1
|
Ren L, Wang B, Miao D, Xiang P, Zeng Z, Li Z, Chen X, Xu C, Gong Q, Luo K, Jing J. Topology-Oriented Lymph Node Drainage of Dendritic Polymer-TLR Agonist Conjugates to Enhance Vaccine Immunogenicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417704. [PMID: 39962825 DOI: 10.1002/adma.202417704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Indexed: 03/17/2025]
Abstract
Strategically targeting lymph nodes (LNs) to orchestrate the initiation and regulation of adaptive immune responses is one of the most pressing challenges in the context of vaccination. Herein, a series of polymer-TLR agonist conjugates (PTACs) is developed to investigate the impact of dendritic-topological characteristics on their LN targeting activity in vivo, and their molecular weight (MW) on their pharmacokinetics in support of their LN homing. Notably, the dendritic 6-arm PTAC with a MW of 60 kDa (6A-PTAC-60k) rapidly delivered cargo to draining LNs after administration to peripheral tissues. Specifically, this topologic structure ameliorated the targeting behavior within lymphatic vessels and LNs, including an elevated amount of TLR7/8 agonist delivered to the LNs, an improved distribution pattern among barrier cells and immune cells, increased permeability, and prolonged retention. Furthermore, the 6A-PTAC-60k formulation induced broad antibody and T cell responses, enhancing vaccine immunogenicity and suppressing tumor growth. The results revealed that both the topology and MW of polymers are crucial factors for immunoadjuvant distribution and their functional activity in the draining LNs, which, in turn, enhanced the immunogenicity of the vaccine formulation. This study may provide a chemical and structural basis for optimizing the design of immunoadjuvant delivery systems.
Collapse
Affiliation(s)
- Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Di Miao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Xiang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Zeng
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jing Jing
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Mamnoon B, Moses AS, Sundaram S, Raitmayr CJ, Morgan T, Baldwin MK, Myatt L, Taratula O, Taratula OR. Glutathione-Responsive Methotrexate Polymersomes for Potential Management of Ectopic Pregnancy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302969. [PMID: 37452511 PMCID: PMC10787806 DOI: 10.1002/smll.202302969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/22/2023] [Indexed: 07/18/2023]
Abstract
The first-line treatment for ectopic pregnancy (EP), the chemotherapeutic methotrexate (MTX), has a failure rate of more than 10%, which can lead to severe complications or death. Inadequate accumulation of administered MTX at the ectopic implantation site significantly contributes to therapeutic failure. This study reports the first glutathione-responsive polymersomes for efficient delivery of MTX to the implantation site and its triggered release in placental cells. Fluorescence and photoacoustic imaging have confirmed that the developed polymersomes preferentially accumulate after systemic administration in the implantation site of pregnant mice at early gestational stages. The high concentrations of intracellular glutathione (GSH) reduce an incorporated disulfide bond within polymersomes upon internalization into placental cells, resulting in their disintegration and efficient drug release. Consequently, MTX delivered by polymersomes induces pregnancy demise in mice, as opposed to free MTX at the same dose regimen. To achieve the same therapeutic efficacy with free MTX, a sixfold increase in dosage is required. In addition, mice successfully conceive and birth healthy pups following a prior complete pregnancy demise induced by methotrexate polymersomes. Therefore, the developed MTX nanomedicine can potentially improve EP management and reduce associated mortality rates and related cost.
Collapse
Affiliation(s)
- Babak Mamnoon
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Subisha Sundaram
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Constanze J Raitmayr
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Terry Morgan
- Department of Pathology and Laboratory Medicine, and the Center for Developmental Health, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Maureen K Baldwin
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
3
|
Wu X, Wang F, Yang X, Gong Y, Niu T, Chu B, Qu Y, Qian Z. Advances in Drug Delivery Systems for the Treatment of Acute Myeloid Leukemia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403409. [PMID: 38934349 DOI: 10.1002/smll.202403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Acute myeloid leukemia (AML) is a common and catastrophic hematological neoplasm with high mortality rates. Conventional therapies, including chemotherapy, hematopoietic stem cell transplantation (HSCT), immune therapy, and targeted agents, have unsatisfactory outcomes for AML patients due to drug toxicity, off-target effects, drug resistance, drug side effects, and AML relapse and refractoriness. These intrinsic limitations of current treatments have promoted the development and application of nanomedicine for more effective and safer leukemia therapy. In this review, the classification of nanoparticles applied in AML therapy, including liposomes, polymersomes, micelles, dendrimers, and inorganic nanoparticles, is reviewed. In addition, various strategies for enhancing therapeutic targetability in nanomedicine, including the use of conjugating ligands, biomimetic-nanotechnology, and bone marrow targeting, which indicates the potential to reverse drug resistance, are discussed. The application of nanomedicine for assisting immunotherapy is also involved. Finally, the advantages and possible challenges of nanomedicine for the transition from the preclinical phase to the clinical phase are discussed.
Collapse
Affiliation(s)
- Xia Wu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fangfang Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xijing Yang
- The Experimental Animal Center of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuping Gong
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
4
|
Han Z, Liang Y, Li Y, Yuan M, Zhan X, Yan J, Sun Y, Luo K, Zhao B, Li F. Programmed Cascade Polydopamine Nanoclusters for Pyroptosis-Based Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401397. [PMID: 38898735 DOI: 10.1002/smll.202401397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Pyroptosis, an inflammatory cell death, plays a pivotal role in activating inflammatory response, reversing immunosuppression and enhancing anti-tumor immunity. However, challenges remain regarding how to induce pyroptosis efficiently and precisely in tumor cells to amplify anti-tumor immunotherapy. Herein, a pH-responsive polydopamine (PDA) nanocluster, perfluorocarbon (PFC)@octo-arginine (R8)-1-Hexadecylamine (He)-porphyrin (Por)@PDA-gambogic acid (GA)-cRGD (R-P@PDA-GC), is rationally design to augment phototherapy-induced pyroptosis and boost anti-tumor immunity through a two-input programmed cascade therapy. Briefly, oxygen doner PFC is encapsulated within R8 linked photosensitizer Por and He micelles as the core, followed by incorporation of GA and cRGD peptides modified PDA shell, yielding the ultimate R-P@PDA-GC nanoplatforms (NPs). The pH-responsive NPs effectively alleviate hypoxia by delivering oxygen via PFC and mitigate heat resistance in tumor cells through GA. Upon two-input programmed irradiation, R-P@PDA-GC NPs significantly enhance reactive oxygen species production within tumor cells, triggering pyroptosis via the Caspase-1/GSDMD pathway and releasing numerous inflammatory factors into the TME. This leads to the maturation of dendritic cells, robust infiltration of cytotoxic CD8+ T and NK cells, and diminution of immune suppressor Treg cells, thereby amplifying anti-tumor immunity.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xin Zhan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
5
|
Shu M, Wang J, Xu Z, Lu T, He Y, Li R, Zhong G, Yan Y, Zhang Y, Chu X, Ke J. Targeting nanoplatform synergistic glutathione depletion-enhanced chemodynamic, microwave dynamic, and selective-microwave thermal to treat lung cancer bone metastasis. Bioact Mater 2024; 39:544-561. [PMID: 38883314 PMCID: PMC11179176 DOI: 10.1016/j.bioactmat.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Once bone metastasis occurs in lung cancer, the efficiency of treatment can be greatly reduced. Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction. Microwave ablation (MWA) has been used to treat bone tumors. However, MWA may damage the surrounding normal tissues. Therefore, it could be beneficial to develop a nanocarrier combined with microwave to treat bone metastasis. Herein, a microwave-responsive nanoplatform (MgFe2O4@ZOL) was constructed. MgFe2O4@ZOL NPs release the cargos of Fe3+, Mg2+ and zoledronic acid (ZOL) in the acidic tumor microenvironment (TME). Fe3+ can deplete intracellular glutathione (GSH) and catalyze H2O2 to generate •OH, resulting in chemodynamic therapy (CDT). In addition, the microwave can significantly enhance the production of reactive oxygen species (ROS), thereby enabling the effective implementation of microwave dynamic therapy (MDT). Moreover, Mg2+ and ZOL promote osteoblast differentiation. In addition, MgFe2O4@ZOL NPs could target and selectively heat tumor tissue and enhance the effect of microwave thermal therapy (MTT). Both in vitro and in vivo experiments revealed that synergistic targeting, GSH depletion-enhanced CDT, MDT, and selective MTT exhibited significant antitumor efficacy and bone repair. This multimodal combination therapy provides a promising strategy for the treatment of bone metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Man Shu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Department of Orthopaedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jingguang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ziyang Xu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Teliang Lu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yue He
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Renshan Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Guoqing Zhong
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yunbo Yan
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Xiao Chu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jin Ke
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| |
Collapse
|
6
|
Arif Y, Sameeya, Hasan N, Gowda BJ, Gupta G, Alsayari A, Wahab S, Kesharwani P. Advancements in dendrimer-based drug delivery for combinatorial cancer therapy. J Drug Deliv Sci Technol 2024; 97:105755. [DOI: 10.1016/j.jddst.2024.105755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Liang X, Liu H, Chen H, Peng X, Li Z, Teng M, Peng Y, Li J, Ding L, Mao J, Chu C, Cheng H, Liu G. Rhein‐based Pickering emulsion for hepatocellular carcinoma: Shaping the metabolic signaling and immunoactivation in transarterial chemoembolization. AGGREGATE 2024; 5. [DOI: 10.1002/agt2.552] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
AbstractThe efficacy of transarterial chemoembolization (TACE) has been limited by insufficient embolization and a high incidence of tumor recurrence. Herein, we identified that aberrant metabolic reprogramming and immunosuppression contribute to TACE refractoriness and Rhein, as a potential glycolytic metabolism inhibitor and immunoactivation inducer, was optimized to sensitize tumors to TACE therapy. To achieve efficient embolization, we developed an oil‐in‐water lipiodol embolic emulsion by stabilizing the self‐assembled Rhein nanogel. The assembled Rhein exhibited a nanofiber network, and its integration enhanced the mechanical stability and viscoelasticity of the lipiodol embolic agent. With the synergistic advantages of solid and liquid embolic agents, this carrier‐free Pickering emulsion exhibits efficient embolization and sustained drug release in models of unilateral renal artery embolization, rabbit ear tumor embolization, rabbit orthotopic liver cancer, and rat orthotopic liver cancer. Compared to conventional three‐way catheter mixing methods, multimodal imaging corroborates a marked enhancement in local drug retention and tumor suppression. Importantly, the incorporation of Rhein‐mediated synergistic immunoembolization in this strategy achieved efficient embolization while robustly activating anti‐tumor immune responses, including inducing immunogenic cell death, dendritic cell activation, and major histocompatibility complex class I presentation to CD8+ T cells for tumor killing. Together, these findings reveal a novel strategy for the application of self‐assembled Rhein nanofiber‐stabilized lipiodol emulsion to control metabolic signaling and immunoactivation in TACE.
