1
|
Nguyen MN, Lipp P, Zucker I, Schäfer AI. Quantification of Nanoplastics and Inorganic Nanoparticles via Laser-Induced Breakdown Detection (LIBD). SMALL METHODS 2025:e2402060. [PMID: 40195877 DOI: 10.1002/smtd.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Nanoparticles with diverse characteristics are difficult to quantify at low concentrations in the water environment (106-109 particles mL-1 for nanoplastics originating from the breakdown of plastic debris) for the evaluation of effective treatment methods. This study examines the sensitivity, or limit of detection (LOD), of laser-induced breakdown detection (LIBD) for the counting of nanoparticles, including nanoplastics. For polystyrene (PS) standards with sizes of 20-400 nm, LIBD shows relatively low LODs (for example, 2 × 106 particles mL-1 for 100 nm particles) compared with turbidity monitoring, UV-vis spectroscopy (both 6 × 108 particles mL-1), and nanoparticle tracking analysis (2 × 107 particles mL-1). For nanoplastics (PS, polypropylene, and polyethylene terephthalate), the detection limits are 104 - 105 particles mL-1, one to two orders of magnitude lower than the PS standards. LIBD can quantify inorganic nanoparticles, such as zeolite, titania, and hematite. The sensitivity increases (i.e., LOD reduces) with increasing particle density, while some particles are prone to artifacts. The low LODs make LIBD a robust technique for counting nanoparticles of various types and sizes, even at the concentrations found in the permeate of membrane-based water treatment systems. Given the high sensitivity, LIBD has the potential to be applied in membrane integrity monitoring and fundamental studies on membrane mechanisms.
Collapse
Affiliation(s)
- Minh N Nguyen
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pia Lipp
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Ines Zucker
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Hastman DA, Oh E, Melinger JS, Green CM, Thielemann AJP, Medintz IL, Díaz SA. Smaller Gold Nanoparticles Release DNA More Efficiently During fs Laser Pulsed Optical Heating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303136. [PMID: 37749947 DOI: 10.1002/smll.202303136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/05/2023] [Indexed: 09/27/2023]
Abstract
This work investigates the effect of plasmonic gold nanoparticle (AuNP) size on the rate of thermal release of single-stranded oligonucleotides under femtosecond (fs)-pulsed laser irradiation sources. Contrary to the theoretical predictions that larger AuNPs (50-60 nm diameter) would produce the most solution heating and fastest DNA release, it is found that smaller AuNP diameters (25 nm) lead to faster dsDNA denaturation rates. Controlling for the pulse energy fluence, AuNP concentration, DNA loading density, and the distance from the AuNP surface finds the same result. These results imply that the solution temperature increases around the AuNP during fs laser pulse optical heating may not be the only significant influence on dsDNA denaturation, suggesting that direct energy transfer from the AuNP to the DNA (phonon-phonon coupling), which is increased as AuNPs decrease in size, may play a significant role.
Collapse
Affiliation(s)
- David A Hastman
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, 20375, USA
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, 20375, USA
| | - Aaron J P Thielemann
- Department of Navy-US Naval Research Laboratory Historically Black Colleges and Universities/Minority Institutions Internship Program, Washington, DC, 20002, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, 20375, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, 20375, USA
| |
Collapse
|
3
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
4
|
Xu M, Qi Y, Liu G, Song Y, Jiang X, Du B. Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance. ACS NANO 2023; 17:20825-20849. [PMID: 37921488 DOI: 10.1021/acsnano.3c05853] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the in vivo transport of nanoparticles provides guidelines for designing nanomedicines with higher efficacy and fewer side effects. Among many factors, the size of nanoparticles plays a key role in controlling their in vivo transport behaviors due to the existence of various physiological size thresholds within the body and size-dependent nano-bio interactions. Encouraged by the evolving discoveries of nanoparticle-size-dependent biological effects, we believe that it is necessary to systematically summarize the size-scaling laws of nanoparticle transport in vivo. In this review, we summarized the size effect of nanoparticles on their in vivo transport along their journey in the body: begin with the administration of nanoparticles via different delivery routes, followed by the targeting of nanoparticles to intended tissues including tumors and other organs, and eventually clearance of nanoparticles through the liver or kidneys. We outlined the tools for investigating the in vivo transport of nanoparticles as well. Finally, we discussed how we may leverage the size-dependent transport to tackle some of the key challenges in nanomedicine translation and also raised important size-related questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Gaoshuo Liu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuanqing Song
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| |
Collapse
|
5
|
Valizadeh A, Asghari S, Abbaspoor S, Jafari A, Raeisi M, Pilehvar Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1909. [PMID: 37258422 DOI: 10.1002/wnan.1909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 06/02/2023]
Abstract
Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saleheh Abbaspoor
- Chemical Engineering Department, School of Engineering, Damghan University, Damghan, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Rai R, Alwani S, Khan B, Viswas Solomon R, Vuong S, Krol ES, Fonge H, Badea I. Biodistribution of nanodiamonds is determined by surface functionalization. DIAMOND AND RELATED MATERIALS 2023; 137:110071. [DOI: 10.1016/j.diamond.2023.110071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Bortot B, Mangogna A, Di Lorenzo G, Stabile G, Ricci G, Biffi S. Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies. J Nanobiotechnology 2023; 21:155. [PMID: 37202750 DOI: 10.1186/s12951-023-01926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Surgical resection is the cornerstone of solid tumour treatment. Current techniques for evaluating margin statuses, such as frozen section, imprint cytology, and intraoperative ultrasound, are helpful. However, an intraoperative assessment of tumour margins that is accurate and safe is clinically necessary. Positive surgical margins (PSM) have a well-documented negative effect on treatment outcomes and survival. As a result, surgical tumour imaging methods are now a practical method for reducing PSM rates and improving the efficiency of debulking surgery. Because of their unique characteristics, nanoparticles can function as contrast agents in image-guided surgery. While most image-guided surgical applications utilizing nanotechnology are now in the preclinical stage, some are beginning to reach the clinical phase. Here, we list the various imaging techniques used in image-guided surgery, such as optical imaging, ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine imaging, and the most current developments in the potential of nanotechnology to detect surgical malignancies. In the coming years, we will see the evolution of nanoparticles tailored to specific tumour types and the introduction of surgical equipment to improve resection accuracy. Although the promise of nanotechnology for producing exogenous molecular contrast agents has been clearly demonstrated, much work remains to be done to put it into practice.
