1
|
Yang H, Zhang M, Wang S, Peng D, Martinez-Sobrido L, Ye C. Establishment of minigenomes for infectious bursal disease virus. Vet Res 2024; 55:162. [PMID: 39695895 DOI: 10.1186/s13567-024-01423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 12/20/2024] Open
Abstract
Minigenomes (MGs) have greatly advanced research on the viral life cycle, including viral replication and transcription, virus‒host interactions, and the discovery of antivirals against RNA viruses. However, an MG for infectious bursal disease virus (IBDV) has not been well established. Here, we describe the development of IBDV MG, in which the entire coding sequences of viral genomic segments A and B are replaced with Renilla luciferase (Rluc) or enhanced green fluorescent protein (EGFP) reporter genes. Under the control of the RNA polymerase I promoter, the translation of IBDV MG is controlled by the viral proteins VP1 and VP3. Interestingly, IBDV B MG shows greater activity than does IBDV A MG. Moreover, the sense IBDV B MG was expressed at a higher level than the antisense IBDV B MG. In agreement with our previous findings, the translation of IBDV B MG controlled by VP1 and VP3 is independent of the cellular translation machinery components eukaryotic initiation factor (eIF)4E and eIF4G, but intact VP1 polymerase activity, VP3 dsRNA-binding activity, and the interaction between VP1 and VP3 are indispensable for both sense and antisense IBDV B MG activity. In addition, ribavirin, which inhibits IBDV replication, inhibits IBDV B MG activity in a dose-dependent manner. Collectively, the IBDV MG established in this study provides a powerful tool to investigate IBDV intracellular replication and transcription and virus‒host interactions and facilitates high-throughput screening for the identification of IBDV antivirals.
Collapse
Affiliation(s)
- Hui Yang
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Mingrui Zhang
- Wenzhou Medical University, Affiliated Hospital 1, Wenzhou, Zhejiang, China
| | - Sanying Wang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Chengjin Ye
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Wang J, Zhang XZ, Sun XY, Tian WJ, Wang XJ. Cellular RNA-binding proteins LARP4 and PABPC1 synergistically facilitate viral translation of coronavirus PEDV. Vet Microbiol 2024; 298:110219. [PMID: 39182469 DOI: 10.1016/j.vetmic.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Coronaviruses are causing epizootic diseases and thus are a substantial threat for both domestic and wild animals. These viruses depend on the host translation machinery to complete their life cycle. The current paper identified cellular RNA-binding proteins (RBPs), La-related protein 4 (LARP4) and polyadenylate-binding protein cytoplasmic 1 (PABPC1), as critical regulators of efficient translation of the coronavirus porcine epidemic diarrhea virus (PEDV) mRNA. In Vero cells, PEDV infection caused LARP4 to migrate from the nucleus to the cytoplasm in a chromosome region maintenance1 (CRM1)-independent pathway. In the absence of the nuclear export signal of LARP4, viral translation was not promoted by LARP4. A further study unveiled that the cytoplasmic LARP4 binds to the 3'-terminal untranslated region (3'UTR) of PEDV mRNA with the assistance of PABPC1 to facilitate viral translation. LARP4 knockdown reduced the promotion of the PABPC1-induced 3'UTR translation activity. Moreover, the rabbit reticulocyte lysate (RRL) system revealed that the prokaryotic expressed protein LARP4 and PABPC1 enhance PEDV mRNA translation. To our knowledge, this is the first study demonstrating that PEDV induces nucleo-cytoplasmic shuttling of LARP4 to enhance its own replication, which broadens our insights into how viruses use host's RBPs for the efficient translation of viral mRNA.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin-Yue Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wen-Jun Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiao-Jia Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Nahálková J. On the interface of aging, cancer, and neurodegeneration with SIRT6 and L1 retrotransposon protein interaction network. Ageing Res Rev 2024; 101:102496. [PMID: 39251041 DOI: 10.1016/j.arr.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Roles of the sirtuins in aging and longevity appear related to their evolutionarily conserved functions as retroviral-restriction factors. Retrotransposons also promote the aging process, which can be reversed by the inhibition of their activity. SIRT6 can functionally limit the mutation activity of LINE-1 (L1), a retrotransposon causing cancerogenesis-linked mutations accumulating during aging. Here, an overview of the molecular mechanisms of the controlling effects was created by the pathway enrichment and gene function prediction analysis of a protein interaction network of SIRT6 and L1 retrotransposon proteins L1 ORF1p, and L1 ORF2p. The L1-SIRT6 interaction network is enriched in pathways and nodes associated with RNA quality control, DNA damage response, tumor-related and retrotransposon activity-suppressing functions. The analysis also highlighted sumoylation, which controls protein-protein interactions, subcellular localization, and other post-translational modifications; DNA IR Damage and Cellular Response via ATR, and Hallmark Myc Targets V1, which scores are a measure of tumor aggressiveness. The protein node prioritization analysis emphasized the functions of tumor suppressors p53, PARP1, BRCA1, and BRCA2 having L1 retrotransposon limiting activity; tumor promoters EIF4A3, HNRNPA1, HNRNPH1, DDX5; and antiviral innate immunity regulators DDX39A and DDX23. The outline of the regulatory mechanisms involved in L1 retrotransposition with a focus on the prioritized nodes is here demonstrated in detail. Furthermore, a model establishing functional links between HIV infection, L1 retrotransposition, SIRT6, and cancer development is also presented. Finally, L1-SIRT6 subnetwork SIRT6-PARP1-BRCA1/BRCA2-TRIM28-PIN1-p53 was constructed, where all nodes possess L1 retrotransposon activity-limiting activity and together represent candidates for multitarget control.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Biochemistry, Molecular, and Cell Biology Unit, Biochemworld co., Snickar-Anders väg 17, Skyttorp, Uppsala County 74394, Sweden.
| |
Collapse
|
5
|
Zhou H, Yang F, Li G, Yuan L, Ge T, Niu C, Zheng Y. CCDC189 depletion leads to oligo-astheno-teratozoospermia and male infertility in mice†. Biol Reprod 2024; 111:800-814. [PMID: 39018224 DOI: 10.1093/biolre/ioae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/06/2023] [Accepted: 07/16/2024] [Indexed: 07/19/2024] Open
Abstract
In male reproductive system, proteins containing the coiled-coil domain (CCDC) are predominantly expressed in specific regions including the testis, epididymis, seminal vesicle, and prostate. They play a vital role in centriole formation, sperm motility and flagellar development in male gametes. Despite being highly expressed in the testis, the exact physiological function of the coiled-coil domain-containing 189 (Ccdc189) gene remain largely unclear. Our research provides a comprehensive and detailed investigation into the localization of CCDC189 protein within the testis seminiferous tubules. CCDC189 specifically expressed in spermatocytes, round spermatids, and elongating spermatids in mouse testis. The deletion of Ccdc189 in mouse leads to male infertility, characterized by significantly reduced sperm counts and motility. Abnormally shaped spermatozoa with irregular tails, exhibiting shortened and twisted morphology, were observed in the seminiferous tubules. Electron microscopy revealed disordered and missing peripheral microtubule doublets (MTD) and outer dense fibers (ODF) in the sperm flagella, accompanied by a consistent absence of central pairs (CP). The knockout of Ccdc189 resulted in oligo-astheno-teratozoospermia, which is characterized by low sperm count and reduced sperm motility and abnormal morphology. Furthermore, we identified poly(A)-binding protein cytoplasmic 1 (PABPC1) and PABPC2 as interacting proteins with CCDC189. These proteins belong to the PABP family and are involved in regulating mRNA translational activity in spermatogenic cells by specifically binding to poly(A) tails at the 3' ends of mRNAs.
Collapse
Affiliation(s)
- Huiping Zhou
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Fan Yang
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
- Department of Obstetrics and Gynecology, Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Guanghua Li
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Lu Yuan
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Tingting Ge
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Changmin Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
- Department of Obstetrics and Gynecology, Affiliated Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Lancaster CL, Yalamanchili PS, Goldy JN, Leung SW, Corbett AH, Moberg KH. The RNA-binding protein Nab2 regulates levels of the RhoGEF Trio to govern axon and dendrite morphology. Mol Biol Cell 2024; 35:ar109. [PMID: 38985523 PMCID: PMC11321036 DOI: 10.1091/mbc.e24-04-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
The Drosophila RNA-binding protein (RBP) Nab2 acts in neurons to regulate neurodevelopment and is orthologous to the human intellectual disability-linked RBP, ZC3H14. Nab2 governs axon projection in mushroom body neurons and limits dendritic arborization of class IV sensory neurons in part by regulating splicing events in ∼150 mRNAs. Analysis of the Sex-lethal (Sxl) mRNA revealed that Nab2 promotes an exon-skipping event and regulates m6A methylation on Sxl pre-mRNA by the Mettl3 methyltransferase. Mettl3 heterozygosity broadly rescues Nab2null phenotypes implying that Nab2 acts through similar mechanisms on other RNAs, including unidentified targets involved in neurodevelopment. Here, we show that Nab2 and Mettl3 regulate the removal of a 5'UTR (untranslated region) intron in the trio pre-mRNA. Trio utilizes two GEF domains to balance Rac and RhoGTPase activity. Intriguingly, an isoform of Trio containing only the RhoGEF domain, GEF2, is depleted in Nab2null nervous tissue. Expression of Trio-GEF2 rescues projection defects in Nab2null axons and dendrites, while the GEF1 Rac1-regulatory domain exacerbates these defects, suggesting Nab2-mediated regulation Trio-GEF activities. Collectively, these data indicate that Nab2-regulated processing of trio is critical for balancing Trio-GEF1 and -GEF2 activity and show that Nab2, Mettl3, and Trio function in a common pathway that shapes axon and dendrite morphology.