Collapse
Affiliation(s)
- Xiaoliu Liang
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Hui Liu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Hu Chen
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Xuqi Peng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Zhenjie Li
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Minglei Teng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Yisheng Peng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Jiwei Li
- Department of Respiratory Critical Care and Sleep Medicine Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University Xiamen China
| | - Linyu Ding
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Jingsong Mao
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Chengchao Chu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
- Eye Institute of Xiamen University Fujian Provincial Key Laboratory of Ophthalmology and Visual Science Xiamen University Xiamen China
| | - Hongwei Cheng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
- Zhuhai UM Science & Technology Research Institute Institute of Applied Physics and Materials Engineering University of Macau Macau SAR China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| |
Collapse
|
8
|
Li Y, Shen X, Ding H, Zhang Y, Pan D, Su L, Wu Y, Fang Z, Zhou J, Gong Q, Luo K. Dendritic nanomedicine enhances chemo-immunotherapy by disturbing metabolism of cancer-associated fibroblasts for deep penetration and activating function of immune cells. Acta Pharm Sin B 2024; 14:3680-3696. [PMID: 39220877 PMCID: PMC11365400 DOI: 10.1016/j.apsb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 09/04/2024] Open
Abstract
Inefficient drug penetration hurdled by the stroma in the tumor tissue leads to a diminished therapeutic effect for drugs and a reduced infiltration level of immune cells. Herein, we constructed a PEGylated dendritic epirubicin (Epi) prodrug (Epi-P4D) to regulate the metabolism of cancer-associated fibroblasts (CAFs), thus enhancing Epi penetration into both multicellular tumor spheroids (MTSs) and tumor tissues in mouse colon cancer (CT26), mouse breast cancer (4T1) and human breast cancer (MDA-MB-231) models. Enhanced cytotoxicity against CT26 MTSs and remarkable antitumor efficacy of Epi-P4D were ascribed to reduced fibronectin, α-SMA, and collagen secretion. Besides, thinning of the tumor tissue stroma and efficient eradication of tumor cells promoted the immunogenic cell death effect for dendritic cell (DC) maturation and subsequent immune activation, including elevating the CD4+ T cell population, reducing CD4+ and CD8+ T cell hyperactivation and exhaustion, and amplifying the natural killer (NK) cell proportion and effectively activating them. As a result, this dendritic nanomedicine thinned the stroma of tumor tissues to enhance drug penetration and facilitate immune cell infiltration for elevated antitumor efficacy.
Collapse
Affiliation(s)
- Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haitao Ding
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yahui Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zaixiang Fang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhou
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
9
|
Hao W, Sun N, Fan Y, Chen M, Liu Q, Yang M, Yang Y, Gao C. Targeted Ferroptosis-Immunotherapy Synergy: Enhanced Antiglioma Efficacy with Hybrid Nanovesicles Comprising NK Cell-Derived Exosomes and RSL3-Loaded Liposomes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28193-28208. [PMID: 38776411 PMCID: PMC11164066 DOI: 10.1021/acsami.4c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Ferroptosis therapy and immunotherapy have been widely used in cancer treatment. However, nonselective induction of ferroptosis in tumors is prone to immunosuppression, limiting the therapeutic effect of ferroptosis cancer treatment. To address this issue, this study reports a customized hybrid nanovesicle composed of NK cell-derived extracellular versicles and RSL3-loaded liposomes (hNRVs), aiming to establish a positive cycle between ferroptosis therapy and immunotherapy. Thanks to the enhanced permeability and retention effect and the tumor homing characteristics of NK exosomes, our data indicate that hNRVs can actively accumulate in tumors and enhance cellular uptake. FASL, IFN-γ, and RSL3 are released into the tumor microenvironment, where FASL derived from NK cells effectively lyses tumor cells. RSL3 downregulates the expression of GPX4 in the tumor, leading to the accumulation of LPO and ROS, and promotes ferroptosis in tumor cells. The accumulation of IFN-γ and TNF-α stimulates the maturation of dendritic cells and effectively induces the inactivation of GPX4, promoting lipid peroxidation, making them sensitive to ferroptosis and indirectly promoting the occurrence of ferroptosis. This study highlights the role of the customized hNRV platform in enhancing the effectiveness of synergistic treatment with selective delivery of ferroptosis inducers and immune activation against glioma without causing additional side effects on healthy organs.
Collapse
Affiliation(s)
- Wenyan Hao
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Nan Sun
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Yueyue Fan
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengyu Chen
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Qianqian Liu
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunsheng Gao
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
10
|
Amulya E, Bahuguna D, Negi M, Phatale V, Sikder A, Vambhurkar G, Katta CB, Dandekar MP, Madan J, Srivastava S. Lipid engineered nanomaterials: A novel paradigm shift for combating stroke. APPLIED MATERIALS TODAY 2024; 38:102194. [DOI: 10.1016/j.apmt.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Li H, Zhang P, Yuan X, Peng S, Yang X, Li Y, Shen Z, Bai J. Targeted drug-loaded peptides induce tumor cell apoptosis and immunomodulation to increase antitumor efficacy. BIOMATERIALS ADVANCES 2024; 160:213852. [PMID: 38636118 DOI: 10.1016/j.bioadv.2024.213852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Immunotherapy is an emerging approach for the treatment of solid tumors. Although chemotherapy is generally considered immunosuppressive, specific chemotherapeutic agents can induce tumor immunity. In this study, we developed a targeted, acid-sensitive peptide nanoparticle (DT/Pep1) to deliver doxorubicin (DOX) and triptolide (TPL) to breast cancer cells via the enhanced permeability and retention (EPR) effect and the breast cancer-targeting effect of peptide D8. Compared with administration of the free drugs, treatment with the DT/Pep1 system increased the accumulation of DOX and TPL at the tumor site and achieved deeper penetration into the tumor tissue. In an acidic environment, DT/Pep1 transformed from spherical nanoparticles to aggregates with a high aspect ratio, which successfully extended the retention of the drugs in the tumor cells and bolstered the anticancer effect. In both in vivo and in vitro experiments, DT/Pep1 effectively blocked the cell cycle and induced apoptosis. Importantly, the DT/Pep1 system efficiently suppressed tumor development in mice bearing 4T1 tumors while simultaneously promoting immune system activation. Thus, the results of this study provide a system for breast cancer therapy and offer a novel and promising platform for peptide nanocarrier-based drug delivery.
Collapse
Affiliation(s)
- Hongjie Li
- School of Medical Sciences, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, China
| | - Peirong Zhang
- School of Medical Sciences, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, China
| | - Xiaomeng Yuan
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China
| | - Shan Peng
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Xingyue Yang
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China
| | - Yuxia Li
- School of Medical Sciences, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, China
| | - Zhen Shen
- Clinical laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
12
|
Dang J, Li Y, Yan J, Wu J, Cai K, Yin L, Zhou Z. Reversal of Chemoresistance via Staged Liberation of Chemodrug and siRNA in Hierarchical Response to ROS Gradient. Adv Healthc Mater 2024; 13:e2304130. [PMID: 38427696 DOI: 10.1002/adhm.202304130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Indexed: 03/03/2024]
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) often leads to the failure of antitumor chemotherapy, and codelivery of chemodrug with P-gp siRNA (siP-gp) represents a promising approach for treating chemoresistant tumors. To maximize the antitumor efficacy, it is desired that the chemodrug be latently released upon completion of siP-gp-mediated gene silencing, which however, largely remains an unmet demand. Herein, core-shell nanocomplexes (NCs) are developed to overcome MDR via staged liberation of siP-gp and chemodrug (doxorubicin, Dox) in hierarchical response to reactive oxygen species (ROS) concentration gradients. The NCs are constructed from mesoporous silica nanoparticles (MSNs) surface-decorated with cRGD-modified, PEGylated, ditellurium-crosslinked polyethylenimine (RPPT), wherein thioketal-linked dimeric doxorubicin (TK-Dox2) and photosensitizer are coencapsulated inside MSNs while siP-gp is embedded in the RPPT polymeric layer. RPPT with ultrahigh ROS-sensitivity can be efficiently degraded by the low-concentration ROS inside cancer cells to trigger siP-gp release. Upon siP-gp-mediated gene silencing and MDR reversal, light irradiation is performed to generate high-concentration, lethal amount of ROS, which cleaves thioketal with low ROS-sensitivity to liberate the monomeric Dox. Such a latent release profile greatly enhances Dox accumulation in Dox-resistant cancer cells (MCF-7/ADR) in vitro and in vivo, which cooperates with the generated ROS to efficiently eradicate MCF-7/ADR xenograft tumors.
Collapse
MESH Headings
- Humans
- Reactive Oxygen Species/metabolism
- Doxorubicin/pharmacology
- Doxorubicin/chemistry
- RNA, Small Interfering/chemistry
- Drug Resistance, Neoplasm/drug effects
- Animals
- Nanoparticles/chemistry
- Mice
- Mice, Nude
- Female
- Silicon Dioxide/chemistry
- Cell Line, Tumor
- MCF-7 Cells
- Mice, Inbred BALB C
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Drug Resistance, Multiple/drug effects
- Photosensitizing Agents/chemistry
- Photosensitizing Agents/pharmacology
Collapse
Affiliation(s)
- Juanjuan Dang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yongjuan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jing Yan
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jianhua Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuchao Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
13
|
Zhong D, Hou X, Pan D, Li Z, Gong Q, Luo K. Bioorthogonal In Situ Polymerization of Dendritic Agents for Hijacking Lysosomes and Enhancing Antigen Presentation in Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403588. [PMID: 38490170 DOI: 10.1002/adma.202403588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/13/2024] [Indexed: 03/17/2024]
Abstract
A low-generation lysine dendrimer, SPr-G2, responds to intracellular glutathione to initiate bioorthogonal in situ polymerization, resulting in the formation of large assemblies in mouse breast cancer cells. The intracellular large assemblies of SPr-G2 can interact with lysosomes to induce lysosome expansion and enhance lysosomal membrane permeabilization, leading to major histocompatibility complex class I upregulation on tumor cell surfaces and ultimately tumor cell death. Moreover, the use of the SPr-G2 dendrimer to conjugate the chemotherapeutic drug, camptothecin (CPT), can boost the therapeutic potency of CPT. Excellent antitumor effects in vitro and in vivo are obtained from the combinational treatment of the SPr-G2 dendrimer and CPT. This combinational effect also enhances antitumor immunity through promoting activation of cytotoxic T cells in tumor tissues and maturation of dendritic cells. This study can shed new light on the development of peptide dendritic agents for cancer therapy.
