencer, QNome. It could achieve a read length of more than 150 kbp, and could generate approximately 500 Mb of data in 8 h. In this pilot study, we explored and validated this alternative nanopore sequencing device for microhaplotype (MH) profiling using a custom set of 15 MH loci. Seventy single-contributor samples were divided into 7 batches, each of which included 10 samples and control DNA 9947A and was sequenced by QNome. MH genotypes generated from QNome were compared to those from Ion Torrent sequencing (Ion S5XL system) to evaluate the accuracy and stability. Twelve samples randomly selected from the last three batches and Control DNA 9947A were also subjected to ONT MinION sequencing (with R9.4 flow cell) for parallel comparison. Based on MHtyper, a bioinformatics workflow developed for automated MH designation, all MH loci can be genotyped and reliably phased using the QNome data, with an overall accuracy of 99.83% (4 errors among 2310 genotypes). Three occurred near or in the region of homopolymer sequences, and one existed within 50 bp of the start of the sequencing reaction. In the last 15 samples (12 individual samples and 3 replicates of control DNA 9947A), two SNPs located at 4-mer homopolymers failed to obtain reliable genotypes on the MinION data. This study shows the potential of state-of-the-art nanopore sequencing methods to analyze forensic MH markers. Given the rapid pace of change, sporadic and nonrepetitive errors presented in this study are expected to be resolved by further developments of nanopore technologies and analysis tools.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Liu Qin
- Qitan Technology Ltd., Chengdu 610044, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiameng Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Ge J, King J, Mandape S, Budowle B. Enhanced mixture interpretation with macrohaplotypes based on long-read DNA sequencing. Int J Legal Med 2021; 135:2189-2198. [PMID: 34378071 DOI: 10.1007/s00414-021-02679-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Deconvoluting mixture samples is one of the most challenging problems confronting DNA forensic laboratories. Efforts have been made to provide solutions regarding mixture interpretation. The probabilistic interpretation of Short Tandem Repeat (STR) profiles has increased the number of complex mixtures that can be analyzed. A portion of complex mixture profiles, particularly for mixtures with a high number of contributors, are still being deemed uninterpretable. Novel forensic markers, such as Single Nucleotide Variants (SNV) and microhaplotypes, also have been proposed to allow for better mixture interpretation. However, these markers have both a lower discrimination power compared with STRs and are not compatible with CODIS or other national DNA databanks worldwide. The short-read sequencing (SRS) technologies can facilitate mixture interpretation by identifying intra-allelic variations within STRs. Unfortunately, the short size of the amplicons containing STR markers and sequence reads limit the alleles that can be attained per STR. The latest long-read sequencing (LRS) technologies can overcome this limitation in some samples in which larger DNA fragments (including both STRs and SNVs) with definitive phasing are available. Based on the LRS technologies, this study developed a novel CODIS compatible forensic marker, called a macrohaplotype, which combines a CODIS STR and flanking variants to offer extremely high number of haplotypes and hence very high discrimination power per marker. The macrohaplotype will substantially improve mixture interpretation capabilities. Based on publicly accessible data, a panel of 20 macrohaplotypes with sizes of ~ 8 k bp and the maximum high discrimination powers were designed. The statistical evaluation demonstrates that these macrohaplotypes substantially outperform CODIS STRs for mixture interpretation, particularly for mixtures with a high number of contributors, as well as other forensic applications. Based on these results, efforts should be undertaken to build a complete workflow, both wet-lab and bioinformatics, to precisely call the variants and generate the macrohaplotypes based on the LRS technologies.
