1
|
Piot A, El‐Kassaby YA, Porth I. Exon disruptive variants in Populus trichocarpa associated with wood properties exhibit distinct gene expression patterns. THE PLANT GENOME 2025; 18:e20541. [PMID: 39632472 PMCID: PMC11726415 DOI: 10.1002/tpg2.20541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Forest trees may harbor naturally occurring exon disruptive variants (DVs) in their gene sequences, which potentially impact important ecological and economic phenotypic traits. However, the abundance and molecular regulation of these variants remain largely unexplored. Here, 24,420 DVs were identified by screening 1014 Populus trichocarpa full genomes. The identified DVs were predominantly heterozygous with allelic frequencies below 5% (only 26% of DVs had frequencies greater than 5%). Using common garden-grown trees, DVs were assessed for gene expression variation in the developing xylem, revealing that their gene expression can be significantly altered, particularly for homozygous DVs (in the range of 27%-38% of cases depending on the studied common garden). DVs were further investigated for their correlations with 13 wood quality traits, revealing that, among the 148 discovered DV associations, 15 correlated with more than one wood property and six genes had more than one DV in their coding sequences associated with wood traits. Approximately one-third of DVs correlated with wood property variation also showed significant gene expression variation, confirming their non-spurious impact. These findings offer potential avenues for targeted introduction of homozygous mutations using tree biotechnology, and while the exact mechanisms by which DVs may directly influence wood formation remain to be unraveled, this study lays the groundwork for further investigation.
Collapse
Affiliation(s)
- Anthony Piot
- Department of Wood and Forest SciencesUniversité LavalQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Université LavalQuebec CityQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebec CityQuebecCanada
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of ForestryThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ilga Porth
- Department of Wood and Forest SciencesUniversité LavalQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Université LavalQuebec CityQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebec CityQuebecCanada
| |
Collapse
|
2
|
Lucia-Campos C, Parenti I, Latorre-Pellicer A, Gil-Salvador M, Bestetti I, Finelli P, Larizza L, Arnedo M, Ayerza-Casas A, Del Rincón J, Trujillano L, Morte B, Pérez-Jurado LA, Lapunzina P, Leitão E, Beygo J, Lich C, Kilpert F, Kaya S, Depienne C, Kaiser FJ, Ramos FJ, Puisac B, Pié J. An intragenic duplication in the AFF2 gene associated with Cornelia de Lange syndrome phenotype. Front Genet 2024; 15:1472543. [PMID: 39553472 PMCID: PMC11563810 DOI: 10.3389/fgene.2024.1472543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Cornelia de Lange syndrome (CdLS, OMIM #122470, #300590, #300882, #610759, and #614701) is a rare congenital disorder that affects the development of multiple organs and is characterized by physical abnormalities and cognitive and behavioral disabilities. Its molecular basis is mainly based on alterations in genes encoding structural and regulatory proteins related to the cohesin complex. Moreover, other transcriptional regulatory factors have been linked to this syndrome. However, additional causative genes are still unknown, since many patients still lack a molecular diagnosis. Herein, we describe a case with multiple affected family members presenting with an intragenic duplication in the AFF2 gene. The direct tandem intragenic duplication of exons 10, 11 and 12 was detected through high-resolution array Comparative Genomic Hybridization and next-generation sequencing technologies. Confirming the X-linked inheritance pattern, the duplication was found in the patient, his mother and his maternal aunt affected (dizygotic twins). Targeted sequencing with Oxford Nanopore Technologies revealed an aberrant transcript which is predominantly expressed in the patient and his aunt. Along with these results, a significant reduction in AFF2 gene expression levels was detected in these two individuals. Clinically both subjects exhibit a classic CdLS phenotype, whereas the mother is mostly unaffected. Consistent with the phenotypical differences observed between the mother and the aunt, there is a marked difference in X-inactivation patterns skewing. Given the crucial role of AFF2 in transcriptional regulation, it is not surprising that AFF2 variants can give rise to CdLS phenotypes. Therefore, the AFF2 gene should be considered for the molecular diagnosis of this syndrome.
Collapse
Affiliation(s)
- Cristina Lucia-Campos
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Ilaria Parenti
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ana Latorre-Pellicer
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Marta Gil-Salvador
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Ilaria Bestetti
- SS Medical Genetics Laboratory, SC Clinical Pathology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Palma Finelli
- SS Medical Genetics Laboratory, SC Clinical Pathology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - María Arnedo
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Ariadna Ayerza-Casas
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
- Unit of Paediatric Cardiology, Service of Paediatrics, University Hospital “Miguel Servet”, Zaragoza, Spain
| | - Julia Del Rincón
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Laura Trujillano
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
- Clinical and Molecular Genetics Area, Vall d’Hebron Hospital, Medicine Genetics Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Beatriz Morte
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A. Pérez-Jurado
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Genetics Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Genetics Unit, University Pompeu Fabra, Barcelona, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Medical and Molecular Genetics (INGEMM), University Hospital “La Paz”-IdiPAZ, Madrid, Spain
- ERN-ITHACA, University Hospital La Paz, Madrid, Spain
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christina Lich
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabian Kilpert
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Kaya
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank J. Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Rare Diseases (Essener Zentrum für Seltene Erkrankungen, EZSE), University Hospital Essen, Essen, Germany
| | - Feliciano J. Ramos
- Department of Paediatrics, Unit of Clinical Genetics, Service of Paediatrics, University Hospital “Lozano Blesa”, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Beatriz Puisac
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Juan Pié
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| |
Collapse
|
3
|
Garland W, Jensen TH. Nuclear sorting of short RNA polymerase II transcripts. Mol Cell 2024; 84:3644-3655. [PMID: 39366352 DOI: 10.1016/j.molcel.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Mammalian genomes produce an abundance of short RNA. This is, to a large extent, due to the genome-wide and spurious activity of RNA polymerase II (RNAPII). However, it is also because the vast majority of initiating RNAPII, regardless of the transcribed DNA unit, terminates within a ∼3-kb early "pausing zone." Given that the resultant RNAs constitute both functional and non-functional species, their proper sorting is critical. One way to think about such quality control (QC) is that transcripts, from their first emergence, are relentlessly targeted by decay factors, which may only be avoided by engaging protective processing pathways. In a molecular materialization of this concept, recent progress has found that both "destructive" and "productive" RNA effectors assemble at the 5' end of capped RNA, orchestrated by the essential arsenite resistance protein 2 (ARS2) protein. Based on this principle, we here discuss early QC mechanisms and how these might sort short RNAs to their final fates.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark.