Collapse
Affiliation(s)
- Carly L. Lancaster
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Pranav S. Yalamanchili
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jordan N. Goldy
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Sara W. Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
7
|
Wang F, Fan Y, Li Y, Zhou Y, Wang X, Zhu M, Chen X, Xue Y, Shen C. Identification of differentially expressed genes of blood leukocytes for Schizophrenia. Front Genet 2024; 15:1398240. [PMID: 38988837 PMCID: PMC11233772 DOI: 10.3389/fgene.2024.1398240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Background Schizophrenia (SCZ) is a severe neurodevelopmental disorder with brain dysfunction. This study aimed to use bioinformatic analysis to identify candidate blood biomarkers for SCZ. Methods The study collected peripheral blood leukocyte samples of 9 SCZ patients and 20 healthy controls for RNA sequencing analysis. Bioinformatic analyses included differentially expressed genes (DEGs) analysis, pathway enrichment analysis, and weighted gene co-expression network analysis (WGCNA). Results This study identified 1,205 statistically significant DEGs, of which 623 genes were upregulated and 582 genes were downregulated. Functional enrichment analysis showed that DEGs were mainly enriched in cell chemotaxis, cell surface, and serine peptidase activity, as well as involved in Natural killer cell-mediated cytotoxicity. WGCNA identified 16 gene co-expression modules, and five modules were significantly correlated with SCZ (p < 0.05). There were 106 upregulated genes and 90 downregulated genes in the five modules. The top ten genes sorted by the Degree algorithm were RPS28, BRD4, FUS, PABPC1, PCBP1, PCBP2, RPL27A, RPS21, RAG1, and RPL27. RAG1 and the other nine genes belonged to the turquoise and pink module respectively. Pathway enrichment analysis indicated that these 10 genes were mainly involved in processes such as Ribosome, cytoplasmic translation, RNA binding, and protein binding. Conclusion This study finds that the gene functions in key modules and related enrichment pathways may help to elucidate the molecular pathogenesis of SCZ, and the potential of key genes to become blood biomarkers for SCZ warrants further validation.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Fan
- Department of Clinical Epidemiology, Jiangsu Province Geriatric Institute, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghui Li
- Department of Medical Psychology, Huai'an Third Hospital, Huai'an, China
| | - Yuan Zhou
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Mengya Zhu
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Xuefei Chen
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Yong Xue
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
9
|
Kaku Y, Isono Y, Tanaka H, Kobayashi T, Kanemori Y, Kashiwabara SI. Intronless Pabpc6 encodes a testis-specific, cytoplasmic poly(A)-binding protein but is dispensable for spermatogenesis in the mouse†. Biol Reprod 2024; 110:834-847. [PMID: 38281153 DOI: 10.1093/biolre/ioae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
Besides ubiquitous poly(A)-binding protein, cytoplasmic 1 (PABPC1), testis-specific PABPC2/PABPt (in humans, referred to as PABPC3), and female and male germline-specific PABPC1L/ePAB, have been reported in the mouse testis. Recent in silico analysis additionally identified testis-specific Pabpc6 in the mouse. In this study, we characterized PABPC6 and its mutant mice. PABPC6 was initially detectable in the cytoplasm of pachytene spermatocytes, increased in abundance in round spermatids, and decreased in elongating spermatids. PABPC6 was capable of binding to poly(A) tails of various mRNAs and interacting with translation-associated factors, including EIF4G, PAIP1, and PAIP2. Noteworthy was that PABPC6, unlike PABPC1, was barely associated with translationally active polysomes and enriched in chromatoid bodies of round spermatids. Despite these unique characteristics, neither synthesis of testicular proteins nor spermatogenesis was affected in the mutant mice lacking PABPC6, suggesting that PABPC6 is functionally redundant with other co-existing PABPC proteins during spermatogenesis.
Collapse
Affiliation(s)
- Yuko Kaku
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Isono
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideto Tanaka
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomohiro Kobayashi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Kanemori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shin-Ichi Kashiwabara
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Due Tankmar M, Reichel M, Arribas‐Hernández L, Brodersen P. A YTHDF-PABP interaction is required for m 6 A-mediated organogenesis in plants. EMBO Rep 2023; 24:e57741. [PMID: 38009565 PMCID: PMC10702811 DOI: 10.15252/embr.202357741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
N6-methyladenosine (m6 A) in mRNA is key to eukaryotic gene regulation. Many m6 A functions involve RNA-binding proteins that recognize m6 A via a YT521-B Homology (YTH) domain. YTH domain proteins contain long intrinsically disordered regions (IDRs) that may mediate phase separation and interaction with protein partners, but whose precise biochemical functions remain largely unknown. The Arabidopsis thaliana YTH domain proteins ECT2, ECT3, and ECT4 accelerate organogenesis through stimulation of cell division in organ primordia. Here, we use ECT2 to reveal molecular underpinnings of this function. We show that stimulation of leaf formation requires the long N-terminal IDR, and we identify two short IDR elements required for ECT2-mediated organogenesis. Of these two, a 19-amino acid region containing a tyrosine-rich motif conserved in both plant and metazoan YTHDF proteins is necessary for binding to the major cytoplasmic poly(A)-binding proteins PAB2, PAB4, and PAB8. Remarkably, overexpression of PAB4 in leaf primordia partially rescues the delayed leaf formation in ect2 ect3 ect4 mutants, suggesting that the ECT2-PAB2/4/8 interaction on target mRNAs of organogenesis-related genes may overcome limiting PAB concentrations in primordial cells.
Collapse
Affiliation(s)
| | - Marlene Reichel
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
13
|
Wang X, Zhou R, Lu X, Dai S, Liu M, Jiang C, Yang Y, Shen Y, Wang Y, Liu H. Identification of nonfunctional PABPC1L causing oocyte maturation abnormalities and early embryonic arrest in female primary infertility. Clin Genet 2023; 104:648-658. [PMID: 37723834 DOI: 10.1111/cge.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Oocyte maturation arrest, fertilization failure, and early embryonic arrest are important causes of female infertility, whereas the genetic events that contribute to these processes are largely unknown. Loss-of-function of PABPC1L in mice has been suggested to cause female infertility involved in the absence of mature oocytes or embryos in vivo or in vitro. However, the role of PABPC1L in human female reproduction remains largely elusive. In this study, we identified a homozygous missense mutation (c.536G>A, p.R179Q) and a compound heterozygous mutation (c.793C>T, p.R265W; c.1201C>T, p.Q401*) in PABPC1L in two unrelated infertile females characterized by recurrent oocyte maturation abnormalities and early embryonic arrest. These variants resulted in nonfunctional PABPC1L protein and were associated with impaired chromatin configuration and transcriptional silencing in GV oocytes. Moreover, the binding capacity of mutant PABPC1L to mRNAs related to oocyte maturation and early embryonic development was decreased significantly. Our findings revealed novel PABPC1L mutations causing oocyte maturation abnormalities and early embryonic arrest, confirming the essential role of PABPC1L in human female fertility.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Lu
- Reproductive Medicine Centre, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Siyu Dai
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mohan Liu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanting Yang
- Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zhai H, Qin W, Dong S, Yang X, Zhai X, Tong W, Liu C, Zheng H, Yu H, Kong N, Tong G, Shan T. PEDV N protein capture protein translation element PABPC1 and eIF4F to promote viral replication. Vet Microbiol 2023; 284:109844. [PMID: 37572396 DOI: 10.1016/j.vetmic.2023.109844] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Porcine epidemic diarrhea (PED) is an acute, highly infectious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV), which seriously endangers the healthy development of the pig industry. PEDV N protein is the most abundant viral structural protein, which can be combined with viral genomic RNA to form ribonucleoprotein complexes, thereby participating in the transcription and replication of the virus. However, how PEDV hijacks the host transcription translation system to promote viral proliferation remains unclear. In this study, we found that there is an interaction between PEDV N, polyadenylate-binding protein cytoplasmic 1 (PABPC1) and eukaryotic initiation factor 4F (eIF4F) proteins through coimmunoprecipitation, GST pulldown and fluorescence microscopy experiments. PABPC1 could bind to the poly(A) tail of the mRNA, and eIF4F could bind to the 5' end cap structure of the mRNA, so the interaction of PABPC1 and eIF4F could facilitate mRNA forming a circular shape to promote translation to the proteins. To further explore the effect of N protein capture protein translation element PABPC1 and eIF4F on PEDV replication, we overexpressed PABPC1, eIF4F (containing eIF4A, eIF4E and eIF4G) separately on Vero cells and LLC-PK1 cells, and we found that the PABPC1 and eIF4F protein could promote PEDV replication. Taken together, our data suggested that PEDV N protein promoted cyclization of viral mRNA carried by N protein through binding with PABPC1 and eIF4F proteins, thus promoting viral transcription and facilitating viral replication.