Collapse
Affiliation(s)
- Jianye Ge
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Jonathan King
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sammed Mandape
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
13
|
Tytgat O, Škevin S, Deforce D, Van Nieuwerburgh F. Nanopore sequencing of a forensic combined STR and SNP multiplex. Forensic Sci Int Genet 2021; 56:102621. [PMID: 34742095 DOI: 10.1016/j.fsigen.2021.102621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022]
Abstract
Nanopore sequencing for forensic purposes has gained attention, as it yields added discriminatory power compared to capillary electrophoresis (CE), without the need for a high up-front capital investment. Besides enabling the detection of iso-alleles, Massively Parallel Sequencing (MPS) facilitates the analysis of Short Tandem Repeats (STRs) and Single Nucleotide Polymorphisms (SNPs) in parallel. In this research, six single-contributor samples were amplified by such a combined multiplex of 58 STR and 94 SNP loci, followed by nanopore sequencing using an R10.3 flowcell. Basecalling was performed using two state-of-the-art basecallers, Guppy and Bonito. An advanced alignment-based analysis method was developed, which lowered the noise after alignment of the STR reads to a reference library. Although STR genotyping by nanopore sequencing is more challenging, correct genotyping was obtained for all autosomal and all but two non-autosomal STR loci. Moreover, genotyping of iso-alleles proved to be very accurate. SNP genotyping yielded an accuracy of 99% for both basecallers. The use of novel basecallers, in combination with the newly developed alignment-based analysis method, yields results with a pronouncedly higher STR genotyping accuracy compared to previous studies.
Collapse
Affiliation(s)
- Olivier Tytgat
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; Imec, Kapeldreef 75, Leuven 3001, Belgium
| | - Sonja Škevin
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium
| | | |
Collapse
|
14
|
Juma M, Sankaradoss A, Ndombi R, Mwaura P, Damodar T, Nazir J, Pandit A, Khurana R, Masika M, Chirchir R, Gachie J, Krishna S, Sowdhamini R, Anzala O, Meenakshi IS. Antimicrobial Resistance Profiling and Phylogenetic Analysis of Neisseria gonorrhoeae Clinical Isolates From Kenya in a Resource-Limited Setting. Front Microbiol 2021; 12:647565. [PMID: 34385981 PMCID: PMC8353456 DOI: 10.3389/fmicb.2021.647565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Africa has one of the highest incidences of gonorrhea. Neisseria gonorrhoeae is gaining resistance to most of the available antibiotics, compromising treatment across the world. Whole-genome sequencing (WGS) is an efficient way of predicting AMR determinants and their spread in the population. Recent advances in next-generation sequencing technologies like Oxford Nanopore Technology (ONT) have helped in the generation of longer reads of DNA in a shorter duration with lower cost. Increasing accuracy of base-calling algorithms, high throughput, error-correction strategies, and ease of using the mobile sequencer MinION in remote areas lead to its adoption for routine microbial genome sequencing. To investigate whether MinION-only sequencing is sufficient for WGS and downstream analysis in resource-limited settings, we sequenced the genomes of 14 suspected N. gonorrhoeae isolates from Nairobi, Kenya. Methods Using WGS, the isolates were confirmed to be cases of N. gonorrhoeae (n = 9), and there were three co-occurrences of N. gonorrhoeae with Moraxella osloensis and N. meningitidis (n = 2). N. meningitidis has been implicated in sexually transmitted infections in recent years. The near-complete N. gonorrhoeae genomes (n = 10) were analyzed further for mutations/factors causing AMR using an in-house database of mutations curated from the literature. Results We observe that ciprofloxacin resistance is associated with multiple mutations in both gyrA and parC. Mutations conferring tetracycline (rpsJ) and sulfonamide (folP) resistance and plasmids encoding beta-lactamase were seen in all the strains, and tet(M)-containing plasmids were identified in nine strains. Phylogenetic analysis clustered the 10 isolates into clades containing previously sequenced genomes from Kenya and countries across the world. Based on homology modeling of AMR targets, we see that the mutations in GyrA and ParC disrupt the hydrogen bonding with quinolone drugs and mutations in FolP may affect interaction with the antibiotic. Conclusion Here, we demonstrate the utility of mobile DNA sequencing technology in producing a consensus genome for sequence typing and detection of genetic determinants of AMR. The workflow followed in the study, including AMR mutation dataset creation and the genome identification, assembly, and analysis, can be used for any clinical isolate. Further studies are required to determine the utility of real-time sequencing in outbreak investigations, diagnosis, and management of infections, especially in resource-limited settings.