Collapse
Affiliation(s)
- Dan Zhong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingyu Hou
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
14
|
Zhang Y, Fang Z, Pan D, Li Y, Zhou J, Chen H, Li Z, Zhu M, Li C, Qin L, Ren X, Gong Q, Luo K. Dendritic Polymer-Based Nanomedicines Remodel the Tumor Stroma: Improve Drug Penetration and Enhance Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401304. [PMID: 38469918 DOI: 10.1002/adma.202401304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Indexed: 03/13/2024]
Abstract
The dense extracellular matrix (ECM) in solid tumors, contributed by cancer-associated fibroblasts (CAFs), hinders penetration of drugs and diminishes their therapeutic outcomes. A sequential treatment strategy of remodeling the ECM via a CAF modifier (dasatinib, DAS) is proposed to promote penetration of an immunogenic cell death (ICD) inducer (epirubicin, Epi) via apoptotic vesicles, ultimately enhancing the treatment efficacy against breast cancer. Dendritic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA)-based nanomedicines (poly[OEGMA-Dendron(G2)-Gly-Phe-Leu-Gly-DAS] (P-DAS) and poly[OEGMA-Dendron(G2)-hydrazone-Epi] (P-Epi)) are developed for sequential delivery of DAS and Epi, respectively. P-DAS reprograms CAFs to reduce collagen by downregulating collagen anabolism and energy metabolism, thereby reducing the ECM deposition. The regulated ECM can enhance tumor penetration of P-Epi to strengthen its ICD effect, leading to an amplified antitumor immune response. In breast cancer-bearing mice, this approach alleviates the ECM barrier, resulting in reduced tumor burden and increased cytotoxic T lymphocyte infiltration, and more encouragingly, synergizes effectively with anti-programmed cell death 1 (PD-1) therapy, significantly inhibiting tumor growth and preventing lung metastasis. Furthermore, systemic toxicity is barely detectable after sequential treatment with P-DAS and P-Epi. This approach opens a new avenue for treating desmoplastic tumors by metabolically targeting CAFs to overcome the ECM barrier.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zaixiang Fang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongying Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengli Zhu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cong Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liwen Qin
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangyi Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
15
|
Hou X, Pan D, Zhong D, Gong Q, Luo K. Dendronized Polymer-Derived Nanomedicines for Mitochondrial Dynamics Regulation and Immune Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400582. [PMID: 38477381 DOI: 10.1002/adma.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The effects of dendron side chains in polymeric conjugates on tumor penetration and antigen presentation are systematically examined. Three polymer-gemcitabine (Gem) conjugates (pG0-Gem, pG1-Gem, pG2-Gem) are designed and prepared. The pG2-Gem conjugate uniquely binds to the mitochondria of tumor cells, thus regulating mitochondrial dynamics. The interaction between the pG2-Gem conjugate and the mitochondria promotes great penetration and accumulation of the conjugate at the tumor site, resulting in pronounced antitumor effects in an animal model. Such encouraging therapeutic effects can be ascribed to immune modulation since MHC-1 antigen presentation is significantly enhanced due to mitochondrial fusion and mitochondrial metabolism alteration after pG2-Gem treatment. Crucially, the drug-free dendronized polymer, pG2, is identified to regulate mitochondrial dynamics, and the regulation is independent of the conjugated Gem. Furthermore, the combination of pG2-Gem with anti-PD-1 antibody results in a remarkable tumor clearance rate of 87.5% and a prolonged survival rate of over 150 days, demonstrating the potential of dendronized polymers as an innovative nanoplatform for metabolic modulation and synergistic tumor immunotherapy.
Collapse
Affiliation(s)
- Xingyu Hou
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
16
|
Yu S, Shao X, Wu T, Liu Z, Yu P, Xing J. Preparation of PMMA-Based Temperature/pH Responsive Nanoparticles Encapsulating 5-Fluorouracil and Methotrexate In Situ by One-Pot Dispersion Photopolymerization. Macromol Biosci 2024; 24:e2300469. [PMID: 38197551 DOI: 10.1002/mabi.202300469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Indexed: 01/11/2024]
Abstract
In order to achieve long-term and controllable release of anti-tumor drugs at specific sites, temperature/pH responsive nanoparticles encapsulating 5-fluorouracil and methotrexate in situ are prepared through dispersion photopolymerization under green LED irradiation. The physicochemical properties of nanoparticles are characterized by scanning electron microscopy, Fourier transform infrared, dynamic light scattering, thermogravimetric/differential scanning calorimetry, and X-ray diffraction. In vitro drug release at different temperatures and pH values is examined to ascertain the release pattern of two drugs, which can be well described by Korsmeyer-Peppas kinetic model. The cytotoxicity evaluation illustrates that the tumor cells could be more effectively killed by the drug-loaded nanoparticles, and the improved therapeutic effect is attributed to the controllable and sustainable drug release as well as the enhanced cellular uptake. The blood safety and good biocompatibility of nanoparticles are further confirmed by hemolysis assay, indicating the prepared nanoparticles are potential candidates for effective tumor treatment.
Collapse
Affiliation(s)
- Siyuan Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Tong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
17
|
Li X, Liang X, Fu W, Luo R, Zhang M, Kou X, Zhang Y, Li Y, Huang D, You Y, Wu Q, Gong C. Reversing cancer immunoediting phases with a tumor-activated and optically reinforced immunoscaffold. Bioact Mater 2024; 35:228-241. [PMID: 38333614 PMCID: PMC10850754 DOI: 10.1016/j.bioactmat.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
In situ vaccine (ISV) is a promising immunotherapeutic tactic due to its complete tumoral antigenic repertoire. However, its efficiency is limited by extrinsic inevitable immunosuppression and intrinsic immunogenicity scarcity. To break this plight, a tumor-activated and optically reinforced immunoscaffold (TURN) is exploited to trigger cancer immunoediting phases regression, thus levering potent systemic antitumor immune responses. Upon response to tumoral reactive oxygen species, TURN will first release RGX-104 to attenuate excessive immunosuppressive cells and cytokines, and thus immunosuppression falls and immunogenicity rises. Subsequently, intermittent laser irradiation-activated photothermal agents (PL) trigger abundant tumor antigens exposure, which causes immunogenicity springs and preliminary infiltration of T cells. Finally, CD137 agonists from TURN further promotes the proliferation, function, and survival of T cells for durable antitumor effects. Therefore, cancer immunoediting phases reverse and systemic antitumor immune responses occur. TURN achieves over 90 % tumor growth inhibition in both primary and secondary tumor lesions, induces potent systemic immune responses, and triggers superior long-term immune memory in vivo. Taken together, TURN provides a prospective sight for ISV from the perspective of immunoediting phases.
Collapse
Affiliation(s)
- Xinchao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuqi Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wangxian Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Miaomiao Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaorong Kou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yingjie Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongxue Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanjie You
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Liu Y, Lin Y, Xiao H, Fu Z, Zhu X, Chen X, Li C, Ding C, Lu C. mRNA-responsive two-in-one nanodrug for enhanced anti-tumor chemo-gene therapy. J Control Release 2024; 369:765-774. [PMID: 38593976 DOI: 10.1016/j.jconrel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
The combination of chemotherapy and gene therapy holds great promise for the treatment and eradication of tumors. However, due to significant differences in physicochemical properties between chemotherapeutic agents and functional nucleic acid drugs, direct integration into a single nano-agent is hindered, impeding the design and construction of an effective co-delivery nano-platform for synergistic anti-tumor treatments. In this study, we have developed an mRNA-responsive two-in-one nano-drug for effective anti-tumor therapy by the direct self-assembly of 2'-fluoro-substituted antisense DNA against P-glycoprotein (2'F-DNA) and chemo drug paclitaxel (PTX). The 2'-fluoro modification of DNA could significantly increase the interaction between the therapeutic nucleic acid and the chemotherapeutic drug, promoting the successful formation of 2'F-DNA/PTX nanospheres (2'F-DNA/PTX NSs). Due to the one-step self-assembly process without additional carrier materials, the prepared 2'F-DNA/PTX NSs exhibited considerable loading efficiency and bioavailability of PTX. In the presence of endogenous P-glycoprotein mRNA, the 2'F-DNA/PTX NSs were disassembled. The released 2'F-DNA could down-regulate the expression of P-glycoprotein, which decreased the multidrug resistance of tumor cells and enhanced the chemotherapy effect caused by PTX. In this way, the 2'F-DNA/PTX NSs could synergistically induce the apoptosis of tumor cells and realize the combined anti-tumor therapy. This strategy might provide a new tool to explore functional intracellular co-delivery nano-systems with high bioavailability and exhibit potential promising in the applications of accurate diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Yongfei Liu
- Department of Neurosurgery, Fujian Institute of Brain Disorders and Brain Science, Fujian Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, PR China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, PR China; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Yuhong Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Zhangcheng Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Xiaohui Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Xiaoyong Chen
- Department of Neurosurgery, Fujian Institute of Brain Disorders and Brain Science, Fujian Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, PR China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
| | - Chenyu Ding
- Department of Neurosurgery, Fujian Institute of Brain Disorders and Brain Science, Fujian Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, PR China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, PR China.
| | - Chunhua Lu
- Department of Neurosurgery, Fujian Institute of Brain Disorders and Brain Science, Fujian Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, PR China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, PR China; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, PR China.
| |
Collapse
|
19
|
Xiang Y, Wang B, Yang W, Zheng X, Chen R, Gong Q, Gu Z, Liu Y, Luo K. Mitocytosis Mediated by an Enzyme-Activable Mitochondrion-Disturbing Polymer-Drug Conjugate Enhances Active Penetration in Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311500. [PMID: 38299748 DOI: 10.1002/adma.202311500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The application of nanomedicines for glioblastoma (GBM) therapy is hampered by the blood-brain barrier (BBB) and the dense glioblastoma tissue. To achieve efficient BBB crossing and deep GBM penetration, this work demonstrates a strategy of active transcellular transport of a mitochondrion-disturbing nanomedicine, pGBEMA22-b-pSSPPT9 (GBEPPT), in the GBM tissue through mitocytosis. GBEPPT is computer-aided designed and prepared by self-assembling a conjugate of an amphiphilic block polymer and a drug podophyllotoxin (PPT). When GBEPPT is delivered to the tumor site, overexpressed γ-glutamyl transpeptidase (GGT) on the brain-blood endothelial cell, or the GBM cell triggered enzymatic hydrolysis of γ-glutamylamide on GBEPPT to reverse its negative charge to positive. Positively charged GBEPPT rapidly enter into the cell and target the mitochondria. These GBEPPT disturb the homeostasis of mitochondria, inducing mitocytosis-mediated extracellular transport of GBEPPT to the neighboring cells via mitosomes. This intracellular-to-intercellular delivery cycle allows GBEPPT to penetrate deeply into the GBM parenchyma, and exert sustainable action of PPT released from GBEPPT on the tumor cells along its penetration path at the tumor site, thus improving the anti-GBM effect. The process of mitocytosis mediated by the mitochondrion-disturbing nanomedicine may offer great potential in enhancing drug penetration through malignant tissues, especially poorly permeable solid tumors.