| |
Collapse
|
4
|
Fingerhut JM, Lannes R, Whitfield TW, Thiru P, Yamashita YM. Co-transcriptional splicing facilitates transcription of gigantic genes. PLoS Genet 2024; 20:e1011241. [PMID: 38870220 PMCID: PMC11207136 DOI: 10.1371/journal.pgen.1011241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Although introns are typically tens to thousands of nucleotides, there are notable exceptions. In flies as well as humans, a small number of genes contain introns that are more than 1000 times larger than typical introns, exceeding hundreds of kilobases (kb) to megabases (Mb). It remains unknown why gigantic introns exist and how cells overcome the challenges associated with their transcription and RNA processing. The Drosophila Y chromosome contains some of the largest genes identified to date: multiple genes exceed 4Mb, with introns accounting for over 99% of the gene span. Here we demonstrate that co-transcriptional splicing of these gigantic Y-linked genes is important to ensure successful transcription: perturbation of splicing led to the attenuation of transcription, leading to a failure to produce mature mRNA. Cytologically, defective splicing of the Y-linked gigantic genes resulted in disorganization of transcripts within the nucleus suggestive of entanglement of transcripts, likely resulting from unspliced long RNAs. We propose that co-transcriptional splicing maintains the length of nascent transcripts of gigantic genes under a critical threshold, preventing their entanglement and ensuring proper gene expression. Our study reveals a novel biological significance of co-transcriptional splicing.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Romain Lannes
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Troy W. Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
5
|
Hardy K, Lutz M, Takimoto T. Human coronavirus NL63 nsp1 induces degradation of RNA polymerase II to inhibit host protein synthesis. PLoS Pathog 2024; 20:e1012329. [PMID: 38900816 PMCID: PMC11218958 DOI: 10.1371/journal.ppat.1012329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/02/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
Coronavirus (CoV) nonstructural protein 1 (nsp1) is considered a pathogenic factor due to its ability to inhibit host antiviral responses by inducing general shutoff of host protein synthesis. Nsp1 is expressed by α- and β-CoVs, but its functions and strategies to induce host shutoff are not fully elucidated. We compared the nsp1s from two β-CoVs (SARS-CoV and SARS-CoV-2) and two α-CoVs (NL63 and 229E) and found that NL63 nsp1 has the strongest shutoff activity. Unlike SARS-CoV nsp1s, which bind to 40S ribosomes and block translation of cellular mRNA, NL63 nsp1 did not inhibit translation of mRNAs transfected into cells. Instead, NL63 nsp1 localized to the nucleus and specifically inhibited transcription of genes under an RNA polymerase II (RNAPII) promoter. Further analysis revealed that NL63 nsp1 induces degradation of the largest subunit of RNAPII, Rpb1. This degradation was detected regardless of the phosphorylation state of Rpb1 and was blocked by the proteasome inhibitor MG132. We also found that Rpb1 was ubiquitinated in NL63-infected cells, and inhibition of ubiquitination by a ubiquitin activating enzyme inhibitor (TAK243) prevented degradation of Rpb1 in virus-infected cells. These data reveal an unrecognized strategy of host shutoff by human α-CoV NL63: targeting host transcription by inducing Rpb1 degradation to prevent host protein expression. Our study indicates that viruses within the same family can use completely distinct mechanisms to regulate host antiviral responses.
Collapse
Affiliation(s)
- Kala Hardy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
6
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Potter A, Cabrera-Orefice A, Spelbrink JN. Let's make it clear: systematic exploration of mitochondrial DNA- and RNA-protein complexes by complexome profiling. Nucleic Acids Res 2023; 51:10619-10641. [PMID: 37615582 PMCID: PMC10602928 DOI: 10.1093/nar/gkad697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Complexome profiling (CP) is a powerful tool for systematic investigation of protein interactors that has been primarily applied to study the composition and dynamics of mitochondrial protein complexes. Here, we further optimized this method to extend its application to survey mitochondrial DNA- and RNA-interacting protein complexes. We established that high-resolution clear native gel electrophoresis (hrCNE) is a better alternative to preserve DNA- and RNA-protein interactions that are otherwise disrupted when samples are separated by the widely used blue native gel electrophoresis (BNE). In combination with enzymatic digestion of DNA, our CP approach improved the identification of a wide range of protein interactors of the mitochondrial gene expression system without compromising the detection of other multiprotein complexes. The utility of this approach was particularly demonstrated by analysing the complexome changes in human mitochondria with impaired gene expression after transient, chemically induced mitochondrial DNA depletion. Effects of RNase on mitochondrial protein complexes were also evaluated and discussed. Overall, our adaptations significantly improved the identification of mitochondrial DNA- and RNA-protein interactions by CP, thereby unlocking the comprehensive analysis of a near-complete mitochondrial complexome in a single experiment.