Collapse
Affiliation(s)
- Huanjie Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sujie Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xinyu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xueying Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
15
|
Zhang J, Liu Y, Li C, Xiao Q, Zhang D, Chen Y, Rosenecker J, Ding X, Guan S. Recent Advances and Innovations in the Preparation and Purification of In Vitro-Transcribed-mRNA-Based Molecules. Pharmaceutics 2023; 15:2182. [PMID: 37765153 PMCID: PMC10536309 DOI: 10.3390/pharmaceutics15092182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic poses a disruptive impact on public health and the global economy. Fortunately, the development of COVID-19 vaccines based on in vitro-transcribed messenger RNA (IVT mRNA) has been a breakthrough in medical history, benefiting billions of people with its high effectiveness, safety profile, and ease of large-scale production. This success is the result of decades of continuous RNA research, which has led to significant improvements in the stability and expression level of IVT mRNA through various approaches such as sequence optimization and improved preparation processes. IVT mRNA sequence optimization has been shown to have a positive effect on enhancing the mRNA expression level. The innovation of IVT mRNA purification technology is also indispensable, as the purity of IVT mRNA directly affects the success of downstream vaccine preparation processes and the potential for inducing unwanted side effects in therapeutic applications. Despite the progress made, challenges related to IVT mRNA sequence design and purification still require further attention to enhance the quality of IVT mRNA in the future. In this review, we discuss the latest innovative progress in IVT mRNA design and purification to further improve its clinical efficacy.
Collapse
Affiliation(s)
- Jingjing Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Dandan Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Yang Chen
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| |
Collapse
|
16
|
Mbatha LS, Akinyelu J, Maiyo F, Kudanga T. Future prospects in mRNA vaccine development. Biomed Mater 2023; 18:052006. [PMID: 37589309 DOI: 10.1088/1748-605x/aceceb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The recent advancements in messenger ribonucleic acid (mRNA) vaccine development have vastly enhanced their use as alternatives to conventional vaccines in the prevention of various infectious diseases and treatment of several types of cancers. This is mainly due to their remarkable ability to stimulate specific immune responses with minimal clinical side effects. This review gives a detailed overview of mRNA vaccines currently in use or at various stages of development, the recent advancements in mRNA vaccine development, and the challenges encountered in their development. Future perspectives on this technology are also discussed.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti state, Nigeria
| | - Fiona Maiyo
- Department of Medical Sciences, Kabarak University, Nairobi, Kenya
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| |
Collapse
|
17
|
Chetta M, Cammarota AL, De Marco M, Bukvic N, Marzullo L, Rosati A. The Continuous Adaptive Challenge Played by Arboviruses: An In Silico Approach to Identify a Possible Interplay between Conserved Viral RNA Sequences and Host RNA Binding Proteins (RBPs). Int J Mol Sci 2023; 24:11051. [PMID: 37446229 DOI: 10.3390/ijms241311051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Climate change and globalization have raised the risk of vector-borne disease (VBD) introduction and spread in various European nations in recent years. In Italy, viruses carried by tropical vectors have been shown to cause viral encephalitis, one of the symptoms of arboviruses, a spectrum of viral disorders spread by arthropods such as mosquitoes and ticks. Arboviruses are currently causing alarm and attention, and the World Health Organization (WHO) has released recommendations to adopt essential measures, particularly during the hot season, to restrict the spreading of the infectious agents among breeding stocks. In this scenario, rapid analysis systems are required, because they can quickly provide information on potential virus-host interactions, the evolution of the infection, and the onset of disabling clinical symptoms, or serious illnesses. Such systems include bioinformatics approaches integrated with molecular evaluation. Viruses have co-evolved different strategies to transcribe their own genetic material, by changing the host's transcriptional machinery, even in short periods of time. The introduction of genetic alterations, particularly in RNA viruses, results in a continuous adaptive fight against the host's immune system. We propose an in silico pipeline method for performing a comprehensive motif analysis (including motif discovery) on entire genome sequences to uncover viral sequences that may interact with host RNA binding proteins (RBPs) by interrogating the database of known RNA binding proteins, which play important roles in RNA metabolism and biological processes. Indeed, viral RNA sequences, able to bind host RBPs, may compete with cellular RNAs, altering important metabolic processes. Our findings suggest that the proposed in silico approach could be a useful and promising tool to investigate the complex and multiform clinical manifestations of viral encephalitis, and possibly identify altered metabolic pathways as targets of pharmacological treatments and innovative therapeutic protocols.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Nenad Bukvic
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| |
Collapse
|
18
|
Boeynaems S, Dorone Y, Zhuang Y, Shabardina V, Huang G, Marian A, Kim G, Sanyal A, Şen NE, Griffith D, Docampo R, Lasker K, Ruiz-Trillo I, Auburger G, Holehouse AS, Kabashi E, Lin Y, Gitler AD. Poly(A)-binding protein is an ataxin-2 chaperone that regulates biomolecular condensates. Mol Cell 2023; 83:2020-2034.e6. [PMID: 37295429 PMCID: PMC10318123 DOI: 10.1016/j.molcel.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases (CAND), Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain
| | - Guozhong Huang
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Anca Marian
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Garam Kim
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Keren Lasker
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain; ICREA, Passeig Lluís Companys 23, Barcelona 08010 Catalonia, Spain
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Hollmann NM, Jagtap PKA, Linse JB, Ullmann P, Payr M, Murciano B, Simon B, Hub JS, Hennig J. Upstream of N-Ras C-terminal cold shock domains mediate poly(A) specificity in a novel RNA recognition mode and bind poly(A) binding protein. Nucleic Acids Res 2023; 51:1895-1913. [PMID: 36688322 PMCID: PMC9976900 DOI: 10.1093/nar/gkac1277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023] Open
Abstract
RNA binding proteins (RBPs) often engage multiple RNA binding domains (RBDs) to increase target specificity and affinity. However, the complexity of target recognition of multiple RBDs remains largely unexplored. Here we use Upstream of N-Ras (Unr), a multidomain RBP, to demonstrate how multiple RBDs orchestrate target specificity. A crystal structure of the three C-terminal RNA binding cold-shock domains (CSD) of Unr bound to a poly(A) sequence exemplifies how recognition goes beyond the classical ππ-stacking in CSDs. Further structural studies reveal several interaction surfaces between the N-terminal and C-terminal part of Unr with the poly(A)-binding protein (pAbp). All interactions are validated by mutational analyses and the high-resolution structures presented here will guide further studies to understand how both proteins act together in cellular processes.
Collapse
Affiliation(s)
- Nele Merret Hollmann
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Johanna-Barbara Linse
- Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany.,Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Philip Ullmann
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco Payr
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany
| | - Brice Murciano
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jochen S Hub
- Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany.,Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
20
|
Feng L, Xu S, Li X, Sun X, Long W. Cytoplasmic poly(A)-binding protein 1 (PABPC1) is a prognostic biomarker to predict survival in nasopharyngeal carcinoma regardless of chemoradiotherapy. BMC Cancer 2023; 23:169. [PMID: 36803974 PMCID: PMC9940331 DOI: 10.1186/s12885-023-10629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC), especially the nonkeratinizing type, is a malignant tumor primarily occurring in southern China and Southeast Asia. Chemotherapy (CT) and combined radiotherapy (RT) is used to treat NPC. However, the mortality rate is high in recurrent and metastatic NPC. We developed a molecular marker, analyzed its correlation with clinical characteristics, and assessed the prognostic value among NPC patients with or without chemoradiotherapy. METHODS A total of 157 NPC patients were included in this study, with 120 undergoing treatment and 37 without treatment. EBER1/2 expression was investigated using in situ hybridization (ISH). Expression of PABPC1, Ki-67, and p53 was detected with immunohistochemistry. The correlations of EBER1/2 and the expression of the three proteins having clinical features and prognosis were evaluated. RESULTS The expression of PABPC1 was associated with age, recurrence, and treatment but not with gender, TNM classification, or the expression of Ki-67, p53, or EBER. High expression of PABPC1 was associated with poor overall survival (OS) and disease-free survival (DFS) and was an independent predictor depending on multivariate analysis. Comparatively, no significant correlation was observed between the expression of p53, Ki-67, and EBER and survival. In this study, 120 patients received treatments and revealed significantly better OS and DFS than the untreated 37 patients. PABPC1 high expression was an independent predictor of shorter OS in the treated (HR = 4.012 (1.238-13.522), 95% CI, p = 0.021) and the untreated groups (HR = 5.473 (1.051-28.508), 95% CI, p = 0.044). However, it was not an independent predictor of shorter DFS in either the treated or the untreated groups. No significant survival difference was observed between patients with docetaxel-based induction chemotherapy (IC) + concurrent chemoradiotherapy (CCRT) and those with paclitaxel-based IC + CCRT. However, when combined with treatment and PABPC1 expression, patients with paclitaxel-added chemoradiotherapy plus PABPC1 low expression had significantly better OS than those who underwent chemoradiotherapy (p = 0.036). CONCLUSIONS High expression of PABPC1 is associated with poorer OS and DFS among NPC patients. Patients with PABPC1 having low expression revealed good survival irrespective of the treatment received, indicating that PABPC1 could be a potential biomarker for triaging NPC patients.