Collapse
Affiliation(s)
- Barbara Bortot
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Guglielmo Stabile
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
8
|
Sarkar M, Wang Y, Ekpenyong O, Liang D, Xie H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1846. [PMID: 35979879 PMCID: PMC9938089 DOI: 10.1002/wnan.1846] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
Chemotherapeutic treatment with conventional drug formulations pose numerous challenges, such as poor solubility, high cytotoxicity and serious off-target side effects, low bioavailability, and ultimately subtherapeutic tumoral concentration leading to poor therapeutic outcomes. In the field of Nanomedicine, advances in nanotechnology have been applied with great success to design and develop novel nanoparticle-based formulations for the treatment of various types of cancer. The approval of the first nanomedicine, Doxil® (liposomal doxorubicin) in 1995, paved the path for further development for various types of novel delivery platforms. Several different types of nanoparticles, especially organic (soft) nanoparticles (liposomes, polymeric micelles, and albumin-bound nanoparticles), have been developed and approved for several anticancer drugs. Nanoparticulate drug delivery platform have facilitated to overcome of these challenges and offered key advantages of improved bioavailability, higher intra-tumoral concentration of the drug, reduced toxicity, and improved efficacy. This review introduces various commonly used nanoparticulate systems in biomedical research and their pharmacokinetic (PK) attributes, then focuses on the various physicochemical and physiological factors affecting the in vivo disposition of chemotherapeutic agents encapsulated in nanoparticles in recent years. Further, it provides a review of the current landscape of soft nanoparticulate formulations for the two most widely investigated anticancer drugs, paclitaxel, and doxorubicin, that are either approved or under investigation. Formulation details, PK profiles, and therapeutic outcomes of these novel strategies have been discussed individually and in comparison, to traditional formulations. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mahua Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Yang Wang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | | | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Huan Xie
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
9
|
Rogers KE, Nag OK, Susumu K, Oh E, Delehanty JB. Photothermal-Enhanced Modulation of Cellular Membrane Potential Using Long-Wavelength-Activated Gold Nanoflowers. Bioconjug Chem 2023; 34:405-413. [PMID: 36731145 DOI: 10.1021/acs.bioconjchem.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In mammalian cells, plasma membrane potential plays vital roles in both physiology and pathology and it is controlled by a network of membrane-resident ion channels. There is considerable interest in the use of nanoparticles (NPs) to control biological functions, including the modulation of membrane potential. The photoexcitation of gold NPs (AuNPs) tethered close to the plasma membrane has been shown to induce membrane depolarization via localized heating of the AuNP surface coupled with the opening of voltage-gated sodium channels. Previous work has employed spherical AuNPs (AuNS) with absorption in the 500-600 nm range for this purpose. However, AuNP materials with absorption at longer wavelengths [e.g., near-infrared (NIR)] would enable greater tissue penetration depth in vivo. We show here the use of new anisotropic-shaped AuNPs [gold nanoflowers (AuNFs)] with broad absorption spanning into the NIR part of the spectrum (∼650-1000 nm). The AuNFs are directly synthesized with bidentate thiolate ligands, which preserves the AuNF's shape and colloidal stability, while facilitating conjugation to biomolecules. We describe the characterization of the AuNF particles and demonstrate that they adhere to the plasma membrane when bioconjugated to PEGylated cholesterol (PEG-Chol) moieties. The AuNF-PEG-Chol mediated the depolarization of rat adrenal medulla pheochromocytoma (PC-12) neuron-like cells more effectively than AuNS-PEG-Chol and unconjugated AuNS and AuNF when photoexcited at ∼561 or ∼640 nm. Importantly, AuNF induction of depolarization had no impact on cellular viability. This work demonstrates anisotropic AuNFs as an enabling nanomaterial for use in cellular depolarization and the spatiotemporal control of cellular activity.