Collapse
Affiliation(s)
- Yufan Xiang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Wang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanchun Yang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Qiyong Gong
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
20
|
Zhou Z, Wang S, Feng T, Zhang P, Fan H, Zou J, Huang K. Nanoassembly-Mediated Exendin-4 Derivatives to Decrease Renal Retention. ACS OMEGA 2024; 9:18757-18765. [PMID: 38708210 PMCID: PMC11064033 DOI: 10.1021/acsomega.3c04644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
An Exendin-4 analogue that was conjugated with 68Ga exhibited an excellent diagnostic effect on insulinoma in clinical practice. On account of its low molecular weight and short hydration radius, 68Ga-Exendin-4 showed high accumulation in kidney tissues. Nanoparticle-mediated strategies have attracted much attention due to polyvalent properties and the size amplification effect. In this study, Exendin-4 derivatives of radionuclide nanodevices were developed and evaluated. The Exendin-4 derivatives consisting of a ternary block recombinant protein were purified by an inverse transition cycle (ITC) and allowed to self-assemble into a nanodevice under physiological conditions. Our results showed that the nanoassemblies of Exendin-4 derivatives formed homogeneous spherical nanoparticles, exhibited outstanding affinity for insulinoma cells, and could be deposited in insulinoma tissues in vivo. The nanoassembly-mediated Exendin-4 derivatives showed fivefold reduced renal retention and exhibited an outstanding tumor-suppression effect.
Collapse
Affiliation(s)
- Zhengwei Zhou
- Department
of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing 210006, P. R. China
- School
of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P. R. China
| | - Shuai Wang
- Department
of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing 210006, P. R. China
- School
of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P. R. China
| | - Tianling Feng
- Department
of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing 210006, P. R. China
- School
of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P. R. China
| | - Pengjun Zhang
- Department
of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing 210006, P. R. China
| | - Hongwei Fan
- Department
of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing 210006, P. R. China
- School
of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P. R. China
| | - Jianjun Zou
- Department
of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing 210006, P. R. China
- School
of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P. R. China
| | - Kaizong Huang
- Department
of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing 210006, P. R. China
| |
Collapse
|
21
|
Koch KC, Jadon N, Thesmar I, Tew GN, Minter LM. Combating bone marrow failure with polymer materials. Front Immunol 2024; 15:1396486. [PMID: 38694497 PMCID: PMC11061490 DOI: 10.3389/fimmu.2024.1396486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Bone marrow failure (BMF) has become one of the most studied autoimmune disorders, particularly due to its prevalence both as an inherited disease, but also as a result of chemotherapies. BMF is associated with severe symptoms such as bleeding episodes and susceptibility to infections, and often has underlying characteristics, such as anemia, thrombocytopenia, and neutropenia. The current treatment landscape for BMF requires stem cell transplantation or chemotherapies to induce immune suppression. However, there is limited donor cell availability or dose related toxicity associated with these treatments. Optimizing these treatments has become a necessity. Polymer-based materials have become increasingly popular, as current research efforts are focused on synthesizing novel cell matrices for stem cell expansion to solve limited donor cell availability, as well as applying polymer delivery vehicles to intracellularly deliver cargo that can aid in immunosuppression. Here, we discuss the importance and impact of polymer materials to enhance therapeutics in the context of BMF.
Collapse
Affiliation(s)
- Kayla C. Koch
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Nidhi Jadon
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Iris Thesmar
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
22
|
Shi F, Du M, Wang Q, Adu-Frimpong M, Li C, Zhang X, Ji H, Toreniyazov E, Cao X, Wang Q, Xu X. Isoliquiritigenin Containing PH Sensitive Micelles for Enhanced Anti-Colitis Activity. J Pharm Sci 2024; 113:918-929. [PMID: 37777013 DOI: 10.1016/j.xphs.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Isoliquiritigenin (ISL) is known to have a variety of pharmacological activities, but its poor water solubility limits its application. In order to improve the bioavailability of ISL and its anti-colitis activity, this study aims to develop an effective drug delivery system loaded with ISL. In this study, ISL pH-sensitive micelles (ISL-M) were prepared by thin film hydration method. The micellar size (PS), polydispersity index (PDI), electrokinetic potential (ζ-potential), drug loading (DL), encapsulation rate (EE) and other physical parameters were characterized. The storage stability of ISL-M was tested, release in vitro and pharmacokinetic studies in rats were performed, and the anti-inflammatory effect of ISL-M on ulcerative colitis induced by dextran sulfate sodium (DSS) was evaluated. The results showed that PS, PDI, ZP, EE% and DL% of ISL-M were 151.15±1.04 nm, 0.092±0.014, -31.32±0.721 mV, 93.97±1.53 % and 8.42±0.34 %, respectively. Compared with unformulated ISL (F-ISL), the cumulative release rate of ISL-M in the three different media was significantly increased and showed a certain pH sensitivity. The area under drug curve (AUC0-t) and peak concentration (Cmax) of ISL-M group were 2.94 and 4.06 times higher than those of ISL group. In addition, ISL-M is expected to develop new methods for increasing the bioavailability and anti-inflammatory activity of ISL.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Qin Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK 0215-5321, Ghana
| | - Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Xinyue Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, PR China
| | | | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| |
Collapse
|
23
|
Wu L, Lu X, Lu Y, Shi M, Guo S, Feng J, Yang S, Xiong W, Xu Y, Yan C, Shen Z. Kilogram-Scale Synthesis of Extremely Small Gadolinium Oxide Nanoparticles as a T 1-Weighted Contrast Agent for Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308547. [PMID: 37988646 DOI: 10.1002/smll.202308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Magnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GdON-PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half-life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES-GdONs. Compared with ES-GdON-PAA, the PMA-stabilized ES-GdON (ES-GdON-PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half-life (37.51 min). The optimized ES-GdON-PMA-9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large-scale synthesis of the ES-GdONs-PMA. The weight of the optimized freeze-dried ES-GdON-PMA-26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES-GdON-PMA-26 formulation (CGd = 100 mm) after high-pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.
Collapse
Affiliation(s)
- Lihe Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yudie Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Meng Shi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
24
|
Alkhafaji E, Dmour I, Al-Essa MK, Alshaer W, Aljaberi A, Khalil EA, Taha MO. Preparation of novel shell-ionotropically crosslinked micelles based on hexadecylamine and tripolyphosphate for cancer drug delivery. Pharm Dev Technol 2024; 29:322-338. [PMID: 38502578 DOI: 10.1080/10837450.2024.2332457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
AIMS Micellar systems have the advantage of being easily prepared, cheap, and readily loadable with bioactive molecular cargo. However, their fundamental pitfall is poor stability, particularly under dilution conditions. We propose to use simple quaternary ammonium surfactants, namely, hexadecylamine (HDA) and hexadecylpyridinium (HDAP), together with tripolyphosphate (TPP) anion, to generate ionotropically stabilized micelles capable of drug delivery into cancer cells. METHODS optimized mixed HDA/HDAP micelles were prepared and stabilized with TPP. Curcumin was used as a loaded model drug. The prepared nanoparticles were characterized by dynamic light scattering, infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Moreover, their cellular uptake was assessed using flow cytometry and confocal fluorescence microscopy. RESULTS The prepared nanoparticles were found to be stable under dilution and at high temperatures and to have a size range from 139 nm to 580 nm, depending on pH (4.6-7.4), dilution (up to 100 times), and temperature (25 - 80 °C). They were effective at delivering their load into cancer cells. Additionally, flow cytometry indicated the resulting stabilized micellar nanoparticles to be non-cytotoxic. CONCLUSIONS The described novel stabilized micelles are simple to prepare and viable for cancer delivery.
Collapse
Affiliation(s)
- Enas Alkhafaji
- Department of Pharmaceutical Sciences, Jerash University, Jerash, Jordan
| | - Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, The Hashemite University, Zarqa, Jordan
| | - Mohamed K Al-Essa
- Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ahmad Aljaberi
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman, Jordan
| | - Enam A Khalil
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Drug Design and Discovery Unit, Amman, Jordan
| |
Collapse
|
25
|
Zhou J, Ji J, Li X, Zhang Y, Gu L, Zheng X, Li Y, He J, Yang C, Xiao K, Gong Q, Gu Z, Luo K. Homomultivalent Polymeric Nanotraps Disturb Lipid Metabolism Homeostasis and Tune Pyroptosis in Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312528. [PMID: 38240412 DOI: 10.1002/adma.202312528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Genetic manipulations and pharmaceutical interventions to disturb lipid metabolism homeostasis have emerged as an attractive approach for the management of cancer. However, the research on the utilization of bioactive materials to modulate lipid metabolism homeostasis remains constrained. In this study, heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TMCD) is utilized to fabricate homomultivalent polymeric nanotraps, and surprisingly, its unprecedented ability to perturb lipid metabolism homeostasis and induce pyroptosis in tumor cells is found. Through modulation of the density of TMCD arrayed on the polymers, one top-performing nanotrap, PTMCD4, exhibits the most powerful cholesterol-trapping and depletion capacity, thus achieving prominent cytotoxicity toward different types of tumor cells and encouraging antitumor effects in vivo. The interactions between PTMCD4 and biomembranes of tumor cells effectively enable the reduction of cellular phosphatidylcholine and cholesterol levels, thus provoking damage to the biomembrane integrity and perturbation of lipid metabolism homeostasis. Additionally, the interplays between PTMCD4 and lysosomes also induce lysosomal stress, activate the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasomes, and subsequently trigger tumor cell pyroptosis. To sum up, this study first introduces dendronized bioactive polymers to manipulate lipid metabolism and has shed light on another innovative insight for cancer therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiecheng Ji
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue Li
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxin Zhang
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunkun Li
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Kai Xiao
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Zhongwei Gu
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
26
|
Gu Z, Zhong D, Hou X, Wei X, Liu C, Zhang Y, Duan Z, Gu Z, Gong Q, Luo K. Unraveling Ros Conversion Through Enhanced Enzyme-Like Activity with Copper-Doped Cerium Oxide for Tumor Nanocatalytic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307154. [PMID: 38161213 PMCID: PMC10953536 DOI: 10.1002/advs.202307154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Nanozyme catalytic therapy for cancer treatments has become one of the heated topics, and the therapeutic efficacy is highly correlated with their catalytic efficiency. In this work, three copper-doped CeO2 supports with various structures as well as crystal facets are developed to realize dual enzyme-mimic catalytic activities, that is superoxide dismutase (SOD) to reduce superoxide radicals to H2 O2 and peroxidase (POD) to transform H2 O2 to ∙OH. The wire-shaped CeO2 /Cu-W has the richest surface oxygen vacancies, and a low level of oxygen vacancy (Vo) formation energy, which allows for the elimination of intracellular reactive oxygen spieces (ROS) and continuous transformation to ∙OH with cascade reaction. Moreover, the wire-shaped CeO2 /Cu-W displays the highest toxic ∙OH production capacity in an acidic intracellular environment, inducing breast cancer cell death and pro-apoptotic autophagy. Therefore, wire-shaped CeO2 /Cu nanoparticles as an artificial enzyme system can have great potential in the intervention of intracellular ROS in cancer cells, achieving efficacious nanocatalytic therapy.