Collapse
Affiliation(s)
- Alisa Potter
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Johannes N Spelbrink
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Flemr M, Schwaiger M, Hess D, Iesmantavicius V, Ahel J, Tuck AC, Mohn F, Bühler M. Mouse nuclear RNAi-defective 2 promotes splicing of weak 5' splice sites. RNA (NEW YORK, N.Y.) 2023; 29:1140-1165. [PMID: 37137667 PMCID: PMC10351895 DOI: 10.1261/rna.079465.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Removal of introns during pre-mRNA splicing, which is central to gene expression, initiates by base pairing of U1 snRNA with a 5' splice site (5'SS). In mammals, many introns contain weak 5'SSs that are not efficiently recognized by the canonical U1 snRNP, suggesting alternative mechanisms exist. Here, we develop a cross-linking immunoprecipitation coupled to a high-throughput sequencing method, BCLIP-seq, to identify NRDE2 (nuclear RNAi-defective 2), and CCDC174 (coiled-coil domain-containing 174) as novel RNA-binding proteins in mouse ES cells that associate with U1 snRNA and 5'SSs. Both proteins bind directly to U1 snRNA independently of canonical U1 snRNP-specific proteins, and they are required for the selection and effective processing of weak 5'SSs. Our results reveal that mammalian cells use noncanonical splicing factors bound directly to U1 snRNA to effectively select suboptimal 5'SS sequences in hundreds of genes, promoting proper splice site choice, and accurate pre-mRNA splicing.
Collapse
Affiliation(s)
- Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Josip Ahel
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alex Charles Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
9
|
Ham S, Kim SS, Park S, Kim EJE, Kwon S, Park HEH, Jung Y, Lee SJV. Systematic transcriptome analysis associated with physiological and chronological aging in Caenorhabditis elegans. Genome Res 2022; 32:2003-2014. [PMID: 36351769 PMCID: PMC9808617 DOI: 10.1101/gr.276515.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Aging is associated with changes in a variety of biological processes at the transcriptomic level, including gene expression. Two types of aging occur during a lifetime: chronological and physiological aging. However, dissecting the difference between chronological and physiological ages at the transcriptomic level has been a challenge because of its complexity. We analyzed the transcriptomic features associated with physiological and chronological aging using Caenorhabditis elegans as a model. Many structural and functional transcript elements, such as noncoding RNAs and intron-derived transcripts, were up-regulated with chronological aging. In contrast, mRNAs with many biological functions, including RNA processing, were down-regulated with physiological aging. We also identified an age-dependent increase in the usage of distal 3' splice sites in mRNA transcripts as a biomarker of physiological aging. Our study provides crucial information for dissecting chronological and physiological aging at the transcriptomic level.
Collapse
Affiliation(s)
- Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Sieun S Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Eun Ji E Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
10
|
Abstract
Transcription elongation by RNA polymerase II (Pol II) has emerged as a regulatory hub in gene expression. A key control point occurs during early transcription elongation when Pol II pauses in the promoter-proximal region at the majority of genes in mammalian cells and at a large set of genes in Drosophila. An increasing number of trans-acting factors have been linked to promoter-proximal pausing. Some factors help to establish the pause, whereas others are required for the release of Pol II into productive elongation. A dysfunction of this elongation control point leads to aberrant gene expression and can contribute to disease development. The BET bromodomain protein BRD4 has been implicated in elongation control. However, only recently direct BRD4-specific functions in Pol II transcription elongation have been uncovered. This mainly became possible with technological advances that allow selective and rapid ablation of BRD4 in cells along with the availability of approaches that capture the immediate consequences on nascent transcription. This review sheds light on the experimental breakthroughs that led to the emerging view of BRD4 as a general regulator of transcription elongation.
Collapse
Affiliation(s)
- Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yelizaveta Mochalova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
11
|
Hedouin S, Logsdon GA, Underwood JG, Biggins S. A transcriptional roadblock protects yeast centromeres. Nucleic Acids Res 2022; 50:7801-7815. [PMID: 35253883 PMCID: PMC9371891 DOI: 10.1093/nar/gkac117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
Abstract
Centromeres are the chromosomal loci essential for faithful chromosome segregation during cell division. Although centromeres are transcribed and produce non-coding RNAs (cenRNAs) that affect centromere function, we still lack a mechanistic understanding of how centromere transcription is regulated. Here, using a targeted RNA isoform sequencing approach, we identified the transcriptional landscape at and surrounding all centromeres in budding yeast. Overall, cenRNAs are derived from transcription readthrough of pericentromeric regions but rarely span the entire centromere and are a complex mixture of molecules that are heterogeneous in abundance, orientation, and sequence. While most pericentromeres are transcribed throughout the cell cycle, centromere accessibility to the transcription machinery is restricted to S-phase. This temporal restriction is dependent on Cbf1, a centromere-binding transcription factor, that we demonstrate acts locally as a transcriptional roadblock. Cbf1 deletion leads to an accumulation of cenRNAs at all phases of the cell cycle which correlates with increased chromosome mis-segregation that is partially rescued when the roadblock activity is restored. We propose that a Cbf1-mediated transcriptional roadblock protects yeast centromeres from untimely transcription to ensure genomic stability.