Collapse
Affiliation(s)
- Katherine E Rogers
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States.,Jacobs Corporation, Hanover, Maryland 21076, United States
| | - Eunkeu Oh
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| |
Collapse
|
10
|
Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. NANO RESEARCH 2023; 16:6974-6990. [PMID: 36685637 PMCID: PMC9840428 DOI: 10.1007/s12274-022-5267-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.
Collapse
Affiliation(s)
- Krystal A. Hughes
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Maryam Maghareh
- Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| |
Collapse
|
11
|
Nanoparticle-based delivery of nitric oxide for therapeutic applications. Ther Deliv 2022; 13:403-427. [DOI: 10.4155/tde-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO), a low molecular weight signaling molecule, plays critical roles in both cellular health and disease. There is continued interest in new modalities for the controlled therapeutic delivery of NO to cells and tissues. The physicochemical properties of NO (including its short half-life and on-demand synthesis at the point of function), however, pose considerable challenges for its specific and efficient delivery. Recently, a number of nanoparticle (NP)-based systems are described that address some of these issues by taking advantage of the unique attributes of the NP carrier to effect efficient NO delivery. This review highlights the progress that has been made over the past 5 years in the use of various constructs for the therapeutic delivery of NO.
Collapse
|
12
|
Hahm E, Jo A, Lee SH, Kang H, Pham XH, Jun BH. Silica Shell Thickness-Dependent Fluorescence Properties of SiO 2@Ag@SiO 2@QDs Nanocomposites. Int J Mol Sci 2022; 23:ijms231710041. [PMID: 36077434 PMCID: PMC9456444 DOI: 10.3390/ijms231710041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Silica shell coatings, which constitute important technology for nanoparticle (NP) developments, are utilized in many applications. The silica shell's thickness greatly affects distance-dependent optical properties, such as metal-enhanced fluorescence (MEF) and fluorescence quenching in plasmonic nanocomposites. However, the precise control of silica-shell thicknesses has been mainly conducted on single metal NPs, and rarely on complex nanocomposites. In this study, silica shell-coated Ag nanoparticle-assembled silica nanoparticles (SiO2@Ag@SiO2), with finely controlled silica shell thicknesses (4 nm to 38 nm), were prepared, and quantum dots (QDs) were introduced onto SiO2@Ag@SiO2. The dominant effect between plasmonic quenching and MEF was defined depending on the thickness of the silica shell between Ag and QDs. When the distance between Ag NPs to QDs was less than ~10 nm, SiO2@Ag@SiO2@QDs showed weaker fluorescence intensities than SiO2@QD (without metal) due to the quenching effect. On the other hand, when the distance between Ag NPs to QDs was from 10 nm to 14 nm, the fluorescence intensity of SiO2@Ag@SiO2@QD was stronger than SiO2@QDs due to MEF. The results provide background knowledge for controlling the thickness of silica shells in metal-containing nanocomposites and facilitate the development of potential applications utilizing the optimal plasmonic phenomenon.
Collapse
Affiliation(s)
- Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Deajeon 34158, Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0521
| |
Collapse
|
13
|
Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1791. [PMID: 35338603 PMCID: PMC9540470 DOI: 10.1002/wnan.1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Inspired by the development of nanomedicine and nanotechnology, more and more possibilities in cancer theranostic have been provided in the last few years. Emerging therapeutic modalities like starvation therapy, chemodynamic therapy, and tumor oxygenation have been integrated with diagnosis, giving a plethora of theranostic nanoagents. Among all of them, nanogels (NGs) show superiority benefiting from their unique attributes: high stability, high water-absorption, large specific surface area, mechanical strength, controlled responsiveness, and high encapsulation capacity. There have been a vast number of investigations supporting various NGs combining drug delivery and multiple bioimaging techniques, encompassing photothermal imaging, photoacoustic imaging, fluorescent imaging, ultrasound imaging, magnetic resonance imaging, and computed tomography. This review summarizes recent advances in functional NGs for theranostic nanomedicine and discusses the challenges and future perspectives of this fast-growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Huiyi Wang
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Matias L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Iaquinta S, Khazaie S, Ishow É, Blanquart C, Fréour S, Jacquemin F. Influence of the mechanical and geometrical parameters on the cellular uptake of nanoparticles: A stochastic approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3598. [PMID: 35343089 DOI: 10.1002/cnm.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are used for drug delivery with enhanced selectivity and reduced side-effect toxicity in cancer treatments. Based on the literature, the influence of the NPs mechanical and geometrical properties on their cellular uptake has been studied through experimental investigations. However, due to the difficulty to vary the parameters independently in such a complex system, it remains hard to efficiently conclude on the influence of each one of them on the cellular internalization of a NP. In this context, different mechanical / mathematical models for the cellular uptake of NPs have been developed. In this paper, we numerically investigate the influence of the NP's aspect ratio, the membrane tension and the cell-NP adhesion on the uptake of the NP using the model introduced in1 coupled with a numerical stochastic scheme to measure the weight of each one of the aforementioned parameters. The results reveal that the aspect ratio of the particle is the most influential parameter on the wrapping of the particle by the cell membrane. Then the adhesion contributes twice as much as the membrane tension. Our numerical results match the previous experimental observations.