Collapse
Affiliation(s)
- Zhengxiang Gu
- Department of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Dan Zhong
- Department of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xingyu Hou
- Department of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelian Wei
- Department of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Caikun Liu
- National Engineering Research Center for BiomaterialsSichuan University29 Wangjiang RoadChengdu610064China
| | - Yechuan Zhang
- School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Zhenyu Duan
- Department of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhongwei Gu
- Department of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qiyong Gong
- Department of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and molecular imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| | - Kui Luo
- Department of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and molecular imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
27
|
Wang L, Wang Y, Zhao Q. Data mining and analysis of the adverse events derived signals of 4 gadolinium-based contrast agents based on the US Food and drug administration adverse event reporting system. Expert Opin Drug Saf 2024; 23:339-352. [PMID: 37837355 DOI: 10.1080/14740338.2023.2271834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND To detect and analyze risk signals of the drug-related adverse events (AEs) of 4 gadolinium-based contrast agents (GBCAs) (gadopentetate dimeglumine (Gd-DTPA), gadobenate dimeglumine (Gd-BOPTA), gadoteridol (Gd-HP-DO3A), and gadobutrol (Gd-BT-DO3A)) according to the US Food and Drug Administration Adverse Event Reporting System (FAERS) database and ensure the clinical safety. RESEARCH DESIGN AND METHODS The AEs that are associated with the 4 GBCAs were collected from the FAERS database from 2004Q1 to 2022Q3. The risk signals were mined using reporting odds ratio (ROR) and proportional reporting ratio (PRR). RESULTS 424 risk signals were excavated, in which 151 risk signals were associated with Gd-DTPA, 93 risk signals were related to Gd-BOPTA, 79 risk signals were relevant to Gd-HP-DO3A, and 101 risk signals were associated with Gd-BT-DO3A. The AE signals involved 20 system organ classes (SOCs). Two of the top four SOCs were identical, namely 'skin and subcutaneous tissue disorders' and 'general disorders and administration site conditions.' CONCLUSIONS The safety signals of 4 GBCAs were detected, and the SOCs associated with the AEs of the 4 GBCAs were different. Besides, some AEs obtained in this study were not mentioned in the package inserts, which need more attention and research to ensure the clinical safety.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, P. R. China
| | - Yinglin Wang
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, P. R. China
| | - Quan Zhao
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, P. R. China
| |
Collapse
|
28
|
Cui H, Zhao YY, Wu Q, You Y, Lan Z, Zou KL, Cheng GW, Chen H, Han YH, Chen Y, Qi XD, Meng XW, Ma LM, Yu GT. Microwave-responsive gadolinium metal-organic frameworks nanosystem for MRI-guided cancer thermotherapy and synergistic immunotherapy. Bioact Mater 2024; 33:532-544. [PMID: 38162511 PMCID: PMC10755491 DOI: 10.1016/j.bioactmat.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
The clinical application of cancer immunotherapy is unsatisfied due to low response rates and systemic immune-related adverse events. Microwave hyperthermia can be used as a synergistic immunotherapy to amplify the antitumor effect. Herein, we designed a Gd-based metal-organic framework (Gd-MOF) nanosystem for MRI-guided thermotherapy and synergistic immunotherapy, which featured high performance in drug loading and tumor tissue penetration. The PD-1 inhibitor (aPD-1) was initially loaded in the porous Gd-MOF (Gd/M) nanosystem. Then, the phase change material (PCM) and the cancer cell membrane were further sequentially modified on the surface of Gd/MP to obtain Gd-MOF@aPD-1@CM (Gd/MPC). When entering the tumor microenvironment (TME), Gd/MPC induces immunogenic death of tumor cells through microwave thermal responsiveness, improves tumor suppressive immune microenvironment and further enhances anti-tumor ability of T cells by releasing aPD-1. Meanwhile, Gd/MPC can be used for contrast-enhanced MRI. Transcriptomics data revealed that the downregulation of MSK2 in cancer cells leads to the downregulation of c-fos and c-jun, and ultimately leads to the apoptosis of cancer cells after treatment. In general, Gd/MPC nanosystem not only solves the problem of system side effect, but also achieves the controlled drug release via PCM, providing a promising theranostic nanoplatform for development of cancer combination immunotherapy.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan You
- Department of Endodontics, Southern Medical University-Shenzhen Stomatology Hospital (Pingshan), Shenzhen, 518118, China
| | - Zhou Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Ke-Long Zou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Guo-Wang Cheng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yan-Hua Han
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Xiang-Dong Qi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xian-Wei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Min Ma
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
29
|
Xu K, Duan S, Wang W, Ouyang Q, Qin F, Guo P, Hou J, He Z, Wei W, Qin M. Nose-to-brain delivery of nanotherapeutics: Transport mechanisms and applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1956. [PMID: 38558503 DOI: 10.1002/wnan.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
The blood-brain barrier presents a key limitation to the administration of therapeutic molecules for the treatment of brain disease. While drugs administered orally or intravenously must cross this barrier to reach brain targets, the unique anatomical structure of the olfactory system provides a route to deliver drugs directly to the brain. Entering the brain via receptor, carrier, and adsorption-mediated transcytosis in the nasal olfactory and trigeminal regions has the potential to increase drug delivery. In this review, we introduce the physiological and anatomical structures of the nasal cavity, and summarize the possible modes of transport and the relevant receptors and carriers in the nose-to-brain pathway. Additionally, we provide examples of nanotherapeutics developed for intranasal drug delivery to the brain. Further development of nanoparticles that can be applied to intranasal delivery systems promises to improve drug efficacy and reduce drug resistance and adverse effects by increasing molecular access to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Kunyao Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Ouyang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Jinghan Hou
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Feng X, Shi Y, Zhang Y, Lei F, Ren R, Tang X. Opportunities and Challenges for Inhalable Nanomedicine Formulations in Respiratory Diseases: A Review. Int J Nanomedicine 2024; 19:1509-1538. [PMID: 38384321 PMCID: PMC10880554 DOI: 10.2147/ijn.s446919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Lungs experience frequent interactions with the external environment and have an abundant supply of blood; therefore, they are susceptible to invasion by pathogenic microorganisms and tumor cells. However, the limited pharmacokinetics of conventional drugs in the lungs poses a clinical challenge. The emergence of different nano-formulations has been facilitated by advancements in nanotechnology. Inhaled nanomedicines exhibit better targeting and prolonged therapeutic effects. Although nano-formulations have great potential, they still present several unknown risks. Herein, we review the (1) physiological anatomy of the lungs and their biological barriers, (2) pharmacokinetics and toxicology of nanomaterial formulations in the lungs; (3) current nanomaterials that can be applied to the respiratory system and related design strategies, and (4) current applications of inhaled nanomaterials in treating respiratory disorders, vaccine design, and imaging detection based on the characteristics of different nanomaterials. Finally, (5) we analyze and summarize the challenges and prospects of nanomaterials for respiratory disease applications. We believe that nanomaterials, particularly inhaled nano-formulations, have excellent prospects for application in respiratory diseases. However, we emphasize that the simultaneous toxic side effects of biological nanomaterials must be considered during the application of these emerging medicines. This study aims to offer comprehensive guidelines and valuable insights for conducting research on nanomaterials in the domain of the respiratory system.
Collapse
Affiliation(s)
- Xujun Feng
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuan Shi
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ye Zhang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Fei Lei
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Rong Ren
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xiangdong Tang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
31
|
Nuzulia NA, Mart T, Ahmed I, Sari YW. The Use of Microspheres for Cancer Embolization Therapy: Recent Advancements and Prospective. ACS Biomater Sci Eng 2024; 10:637-656. [PMID: 38276875 DOI: 10.1021/acsbiomaterials.3c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Embolization therapy involving biomaterials has improved the therapeutic strategy for most liver cancer treatments. Developing biomaterials as embolic agents has significantly improved patients' survival rates. Various embolic agents are present in liquid agents, foam, particulates, and particles. Some of the most applied embolic agents are microparticles, such as microspheres (3D micrometer-sized spherical particles). Microspheres with added functionalities are currently being developed for effective therapeutic embolization. Their excellent properties of high surface area and capacity for being loaded with radionuclides and alternate active or therapeutic agents provide an additional advantage to overcome limitations from traditional cancer treatments. Microspheres (non-radioactive and radioactive) have been widely used and explored for localized cancer treatment. Non-radioactive microspheres exhibit improved clinical performance as drug delivery vehicles in chemotherapy due to their controlled and sustained drug release to the target site. They offer better flow properties and are beneficial for the ease of delivery via injection procedures. In addition, radioactive microspheres have also been exploited for use as an embolic platform in internal radiotherapy as an alternative to cancer treatment. This short review summarizes the progressive development of non-radioactive and radioactive embolic microspheres, emphasizing material characteristics. The use of embolic microspheres for various modalities of therapeutic arterial embolization and their impact on therapeutic performance are also discussed.