Collapse
Affiliation(s)
- Sabrine Hedouin
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jason G Underwood
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, CA 94025, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Gonzalo L, Tossolini I, Gulanicz T, Cambiagno DA, Kasprowicz-Maluski A, Smolinski DJ, Mammarella MF, Ariel FD, Marquardt S, Szweykowska-Kulinska Z, Jarmolowski A, Manavella PA. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. NATURE PLANTS 2022; 8:402-418. [PMID: 35449404 PMCID: PMC9023350 DOI: 10.1038/s41477-022-01125-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/08/2022] [Indexed: 05/03/2023]
Abstract
In most organisms, the maturation of nascent RNAs is coupled to transcription. Unlike in animals, the RNA polymerase II (RNAPII) transcribes microRNA genes (MIRNAs) as long and structurally variable pri-miRNAs in plants. Current evidence suggests that the miRNA biogenesis complex assembly initiates early during the transcription of pri-miRNAs in plants. However, it is unknown whether miRNA processing occurs co-transcriptionally. Here, we used native elongating transcript sequencing data and imaging techniques to demonstrate that plant miRNA biogenesis occurs coupled to transcription. We found that the entire biogenesis occurs co-transcriptionally for pri-miRNAs processed from the loop of the hairpin but requires a second nucleoplasmic step for those processed from the base. Furthermore, we found that co- and post-transcriptional miRNA processing mechanisms co-exist for most miRNAs in a dynamic balance. Notably, we discovered that R-loops, formed near the transcription start site region of MIRNAs, promote co-transcriptional pri-miRNA processing. Furthermore, our results suggest the neofunctionalization of co-transcriptionally processed miRNAs, boosting countless regulatory scenarios.
Collapse
Affiliation(s)
- Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ileana Tossolini
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Tomasz Gulanicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Unidad de Estudios Agropecuarios (UDEA), INTA-CONICET, Córdoba, Argentina
| | - Anna Kasprowicz-Maluski
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Dariusz Jan Smolinski
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - María Florencia Mammarella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
13
|
Lange H, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. THE PLANT CELL 2022; 34:967-988. [PMID: 34954803 PMCID: PMC8894942 DOI: 10.1093/plcell/koab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 05/08/2023]
Abstract
RNA exosome complexes provide the main 3'-5'-exoribonuclease activities in eukaryotic cells and contribute to the maturation and degradation of virtually all types of RNA. RNA exosomes consist of a conserved core complex that associates with exoribonucleases and with multimeric cofactors that recruit the enzyme to its RNA targets. Despite an overall high level of structural and functional conservation, the enzymatic activities and compositions of exosome complexes and their cofactor modules differ among eukaryotes. This review highlights unique features of plant exosome complexes, such as the phosphorolytic activity of the core complex, and discusses the exosome cofactors that operate in plants and are dedicated to the maturation of ribosomal RNA, the elimination of spurious, misprocessed, and superfluous transcripts, or the removal of mRNAs cleaved by the RNA-induced silencing complex and other mRNAs prone to undergo silencing.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Author for correspondence:
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Connell Z, Parnell TJ, McCullough LL, Hill CP, Formosa T. The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II. Nucleic Acids Res 2021; 50:784-802. [PMID: 34967414 PMCID: PMC8789061 DOI: 10.1093/nar/gkab1262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues of the Rpb1 subunit in the linker between the catalytic core and the C-terminal domain (CTD) heptad repeats. This interaction contributes to generic localization of Spt6, but we show here that it also has gene-specific roles. Disrupting the interface affected transcription start site selection at a subset of genes whose expression is regulated by this choice, and this was accompanied by changes in a distinct pattern of Spt6 accumulation at these sites. Splicing efficiency was also diminished, as was apparent progression through introns that encode snoRNAs. Chromatin-mediated repression was impaired, and a distinct role in maintaining +1 nucleosomes was identified, especially at ribosomal protein genes. The Spt6-tSH2:Rpb1 interface therefore has both genome-wide functions and local roles at subsets of genes where dynamic decisions regarding initiation, transcript processing, or termination are made. We propose that the interaction modulates the availability or activity of the core elongation and histone chaperone functions of Spt6, contributing to coordination between RNAPII and its accessory factors as varying local conditions call for dynamic responses.
Collapse
Affiliation(s)
- Zaily Connell
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Laura L McCullough
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Christopher P Hill
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Tim Formosa
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Enervald E, Powell LM, Boteva L, Foti R, Blanes Ruiz N, Kibar G, Piszczek A, Cavaleri F, Vingron M, Cerase A, Buonomo SBC. RIF1 and KAP1 differentially regulate the choice of inactive versus active X chromosomes. EMBO J 2021; 40:e105862. [PMID: 34786738 DOI: 10.15252/embj.2020105862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
The onset of random X chromosome inactivation in mouse requires the switch from a symmetric to an asymmetric state, where the identities of the future inactive and active X chromosomes are assigned. This process is known as X chromosome choice. Here, we show that RIF1 and KAP1 are two fundamental factors for the definition of this transcriptional asymmetry. We found that at the onset of differentiation of mouse embryonic stem cells (mESCs), biallelic up-regulation of the long non-coding RNA Tsix weakens the symmetric association of RIF1 with the Xist promoter. The Xist allele maintaining the association with RIF1 goes on to up-regulate Xist RNA expression in a RIF1-dependent manner. Conversely, the promoter that loses RIF1 gains binding of KAP1, and KAP1 is required for the increase in Tsix levels preceding the choice. We propose that the mutual exclusion of Tsix and RIF1, and of RIF1 and KAP1, at the Xist promoters establish a self-sustaining loop that transforms an initially stochastic event into a stably inherited asymmetric X-chromosome state.