Collapse
Affiliation(s)
- Sarah Iaquinta
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Shahram Khazaie
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Éléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, France
| | - Christophe Blanquart
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Sylvain Fréour
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Frédéric Jacquemin
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| |
Collapse
|
15
|
Blondy T, Poly J, Linot C, Boucard J, Allard-Vannier E, Nedellec S, Hulin P, Hénoumont C, Larbanoix L, Muller RN, Laurent S, Ishow E, Blanquart C. Impact of RAFT chain transfer agents on the polymeric shell density of magneto-fluorescent nanoparticles and their cellular uptake. NANOSCALE 2022; 14:5884-5898. [PMID: 35373226 DOI: 10.1039/d1nr06769a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The impact of nanoparticle surface chemistry on cell interactions and especially cell uptake has become evident over the last few years in nanomedicine. Since PEG polymers have proved to be ideal tools for attaining stealthiness and favor escape from the in vivo mononuclear phagocytotic system, the accurate control of their geometry is of primary importance and can be achieved through reversible addition-fragmentation transfer (RAFT) polymerization. In this study, we demonstrate that the residual groups of the chain transfer agents (CTAs) introduced in the main chain exert a significant impact on the cellular internalization of functionalized nanoparticles. High-resolution magic angle spinning 1H NMR spectroscopy and fluorescence spectroscopy permitted by the magneto-fluorescence properties of nanoassemblies (NAs) revealed the compaction of the PEG comb-like shell incorporating CTAs with a long alkyl chain, without changing the overall surface potential. As a consequence of the capability of alkyl units to self-assemble at the NA surface while hardly contributing more than 0.5% to the total polyelectrolyte weight, denser PEGylated NAs showed notably less internalization in all cells of the tumor microenvironment (tumor cells, macrophages and healthy cells). Interestingly, such differentiated uptake is also observed between pro-inflammatory M1-like and immunosuppressive M2-like macrophages, with the latter more efficiently phagocytizing NAs coated with a less compact PEGylated shell. In contrast, the NA diffusion inside multicellular spheroids, used to mimic solid tumors, appeared to be independent of the NA coating. These results provide a novel effort-saving approach where the sole variation of the chemical nature of CTAs in RAFT PEGylated polymers strikingly modulate the cell uptake of nanoparticles upon the organization of their surface coating and open the pathway toward selectively addressing macrophage populations for cancer immunotherapy.
Collapse
Affiliation(s)
- Thibaut Blondy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| | - Julien Poly
- IS2M-UMR CNRS 7361, Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Camille Linot
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| | - Joanna Boucard
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Emilie Allard-Vannier
- EA 6295 'Nanomédicaments et Nanosondes', Université de Tours, Tours, F-37200, France
| | - Steven Nedellec
- Nantes Université, INSERM, UMS 016, CNRS, UMS 3556, F-44000 Nantes, France
| | - Phillipe Hulin
- Nantes Université, INSERM, UMS 016, CNRS, UMS 3556, F-44000 Nantes, France
| | - Céline Hénoumont
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland à Gosselies, 6041 Gosselies, Belgium
| | - Robert N Muller
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland à Gosselies, 6041 Gosselies, Belgium
| | - Eléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| |
Collapse
|
16
|
Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1809. [PMID: 36416028 PMCID: PMC9786906 DOI: 10.1002/wnan.1809] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
Nucleic acid therapeutics can be used to control virtually every aspect of cell behavior and therefore have significant potential to treat genetic disorders, infectious diseases, and cancer. However, while clinically approved to treat a small number of diseases, the full potential of nucleic acid therapeutics is hampered by inefficient delivery. Nucleic acids are large, highly charged biomolecules that are sensitive to degradation and so the approaches to deliver these molecules differ significantly from traditional small molecule drugs. Current studies suggest less than 1% of the injected nucleic acid dose is delivered to the target cell in an active form. This inefficient delivery increases costs and limits their use to applications where a small amount of nucleic acid is sufficient. In this review, we focus on two of the major barriers to efficient nucleic acid delivery: (1) delivery to the target cell and (2) transport to the subcellular compartment where the nucleic acids are therapeutically active. We explore how nanoparticles can be modified with targeting ligands to increase accumulation in specific cells, and how the composition of the nanoparticle can be engineered to manipulate or disrupt cellular membranes and facilitate delivery to the optimal subcellular compartments. Finally, we highlight how with intelligent material design, nanoparticle delivery systems have been developed to deliver nucleic acids that silence aberrant genes, correct genetic mutations, and act as both therapeutic and prophylactic vaccines. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Lara M. Mollé
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Cameron H. Smyth
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
17
|
de Alcantara Lemos J, Oliveira AEMFM, Araujo RS, Townsend DM, Ferreira LAM, de Barros ALB. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed Pharmacother 2021; 143:112137. [PMID: 34507118 PMCID: PMC8963538 DOI: 10.1016/j.biopha.2021.112137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, utilization of medicinal plants by the pharmaceutical industry has led to the identification of many new bioactive compounds. The genus Pterodon, native of the Brazilian Flora, is known for the therapeutic properties attributed to its species, which are widely used in popular medicine for their anti-inflammatory, anti-rheumatic, tonic, and depurative properties. The intrinsic low water solubility of the plant derivatives from the genus, including diterpenes with vouacapane skeletons that are partially associated with the pharmacological activities, impairs the bioavailability of these bioactive compounds. Recent studies have aimed to encapsulate Pterodon products to improve their water solubility, achieve stability, increase their efficacy, and allow clinical applications. The purpose of this paper is to review recent research on the use of nanotechnology for the development of new products from plant derivatives of the Pterodon genus in different types of micro- and nanocarriers. Therapeutic properties of their different products are also presented. Finally, an update about the current and future applications of encapsulated formulations is provided.