Collapse
Affiliation(s)
- Ling Feng
- grid.410578.f0000 0001 1114 4286Pathology Department of the First Affiliated Hospital, Southwest Medical University, Sichuan, People’s Republic of China
| | - Shengen Xu
- grid.488387.8Department of Otorhinolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Sichuan, People’s Republic of China
| | - Xiaochen Li
- grid.410578.f0000 0001 1114 4286Pathology Department of the First Affiliated Hospital, Southwest Medical University, Sichuan, People’s Republic of China
| | - Xingwang Sun
- grid.410578.f0000 0001 1114 4286Pathology Department of the First Affiliated Hospital, Southwest Medical University, Sichuan, People’s Republic of China
| | - Wenbo Long
- Pathology Department of the First Affiliated Hospital, Southwest Medical University, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Peerapen P, Chanthick C, Thongboonkerd V. Quantitative proteomics reveals common and unique molecular mechanisms underlying beneficial effects of caffeine and trigonelline on human hepatocytes. Biomed Pharmacother 2023; 158:114124. [PMID: 36521247 DOI: 10.1016/j.biopha.2022.114124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Caffeine and trigonelline are the major bioactive compounds in coffee. Caffeine alone or combined with other coffee compounds shows hepatoprotective effects. However, molecular mechanisms underlying such hepatoprotective effects remain unclear. We therefore addressed molecular effects of caffeine and trigonelline on human hepatocytes using quantitative proteomics followed by bioinformatic analyses to obtain topological and functional significance. HepG2 cells were treated with 100 μM caffeine or trigonelline for 24-h and evaluated by quantitative proteomics using nanoLC-ESI-LTQ-Orbitrap MS/MS. A total of 26 and 25 significantly altered proteins were identified in caffeine-treated and trigonelline-treated cells, respectively, compared with control cells. Topological analyses revealed that ribosomal and translation regulatory proteins predominantly served as the hub proteins associated with protein clusters. Functional analyses also revealed that these two bioactive compounds shared some molecular mechanisms via induction of translational processes. There were also other unique molecular functions and biological processes triggered or suppressed by either caffeine or trigonelline. These data highlight common and unique molecular mechanisms underlying the hepatoprotective effects of caffeine and trigonelline that may be useful for future clinical applications.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanettee Chanthick
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
22
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
23
|
Qi Y, Wang M, Jiang Q. PABPC1--mRNA stability, protein translation and tumorigenesis. Front Oncol 2022; 12:1025291. [PMID: 36531055 PMCID: PMC9753129 DOI: 10.3389/fonc.2022.1025291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Mammalian poly A-binding proteins (PABPs) are highly conserved multifunctional RNA-binding proteins primarily involved in the regulation of mRNA translation and stability, of which PABPC1 is considered a central regulator of cytoplasmic mRNA homing and is involved in a wide range of physiological and pathological processes by regulating almost every aspect of RNA metabolism. Alterations in its expression and function disrupt intra-tissue homeostasis and contribute to the development of various tumors. There is increasing evidence that PABPC1 is aberrantly expressed in a variety of tumor tissues and cancers such as lung, gastric, breast, liver, and esophageal cancers, and PABPC1 might be used as a potential biomarker for tumor diagnosis, treatment, and clinical application in the future. In this paper, we review the abnormal expression, functional role, and molecular mechanism of PABPC1 in tumorigenesis and provide directions for further understanding the regulatory role of PABPC1 in tumor cells.
Collapse
Affiliation(s)
- Ya Qi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Qi Jiang
- Second Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Duan L, Zaepfel BL, Aksenova V, Dasso M, Rothstein JD, Kalab P, Hayes LR. Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export. Cell Rep 2022; 40:111106. [PMID: 35858577 PMCID: PMC9345261 DOI: 10.1016/j.celrep.2022.111106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear clearance of the RNA-binding protein TDP-43 is a hallmark of neurodegeneration and an important therapeutic target. Our current understanding of TDP-43 nucleocytoplasmic transport does not fully explain its predominantly nuclear localization or mislocalization in disease. Here, we show that TDP-43 exits nuclei by passive diffusion, independent of facilitated mRNA export. RNA polymerase II blockade and RNase treatment induce TDP-43 nuclear efflux, suggesting that nuclear RNAs sequester TDP-43 in nuclei and limit its availability for passive export. Induction of TDP-43 nuclear efflux by short, GU-rich oligomers (presumably by outcompeting TDP-43 binding to endogenous nuclear RNAs), and nuclear retention conferred by splicing inhibition, demonstrate that nuclear TDP-43 localization depends on binding to GU-rich nuclear RNAs. Indeed, RNA-binding domain mutations markedly reduce TDP-43 nuclear localization and abolish transcription blockade-induced nuclear efflux. Thus, the nuclear abundance of GU-RNAs, dictated by the balance of transcription, pre-mRNA processing, and RNA export, regulates TDP-43 nuclear localization.
Collapse
Affiliation(s)
- Lauren Duan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin L Zaepfel
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Lindsey R Hayes
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Liu A, Wang X. The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Front Cell Dev Biol 2022; 10:901510. [PMID: 35912117 PMCID: PMC9326091 DOI: 10.3389/fcell.2022.901510] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
After over a decade of development, mRNA has recently matured into a potent modality for therapeutics. The advantages of mRNA therapeutics, including their rapid development and scalability, have been highlighted due to the SARS-CoV-2 pandemic, in which the first two clinically approved mRNA vaccines have been spotlighted. These vaccines, as well as multiple other mRNA therapeutic candidates, are modified to modulate their immunogenicity, stability, and translational efficiency. Despite the importance of mRNA modifications for harnessing the full efficacy of mRNA drugs, the full breadth of potential modifications has yet to be explored clinically. In this review, we survey the field of mRNA modifications, highlighting their ability to tune the properties of mRNAs. These include cap and tail modifications, nucleoside substitutions, and chimeric mRNAs, each of which represents a component of mRNA that can be exploited for modification. Additionally, we cover clinical and preclinical trials of the modified mRNA platform not only to illustrate the promise of modified mRNAs but also to call attention to the room for diversifying future therapeutics.
Collapse
Affiliation(s)
- Albert Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
26
|
Abstract
Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.
Collapse
Affiliation(s)
- Jie Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
27
|
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7:94. [PMID: 35322018 PMCID: PMC8940982 DOI: 10.1038/s41392-022-00950-y] [Citation(s) in RCA: 288] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.
Collapse
Affiliation(s)
- Enyue Fang
- National Institute for Food and Drug Control, Beijing, 102629, China
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan, 430207, China
| | - Xiaohui Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Miao Li
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Zelun Zhang
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Lifang Song
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Baiyu Zhu
- Texas A&M University, College Station, TX, 77843, USA
| | - Xiaohong Wu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Jingjing Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Danhua Zhao
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Yuhua Li
- National Institute for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
28
|
Alvarado-Hernandez B, Ma Y, Sharma NR, Majerciak V, Lobanov A, Cam M, Zhu J, Zheng ZM. Protein-RNA Interactome Analysis Reveals Wide Association of Kaposi's Sarcoma-Associated Herpesvirus ORF57 with Host Noncoding RNAs and Polysomes. J Virol 2022; 96:e0178221. [PMID: 34787459 PMCID: PMC8826805 DOI: 10.1128/jvi.01782-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.