Collapse
Affiliation(s)
- Elin Enervald
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Lynn Marie Powell
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lora Boteva
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rossana Foti
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Nerea Blanes Ruiz
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gözde Kibar
- Max-Planck-Institut fuer molekulare Genetik, Berlin, Germany
| | - Agnieszka Piszczek
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Fatima Cavaleri
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| | - Martin Vingron
- Max-Planck-Institut fuer molekulare Genetik, Berlin, Germany
| | - Andrea Cerase
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sara B C Buonomo
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome), Monterotondo, Italy
| |
Collapse
|
16
|
Uzun Ü, Brown T, Fischl H, Angel A, Mellor J. Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier. Cell Rep 2021; 36:109755. [PMID: 34592154 PMCID: PMC8492961 DOI: 10.1016/j.celrep.2021.109755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Spt4 is a transcription elongation factor with homologs in organisms with nucleosomes. Structural and in vitro studies implicate Spt4 in transcription through nucleosomes, and yet the in vivo function of Spt4 is unclear. Here, we assess the precise position of Spt4 during transcription and the consequences of the loss of Spt4 on RNA polymerase II (RNAPII) dynamics and nucleosome positioning in Saccharomyces cerevisiae. In the absence of Spt4, the spacing between gene-body nucleosomes increases and RNAPII accumulates upstream of the nucleosomal dyad, most dramatically at nucleosome +2. Spt4 associates with elongating RNAPII early in transcription, and its association dynamically changes depending on nucleosome positions. Together, our data show that Spt4 regulates early elongation dynamics, participates in co-transcriptional nucleosome positioning, and promotes RNAPII movement through the gene-body nucleosomes, especially the +2 nucleosome.
Collapse
Affiliation(s)
- Ülkü Uzun
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas Brown
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harry Fischl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew Angel
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
17
|
m6A RNA methylation facilitates pre-mRNA 3'-end formation and is essential for viability of Toxoplasma gondii. PLoS Pathog 2021; 17:e1009335. [PMID: 34324585 PMCID: PMC8354455 DOI: 10.1371/journal.ppat.1009335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/10/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can cause serious opportunistic disease in the immunocompromised or through congenital infection. To progress through its life cycle, Toxoplasma relies on multiple layers of gene regulation that includes an array of transcription and epigenetic factors. Over the last decade, the modification of mRNA has emerged as another important layer of gene regulation called epitranscriptomics. Here, we report that epitranscriptomics machinery exists in Toxoplasma, namely the methylation of adenosines (m6A) in mRNA transcripts. We identified novel components of the m6A methyltransferase complex and determined the distribution of m6A marks within the parasite transcriptome. m6A mapping revealed the modification to be preferentially located near the 3’-boundary of mRNAs. Knockdown of the m6A writer components METTL3 and WTAP resulted in diminished m6A marks and a complete arrest of parasite replication. Furthermore, we examined the two proteins in Toxoplasma that possess YTH domains, which bind m6A marks, and showed them to be integral members of the cleavage and polyadenylation machinery that catalyzes the 3’-end processing of pre-mRNAs. Loss of METTL3, WTAP, or YTH1 led to a defect in transcript 3’-end formation. Together, these findings establish that the m6A epitranscriptome is essential for parasite viability by contributing to the processing of mRNA 3’-ends. Toxoplasma gondii is a parasite of medical importance that causes disease upon immuno-suppression. Uncovering essential pathways that the parasite uses for its basic biological processes may reveal opportunities for new anti-parasitic drug therapies. Here, we describe the machinery that Toxoplasma uses to modify specific adenosine residues within its messenger RNAs (mRNA) by N6-adenosine methylation (m6A). We discovered that m6A mRNA methylation is prevalent in multiple stages of the parasite life cycle and is required for parasite replication. We also establish that m6A plays a major role in the proper maturation of mRNA. Two proteins that bind m6A modifications on mRNA associate with factors responsible for the cleavage and final processing steps of mRNA maturation. Since all of the machinery is conserved from plants to Toxoplasma and other related parasites, we propose that this system operates similarly in these organisms.
Collapse
|
18
|
Dieci G. Removing quote marks from the RNA polymerase II CTD 'code'. Biosystems 2021; 207:104468. [PMID: 34216714 DOI: 10.1016/j.biosystems.2021.104468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 11/27/2022]
Abstract
In eukaryotes, RNA polymerase II (Pol II) is responsible for the synthesis of all mRNAs and myriads of short and long untranslated RNAs, whose fabrication involves close spatiotemporal coordination between transcription, RNA processing and chromatin modification. Crucial for such a coordination is an unusual C-terminal domain (CTD) of the Pol II largest subunit, made of tandem repetitions (26 in yeast, 52 in chordates) of the heptapeptide with the consensus sequence YSPTSPS. Although largely unstructured and with poor sequence content, the Pol II CTD derives its extraordinary functional versatility from the fact that each amino acid in the heptapeptide can be posttranslationally modified, and that different combinations of CTD covalent marks are specifically recognized by different protein binding partners. These features have led to propose the existence of a Pol II CTD code, but this expression is generally used by authors with some caution, revealed by the frequent use of quote marks for the word 'code'. Based on the theoretical framework of code biology, it is argued here that the Pol II CTD modification system meets the requirements of a true organic code, where different CTD modification states represent organic signs whose organic meanings are biological reactions contributing to the many facets of RNA biogenesis in coordination with RNA synthesis by Pol II. Importantly, the Pol II CTD code is instantiated by adaptor proteins possessing at least two distinct domains, one of which devoted to specific recognition of CTD modification profiles. Furthermore, code rules can be altered by experimental interchange of CTD recognition domains of different adaptor proteins, a fact arguing in favor of the arbitrariness, and thus bona fide character, of the Pol II CTD code. Since the growing family of CTD adaptors includes RNA binding proteins and histone modification complexes, the Pol II CTD code is by its nature integrated with other organic codes, in particular the splicing code and the histone code. These issues will be discussed taking into account fascinating developments in Pol II CTD research, like the discovery of novel modifications at non-consensus sites, the recently recognized CTD physicochemical properties favoring liquid-liquid phase separation, and the discovery that the Pol II CTD, originated before the divergence of most extant eukaryotic taxa, has expanded and diversified with developmental complexity in animals and plants.