Collapse
Affiliation(s)
- Nur Aisyah Nuzulia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Terry Mart
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Yessie Widya Sari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
32
|
Ding L, Lyu Z, Perles-Barbacaru TA, Huang AYT, Lian B, Jiang Y, Roussel T, Galanakou C, Giorgio S, Kao CL, Liu X, Iovanna J, Bernard M, Viola A, Peng L. Modular Self-Assembling Dendrimer Nanosystems for Magnetic Resonance and Multimodality Imaging of Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308262. [PMID: 38030568 DOI: 10.1002/adma.202308262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Bioimaging is a powerful tool for diagnosing tumors but remains limited in terms of sensitivity and specificity. Nanotechnology-based imaging probes able to accommodate abundant imaging units with different imaging modalities are particularly promising for overcoming these limitations. In addition, the nanosized imaging agents can specifically increase the contrast of tumors by exploiting the enhanced permeability and retention effect. A proof-of-concept study is performed on pancreatic cancer to demonstrate the use of modular amphiphilic dendrimer-based nanoprobes for magnetic resonance (MR) imaging (MRI) or MR/near-infrared fluorescence (NIRF) multimodality imaging. Specifically, the self-assembly of an amphiphilic dendrimer bearing multiple Gd3+ units at its terminals, generates a nanomicellar agent exhibiting favorable relaxivity for MRI with a good safety profile. MRI reveals an up to two-fold higher contrast enhancement in tumors than in normal muscle. Encapsulating the NIRF dye within the core of the nanoprobe yields an MR/NIRF bimodal imaging agent for tumor detection that is efficient both for MRI, at Gd3+ concentrations 1/10 the standard clinical dose, and for NIRF imaging, allowing over two-fold stronger fluorescence intensities. These self-assembling dendrimer nanosystems thus constitute effective probes for MRI and MR/NIRF multimodality imaging, offering a promising nanotechnology platform for elaborating multimodality imaging probes in biomedical applications.
Collapse
Affiliation(s)
- Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Zhenbin Lyu
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Teodora-Adriana Perles-Barbacaru
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Adela Ya-Ting Huang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Baoping Lian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yifan Jiang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Christina Galanakou
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, 13273, France
| | - Monique Bernard
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Angèle Viola
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| |
Collapse
|
33
|
Liu M, Zhang R, Huang H, Liu P, Zhao X, Wu H, He Y, Xu R, Qin X, Cheng Z, Liu H, Ergonul O, Can F, Ouyang D, Wang Z, Pang Z, Liu F. Erythrocyte-Leveraged Oncolytic Virotherapy (ELeOVt): Oncolytic Virus Assembly on Erythrocyte Surface to Combat Pulmonary Metastasis and Alleviate Side Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303907. [PMID: 37997186 PMCID: PMC10837356 DOI: 10.1002/advs.202303907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Despite being a new promising tool for cancer therapy, intravenous delivery of oncolytic viruses (OVs) is greatly limited by poor tumor targeting, rapid clearance in the blood, severe organ toxicity, and cytokine release syndrome. Herein, a simple and efficient strategy of erythrocyte-leveraged oncolytic virotherapy (ELeOVt) is reported, which for the first time assembled OVs on the surface of erythrocytes with up to near 100% efficiency and allowed targeted delivery of OVs to the lung after intravenous injection to achieve excellent treatment of pulmonary metastases while greatly improving the biocompatibility of OVs as a drug. Polyethyleneimine (PEI) as a bridge to assemble OVs on erythrocytes also played an important role in promoting the transfection of OVs. It is found that ELeOVt approach significantly prolonged the circulation time of OVs and increased the OVs distribution in the lung by more than tenfold, thereby significantly improving the treatment of lung metastases while reducing organ and systemic toxicity. Taken together, these findings suggest that the ELeOVt provides a biocompatible, efficient, and widely available approach to empower OVs to combat lung metastasis.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Ruizhe Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Hanwei Huang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Pengfei Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xu Zhao
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Hu Wu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Ying He
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
| | - Ruizhe Xu
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
| | - Xifeng Qin
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
| | - Zhenguo Cheng
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapySchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Hongyu Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Onder Ergonul
- Koç University Iş Bank Center for Infectious Diseases (KUISCID)Koç University School of Medicine and American HospitalIstanbul34010Turkey
| | - Füsun Can
- Koç University Iş Bank Center for Infectious Diseases (KUISCID)Koç University School of Medicine and American HospitalIstanbul34010Turkey
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences (ICMS)University of MacauMacau999078China
| | - Zhenning Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Zhiqing Pang
- Department of PharmaceuticsSchool of PharmacyFudan University and Key Laboratory of Smart Drug DeliveryMinistry of EducationShanghai201203China
| | - Funan Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsChina Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
- Phase I Clinical Trials CenterThe First HospitalChina Medical University518 North Chuangxin Road, Baita Street, Hunnan DistrictShenyangLiaoning110102China
| |
Collapse
|
34
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
35
|
Hou M, Liu M, Yu H, Kou Y, Jia J, Zhou Q, Zhang F, Zhao D, Zhao T, Li X. Spatially Asymmetric Nanoparticles for Boosting Ferroptosis in Tumor Therapy. NANO LETTERS 2024; 24:1284-1293. [PMID: 38230643 DOI: 10.1021/acs.nanolett.3c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Despite its effectiveness in eliminating cancer cells, ferroptosis is hindered by the high natural antioxidant glutathione (GSH) levels in the tumor microenvironment. Herein, we developed a spatially asymmetric nanoparticle, Fe3O4@DMS&PDA@MnO2-SRF, for enhanced ferroptosis. It consists of two subunits: Fe3O4 nanoparticles coated with dendritic mesoporous silica (DMS) and PDA@MnO2 (PDA: polydopamine) loaded with sorafenib (SRF). The spatial isolation of the Fe3O4@DMS and PDA@MnO2-SRF subunits enhances the synergistic effect between the GSH-scavengers and ferroptosis-related components. First, the increased exposure of the Fe3O4 subunit enhances the Fenton reaction, leading to increased production of reactive oxygen species. Furthermore, the PDA@MnO2-SRF subunit effectively depletes GSH, thereby inducing ferroptosis by the inactivation of glutathione-dependent peroxidases 4. Moreover, the SRF blocks Xc- transport in tumor cells, augmenting GSH depletion capabilities. The dual GSH depletion of the Fe3O4@DMS&PDA@MnO2-SRF significantly weakens the antioxidative system, boosting the chemodynamic performance and leading to increased ferroptosis of tumor cells.
Collapse
Affiliation(s)
- Mengmeng Hou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Minchao Liu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongyue Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yufang Kou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jia Jia
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiaoyu Zhou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
36
|
Song X, Cai H, Shi Z, Li Z, Zheng X, Yang K, Gong Q, Gu Z, Hu J, Luo K. Enzyme-Responsive Branched Glycopolymer-Based Nanoassembly for Co-Delivery of Paclitaxel and Akt Inhibitor toward Synergistic Therapy of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306230. [PMID: 37953442 PMCID: PMC10787093 DOI: 10.1002/advs.202306230] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Combined chemotherapy and targeted therapy holds immense potential in the management of advanced gastric cancer (GC). GC tissues exhibit an elevated expression level of protein kinase B (AKT), which contributes to disease progression and poor chemotherapeutic responsiveness. Inhibition of AKT expression through an AKT inhibitor, capivasertib (CAP), to enhance cytotoxicity of paclitaxel (PTX) toward GC cells is demonstrated in this study. A cathepsin B-responsive polymeric nanoparticle prodrug system is employed for co-delivery of PTX and CAP, resulting in a polymeric nano-drug BPGP@CAP. The release of PTX and CAP is triggered in an environment with overexpressed cathepsin B upon lysosomal uptake of BPGP@CAP. A synergistic therapeutic effect of PTX and CAP on killing GC cells is confirmed by in vitro and in vivo experiments. Mechanistic investigations suggested that CAP may inhibit AKT expression, leading to suppression of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Encouragingly, CAP can synergize with PTX to exert potent antitumor effects against GC after they are co-delivered via a polymeric drug delivery system, and this delivery system helped reduce their toxic side effects, which provides an effective therapeutic strategy for treating GC.
Collapse
Affiliation(s)
- Xiaohai Song
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of Thoracic Surgery and Institute of Thoracic OncologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610097China
| | - Zhaochen Shi
- West China School of MedicineSichuan UniversityChengdu610041China
| | - Zhiqian Li
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiuli Zheng
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kun Yang
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qiyong Gong
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamen361000China
| | - Zhongwei Gu
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Research Institute for BiomaterialsTech Institute for Advanced MaterialsCollege of Materials Science and EngineeringNJTech‐BARTY Joint Research Center for Innovative Medical TechnologySuqian Advanced Materials Industry Technology Innovation CenterJiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjing Tech UniversityNanjing211816China
| | - Jiankun Hu
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
37
|
Li Y, Wu Y, Fang Z, Zhang Y, Ding H, Ren L, Zhang L, Gong Q, Gu Z, Luo K. Dendritic Nanomedicine with Boronate Bonds for Augmented Chemo-Immunotherapy via Synergistic Modulation of Tumor Immune Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307263. [PMID: 37743633 DOI: 10.1002/adma.202307263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Unsatisfied tumor accumulation of chemotherapeutic drugs and a complicated immunosuppressive microenvironment diminish the immune response rate and the therapeutic effect. Surface modification of these drugs with target ligands can promote their cellular internalization, but the modified drugs may be subjected to unexpected immune recognition and clearance. Herein, a phenylboronic acid (PBA) group-shieldable dendritic nanomedicine that integrates an immunogenic cell death (ICD)-inducing agent (epirubicin, Epi) and an indoleamine 2,3-dioxgenase 1 (IDO1) inhibitor (NLG919) is reported for tumor chemo-immunotherapy. This NLG919-loaded Epi-conjugated PEGylated dendrimers bridged with boronate bonds (NLG919@Epi-DBP) maintains a stable nanostructure during circulation. Under a moderate acidic condition, the PBA group exposes to the sialic acid residue on the tumor cell membrane to enhance the internalization and penetration of NLG919@Epi-DBP. At pH 5.0, NLG919@Epi-DBP rapidly disassembles to release the incorporated Epi and NLG919. Epi triggers robust ICD of tumor cells that evokes strong immune response. In addition, inhibition of the IDO1 activity downregulates the metabolism of L-tryptophan to kynurenine, leading to a reduction in the recruitment of immunosuppressive cells and modulation of the tumor immune microenvironment. Collectively, this promising strategy has been demonstrated to evoke robust immune response as well as remodel the immunosuppressive microenvironment for an enhanced chemo-immunotherapeutic effect.