Collapse
Affiliation(s)
- Meshack Juma
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Redcliff Ndombi
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Patrick Mwaura
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Tina Damodar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Junaid Nazir
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Rupsy Khurana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Moses Masika
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Ruth Chirchir
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - John Gachie
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India.,School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Iyer S Meenakshi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| |
Collapse
|
15
|
Brunker K, Jaswant G, Thumbi S, Lushasi K, Lugelo A, Czupryna AM, Ade F, Wambura G, Chuchu V, Steenson R, Ngeleja C, Bautista C, Manalo DL, Gomez MRR, Chu MYJV, Miranda ME, Kamat M, Rysava K, Espineda J, Silo EAV, Aringo AM, Bernales RP, Adonay FF, Tildesley MJ, Marston DA, Jennings DL, Fooks AR, Zhu W, Meredith LW, Hill SC, Poplawski R, Gifford RJ, Singer JB, Maturi M, Mwatondo A, Biek R, Hampson K. Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Res 2020; 5:3. [PMID: 32090172 PMCID: PMC7001756 DOI: 10.12688/wellcomeopenres.15518.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries.
Collapse
Affiliation(s)
- Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gurdeep Jaswant
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
| | - S.M. Thumbi
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | | | - Ahmed Lugelo
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Anna M. Czupryna
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fred Ade
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gati Wambura
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Veronicah Chuchu
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rachel Steenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chanasa Ngeleja
- Tanzania Veterinary Laboratory Agency, Ministry of Livestock and Fisheries Development, Dar es Salaam, Tanzania
| | - Criselda Bautista
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
| | - Daria L. Manalo
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
| | | | | | - Mary Elizabeth Miranda
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
- Field Epidemiology Training Program Alumni Foundation (FETPAFI), Manilla, Philippines
| | - Maya Kamat
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kristyna Rysava
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematical Institute, University of Warwick, Coventry, UK
| | - Jason Espineda
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Eva Angelica V. Silo
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Ariane Mae Aringo
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Rona P. Bernales
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Florencio F. Adonay
- Albay Veterinary Office, Provincial Government of Albay, Albay Farmers' Bounty Village, Cabangan, Camalig, Albay, Philippines
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematical Institute, University of Warwick, Coventry, UK
| | - Denise A. Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Daisy L. Jennings
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Anthony R. Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
- Institute of Infection and Global Health,, University of Liverpool, Liverpool, UK
| | - Wenlong Zhu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | - Radoslaw Poplawski
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Advanced Research Computing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, UK
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, UK
| | - Mathew Maturi
- Zoonotic Disease Unit, Ministry of Health, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Athman Mwatondo
- Zoonotic Disease Unit, Ministry of Health, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
16
|
Knot IE, Zouganelis GD, Weedall GD, Wich SA, Rae R. DNA Barcoding of Nematodes Using the MinION. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
17
|
Tytgat O, Gansemans Y, Weymaere J, Rubben K, Deforce D, Van Nieuwerburgh F. Nanopore Sequencing of a Forensic STR Multiplex Reveals Loci Suitable for Single-Contributor STR Profiling. Genes (Basel) 2020; 11:genes11040381. [PMID: 32244632 PMCID: PMC7230633 DOI: 10.3390/genes11040381] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Nanopore sequencing for forensic short tandem repeats (STR) genotyping comes with the advantages associated with massively parallel sequencing (MPS) without the need for a high up-front device cost, but genotyping is inaccurate, partially due to the occurrence of homopolymers in STR loci. The goal of this study was to apply the latest progress in nanopore sequencing by Oxford Nanopore Technologies in the field of STR genotyping. The experiments were performed using the state of the art R9.4 flow cell and the most recent R10 flow cell, which was specifically designed to improve consensus accuracy of homopolymers. Two single-contributor samples and one mixture sample were genotyped using Illumina sequencing, Nanopore R9.4 sequencing, and Nanopore R10 sequencing. The accuracy of genotyping was comparable for both types of flow cells, although the R10 flow cell provided improved data quality for loci characterized by the presence of homopolymers. We identify locus-dependent characteristics hindering accurate STR genotyping, providing insights for the design of a panel of STR loci suited for nanopore sequencing. Repeat number, the number of different reference alleles for the locus, repeat pattern complexity, flanking region complexity, and the presence of homopolymers are identified as unfavorable locus characteristics. For single-contributor samples and for a limited set of the commonly used STR loci, nanopore sequencing could be applied. However, the technology is not mature enough yet for implementation in routine forensic workflows.