Collapse
Affiliation(s)
- Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy.
| |
Collapse
|
19
|
Wu Y, Yang Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front Microbiol 2021; 12:668461. [PMID: 34163446 PMCID: PMC8215345 DOI: 10.3389/fmicb.2021.668461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Herpesviruses are extremely successful parasites that have evolved over millions of years to develop a variety of mechanisms to coexist with their hosts and to maintain host-to-host transmission and lifelong infection by regulating their life cycles. The life cycle of herpesviruses consists of two phases: lytic infection and latent infection. During lytic infection, active replication and the production of numerous progeny virions occur. Subsequent suppression of the host immune response leads to a lifetime latent infection of the host. During latent infection, the viral genome remains in an inactive state in the host cell to avoid host immune surveillance, but the virus can be reactivated and reenter the lytic cycle. The balance between these two phases of the herpesvirus life cycle is controlled by broad interactions among numerous viral and cellular factors. ICP22/ORF63 proteins are among these factors and are involved in transcription, nuclear budding, latency establishment, and reactivation. In this review, we summarized the various roles and complex mechanisms by which ICP22/ORF63 proteins regulate the life cycle of human herpesviruses and the complex relationships among host and viral factors. Elucidating the role and mechanism of ICP22/ORF63 in virus-host interactions will deepen our understanding of the viral life cycle. In addition, it will also help us to understand the pathogenesis of herpesvirus infections and provide new strategies for combating these infections.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Noe Gonzalez M, Blears D, Svejstrup JQ. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol 2021; 22:3-21. [PMID: 33208928 DOI: 10.1038/s41580-020-00308-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Block TM, Young JAT, Javanbakht H, Sofia MJ, Zhou T. Host RNA quality control as a hepatitis B antiviral target. Antiviral Res 2020; 186:104972. [PMID: 33242518 DOI: 10.1016/j.antiviral.2020.104972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibition of the host RNA polyadenylating polymerases, PAPD5 and PAPD7 (PAPD5/7), with dihydroquinolizinone, a small orally available, molecule, results in a rapid and selective degradation of hepatitis B virus (HBV) RNA, and hence reduction in the amounts of viral gene products. DHQ, is a first in class investigational agent and could represent an entirely new category of HBV antivirals. PAPD5 and PAPD7 are non-canonical, cell specified, polyadenylating polymerases, also called terminal nucleotidyl transferases 4B and 4A (TENT4B/A), respectively. They are involved in the degradation of poor-quality cell transcripts, mostly non-coding RNAs and in the maturation of a sub-set of transcripts. They also appear to play a role in shielding some mRNA from degradation. The results of studies with DHQ, along with other recent findings, provide evidence that repression of the PAPD5/7 arm of the cell "RNA quality control" pathway, causes a profound (multi-fold) reduction rather than increase, in the amount of HBV pre-genomic, pre-core and HBsAg mRNA levels in tissue culture and animal models, as well. In this review we will briefly discuss the need for new HBV therapeutics and provide background about HBV transcription. We also discuss cellular degradation of host transcripts, as it relates to a new family of anti-HBV drugs that interfere with these processes. Finally, since HBV mRNA maturation appears to be selectively sensitive to PAPD5/7 inhibition in hepatocytes, we discuss the possibility of targeting host RNA "quality control" as an antiviral strategy.
Collapse
Affiliation(s)
| | - John A T Young
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Hassan Javanbakht
- SQZ Biotechnologies, 200 Arsenal Yards Blvd, Suite 210, Watertown, MA, 02472, USA.
| | - Michael J Sofia
- Arbutus Biopharma, Inc, 701 Veterans Circle, Warminster, PA, 18974, USA.
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| |
Collapse
|
22
|
Aguilar LC, Paul B, Reiter T, Gendron L, Arul Nambi Rajan A, Montpetit R, Trahan C, Pechmann S, Oeffinger M, Montpetit B. Altered rRNA processing disrupts nuclear RNA homeostasis via competition for the poly(A)-binding protein Nab2. Nucleic Acids Res 2020; 48:11675-11694. [PMID: 33137177 PMCID: PMC7672433 DOI: 10.1093/nar/gkaa964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are key mediators of RNA metabolism. Whereas some RBPs exhibit narrow transcript specificity, others function broadly across both coding and non-coding RNAs. Here, in Saccharomyces cerevisiae, we demonstrate that changes in RBP availability caused by disruptions to distinct cellular processes promote a common global breakdown in RNA metabolism and nuclear RNA homeostasis. Our data shows that stabilization of aberrant ribosomal RNA (rRNA) precursors in an enp1-1 mutant causes phenotypes similar to RNA exosome mutants due to nucleolar sequestration of the poly(A)-binding protein (PABP) Nab2. Decreased nuclear PABP availability is accompanied by genome-wide changes in RNA metabolism, including increased pervasive transcripts levels and snoRNA processing defects. These phenotypes are mitigated by overexpression of PABPs, inhibition of rDNA transcription, or alterations in TRAMP activity. Our results highlight the need for cells to maintain poly(A)-RNA levels in balance with PABPs and other RBPs with mutable substrate specificity across nucleoplasmic and nucleolar RNA processes.