Collapse
Affiliation(s)
- Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahui Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zaixiang Fang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haitao Ding
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
38
|
Tang K, Xue J, Zhu Y, Wu C. Design and synthesis of bioinspired nanomaterials for biomedical application. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1914. [PMID: 37394619 DOI: 10.1002/wnan.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
Natural materials and bioprocesses provide abundant inspirations for the design and synthesis of high-performance nanomaterials. In the past several decades, bioinspired nanomaterials have shown great potential in the application of biomedical fields, such as tissue engineering, drug delivery, and cancer therapy, and so on. In this review, three types of bioinspired strategies for biomedical nanomaterials, that is, inspired by the natural structures, biomolecules, and bioprocesses, are mainly introduced. We summarize and discuss the design concepts and synthesis approaches of various bioinspired nanomaterials along with their specific roles in biomedical applications. Additionally, we discuss the challenges for the development of bioinspired biomedical nanomaterials, such as mechanical failure in wet environment, limitation in scale-up fabrication, and lack of deep understanding of biological properties. It is expected that the development and clinical translation of bioinspired biomedical nanomaterials will be further promoted under the cooperation of interdisciplinary subjects in future. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Li L, Liu T, Zuo S, Li Y, Zhao E, Lu Q, Wang D, Sun Y, He Z, Sun B, Sun J. Satellite-Type Sulfur Atom Distribution in Trithiocarbonate Bond-Bridged Dimeric Prodrug Nanoassemblies: Achieving Both Stability and Activatability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310633. [PMID: 37983894 DOI: 10.1002/adma.202310633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Homodimeric prodrug nanoassemblies (HDPNs) hold promise for improving the delivery efficiency of chemo-drugs. However, the key challenge lies in designing rational chemical linkers that can simultaneously ensure the chemical stability, self-assembly stability, and site-specific activation of prodrugs. The "in series" increase in sulfur atoms, such as trisulfide bond, can improve the assembly stability of HDPNs to a certain extent, but limits the chemical stability of prodrugs. Herein, trithiocarbonate bond (─SC(S)S─), with a stable "satellite-type" distribution of sulfur atoms, is developed via the insertion of a central carbon atom in trisulfide bonds. ─SC(S)S─ bond effectively addresses the existing predicament of HDPNs by improving the chemical and self-assembly stability of homodimeric prodrugs while maintaining the on-demand bioactivation. Furthermore, ─SC(S)S─ bond inhibits antioxidant defense system, leading to up-regulation of the cellular ROS and apoptosis of tumor cells. These improvements of ─SC(S)S─ bond endow the HDPNs with in vivo longevity and tumor specificity, ultimately enhancing the therapeutic outcomes. ─SC(S)S─ bond is, therefore, promising for overcoming the bottleneck of HDPNs for efficient oncological therapy.
Collapse
Affiliation(s)
- Lingxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Erwei Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Danping Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
40
|
Su G, Xu H, Zhou F, Gong X, Tan S, He Y. Boosting Reactive Oxygen Species Generation with a Dual-Catalytic Nanomedicine for Enhanced Tumor Nanocatalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59175-59188. [PMID: 38095444 DOI: 10.1021/acsami.3c13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Generating lethal reactive oxygen species (ROS) within tumors by nanocatalytic medicines is an advanced strategy for tumor-specific therapy in recent years. Nevertheless, the low yield of ROS restrains its therapeutic efficiency. Herein, a dual-catalytic nanomedicine based on tumor microenvironment (TME)-responsive liposomal nanosystem co-delivering CuO2 and dihydroartemisinin (DHA) (LIPSe@CuO2&DHA) is developed to boost ROS generation against tumor. The liposomal nanosystem can degrade in the ROS-overexpressed TME and liberate CuO2 and DHA to initiate Cu-based dual-catalytic ROS generation. Serving as generators of H2O2 and Cu2+, CuO2 can self-produce plenty of toxic hydroxyl radicals via Fenton-like reaction in the acidic TME. Meanwhile, the released Cu2+ can catalyze DHA to generate cytotoxic C-centered radicals. Together, the self-supplied H2O2 and Cu-based dual-catalytic reaction greatly increase the intratumoral level of lethal ROS. Importantly, Cu2+ can decrease the GSH-mediated scavenging effect on the produced ROS via a redox reaction and undergo a Cu2+-to-Cu+ conversion to enhance the Fenton-like reaction, further guaranteeing the high efficiency of ROS generation. Resultantly, LIPSe@CuO2&DHA induces remarkable cancer cell death and tumor growth inhibition, which may present a promising nanocatalytic medicine for cancer therapy.
Collapse
Affiliation(s)
- Guoting Su
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hui Xu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - FangFang Zhou
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiyu Gong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
41
|
Gao Y, Ouyang Z, Shen S, Yu H, Jia B, Wang H, Shen M, Shi X. Manganese Dioxide-Entrapping Dendrimers Co-Deliver Protein and Nucleotide for Magnetic Resonance Imaging-Guided Chemodynamic/Starvation/Immune Therapy of Tumors. ACS NANO 2023; 17:23889-23902. [PMID: 38006397 DOI: 10.1021/acsnano.3c08174] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Development of a nanoscale drug delivery system that can simultaneously exert efficient tumor therapeutic efficacy while creating the desired antitumor immune responses is still challenging. Herein, we report the use of a manganese dioxide (MnO2)-entrapping dendrimer nanocarrier to codeliver glucose oxidase (GOx) and cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING) for improved tumor chemodynamic/starvation/immune therapy. Methoxy poly(ethylene glycol) (mPEG)- and phenylboronic acid (PBA)-modified generation 5 (G5) poly(amidoamine) dendrimers were first synthesized and then entrapped with MnO2 nanoparticles (NPs) to generate the hybrid MnO2@G5-mPEG-PBA (MGPP) NPs. The created MGPP NPs with an MnO2 core size of 2.8 nm display efficient glutathione depletion ability, and a favorable Mn2+ release profile under a tumor microenvironment mimetic condition to enable Fenton-like reaction and T1-weighted magnetic resonance (MR) imaging. We show that the MGPP-mediated GOx delivery facilitates enhanced chemodynamic/starvation therapy of cancer cells in vitro, and further codelivery of cGAMP can effectively trigger immunogenic cell death (ICD) to strongly promote the maturation of dendritic cells. In a bilateral mouse colorectal tumor model, the dendrimer delivery nanosystem elicits a potent antitumor performance with a strong abscopal effect, greatly improving the overall mouse survival rate. Importantly, the dendrimer-mediated codelivery not only allows the coordination of Mn2+ with GOx and cGAMP for respective chemodynamic/starvation-triggered ICD and augmented STING activation to boost systemic antitumor immune responses, but also enables T1-weighted tumor MR imaging, potentially serving as a promising nanoplatform for enhanced antitumor therapy with desired immune responses.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Siyan Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Bingyang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
42
|
Wei X, Zheng Z, Liu M, Yang Z, Xie E, Lin J, Gao Y, Tan R, She Z, Ma J, Yang L. Enzyme-responsive nanospheres target senescent cells for diabetic wound healing by employing chemodynamic therapy. Acta Biomater 2023; 172:407-422. [PMID: 37848101 DOI: 10.1016/j.actbio.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Evidence indicates that prolonged low-level inflammation and elevated-glucose-induced oxidative stress in diabetic wounds can accelerate senescence. The accumulation of senescent cells, in turn, inhibits cellular proliferation and migration, aggravating the inflammatory response and oxidative stress, ultimately impeding wound healing. In this study, we exploited the heightened lysosomal β-galactosidase activity detected in senescent cells to develop an innovative drug delivery system by encapsulating Fe3O4 with galactose-modified poly (lactic-co-glycolic acid) (PLGA) (F@GP). We found that F@GP can selectively release Fe3O4 into senescent cells, inducing ferroptosis via the Fenton reaction in the presence of elevated intracellular H2O2 levels. This showed that F@GP administration can serve as a chemodynamic therapy to eliminate senescent cells and promote cell proliferation. Furthermore, the F@GP drug delivery system gradually released iron ions into the diabetic wound tissues, enhancing the attenuation of cellular senescence, stimulating cell proliferation, promoting re-epithelialization, and accelerating the healing of diabetic wounds in mice. Our groundbreaking approach unveiled the specific targeting of senescence by F@GP, demonstrating its profound effect on promoting the healing of diabetic wounds. This discovery underscores the therapeutic potential of F@GP in effectively addressing challenging cases of wound repair. STATEMENT OF SIGNIFICANCE: The development of galactose-modified PLGA nanoparticles loaded with Fe3O4 (F@GP) represents a significant therapeutic approach for the treatment of diabetic wounds. These nanoparticles exhibit remarkable potential in selectively targeting senescent cells, which accumulate in diabetic wound tissue, through an enzyme-responsive mechanism. By employing chemodynamic therapy, F@GP nanoparticles effectively eliminate senescent cells by releasing iron ions that mediate the Fenton reaction. This targeted approach holds great promise for promoting diabetic wound healing by selectively eliminating senescent cells, which play a crucial role in impairing the wound healing process. The innovative utilization of F@GP nanoparticles as a therapeutic intervention offers a novel and potentially transformative strategy for addressing the challenges associated with diabetic wound healing.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Zhangfeifan Yang
- Department of Statistics, University of California Los Angeles, Los Angeles, USA
| | - Erlian Xie
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Rongwei Tan
- GuangDong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518107, China
| | - Zhending She
- GuangDong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518107, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China.
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China.
| |
Collapse
|
43
|
Shi Q, Zhang X, Wu M, Xia Y, Pan Y, Weng J, Li N, Zan X, Xia J. Emulsifying Lipiodol with pH-sensitive DOX@HmA nanoparticles for hepatocellular carcinoma TACE treatment eliminate metastasis. Mater Today Bio 2023; 23:100873. [PMID: 38149018 PMCID: PMC10750100 DOI: 10.1016/j.mtbio.2023.100873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Lipiodol-based transcatheter arterial chemoembolization (TACE) is currently the predominant and first-line treatment option recommended by the global standard for unresectable hepatocellular carcinoma (HCC). However, the unstable emulsion of Lipiodol causes a substantial proportion of chemotherapy drugs to enter the circulation system, leading to poor accumulation in cancer tissues and unexpected side effects of chemotherapy drugs. Herein, we emulsified Lipiodol with a pH-sensitive drug delivery system assembled from hexahistidine and zinc ions (HmA) with a super-high loading capacity of doxorubicin (DOX) and a promising ability to penetrate bio-barriers for the effective treatment of HCC by TACE. In vitro tests showed that DOX@HmA was comparable to free DOX in killing HCC cells. Impressively, during the in vivo TACE treatment, the anti-tumor efficacy of DOX@HmA was significantly greater than that of free DOX, indicating that DOX@HmA increased the accumulation of DOX in tumor. Emulsifying Lipiodol with pH-sensitive DOX@HmA significantly inhibited cell regeneration and tumor angiogenesis and decreased the systemic side effects of chemotherapy, especially by suppressing pulmonary metastasis in liver VX2 tumors in rabbits by inhibiting epithelial-mesenchymal transition (EMT). Emulsifying tumor microenvironment-responsive drug delivery systems (DDSs) with Lipiodol could be a new strategy for clinical TACE chemotherapy with potentially enhanced HCC treatment.