Collapse
Affiliation(s)
- Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Nishi R. Sharma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Jun Zhu
- Genome Technology Laboratory, System Biology Center, NHLBI/NIH, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| |
Collapse
|
29
|
Liu Z, Ma C, Wang Q, Yang H, Lu Z, Bi T, Xu Z, Li T, Zhang L, Zhang Y, Liu J, Wei X, Li J. Targeting FAM134B-mediated reticulophagy activates sorafenib-induced ferroptosis in hepatocellular carcinoma. Biochem Biophys Res Commun 2022; 589:247-253. [PMID: 34929448 DOI: 10.1016/j.bbrc.2021.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Ferroptosis is a kind of cell death closely related to selective autophagy, such as ferritinophagy, lipophagy, clockophagy and chaperone-mediated autophagy. However, the role of reticulophagy, which specifically degrades endoplasmic reticulum (ER) fragments (also known as ER-phagy), in ferroptosis regulation is still unclear. In this study, we found that sorafenib (ferroptosis inducer) can effectively activate the receptor protein FAM134B-mediated ER-phagy, and FAM134B knockdown not only blocked ER-phagy but also significantly strengthened cellular sensitivity to ferroptosis without affecting macroautophagy. In vivo experiments also yielded similar results. These evidences provided new clues for ferroptosis regulation. Subsequently, bioinformatic analysis combined with RNA binding protein immunoprecipitation and polyribosome fractionation preliminarily indicated that PABPC1 can interact with FAM134B mRNA and promote its translation. Taken together, this study revealed the role of the PABPC1-FAM134B-ER-phagy pathway on ferroptosis, providing important evidence for novel anti-cancer strategies.
Collapse
Affiliation(s)
- Zhiqian Liu
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Changlin Ma
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Departments of Hepatobiliary Surgery, Jining No.1 People's Hospital, Jining, Shandong, 272001, China
| | - Qi Wang
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hao Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Zhihua Lu
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Tao Bi
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, 264003, China
| | - Zongzhen Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Tao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Ling Zhang
- Department of Reproduction Medicine, Jinan Maternal and Child Health Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250001, China
| | - Yajie Zhang
- Department of Reproduction Medicine, Jinan Maternal and Child Health Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250001, China
| | - Jingfang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China.
| | - Xiaoqing Wei
- Department of Reproduction Medicine, Jinan Maternal and Child Health Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250001, China.
| | - Jie Li
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
30
|
Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 2022; 10:1166-1192. [DOI: 10.1039/d1bm01658j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since its discovery, the CRISPR/Cas technology has rapidly become an essential tool in modern biomedical research. The opportunities to specifically modify and correct genomic DNA has also raised big hope...
Collapse
|
31
|
Zhao LW, Zhu YZ, Wu YW, Pi SB, Shen L, Fan HY. Nuclear poly(A) binding protein 1 (PABPN1) mediates zygotic genome activation-dependent maternal mRNA clearance during mouse early embryonic development. Nucleic Acids Res 2021; 50:458-472. [PMID: 34904664 PMCID: PMC8855302 DOI: 10.1093/nar/gkab1213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 11/14/2022] Open
Abstract
An embryo starts its life with maternal mRNA clearance, which is crucial for embryonic development. The elimination of maternal transcripts occurs by the joint action of two pathways: the maternally encoded mRNA decay pathway (M-decay) and the zygotic genome activation (ZGA)-dependent pathway (Z-decay). However, zygotic factors triggering maternal mRNA decay in early mammalian embryos remain largely unknown. In this study, we identified the zygotically encoded nuclear poly(A) binding protein 1 (PABPN1) as a factor required for maternal mRNA turnover, with a previously undescribed cytoplasmic function. Cytoplasmic PABPN1 docks on 3'-uridylated transcripts, downstream of terminal uridylyl transferases TUT4 and TUT7, and recruits 3'-5' exoribonuclease DIS3L2 to its targets, facilitating maternal mRNA decay. Pabpn1-knockout in mice resulted in preimplantation stage mortality due to early developmental arrest at the morula stage. Maternal mRNAs to be eliminated via the Z-decay pathway failed to be removed from Pabpn1-depleted embryos. Furthermore, PABPN1-mediated Z-decay is essential for major ZGA and regulates the expression of cell fate-determining factors in mouse preimplantation embryos. This study revealed an unforeseen cytoplasmic function of PABPN1 coupled with early embryonic development, characterized the presence of a zygotic destabilizer of maternal mRNA, and elucidated the Z-decay process mechanisms, which potentially contribute to human fertility.
Collapse
Affiliation(s)
- Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuai-Bo Pi
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
Assis LA, Santos Filho MVC, da Cruz Silva JR, Bezerra MJR, de Aquino IRPUC, Merlo KC, Holetz FB, Probst CM, Rezende AM, Papadopoulou B, da Costa Lima TDC, de Melo Neto OP. Identification of novel proteins and mRNAs differentially bound to the Leishmania Poly(A) Binding Proteins reveals a direct association between PABP1, the RNA-binding protein RBP23 and mRNAs encoding ribosomal proteins. PLoS Negl Trop Dis 2021; 15:e0009899. [PMID: 34705820 PMCID: PMC8575317 DOI: 10.1371/journal.pntd.0009899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Poly(A) Binding Proteins (PABPs) are major eukaryotic RNA-binding proteins (RBPs) with multiple roles associated with mRNA stability and translation and characterized mainly from multicellular organisms and yeasts. A variable number of PABP homologues are seen in different organisms however the biological reasons for multiple PABPs are generally not well understood. In the unicellular Leishmania, dependent on post-transcriptional mechanisms for the control of its gene expression, three distinct PABPs are found, with yet undefined functional distinctions. Here, using RNA-immunoprecipitation sequencing analysis we show that the Leishmania PABP1 preferentially associates with mRNAs encoding ribosomal proteins, while PABP2 and PABP3 bind to an overlapping set of mRNAs distinct to those enriched in PABP1. Immunoprecipitation studies combined to mass-spectrometry analysis identified RBPs differentially associated with PABP1 or PABP2, including RBP23 and DRBD2, respectively, that were investigated further. Both RBP23 and DRBD2 bind directly to the three PABPs in vitro, but reciprocal experiments confirmed preferential co-immunoprecipitation of PABP1, as well as the EIF4E4/EIF4G3 based translation initiation complex, with RBP23. Other RBP23 binding partners also imply a direct role in translation. DRBD2, in contrast, co-immunoprecipitated with PABP2, PABP3 and with RBPs unrelated to translation. Over 90% of the RBP23-bound mRNAs code for ribosomal proteins, mainly absent from the transcripts co-precipitated with DRBD2. These experiments suggest a novel and specific route for translation of the ribosomal protein mRNAs, mediated by RBP23, PABP1 and the associated EIF4E4/EIF4G3 complex. They also highlight the unique roles that different PABP homologues may have in eukaryotic cells associated with mRNA translation.
Collapse
Affiliation(s)
- Ludmila A. Assis
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Moezio V. C. Santos Filho
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Joao R. da Cruz Silva
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Maria J. R. Bezerra
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | - Kleison C. Merlo
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Fabiola B. Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Christian M. Probst
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Barbara Papadopoulou
- CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, Laval University, Quebec, Quebec, Canada
| | | | - Osvaldo P. de Melo Neto
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
33
|
Analysis of SINE Families B2, Dip, and Ves with Special Reference to Polyadenylation Signals and Transcription Terminators. Int J Mol Sci 2021; 22:ijms22189897. [PMID: 34576060 PMCID: PMC8466645 DOI: 10.3390/ijms22189897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023] Open
Abstract
Short Interspersed Elements (SINEs) are eukaryotic non-autonomous retrotransposons transcribed by RNA polymerase III (pol III). The 3′-terminus of many mammalian SINEs has a polyadenylation signal (AATAAA), pol III transcription terminator, and A-rich tail. The RNAs of such SINEs can be polyadenylated, which is unique for pol III transcripts. Here, B2 (mice and related rodents), Dip (jerboas), and Ves (vespertilionid bats) SINE families were thoroughly studied. They were divided into subfamilies reliably distinguished by relatively long indels. The age of SINE subfamilies can be estimated, which allows us to reconstruct their evolution. The youngest and most active variants of SINE subfamilies were given special attention. The shortest pol III transcription terminators are TCTTT (B2), TATTT (Ves and Dip), and the rarer TTTT. The last nucleotide of the terminator is often not transcribed; accordingly, the truncated terminator of its descendant becomes nonfunctional. The incidence of complete transcription of the TCTTT terminator is twice higher compared to TTTT and thus functional terminators are more likely preserved in daughter SINE copies. Young copies have long poly(A) tails; however, they gradually shorten in host generations. Unexpectedly, the tail shortening below A10 increases the incidence of terminator elongation by Ts thus restoring its efficiency. This process can be critical for the maintenance of SINE activity in the genome.