Collapse
Affiliation(s)
- Lisbeth-Carolina Aguilar
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Biplab Paul
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Taylor Reiter
- Food Science Graduate Group, University of California Davis, Davis, CA, USA
| | - Louis Gendron
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Christian Trahan
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Sebastian Pechmann
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Marlene Oeffinger
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- Food Science Graduate Group, University of California Davis, Davis, CA, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
23
|
Calvo O. RNA polymerase II phosphorylation and gene looping: new roles for the Rpb4/7 heterodimer in regulating gene expression. Curr Genet 2020; 66:927-937. [PMID: 32508001 DOI: 10.1007/s00294-020-01084-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
In eukaryotes, cellular RNAs are produced by three nuclear RNA polymerases (RNAPI, II, and III), which are multisubunit complexes. They share structural and functional features, although they are specialized in the synthesis of specific RNAs. RNAPII transcribes the vast majority of cellular RNAs, including mRNAs and a large number of noncoding RNAs. The structure of RNAPII is highly conserved in all eukaryotes, consisting of 12 subunits (Rpb1-12) organized into five structural modules, among which the Rpb4 and Rpb7 subunits form the stalk. Early studies suggested an accessory role for Rpb4, because is required for specific gene transcription pathways. Far from this initial hypothesis, it is now well established that the Rpb4/7 heterodimer plays much wider roles in gene expression regulation. It participates in nuclear and cytosolic processes ranging from transcription to translation and mRNA degradation in a cyclical process. For this reason, Rpb4/7 is considered a coordinator of gene expression. New functions have been added to the list of stalk functions during transcription, which will be reviewed herein: first, a role in the maintenance of proper RNAPII phosphorylation levels, and second, a role in the establishment of a looped gene architecture in actively transcribed genes.
Collapse
Affiliation(s)
- Olga Calvo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González 2, Salamanca, 37007, España.
| |
Collapse
|
24
|
Loyer P, Trembley JH. Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: Cyclins L and CDK11 at the cross-roads of cell cycle and regulation of gene expression. Semin Cell Dev Biol 2020; 107:36-45. [PMID: 32446654 DOI: 10.1016/j.semcdb.2020.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Cyclin Dependent Kinases (CDKs) represent a large family of serine/threonine protein kinases that become active upon binding to a Cyclin regulatory partner. CDK/cyclin complexes recently identified, as well as "canonical" CDK/Cyclin complexes regulating cell cycle, are implicated in the regulation of gene expression via the phosphorylation of key components of the transcription and pre-mRNA processing machineries. In this review, we summarize the role of CDK/cyclin-dependent phosphorylation in the regulation of transcription and RNA splicing and highlight recent findings that indicate the involvement of CDK11/cyclin L complexes at the cross-roads of cell cycle, transcription and RNA splicing. Finally, we discuss the potential of CDK11 and Cyclins L as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Pascal Loyer
- INSERM, INRAE, Univ Rennes, NuMeCan, Nutrition Metabolisms and Cancer, Rennes, France.
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Gao C, Wang Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol Rev 2020; 100:673-694. [PMID: 31751167 PMCID: PMC7327233 DOI: 10.1152/physrev.00007.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.
Collapse
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
26
|
Lacoux C, Fouquier d'Hérouël A, Wessner-Le Bohec F, Innocenti N, Bohn C, Kennedy SP, Rochat T, Bonnin RA, Serror P, Aurell E, Bouloc P, Repoila F. Dynamic insights on transcription initiation and RNA processing during bacterial adaptation. RNA (NEW YORK, N.Y.) 2020; 26:382-395. [PMID: 31992590 PMCID: PMC7075262 DOI: 10.1261/rna.073288.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/20/2020] [Indexed: 05/04/2023]
Abstract
Transcription initiation and RNA processing govern gene expression and enable bacterial adaptation by reshaping the RNA landscape. The aim of this study was to simultaneously observe these two fundamental processes in a transcriptome responding to an environmental signal. A controlled σE system in E. coli was coupled to our previously described tagRNA-seq method to yield process kinetics information. Changes in transcription initiation frequencies (TIF) and RNA processing frequencies (PF) were followed using 5' RNA tags. Changes in TIF showed a binary increased/decreased pattern that alternated between transcriptionally activated and repressed promoters, providing the bacterial population with transcriptional oscillation. PF variation fell into three categories of cleavage activity: (i) constant and independent of RNA levels, (ii) increased once RNA has accumulated, and (iii) positively correlated to changes in TIF. This work provides a comprehensive and dynamic view of major events leading to transcriptomic reshaping during bacterial adaptation. It unveils an interplay between transcription initiation and the activity of specific RNA cleavage sites. This study utilized a well-known genetic system to analyze fundamental processes and can serve as a blueprint for comprehensive studies that exploit the RNA metabolism to decipher and understand bacterial gene expression control.