Collapse
Affiliation(s)
- Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xingxing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Compus, Shanghai, 201499, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yating Pan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jialu Weng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Na Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jinglin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
44
|
Müllerová M, Hovorková M, Závodná T, Červenková Št́astná L, Krupková A, Hamala V, Nováková K, Topinka J, Bojarová P, Strašák T. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules 2023; 24:4705-4717. [PMID: 37680126 PMCID: PMC10646984 DOI: 10.1021/acs.biomac.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Galectins, the glycan binding proteins, and their respective carbohydrate ligands represent a unique fundamental regulatory network modulating a plethora of biological processes. The advances in galectin-targeted therapy must be based on a deep understanding of the mechanism of ligand-protein recognition. Carbosilane dendrimers, the well-defined and finely tunable nanoscaffolds with low toxicity, are promising for multivalent carbohydrate ligand presentation to target galectin receptors. The study discloses a synthetic method for two types of lactose-functionalized carbosilane glycodendrimers (Lac-CS-DDMs). Furthermore, we report their outstanding, dendritic effect-driven affinity to tandem-type galectins, especially Gal-9. In the enzyme-linked immunosorbent assay, the affinity of the third-generation multivalent dendritic ligand bearing 32 lactose units to Gal-9 reached nanomolar values (IC50 = 970 nM), being a 1400-fold more effective inhibitor than monovalent lactose for this protein. This demonstrates a game-changing impact of multivalent presentation on the inhibitory effect of a ligand as simple as lactose. Moreover, using DLS hydrodynamic diameter measurements, we correlated the increased affinity of the glycodendrimer ligands to Gal-3 and Gal-8 but especially to Gal-9 with the formation of relatively uniform and stable galectin/Lac-CS-DDM aggregates.
Collapse
Affiliation(s)
- Monika Müllerová
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Michaela Hovorková
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Táňa Závodná
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Červenková Št́astná
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Alena Krupková
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Vojtěch Hamala
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| | - Kateřina Nováková
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jan Topinka
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Tomáš Strašák
- Institute
of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic
| |
Collapse
|
45
|
Xu Y, Qian L, Fang M, Liu Y, Xu ZJ, Ge X, Zhang Z, Liu ZP, Lou H. Tumor selective self-assembled nanomicelles of carbohydrate-epothilone B conjugate for targeted chemotherapy. Eur J Med Chem 2023; 259:115693. [PMID: 37531745 DOI: 10.1016/j.ejmech.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Epothilone B (Epo B) is a potent antitumor natural product with sub-nanomolar anti-proliferation action against several human cancer cells. However, poor selectivity to tumor cells and unacceptable therapeutic windows of Epo B and its analogs are the major obstacles to their development into clinical drugs. Herein, we present self-assembled nanomicelles based on an amphiphilic carbohydrate-Epo B conjugate that is inactive until converted to active Epo B within the tumor. Four Epo B-Rhamnose conjugates linked via two linkers containing a disulfide bond that is sensitive to GSH were synthesized. Conjugate 34 can self-assemble into nanomicelles with a high concentration of Rha on the surface, allowing for better tumor targeting. After internalization by cancer cells, the disulfide bond can be cleaved in the presence of high levels of GSH to release active Epo B, thereby exhibiting significant anticancer efficiency and selectivity in vitro and in vivo.
Collapse
Affiliation(s)
- Yuliang Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, China
| | - Lilin Qian
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Min Fang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yue Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaoyan Ge
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhiyue Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhao-Peng Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
46
|
Kenawy ER, El-Khalafy SH, Abosharaf HA, El-Nshar EM, Ghazy AR, Azaam MM. Synthesis, Characterization, and Anticancer Potency of Branched Poly (p-Hydroxy Styrene) Schiff-Bases. Macromol Biosci 2023; 23:e2300090. [PMID: 37376773 DOI: 10.1002/mabi.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/20/2023] [Indexed: 06/29/2023]
Abstract
A significant issue in cancer biology is finding anticancer therapies that effectively kill cancer cells. Through the use of several aldehydes, Schiff bases based on branched poly (p-hydroxy styrene) are created. The branched polymer is first chloroacetylated, then aminated with 1,4-phenylenediamine, and finally, aldehydes are reacted with the aminated polymer to produce the Schiff base compounds. Through the utilization of FTIR, TGA, XRD, NMR, and elemental analysis, all synthesized Schiff-bases are identified and characterized. Further, the antineoplastic potential of all Schiff bases is evaluated against different cancer cell lines. The results gained from this study indicate that the Schiff base polymers have cytotoxic power against cancer cells depending on cancer cell type and this antiproliferation potency is dose-concentration dependent. Importantly, the prepared S1 Schiff-base polymer shows potent cytotoxicity and is able to trigger the apoptosis and reactive oxygen species (ROS) in MCF-7 cells. Further, it downregulates VEGFR protein expression. The Schiff base polymers would have extensive applications in the biological disciplines.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| | - Sahar H El-Khalafy
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| | - Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Esraa M El-Nshar
- Chemistry Department, Faculty of Dentistry, Sinai University, Kantara, 41612, Egypt
| | - Ahmed R Ghazy
- Laser Laboratory, Physics Department, Faculty of Sciences, Tanta University, Tanta, 31527, Egypt
| | - Mohamed M Azaam
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| |
Collapse
|
47
|
Liang J, Li L, Tian H, Wang Z, Liu G, Duan X, Guo M, Liu J, Zhang W, Nice EC, Huang C, He W, Zhang H, Li Q. Drug Repurposing-Based Brain-Targeting Self-Assembly Nanoplatform Using Enhanced Ferroptosis against Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303073. [PMID: 37460404 DOI: 10.1002/smll.202303073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/01/2023] [Indexed: 11/16/2023]
Abstract
Glioblastoma (GBM), the most aggressive and lethal form of malignant brain tumor, is a therapeutic challenge due to the drug filtration capabilities of the blood-brain barrier (BBB). Interestingly, glioblastoma tends to resist apoptosis during chemotherapy, but is susceptible to ferroptosis. Developing therapies that can effectively target glioblastoma by crossing the BBB and evoke ferroptosis are, therefore, crucial for improving treatment outcomes. Herein, a versatile biomimetic nanoplatform, L-D-I/NPs, is designed that self-assembled by loading the antimalarial drug dihydroartemisinin (DHA) and the photosensitizer indocyanine green (ICG) onto lactoferrin (LF). This nanoplatform can selectively target glioblastoma by binding to low-density lipoprotein receptor-related protein-1 (LRP1) and crossing the BBB, thus inducing glioblastoma cell ferroptosis by boosting intracellular reactive oxygen species (ROS) accumulation and iron overload. In addition, L-D-I/NPs have demonstrated the ability to effectively suppress the progression of orthotopic glioblastoma and significantly prolong survival in a mouse glioblastoma model. This nanoplatform has facilitated the application of non-chemotherapeutic drugs in tumor treatment with minimal adverse effects, paving the way for highly efficient ferroptosis-based therapies for glioblastoma.
Collapse
Affiliation(s)
- Jiantang Liang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 570100, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Guowen Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Meiwen Guo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 570100, China
| | - Jiaqi Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 570100, China
| | - Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434000, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 570100, China
| |
Collapse
|
48
|
Li X, Duan Z, Li Z, Gu L, Li Y, Gong Q, Gu Z, Luo K. Dendritic polymer-functionalized nanomedicine potentiates immunotherapy via lethal energy crisis-induced PD-L1 degradation. Biomaterials 2023; 302:122294. [PMID: 37657175 DOI: 10.1016/j.biomaterials.2023.122294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The advent of immune checkpoint inhibitors ushers in a new era of anti-tumor immunity. However, current clinical anti-PD-L1 antibodies only interdict PD-L1 on the membrane, which cannot diminish the complex cancer-promoting effects of intracellular PD-L1. Therefore, directly reducing the PD-L1 abundance of cancer cells might be a potential PD-L1 inhibitory strategy to circumvent the issues of current anti-PD-L1 antibodies. Herein, we develop a dendritic polymer-functionalized nanomedicine with a potent cellular energy depletion effect on colon cancer cells. Treatment with the nanomedicine significantly promotes phosphorylation of AMPK, which in turn leads to PD-L1 degradation and eventual T cell activation. Meanwhile, the nanomedicine can potently induce immunogenic cell death (ICD) to enhance the anti-cancer immunity. Moreover, the combination of the nanomedicine with PD-1 blockade further enhances the activity of cytotoxic T lymphocytes, and dramatically inhibits tumor growth in vivo without distinct side effects. Overall, this study provides a promising nanoplatform to induce lethal energy crisis and ICD, and suppress PD-L1 expression, thus potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
49
|
Fang LR, Wang YH, Xiong ZZ, Wang YM. Research progress of nanomaterials in tumor-targeted drug delivery and imaging therapy. OPENNANO 2023; 14:100184. [DOI: 10.1016/j.onano.2023.100184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Uchida T. Development of Catalytic Site-Selective C-H Oxidation. CHEM REC 2023; 23:e202300156. [PMID: 37350373 DOI: 10.1002/tcr.202300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Direct C-H bond oxygenation is a strong and useful tool for the construction of oxygen functional groups. After Chen and White's pioneering works, various non-heme-type iron and manganese complexes were introduced, leading to strong development in this area. However, for this method to become a truly useful tool for synthetic organic chemistry, it is necessary to make further efforts to improve site-selectivity, and catalyst durability. Recently, we found that non-heme-type ruthenium complex cis-1 presents efficient catalysis in C(sp3 )-H oxygenation under acidic conditions. cis-1-catalysed C-H oxygenation can oxidize various substrates including highly complex natural compounds using hypervalent iodine reagents as a terminal oxidant. Moreover, the catalyst system can use almost stoichiometric water molecules as the oxygen source through reversible hydrolysis of PhI(OCOR)2 . It is a strong tool for producing isotopic-oxygen-labelled compounds. Moreover, the environmentally friendly hydrogen peroxide can be used as a terminal oxidant under acidic conditions.
Collapse
Affiliation(s)
- Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|