Collapse
|
34
|
An T, Deng L, Wang Y, Yang Z, Chai C, Ouyang J, Lu X, Zhang C. The prognostic impacts of PABPC1 expression on gastric cancer patients. Future Oncol 2021; 17:4471-4479. [PMID: 34420428 DOI: 10.2217/fon-2021-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the prognostic impacts of PABPC1 on gastric cancer (GC) patients. Methods: The expression levels of PABPC1 in GC tissues and normal gastric tissues were initially compared via bioinformatics analysis. Immunohistochemical staining was accomplished to assess the expression of PABPC1 in the included GC patients. Then the impacts of PABPC1 expression on survival of GC patients were evaluated by Cox regression and Kaplan-Meier analyses. Results: The expression levels of PABPC1 in gastric tissues were significantly higher than those in normal gastric tissues (paired, p = 0.002; unpaired, p = 3.60e-9). By Kaplan-Meier, it was demonstrated that high expression of PABPC1 was significantly associated with worse overall and disease-free survival. Furthermore, high PABPC1 expression was demonstrated to be an independent predictive factor for both overall (p = 0.013; hazard ratio = 2.058; 95% CI: 1.162-3.644) and disease-free (p = 0.018; hazard ratio = 2.284; 95% CI: 1.153-4.524) survival. Conclusion: PABPC1 is a potential prognostic biomarker for GC patients.
Collapse
Affiliation(s)
- Tailai An
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080,China
| | - Lingna Deng
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong518107, China
| | - Yan Wang
- Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zheng Yang
- Department of Hepatobiliary Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Cuicui Chai
- Department of Hepatobiliary Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jun Ouyang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.,Department of Pathology, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China; Center of Scientific Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiaofang Lu
- Department of Hepatobiliary Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Changhua Zhang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
35
|
Sanderson MR, Fahlman RP, Wevrick R. The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem 2021; 297:100959. [PMID: 34265304 PMCID: PMC8350409 DOI: 10.1016/j.jbc.2021.100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader-Willi syndrome, which overlaps clinically and mechanistically with Schaaf-Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid-liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography-tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf-Yang syndrome and related disorders.
Collapse
Affiliation(s)
- Matthea R Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Feng C, Han YH, Qi N, Li J, Sheng QH, Liu Y, Yang LL. Functional implications of PABPC1 in the development of ovarian cancer. Open Med (Wars) 2021; 16:805-815. [PMID: 34027108 PMCID: PMC8122461 DOI: 10.1515/med-2021-0278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
This research aimed to probe the expression characteristics of poly(A)-binding protein cytoplasmic 1 (PABPC1) and its role on the phenotype of ovarian cancer (OC) cells and to further investigate the possible underlying mechanism. The expression of PABPC1 was analyzed according to the data from gene expression omnibus, The Cancer Genome Atlas (TCGA) and Oncomine databases and the RNA sequencing data set from TCGA were downloaded for evaluating the prognostic values. We revealed that compared with the healthy samples, PABPC1 was upregulated in OC samples. High expression of PABPC1 had a connection with a shorter survival for patients with OC. Loss and gain of function assays revealed that silencing PABPC1 significantly suppressed the viability, invasion and migration of SK-OV-3 cells, while PABPC1 overexpression in A2780 cells showed the reverse outcomes. Moreover, Western blot demonstrated that silencing PABPC1 notably inactivated the epithelial-mesenchymal transition (EMT) process, while upregulation of PABPC1 promoted the mitigation of epithelial phenotype and the acquisition of mesenchymal phenotype. Taken together, PABPC1 was upregulated in OC cells and served as a carcinogene to promote the OC cell growth and invasion partly by modulating the EMT process, which implied that PABPC1 might be considered as a useful biomarker for OC therapeutics.
Collapse
Affiliation(s)
- Cong Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People’s Republic of China
| | - Yan-Hua Han
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People’s Republic of China
| | - Na Qi
- Department of Gynecology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou City, Hainan Province, People’s Republic of China
| | - Jia Li
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People’s Republic of China
| | - Qing-Hua Sheng
- Department of Plastic and Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, People’s Republic of China
| | - Yu Liu
- Department of Plastic and Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, People’s Republic of China
| | - Li-Li Yang
- Department of Urology, Heilongjiang Provincial Hospital, No. 82 Zhong-Shan Road, Xiang-Fang District, Harbin, Heilongjiang 150036, People’s Republic of China
| |
Collapse
|
37
|
Aphasizheva I, Aphasizhev R. Mitochondrial RNA quality control in trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1638. [PMID: 33331073 PMCID: PMC9805618 DOI: 10.1002/wrna.1638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023]
Abstract
Unicellular parasites Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a spectrum of diseases that jeopardize public health and afflict the economy in sub-Saharan Africa. These hemoflagellates are distinguished by a single mitochondrion, which contains a kinetoplast nucleoid composed of DNA and histone-like proteins. Kinetoplast DNA (kDNA) represents a densely packed network of interlinked relaxed circular molecules: a few ~23-kb maxicircles encoding ribosomal RNAs (rRNAs) and proteins, and approximately 5,000 1-kb minicircles bearing guide RNA (gRNA) genes. The transcription start site defines the mRNA's 5' terminus while the primary RNA is remodeled into a monocistronic messenger by 3'-5' exonucleolytic trimming, 5' and 3' end modifications, and, in most cases, by internal U-insertion/deletion editing. Ribosomal and guide RNA precursors are also trimmed, and the processed molecules are uridylated. For 35 years, mRNA editing has attracted a major effort, but more recently the essential pre- and postediting processing and turnover events have been discovered and the key effectors have been identified. Among these, pentatricopeptide repeat (PPR) RNA binding proteins emerged as conduits coupling modifications of mRNA termini with internal sequence changes introduced by editing. Among 39 annotated PPRs, 20 belong to ribosomal subunits or assembly intermediates, four function as polyadenylation factors, a single factor directs 5' mRNA modification, and one protein is found in F1-ATPase. Nuclear and mitochondrial RNases P consist of a single PPR polypeptide, PRORP1 and PROP2, respectively. Here, we review PPR-mediated mitochondrial processes and discuss their potential roles in mRNA maturation, quality control, translational activation, and decay. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, Massachusetts
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, Massachusetts,Department of Biochemistry, Boston University Medical Campus, Boston, Massachusetts
| |
Collapse
|
38
|
Li C, Han T, Li Q, Zhang M, Guo R, Yang Y, Lu W, Li Z, Peng C, Wu P, Tian X, Wang Q, Wang Y, Zhou V, Han Z, Li H, Wang F, Hu R. MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of GNRH1 mRNA in mammalian puberty. Nucleic Acids Res 2021; 49:3796-3813. [PMID: 33744966 PMCID: PMC8053111 DOI: 10.1093/nar/gkab155] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
The family of Poly(A)-binding proteins (PABPs) regulates the stability and translation of messenger RNAs (mRNAs). Here we reported that the three members of PABPs, including PABPC1, PABPC3 and PABPC4, were identified as novel substrates for MKRN3, whose deletion or loss-of-function mutations were genetically associated with human central precocious puberty (CPP). MKRN3-mediated ubiquitination was found to attenuate the binding of PABPs to the poly(A) tails of mRNA, which led to shortened poly(A) tail-length of GNRH1 mRNA and compromised the formation of translation initiation complex (TIC). Recently, we have shown that MKRN3 epigenetically regulates the transcription of GNRH1 through conjugating poly-Ub chains onto methyl-DNA bind protein 3 (MBD3). Therefore, MKRN3-mediated ubiquitin signalling could control both transcriptional and post-transcriptional switches of mammalian puberty initiation. While identifying MKRN3 as a novel tissue-specific translational regulator, our work also provided new mechanistic insights into the etiology of MKRN3 dysfunction-associated human CPP.
Collapse
Affiliation(s)
- Chuanyin Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200031, China
| | - Tianting Han
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingrun Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghuan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Guo
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenli Lu
- Department of Juvenile Endocrinology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200001, China
| | - Zhengwei Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Qinqin Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuexiang Wang
- Institute of Nutritional and Health Science, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Vincent Zhou
- Shao-Hua-Ye M.D. Inc, 416 W Las Tunas Dr Ste 205, San Gabriel, CA 91776, USA
| | - Ziyan Han
- Occidental College, 1600 campus Rd, LA, CA 90041, USA
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200001, China
| | - Feng Wang
- Department of Oral Implantology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease, Shanghai 200001, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200031, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease, Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
39
|
Frederick MI, Heinemann IU. Regulation of RNA stability at the 3' end. Biol Chem 2021; 402:425-431. [PMID: 33938180 PMCID: PMC10884531 DOI: 10.1515/hsz-2020-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/04/2020] [Indexed: 01/09/2023]
Abstract
RNA homeostasis is regulated by a multitude of cellular pathways. Although the addition of untemplated adenine residues to the 3' end of mRNAs has long been known to affect RNA stability, newly developed techniques for 3'-end sequencing of RNAs have revealed various unexpected RNA modifications. Among these, uridylation is most recognized for its role in mRNA decay but is also a key regulator of numerous RNA species, including miRNAs and tRNAs, with dual roles in both stability and maturation of miRNAs. Additionally, low levels of untemplated guanidine and cytidine residues have been observed as parts of more complex tailing patterns.