Collapse
Affiliation(s)
- Caroline Lacoux
- Université Paris-Saclay, INRAE, AgroParisTech, MIcalis Institute, 78350, Jouy-en-Josas, France
| | | | | | - Nicolas Innocenti
- Université Paris-Saclay, INRAE, AgroParisTech, MIcalis Institute, 78350, Jouy-en-Josas, France
- Department of Computational Biology, Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| | - Chantal Bohn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sean P Kennedy
- Department of Computational Biology, USR3756 CNRS, Institut Pasteur, 75 015 Paris, France
| | - Tatiana Rochat
- VIM, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Rémy A Bonnin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, MIcalis Institute, 78350, Jouy-en-Josas, France
| | - Erik Aurell
- Department of Computational Biology, Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Francis Repoila
- Université Paris-Saclay, INRAE, AgroParisTech, MIcalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
27
|
Victorino JF, Fox MJ, Smith-Kinnaman WR, Peck Justice SA, Burriss KH, Boyd AK, Zimmerly MA, Chan RR, Hunter GO, Liu Y, Mosley AL. RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination. PLoS Genet 2020; 16:e1008317. [PMID: 32187185 PMCID: PMC7105142 DOI: 10.1371/journal.pgen.1008317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/30/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
RNA Polymerase II (RNAPII) transcription termination is regulated by the phosphorylation status of the C-terminal domain (CTD). The phosphatase Rtr1 has been shown to regulate serine 5 phosphorylation on the CTD; however, its role in the regulation of RNAPII termination has not been explored. As a consequence of RTR1 deletion, interactions within the termination machinery and between the termination machinery and RNAPII were altered as quantified by Disruption-Compensation (DisCo) network analysis. Of note, interactions between RNAPII and the cleavage factor IA (CF1A) subunit Pcf11 were reduced in rtr1Δ, whereas interactions with the CTD and RNA-binding termination factor Nrd1 were increased. Globally, rtr1Δ leads to decreases in numerous noncoding RNAs that are linked to the Nrd1, Nab3 and Sen1 (NNS) -dependent RNAPII termination pathway. Genome-wide analysis of RNAPII and Nrd1 occupancy suggests that loss of RTR1 leads to increased termination at noncoding genes. Additionally, premature RNAPII termination increases globally at protein-coding genes with a decrease in RNAPII occupancy occurring just after the peak of Nrd1 recruitment during early elongation. The effects of rtr1Δ on RNA expression levels were lost following deletion of the exosome subunit Rrp6, which works with the NNS complex to rapidly degrade a number of noncoding RNAs following termination. Overall, these data suggest that Rtr1 restricts the NNS-dependent termination pathway in WT cells to prevent premature termination of mRNAs and ncRNAs. Rtr1 facilitates low-level elongation of noncoding transcripts that impact RNAPII interference thereby shaping the transcriptome. Many cellular RNAs including those that encode for proteins are produced by the enzyme RNA Polymerase II. In this work, we have defined a new role for the phosphatase Rtr1 in the regulation of RNA Polymerase II progression from the start of transcription to the 3’ end of the gene where the nascent RNA from protein-coding genes is typically cleaved and polyadenylated. Deletion of the gene that encodes RTR1 leads to changes in the interactions between RNA polymerase II and the termination machinery. Rtr1 loss also causes early termination of RNA Polymerase II at many of its target gene types, including protein coding genes and noncoding RNAs. Evidence suggests that the premature termination observed in RTR1 knockout cells occurs through the termination factor and RNA binding protein Nrd1 and its binding partner Nab3. Deletion of RRP6, a known component of the Nrd1-Nab3 termination coupled RNA degradation pathway, is epistatic to RTR1 suggesting that Rrp6 is required to terminate and/or degrade many of the noncoding RNAs that have increased turnover in RTR1 deletion cells. These findings suggest that Rtr1 normally promotes elongation of RNA Polymerase II transcripts through prevention of Nrd1-directed termination.
Collapse
Affiliation(s)
- Jose F. Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Melanie J. Fox
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Whitney R. Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah A. Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Katlyn H. Burriss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Asha K. Boyd
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Megan A. Zimmerly
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rachel R. Chan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gerald O. Hunter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
28
|
Plant Ribonuclease J: An Essential Player in Maintaining Chloroplast RNA Quality Control for Gene Expression. PLANTS 2020; 9:plants9030334. [PMID: 32151111 PMCID: PMC7154860 DOI: 10.3390/plants9030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
RNA quality control is an indispensable but poorly understood process that enables organisms to distinguish functional RNAs from nonfunctional or inhibitory ones. In chloroplasts, whose gene expression activities are required for photosynthesis, retrograde signaling, and plant development, RNA quality control is of paramount importance, as transcription is relatively unregulated. The functional RNA population is distilled from this initial transcriptome by a combination of RNA-binding proteins and ribonucleases. One of the key enzymes is RNase J, a 5′→3′ exoribonuclease and an endoribonuclease that has been shown to trim 5′ RNA termini and eliminate deleterious antisense RNA. In the absence of RNase J, embryo development cannot be completed. Land plant RNase J contains a highly conserved C-terminal domain that is found in GT-1 DNA-binding transcription factors and is not present in its bacterial, archaeal, and algal counterparts. The GT-1 domain may confer specificity through DNA and/or RNA binding and/or protein–protein interactions and thus be an element in the mechanisms that identify target transcripts among diverse RNA populations. Further understanding of chloroplast RNA quality control relies on discovering how RNase J is regulated and how its specificity is imparted.
Collapse
|
29
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|