Collapse
Affiliation(s)
- Olivier Tytgat
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
- Department of Life Science Technologies, Imec, 3001 Leuven, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
| | - Jana Weymaere
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
| | - Kaat Rubben
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
- Correspondence: ; Tel.: +32-9264-8048
| |
Collapse
|
18
|
Santos A, van Aerle R, Barrientos L, Martinez-Urtaza J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput Struct Biotechnol J 2020; 18:296-305. [PMID: 32071706 PMCID: PMC7013242 DOI: 10.1016/j.csbj.2020.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Assessment of bacterial diversity through sequencing of 16S ribosomal RNA (16S rRNA) genes has been an approach widely used in environmental microbiology, particularly since the advent of high-throughput sequencing technologies. An additional innovation introduced by these technologies was the need of developing new strategies to manage and investigate the massive amount of sequencing data generated. This situation stimulated the rapid expansion of the field of bioinformatics with the release of new tools to be applied to the downstream analysis and interpretation of sequencing data mainly generated using Illumina technology. In recent years, a third generation of sequencing technologies has been developed and have been applied in parallel and complementarily to the former sequencing strategies. In particular, Oxford Nanopore Technologies (ONT) introduced nanopore sequencing which has become very popular among molecular ecologists. Nanopore technology offers a low price, portability and fast sequencing throughput. This powerful technology has been recently tested for 16S rRNA analyses showing promising results. However, compared with previous technologies, there is a scarcity of bioinformatic tools and protocols designed specifically for the analysis of Nanopore 16S sequences. Due its notable characteristics, researchers have recently started performing assessments regarding the suitability MinION on 16S rRNA sequencing studies, and have obtained remarkable results. Here we present a review of the state-of-the-art of MinION technology applied to microbiome studies, the current possible application and main challenges for its use on 16S rRNA metabarcoding.
Collapse
Affiliation(s)
- Andres Santos
- Applied and Molecular Biology Laboratory, Centre of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Leticia Barrientos
- Applied and Molecular Biology Laboratory, Centre of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
19
|
Brunker K, Jaswant G, Thumbi S, Lushasi K, Lugelo A, Czupryna AM, Ade F, Wambura G, Chuchu V, Steenson R, Ngeleja C, Bautista C, Manalo DL, Gomez MRR, Chu MYJV, Miranda ME, Kamat M, Rysava K, Espineda J, Silo EAV, Aringo AM, Bernales RP, Adonay FF, Tildesley MJ, Marston DA, Jennings DL, Fooks AR, Zhu W, Meredith LW, Hill SC, Poplawski R, Gifford RJ, Singer JB, Maturi M, Mwatondo A, Biek R, Hampson K. Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Res 2020; 5:3. [PMID: 32090172 PMCID: PMC7001756 DOI: 10.12688/wellcomeopenres.15518.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 08/27/2023] Open
Abstract
Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries.
Collapse
Affiliation(s)
- Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gurdeep Jaswant
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
| | - S.M. Thumbi
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | | | - Ahmed Lugelo
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Anna M. Czupryna
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fred Ade
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gati Wambura
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Veronicah Chuchu
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rachel Steenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chanasa Ngeleja
- Tanzania Veterinary Laboratory Agency, Ministry of Livestock and Fisheries Development, Dar es Salaam, Tanzania
| | - Criselda Bautista
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
| | - Daria L. Manalo
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
| | | | | | - Mary Elizabeth Miranda
- Research Institute for Tropical Medicine (RITM), Manilla, Philippines
- Field Epidemiology Training Program Alumni Foundation (FETPAFI), Manilla, Philippines
| | - Maya Kamat
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kristyna Rysava
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematical Institute, University of Warwick, Coventry, UK
| | - Jason Espineda
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Eva Angelica V. Silo
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Ariane Mae Aringo
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Rona P. Bernales
- Department of Agriculture Regional Field Office 5, Regional Animal Disease, Diagnostic Laboratory, Cabangan, Camalig, Albay, Philippines
| | - Florencio F. Adonay
- Albay Veterinary Office, Provincial Government of Albay, Albay Farmers' Bounty Village, Cabangan, Camalig, Albay, Philippines
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematical Institute, University of Warwick, Coventry, UK
| | - Denise A. Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Daisy L. Jennings