Collapse
Affiliation(s)
- Janaina de Alcantara Lemos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Anna Eliza M F M Oliveira
- Department of Biological Sciences and Health, Universidade Federal do Amapá, 68903-329 Macapá, Amapá, Brazil
| | - Raquel Silva Araujo
- Department of Pharmacy, Pharmacy School, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Lucas Antonio Miranda Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Andre Luis Branco de Barros
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Musielak M, Potoczny J, Boś-Liedke A, Kozak M. The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging-A Review. Int J Mol Sci 2021; 22:6229. [PMID: 34207682 PMCID: PMC8229649 DOI: 10.3390/ijms22126229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology has introduced a new quality and has definitely developed the possibilities of treating and diagnosing various diseases. One of the scientists' interests is liposomes and metallic nanoparticles (LipoMNPs)-the combination of which has introduced new properties and applications. However, the field of creating hybrid nanostructures consisting of liposomes and metallic nanoparticles is relatively little understood. The purpose of this review was to compile the latest reports in the field of treatment and medical imaging using of LipoMNPs. The authors focused on presenting this issue in the direction of improving the used conventional treatment and imaging methods. Most of all, the nature of bio-interactions between nanostructures and cells is not sufficiently taken into account. As a result, overcoming the existing limitations in the implementation of such solutions in the clinic is difficult. We concluded that hybrid nanostructures are used in a very wide range, especially in the treatment of cancer and magnetic resonance imaging. There were also solutions that combine treatments with simultaneous imaging, creating a theragnostic approach. In the future, researchers should focus on the description of the biological interactions and the long-term effects of the nanostructures to use LipoMNPs in the treatment of patients.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Jakub Potoczny
- Heliodor Swiecicki Clinical Hospital in Poznan, 60-355 Poznań, Poland;
| | - Agnieszka Boś-Liedke
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| |
Collapse
|
19
|
Talamini L, Matsuura E, De Cola L, Muller S. Immunologically Inert Nanostructures as Selective Therapeutic Tools in Inflammatory Diseases. Cells 2021; 10:cells10030707. [PMID: 33806746 PMCID: PMC8004653 DOI: 10.3390/cells10030707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
The current therapies based on immunosuppressant or new biologic drugs often show some limitations in term of efficacy and applicability, mainly because of their inadequate targeting and of unwanted adverse reactions they generate. To overcome these inherent problems, in the last decades, innovative nanocarriers have been developed to encapsulate active molecules and offer novel promising strategies to efficiently modulate the immune system. This review provides an overview of how it is possible, exploiting the favorable features of nanocarriers, especially with regard to their immunogenicity, to improve the bioavailability of novel drugs that selectively target immune cells in the context of autoimmune disorders and inflammatory diseases. A focus is made on nanoparticles that selectively target neutrophils in inflammatory pathologies.
Collapse
Affiliation(s)
- Laura Talamini
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
| | - Eiji Matsuura
- Neutron Therapy Research Center, Collaborative Research Center, Department of Cell Chemistry, Okayama University, Okayama 700-8558, Japan
| | - Luisa De Cola
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Pharmaceutical Sciences (DISFARM), University of Milano, 20122 Milan, Italy
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
20
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
21
|
Qian C, Yang LJ, Cui H. Recent Advances in Nanotechnology for Dendritic Cell-Based Immunotherapy. Front Pharmacol 2020; 11:960. [PMID: 32694998 PMCID: PMC7338589 DOI: 10.3389/fphar.2020.00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are the most important antigen-presenting cells that determine cancer immune responses by regulating immune activation and tolerance, especially in the initiation stage of specific responses. Manipulation of DCs to enhance specific antitumor immune response is considered to be a powerful tool for tumor eradication. Nanotechnology, which can incorporate multifunction components and show spatiotemporal control properties, is of great interest and is widely investigated for its ability to improve immune response activity against cancer and even for prevention and avoiding recurrence. In this mini-review, we aim to provide a general view of DC-based immunotherapy, including that involving the promising nanotechnology. Particularly we discuss: (1) manipulation or engineering of DCs for adoptive vaccination, (2) employing DCs as a combination to more existing therapeutics in tumor treatment, and (3) direct modulation of DCs in vivo to enhance antigen presentation efficacy and priming T cells subsequently. We comprehensively discuss the updates on the application of nanotechnology in DC-based immunotherapy and provide some insights on the challenges and opportunities of DC-based immunotherapeutics, including the potential of nanotechnology, against cancers.