Collapse
Affiliation(s)
- Mallory I Frederick
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London ON, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London ON, Canada
| |
Collapse
|
40
|
Metge BJ, Kammerud SC, Pruitt HC, Shevde LA, Samant RS. Hypoxia re-programs 2'-O-Me modifications on ribosomal RNA. iScience 2020; 24:102010. [PMID: 33490918 PMCID: PMC7811136 DOI: 10.1016/j.isci.2020.102010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the critical stressors encountered by various cells of the human body under diverse pathophysiologic conditions including cancer and has profound impacts on several metabolic and physiologic processes. Hypoxia prompts internal ribosome entry site (IRES)-mediated translation of key genes, such as VEGF, that are vital for tumor progression. Here, we describe that hypoxia remarkably upregulates RNA Polymerase I activity. We discovered that in hypoxia, rRNA shows a different methylation pattern compared to normoxia. Heterogeneity in ribosomes due to the diversity of ribosomal RNA and protein composition has been postulated to generate “specialized ribosomes” that differentially regulate translation. We find that in hypoxia, a sub-set of differentially methylated ribosomes recognizes the VEGF-C IRES, suggesting that ribosomal heterogeneity allows for altered ribosomal functions in hypoxia. Chronic hypoxia stimulates RNA Pol I activity In hypoxia, a pool of specialized rRNA translates VEGFC IRES Hypoxia changes 2′-O-Me modification - epitranscriptomic marks on rRNA
Collapse
Affiliation(s)
- Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Hawley C Pruitt
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
41
|
Roscoe S, Manni E, Roberts M, Ananvoranich S. Formation of mRNP granules in Toxoplasma gondii during the lytic cycle. Mol Biochem Parasitol 2020; 242:111349. [PMID: 33383066 DOI: 10.1016/j.molbiopara.2020.111349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022]
Abstract
Two poly(A) binding proteins (PABPs) of Toxoplasma gondii, were identified and characterized. They were named TgPABPC and TgPABPN as they were found to localize in the cytoplasm and nucleus respectively. TgPABPC, which colocalizes with mRNA granules, is therefore used as a cellular marker of mRNP granules. We detected that the formation of mRNP granules was independent of polymerized microtubules, and that the granules were distributed stochastically within the cytosol. Formation of mRNP granules was found to occur prior to parasite egress when a Ca2+ ionophore is used to induce egress. It was also found that maturation of mRNP granules could be described as a two-phase process. First, prior to host cell lysis, mRNP granules were formed rapidly within the cytosol. Second, the mRNP granule load was reduced within 10 min post egress. To investigate the link between translational state and mRNP granule formation, treatments with salubrinal, nutrient deprivation, and pH stress were used. While salubrinal induced granule formation in tachyzoites, nutrient starvation and pH stress showed no induction effect on mRNP granule formation. Interestingly, salubrinal treatment in bradyzoites did not induce RNP granule formation, thus suggesting that mRNP granule formation is not a ubiquitous response or directly related to translational repression. Instead, mRNP granule formation is likely a response to the rapid increase in non-translating RNA brought on by sudden changes in translational state.
Collapse
Affiliation(s)
- Scott Roscoe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Emad Manni
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Mikayla Roberts
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada.
| |
Collapse
|
42
|
Strzelecka D, Smietanski M, Sikorski PJ, Warminski M, Kowalska J, Jemielity J. Phosphodiester modifications in mRNA poly(A) tail prevent deadenylation without compromising protein expression. RNA (NEW YORK, N.Y.) 2020; 26:1815-1837. [PMID: 32820035 PMCID: PMC7668260 DOI: 10.1261/rna.077099.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/13/2020] [Indexed: 06/07/2023]
Abstract
Chemical modifications enable preparation of mRNAs with augmented stability and translational activity. In this study, we explored how chemical modifications of 5',3'-phosphodiester bonds in the mRNA body and poly(A) tail influence the biological properties of eukaryotic mRNA. To obtain modified and unmodified in vitro transcribed mRNAs, we used ATP and ATP analogs modified at the α-phosphate (containing either O-to-S or O-to-BH3 substitutions) and three different RNA polymerases-SP6, T7, and poly(A) polymerase. To verify the efficiency of incorporation of ATP analogs in the presence of ATP, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitative assessment of modification frequency based on exhaustive degradation of the transcripts to 5'-mononucleotides. The method also estimated the average poly(A) tail lengths, thereby providing a versatile tool for establishing a structure-biological property relationship for mRNA. We found that mRNAs containing phosphorothioate groups within the poly(A) tail were substantially less susceptible to degradation by 3'-deadenylase than unmodified mRNA and were efficiently expressed in cultured cells, which makes them useful research tools and potential candidates for future development of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Dominika Strzelecka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
43
|
Aguilar LC, Paul B, Reiter T, Gendron L, Arul Nambi Rajan A, Montpetit R, Trahan C, Pechmann S, Oeffinger M, Montpetit B. Altered rRNA processing disrupts nuclear RNA homeostasis via competition for the poly(A)-binding protein Nab2. Nucleic Acids Res 2020; 48:11675-11694. [PMID: 33137177 PMCID: PMC7672433 DOI: 10.1093/nar/gkaa964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are key mediators of RNA metabolism. Whereas some RBPs exhibit narrow transcript specificity, others function broadly across both coding and non-coding RNAs. Here, in Saccharomyces cerevisiae, we demonstrate that changes in RBP availability caused by disruptions to distinct cellular processes promote a common global breakdown in RNA metabolism and nuclear RNA homeostasis. Our data shows that stabilization of aberrant ribosomal RNA (rRNA) precursors in an enp1-1 mutant causes phenotypes similar to RNA exosome mutants due to nucleolar sequestration of the poly(A)-binding protein (PABP) Nab2. Decreased nuclear PABP availability is accompanied by genome-wide changes in RNA metabolism, including increased pervasive transcripts levels and snoRNA processing defects. These phenotypes are mitigated by overexpression of PABPs, inhibition of rDNA transcription, or alterations in TRAMP activity. Our results highlight the need for cells to maintain poly(A)-RNA levels in balance with PABPs and other RBPs with mutable substrate specificity across nucleoplasmic and nucleolar RNA processes.
Collapse
Affiliation(s)
- Lisbeth-Carolina Aguilar
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Biplab Paul
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Taylor Reiter
- Food Science Graduate Group, University of California Davis, Davis, CA, USA
| | - Louis Gendron
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Christian Trahan
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Sebastian Pechmann
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Marlene Oeffinger
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- Food Science Graduate Group, University of California Davis, Davis, CA, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
44
|
Beta RAA, Kyritsis A, Douka V, Papanastasi E, Rizouli M, Leonidas DD, Vlachakis D, Balatsos NAA. Biochemical and in silico identification of the active site and the catalytic mechanism of the circadian deadenylase HESPERIN. FEBS Open Bio 2020; 12:1036-1049. [PMID: 33095977 PMCID: PMC9063446 DOI: 10.1002/2211-5463.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/04/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022] Open
Abstract
The 24‐h molecular clock is based on the stability of rhythmically expressed transcripts. The shortening of the poly(A) tail of mRNAs is often the first and rate‐limiting step that determines the lifespan of a mRNA and is catalyzed by deadenylases. Herein, we determine the catalytic site of Hesperin, a recently described circadian deadenylase in plants, using a modified site‐directed mutagenesis protocol and a custom vector, pATHRA. To explore the catalytic efficiency of AtHESPERIN, we investigated the effect of AMP and neomycin, and used molecular modeling simulations to propose a catalytic mechanism. Collectively, the biochemical and in silico results classify AtHESPERIN in the exonuclease–endonuclease–phosphatase deadenylase superfamily and contribute to the understanding of the intricate mechanisms of circadian mRNA turnover.