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Anthony R. Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, UK
- Institute of Infection and Global Health,, University of Liverpool, Liverpool, UK
| | - Wenlong Zhu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | - Radoslaw Poplawski
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Advanced Research Computing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, UK
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, UK
| | - Mathew Maturi
- Zoonotic Disease Unit, Ministry of Health, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Athman Mwatondo
- Zoonotic Disease Unit, Ministry of Health, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
20
|
Krehenwinkel H, Pomerantz A, Prost S. Genetic Biomonitoring and Biodiversity Assessment Using Portable Sequencing Technologies: Current Uses and Future Directions. Genes (Basel) 2019; 10:E858. [PMID: 31671909 PMCID: PMC6895800 DOI: 10.3390/genes10110858] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
We live in an era of unprecedented biodiversity loss, affecting the taxonomic composition of ecosystems worldwide. The immense task of quantifying human imprints on global ecosystems has been greatly simplified by developments in high-throughput DNA sequencing technology (HTS). Approaches like DNA metabarcoding enable the study of biological communities at unparalleled detail. However, current protocols for HTS-based biodiversity exploration have several drawbacks. They are usually based on short sequences, with limited taxonomic and phylogenetic information content. Access to expensive HTS technology is often restricted in developing countries. Ecosystems of particular conservation priority are often remote and hard to access, requiring extensive time from field collection to laboratory processing of specimens. The advent of inexpensive mobile laboratory and DNA sequencing technologies show great promise to facilitate monitoring projects in biodiversity hot-spots around the world. Recent attention has been given to portable DNA sequencing studies related to infectious organisms, such as bacteria and viruses, yet relatively few studies have focused on applying these tools to Eukaryotes, such as plants and animals. Here, we outline the current state of genetic biodiversity monitoring of higher Eukaryotes using Oxford Nanopore Technology's MinION portable sequencing platform, as well as summarize areas of recent development.
Collapse
Affiliation(s)
| | - Aaron Pomerantz
- Department of Integrative Biology, University of California, Berkeley, CA-94720, USA.
- Marine Biology Laboratory, Woods Hole, MA-02543, USA.
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberg Museum, 60325 Frankfurt, Germany.
- South African National Biodiversity Institute, National Zoological Garden, Pretoria 0002, South Africa.
| |
Collapse
|
21
|
de Jesus JG, Giovanetti M, Rodrigues Faria N, Alcantara LCJ. Acute Vector-Borne Viral Infection: Zika and MinION Surveillance. Microbiol Spectr 2019; 7:10.1128/microbiolspec.ame-0008-2019. [PMID: 31400093 PMCID: PMC10957199 DOI: 10.1128/microbiolspec.ame-0008-2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
The MinION sequencer was launched by the Oxford Nanopore Technologies start-up as a disruptive technology for genome sequencing based on single-molecule synthesis. Its characteristics as a portable device, low cost, and simple library preparation have made it a good candidate for field researchers. MinION has been used to sequence a number of microorganisms, such as bacteria, viruses, and fungi. Based on the experience that characterized the Ebola virus genetic diversity in Guinea during the 2014-2015 outbreak, the ZiBRA (Zika in Brazil Real-time Analysis) project aimed to sequence a large number of Zika virus genomes during a mobile laboratory trip in northeast Brazil to provide important epidemiological information about the spread of this disease in this country. In response to the positive and rapid results obtained by the ZiBRA project, the Brazilian Ministry of Health and many leading institutions, such as the Pan American Health Organization and WHO, have shown interest in expanding the strategy used in this project to other countries dealing with arbovirus infection. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Jaqueline Goes de Jesus
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Marta Giovanetti
- Laboratory of Cellular and Molecular Genetics, ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Laboratory of Flaviviruses, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro 21040-900, Brazil
| | | | - Luiz Carlos Junior Alcantara
- Laboratory of Cellular and Molecular Genetics, ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Laboratory of Flaviviruses, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
22
|
Lynch C, Fleming R. A review of direct polymerase chain reaction of DNA and RNA for forensic purposes. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/wfs2.1335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Courtney Lynch
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd Auckland New Zealand
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Rachel Fleming
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd Auckland New Zealand
| |
Collapse
|