Collapse
Affiliation(s)
| | | | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Nag OK, Muroski ME, Hastman DA, Almeida B, Medintz IL, Huston AL, Delehanty JB. Nanoparticle-Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS NANO 2020; 14:2659-2677. [PMID: 32078291 DOI: 10.1021/acsnano.9b10163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bethany Almeida
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Alan L Huston
- Division of Optical Sciences, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
23
|
Zhang TG, Zhang YL, Zhou QQ, Wang XH, Zhan LS. Impairment of mitochondrial dynamics involved in iron oxide nanoparticle-induced dysfunction of dendritic cells was alleviated by autophagy inhibitor 3-methyladenine. J Appl Toxicol 2020; 40:631-642. [PMID: 31922269 DOI: 10.1002/jat.3933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron oxide nanoparticles are nanomaterials that are used extensively in the biomedical field, but they are associated with adverse effects, including mitochondrial toxicity. Mitochondrial homeostasis is achieved through dynamic stability based on two sets of antagonistic balanced processes: mitochondrial biogenesis and degradation as well as mitochondrial fission and fusion. In this study, we showed that PEG-COOH-coated Fe3 O4 (PEG-Fe3 O4 ) nanoparticles induced mitochondrial instability in dendritic cells (DCs) by impairing mitochondrial dynamics due to promotion of mitochondrial biogenesis through activation of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) pathway, inhibiting mitochondrial degradation via decreased autophagy, and facilitating mitochondrial fragmentation involving increased levels of DRP1 and MFN2. The resulting reduced levels of dextran uptake, CD80, CD86 and chemokine receptor 7 (CCR7) suggested that PEG-Fe3 O4 nanoparticles impaired the functionally immature state of DCs. Autophagy inhibitor 3-methyladenine (3-MA) alleviated PEG-Fe3 O4 nanoparticle-induced mitochondrial instability and impairment of the functionally immature state of DCs due to unexpected enhancement of PGC1α/MFN2-mediated coordination of mitochondrial biogenesis and fusion.
Collapse
Affiliation(s)
- Tian-Guang Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| | - Yu-Long Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| | - Qian-Qian Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| | - Xiao-Hui Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| | - Lin-Sheng Zhan
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| |
Collapse
|
24
|
Nag OK, Delehanty JB. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. Pharmaceutics 2019; 11:E543. [PMID: 31635367 PMCID: PMC6836276 DOI: 10.3390/pharmaceutics11100543] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer's disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|
25
|
Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1581. [PMID: 31429208 DOI: 10.1002/wnan.1581] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Pei Li
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| |
Collapse
|
26
|
Abstract
The systemic delivery of drugs to the body via circulation after oral administration is a preferred method of drug administration during cancer treatment given its ease of implementation. However, the physicochemical properties of many current anticancer drugs limit their effectiveness when delivered by systemic routes. The use of nanoparticles (NPs) has emerged as an effective means of overcoming the inherent limitations of systemic drug delivery. We provide herein an overview of various NP formulations that facilitate improvements in the efficacy of various anticancer drugs compared with the free drug. This review will be useful to the reader who is interested in the role NP technology is playing in shaping the future of chemotherapeutic drug delivery and disease treatment.
Collapse
|
27
|
Tian Y, Zhang H, Qin Y, Li D, Liu Y, Wang H, Gan L. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev Ind Pharm 2018; 44:2071-2082. [DOI: 10.1080/03639045.2018.1512613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yongfeng Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yanmei Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Dong Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center (NPERC), Shanghai, China
| | - Li Gan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- National Pharmaceutical Engineering Research Center (NPERC), Shanghai, China
| |
Collapse
|
28
|
Zhou J, Leaño JL, Liu Z, Jin D, Wong KL, Liu RS, Bünzli JCG. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801882. [PMID: 30066496 DOI: 10.1002/smll.201801882] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/16/2018] [Indexed: 05/22/2023]
Abstract
Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide-doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface-to-volume ratios and quantum confinement that are typical of nanoobjects. Cutting-edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next-generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro-/nanoscopic techniques, point-of-care medical testing, forensic fingerprints detection, to micro-LED devices.
Collapse
Affiliation(s)
- Jiajia Zhou
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Julius L Leaño
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica and NTU, Taipei, 106, Taiwan
- Philippine Textile Research Institute, Department of Science and Technology, Taguig City, 1631, Philippines
| | - Zhenyu Liu
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, P. R. China
| | - Dayong Jin
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Jean-Claude G Bünzli
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
- Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland
| |
Collapse
|
29
|
Kim HM, Kim DM, Jeong C, Park SY, Cha MG, Ha Y, Jang D, Kyeong S, Pham XH, Hahm E, Lee SH, Jeong DH, Lee YS, Kim DE, Jun BH. Assembly of Plasmonic and Magnetic Nanoparticles with Fluorescent Silica Shell Layer for Tri-functional SERS-Magnetic-Fluorescence Probes and Its Bioapplications. Sci Rep 2018; 8:13938. [PMID: 30224683 PMCID: PMC6141549 DOI: 10.1038/s41598-018-32044-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, we report on the fabrication of multilayered tri-functional magnetic-SERS-fluorescence nanoprobes (MF-SERS particles) containing clustered superparamagnetic Fe3O4 nanoparticles (NPs), silver NPs, and a fluorescent silica layer. The MF-SERS particles exhibited strong SERS signals from the silver NPs as well as both superparamagnetism and fluorescence. MF-SERS particles were uptaken by cells, allowing successful separation using an external magnetic field. SERS and fluorescence signals could be detected from the NP-containing cells, and CD44 antibody-conjugated MF-SERS particles selectively targeted MDA-MB-231 cells. Based on these properties, MF-SERS particles proved to be a useful nanoprobe for multiplex detection and separation of cancer cells.