Collapse
Affiliation(s)
- Rafailia A A Beta
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| | - Athanasios Kyritsis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece.,Pulmonology Clinic, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Viopolis, 415 00, Larissa, Greece
| | - Veroniki Douka
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| | - Eirini Papanastasi
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece.,Department of Dermatology and Venereology, Lausanne University Hospital (CHUV), University of Lausanne, Switzerland
| | - Marianna Rizouli
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| | - Dimitrios Vlachakis
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| |
Collapse
|
45
|
Grifone R, Shao M, Saquet A, Shi DL. RNA-Binding Protein Rbm24 as a Multifaceted Post-Transcriptional Regulator of Embryonic Lineage Differentiation and Cellular Homeostasis. Cells 2020; 9:E1891. [PMID: 32806768 PMCID: PMC7463526 DOI: 10.3390/cells9081891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins control the metabolism of RNAs at all stages of their lifetime. They are critically required for the post-transcriptional regulation of gene expression in a wide variety of physiological and pathological processes. Rbm24 is a highly conserved RNA-binding protein that displays strongly regionalized expression patterns and exhibits dynamic changes in subcellular localization during early development. There is increasing evidence that it acts as a multifunctional regulator to switch cell fate determination and to maintain tissue homeostasis. Dysfunction of Rbm24 disrupts cell differentiation in nearly every tissue where it is expressed, such as skeletal and cardiac muscles, and different head sensory organs, but the molecular events that are affected may vary in a tissue-specific, or even a stage-specific manner. Recent works using different animal models have uncovered multiple post-transcriptional regulatory mechanisms by which Rbm24 functions in key developmental processes. In particular, it represents a major splicing factor in muscle cell development, and plays an essential role in cytoplasmic polyadenylation during lens fiber cell terminal differentiation. Here we review the advances in understanding the implication of Rbm24 during development and disease, by focusing on its regulatory roles in physiological and pathological conditions.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Audrey Saquet
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| | - De-Li Shi
- Developmental Biology Laboratory, CNRS-UMR7622, IBPS, Sorbonne University, 75005 Paris, France; (R.G.); (A.S.)
| |
Collapse
|
46
|
Zhao LW, Zhu YZ, Chen H, Wu YW, Pi SB, Chen L, Shen L, Fan HY. PABPN1L mediates cytoplasmic mRNA decay as a placeholder during the maternal-to-zygotic transition. EMBO Rep 2020; 21:e49956. [PMID: 32558204 DOI: 10.15252/embr.201949956] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal mRNA degradation is a critical event of the maternal-to-zygotic transition (MZT) that determines the developmental potential of early embryos. Nuclear Poly(A)-binding proteins (PABPNs) are extensively involved in mRNA post-transcriptional regulation, but their function in the MZT has not been investigated. In this study, we find that the maternally expressed PABPN1-like (PABPN1L), rather than its ubiquitously expressed homolog PABPN1, acts as an mRNA-binding adapter of the mammalian MZT licensing factor BTG4, which mediates maternal mRNA clearance. Female Pabpn1l null mice produce morphologically normal oocytes but are infertile owing to early developmental arrest of the resultant embryos at the 1- to 2-cell stage. Deletion of Pabpn1l impairs the deadenylation and degradation of a subset of BTG4-targeted maternal mRNAs during the MZT. In addition to recruiting BTG4 to the mRNA 3'-poly(A) tails, PABPN1L is also required for BTG4 protein accumulation in maturing oocytes by protecting BTG4 from SCF-βTrCP1 E3 ubiquitin ligase-mediated polyubiquitination and degradation. This study highlights a noncanonical cytoplasmic function of nuclear poly(A)-binding protein in mRNA turnover, as well as its physiological importance during the MZT.
Collapse
Affiliation(s)
- Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Chen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuai-Bo Pi
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lu Chen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Wen Y, Chen J, Li J, Arif W, Kalsotra A, Irudayaraj J. Effect of PFOA on DNA Methylation and Alternative Splicing in Mouse Liver. Toxicol Lett 2020; 329:38-46. [PMID: 32320774 DOI: 10.1016/j.toxlet.2020.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant prevalent in the environment and implicated in damage to the liver leading to a fatty liver phenotype called hepatocellular steatosis. Our goal is to provide a basis for PFOA-induced hepatocellular steatosis in relation to epigenetic alterations and mRNA splicing. Young adult female mice exposed to different concentrations of PFOA showed an increase in liver weight with decreased global DNA methylation (5-mC). At higher concentrations, the expression of DNA methyltransferase 3A (Dnmt3a) was significantly reduced and the expression of tet methycytosine dioxygenase 1 (Tet1) was significantly increased. There was no significant change in the other Dnmts and Tets. PFOA exposure significantly increased the expression of cell cycle regulators and anti-apoptotic genes. The expression of multiple genes involved in mTOR (mammalian target of rapamycin) signaling pathway were altered significantly with reduction in Pten (phosphatase and tensin homolog, primary inhibitor of mTOR pathway) expression. Multiple splicing factors whose protein but not mRNA levels affected by PFOA exposure were identified. The changes in protein abundance of the splicing factors was also reflected in altered splicing pattern of their target genes, which provided new insights on the previously unexplored mechanisms of PFOA-mediated hepatotoxicity and pathogenesis.
Collapse
Affiliation(s)
- Yi Wen
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jackie Chen
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Junya Li
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Waqar Arif
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
48
|
Slobodin B, Bahat A, Sehrawat U, Becker-Herman S, Zuckerman B, Weiss AN, Han R, Elkon R, Agami R, Ulitsky I, Shachar I, Dikstein R. Transcription Dynamics Regulate Poly(A) Tails and Expression of the RNA Degradation Machinery to Balance mRNA Levels. Mol Cell 2020; 78:434-444.e5. [PMID: 32294471 DOI: 10.1016/j.molcel.2020.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 03/14/2020] [Indexed: 02/02/2023]
Abstract
Gene expression is regulated by the rates of synthesis and degradation of mRNAs, but how these processes are coordinated is poorly understood. Here, we show that reduced transcription dynamics of specific genes leads to enhanced m6A deposition, preferential activity of the CCR4-Not complex, shortened poly(A) tails, and reduced stability of the respective mRNAs. These effects are also exerted by internal ribosome entry site (IRES) elements, which we found to be transcriptional pause sites. However, when transcription dynamics, and subsequently poly(A) tails, are globally altered, cells buffer mRNA levels by adjusting the expression of mRNA degradation machinery. Stress-provoked global impediment of transcription elongation leads to a dramatic inhibition of the mRNA degradation machinery and massive mRNA stabilization. Accordingly, globally enhanced transcription, such as following B cell activation or glucose stimulation, has the opposite effects. This study uncovers two molecular pathways that maintain balanced gene expression in mammalian cells by linking transcription to mRNA stability.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shirly Becker-Herman
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binyamin Zuckerman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amanda N Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruiqi Han
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Idit Shachar
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
49
|
Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via cytoplasmic polyadenylation. Proc Natl Acad Sci U S A 2020; 117:7245-7254. [PMID: 32170011 PMCID: PMC7132282 DOI: 10.1073/pnas.1917922117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lens transparency critically requires the abundant accumulation of crystallin proteins, and deregulation of this process causes congenital cataracts in humans. Rbm24 is an RNA-binding protein with highly conserved expression in differentiating lens fiber cells among all vertebrates. We use a zebrafish model to demonstrate that loss of Rbm24 function specifically impedes lens fiber cell differentiation, resulting in cataract formation and blindness. Molecular analyses reveal that Rbm24 interacts with cytoplasmic polyadenylation complex and binds to a large number of lens-expressed messenger RNAs to maintain their stability and protect their poly(A) tail length, thereby crucially contributing to their efficient translation into functional proteins. This work identifies an important mechanism by which Rbm24 posttranscriptionally controls lens gene expression to establish transparency and refraction power. Lens transparency is established by abundant accumulation of crystallin proteins and loss of organelles in the fiber cells. It requires an efficient translation of lens messenger RNAs (mRNAs) to overcome the progressively reduced transcriptional activity that results from denucleation. Inappropriate regulation of this process impairs lens differentiation and causes cataract formation. However, the regulatory mechanism promoting protein synthesis from lens-expressed mRNAs remains unclear. Here we show that in zebrafish, the RNA-binding protein Rbm24 is critically required for the accumulation of crystallin proteins and terminal differentiation of lens fiber cells. In the developing lens, Rbm24 binds to a wide spectrum of lens-specific mRNAs through the RNA recognition motif and interacts with cytoplasmic polyadenylation element-binding protein (Cpeb1b) and cytoplasmic poly(A)-binding protein (Pabpc1l) through the C-terminal region. Loss of Rbm24 reduces the stability of a subset of lens mRNAs encoding heat shock proteins and shortens the poly(A) tail length of crystallin mRNAs encoding lens structural components, thereby preventing their translation into functional proteins. This severely impairs lens transparency and results in blindness. Consistent with its highly conserved expression in differentiating lens fiber cells, the findings suggest that vertebrate Rbm24 represents a key regulator of cytoplasmic polyadenylation and plays an essential role in the posttranscriptional control of lens development.
Collapse
|
50
|
Ustyantsev IG, Tatosyan KA, Stasenko DV, Kochanova NY, Borodulina OR, Kramerov DA. Polyadenylation of Sine Transcripts Generated by RNA Polymerase III Dramatically Prolongs Their Lifetime in Cells. Mol Biol 2020. [DOI: 10.1134/s0026893319040150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|