Collapse
Affiliation(s)
- Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong-Min Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Cheolhwan Jeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - So Yeon Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myeong Geun Cha
- Department of Chemistry Education, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuna Ha
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dahye Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - San Kyeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sang Hun Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
30
|
Mauri E, Cappella F, Masi M, Rossi F. PEGylation influences drug delivery from nanogels. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Nicoletti M, Capodanno C, Gambarotti C, Fasoli E. Proteomic investigation on bio-corona of functionalized multi-walled carbon nanotubes. Biochim Biophys Acta Gen Subj 2018; 1862:2293-2303. [PMID: 30048739 DOI: 10.1016/j.bbagen.2018.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The formation of bio-corona, due to adsorption of biomolecules onto carbon nanotubes (CNTs) surface in a physiological environment, may lead to a modified biological "identity" of CNTs, contributing to determination of their biocompatibility and toxicity. METHODS Multi-walled carbon nanotubes surfaces (f-MWCNTs) were modified attaching acid and basic chemical functions such as carboxyl (MWCNTs-COOH) and ammonium (MWCNTs-N) groups respectively. The investigation of interactions between f-MWCNTs and proteins present in biological fluids, like human plasma, was performed by electrophoretic separation (SDS-PAGE) and mass spectrometry analysis (nLC-MS/MS). RESULTS A total of 52 validated proteins was identified after incubation of f-MWCNTs in human plasma. 86% of them was present in bio-coronas formed on the surface of all f-MWCNTs and 29% has specifically interacted with only one type of f-MWCNTs. CONCLUSIONS The evaluation of proteins primary structures, present in all bio-coronas, did not highlight any correlation between the chemical functionalization on MWCNTs and the content of acid, basic and hydrophobic amino acids. Despite this, many proteins of bio-corona, formed on all f-MWCNTs, were involved in the inhibitor activity of serine- or cysteine- endopeptidases, a molecular function completely unrevealed in the human plasma as control. Finally, the interaction with immune system's proteins and apolipoproteins has suggested a possible biocompatibility and a favored bio-distribution of tested f-MWCNTs. GENERAL SIGNIFICANCE Considering the great potential of CNTs in the nanomedicine, a specific chemical functionalization onto MWCNTs surface could control the protein corona formation and the biocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Maria Nicoletti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy
| | - Claudia Capodanno
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy.
| |
Collapse
|
32
|
Synthesis of a Reactive Oxygen Species-Responsive Doxorubicin Derivative. Molecules 2018; 23:molecules23071809. [PMID: 30037071 PMCID: PMC6100310 DOI: 10.3390/molecules23071809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023] Open
Abstract
A heterobifunctional reactive oxygen species (ROS)-responsive linker for directed drug assembly onto and delivery from a quantum dot (QD) nanoparticle carrier was synthesized and coupled to doxorubicin using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/sulfo–NHS coupling. The doxorubicin conjugate was characterized using 1H NMR and LC-MS and subsequently reacted under conditions of ROS formation (Cu2+/H2O2) resulting in successful and rapid thioacetal oxidative cleavage, which was monitored using 1H NMR.
Collapse
|
33
|
Field LD, Walper SA, Susumu K, Lasarte-Aragones G, Oh E, Medintz IL, Delehanty JB. A Quantum Dot-Protein Bioconjugate That Provides for Extracellular Control of Intracellular Drug Release. Bioconjug Chem 2018; 29:2455-2467. [DOI: 10.1021/acs.bioconjchem.8b00357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lauren D. Field
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Guillermo Lasarte-Aragones
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- George Mason University, College of Sciences, Fairfax, Virginia 22030 United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
34
|
Huang X, Fan C, Zhu H, Le W, Cui S, Chen X, Li W, Zhang F, Huang Y, Sh D, Cui Z, Shao C, Chen B. Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer. Int J Nanomedicine 2018; 13:2585-2599. [PMID: 29750031 PMCID: PMC5933399 DOI: 10.2147/ijn.s158559] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Pancreatic cancer (PC) has a poor prognosis with high mortality, due to the lack of effective early diagnostic and prognostic tools. Materials and methods In order to target and diagnose PC, we developed a dual-modal imaging probe using Glypican-1 (GPC-1) antibody conjugated with Gd–Au nanoclusters (NCs; Gd-Au-NC-GPC-1). GPC-1 is a type of cell surface heparan sulfate proteoglycan, which is often highly expressed in PC. The probe was successfully prepared with a hydrodynamic diameter ranging from 13.5 to 24.4 nm. Results Spectral characteristics showed absorption at 280 nm and prominent emission at 650 nm. Confocal microscopic imaging showed effective detection of GPC-1 highly expressed PC cells by Gd-Au-NC-GPC-1, which was consistent with flow cytometry results. In vitro relaxivity characterization demonstrated that the r1 value of the probe was 17.722 s−1 mM−1 Gd, which was almost 4 times higher compared with that of Gd-diethylenetriaminepentacetate (DTPA; r1 value =4.6 s−1 mM−1 Gd). Gd-Au-NC-GPC-1 exhibited similar magnetic resonance (MR) signals when compared to Gd-DTPA even at lower Gd concentrations. Much higher MR signals were registered in PC cells (COLO-357) compared with normal cells (293T). Furthermore, Gd-Au-NC-GPC-1 could effectively detect PC cells in vivo by dual-modal fluorescence imaging/magnetic resonance imaging (FI/MRI) at 30 minutes postinjection. In addition, Gd-Au-NC-GPC-1 did not show significant biotoxicity to normal cells at tested concentrations both in vitro and in vivo. Conclusion Gd-Au-NC-GPC-1 has demonstrated to be a promising dual-modal FI/MRI contrast agent for targeted diagnosis of PC.
Collapse
Affiliation(s)
- Xin Huang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chengqi Fan
- Radiology Department of Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Huanhuan Zhu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Wenjun Le
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Shaobin Cui
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of Thyroid Surgery, The First Bethune Hospital of Jilin University, Jilin, China
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Fulei Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Yong Huang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Donglu Sh
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China.,The Materials Science & Engineering Program, Department of Mechanical & Materials Engineering, College of Engineering & Applied Science, University of Cincinnati, OH, USA
| | - Zheng Cui
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China.,Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chengwei Shao
- Radiology Department of Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bingdi Chen
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
36
|
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:977-990. [PMID: 29409836 PMCID: PMC5899012 DOI: 10.1016/j.nano.2018.01.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.
| |
Collapse
|
37
|
Rampazzo E, Genovese D, Palomba F, Prodi L, Zaccheroni N. NIR-fluorescent dye doped silica nanoparticles forin vivoimaging, sensing and theranostic. Methods Appl Fluoresc 2018; 6:022002. [DOI: 10.1088/2050-6120/aa8f57] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Sangtani A, Petryayeva E, Wu M, Susumu K, Oh E, Huston AL, Lasarte-Aragones G, Medintz IL, Algar WR, Delehanty JB. Intracellularly Actuated Quantum Dot–Peptide–Doxorubicin Nanobioconjugates for Controlled Drug Delivery via the Endocytic Pathway. Bioconjug Chem 2017; 29:136-148. [DOI: 10.1021/acs.bioconjchem.7b00658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ajmeeta Sangtani
- Fischell
Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Eleonora Petryayeva
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia Canada V6T 1Z1
| | - Miao Wu
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia Canada V6T 1Z1
| | | | - Eunkeu Oh
- KeyW Corporation, Hanover, Maryland 21076, United States
| | | | | | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia Canada V6T 1Z1
| | | |
Collapse
|
39
|
Borroni E, Miola M, Ferraris S, Ricci G, Žužek Rožman K, Kostevšek N, Catizone A, Rimondini L, Prat M, Verné E, Follenzi A. Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomater 2017; 59:303-316. [PMID: 28688987 DOI: 10.1016/j.actbio.2017.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023]
Abstract
Nanomaterials conjugated or complexed with biological moieties such as antibodies, polymers or peptides appear to be suitable not only for drug delivery but also for specific cancer treatment. Here, biocompatible iron oxide magnetic nanoparticles (MNPs) with or without a silica shell coupled with lentiviral vectors (LVs) are proposed as a combined therapeutic approach to specifically target gene expression in a cancer mouse model. Initially, four different MNPs were synthesized and their physical properties were characterized to establish and discriminate their behaviors. MNPs and LVs strictly interacted and transduced cells in vitro as well as in vivo, with no toxicity or inflammatory responses. By injecting LV-MNPs complexes intravenously, green fluorescent protein (GFP) resulted in a sustained long-term expression. Furthermore, by applying a magnetic field on the abdomen of intravenous injected mice, GFP positive cells increased in livers and spleens. In liver, LV-MNPs were able to target both hepatocytes and non-parenchymal cells, while in a mouse model with a grafted tumor, intra-tumor LV-MNPs injection and magnetic plaque application next to the tumor demonstrated the efficient uptake of LV-MNPs complexes with high number of transduced cells and iron accumulation in the tumor site. More important, LV-MNPs with the application of the magnetic plaque spread in all the tumor parenchyma and dissemination through the body was prevented confirming the efficient uptake of LV-MNPs complexes in the tumor. Thus, these LV-MNPs complexes could be used as multifunctional and efficient tools to selectively induce transgene expression in solid tumor for therapeutic purposes. STATEMENT OF SIGNIFICANCE Our study describes a novel approach of combining magnetic properties of nanomaterials with gene therapy. Magnetic nanoparticles (MNPs) coated with or without a silica shell coupled with lentiviral vectors (LVs) were used as vehicle to target biological active molecules in a mouse cancer model. After in situ injection, the presence of MNP under the magnetic field improve the vector distribution in the tumor mass and after systemic administration, the application of the magnetic field favor targeting of specific organs for LV transduction and specifically can direct LV in specific cells (or avoiding them). Thus, our findings suggest that LV-MNPs complexes could be used as multifunctional and efficient tools to selectively induce transgene expression in solid tumor for therapeutic purposes.
Collapse
|