1
|
Li Z, Fu Y, Shen J, Liang J. Upstream Open Reading Frame Mediated Translation of WNK8 Is Required for ABA Response in Arabidopsis. Int J Mol Sci 2021; 22:ijms221910683. [PMID: 34639024 PMCID: PMC8509022 DOI: 10.3390/ijms221910683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
With no lysine (K) (WNK) kinases comprise a family of serine/threonine kinases belonging to an evolutionary branch of the eukaryotic kinome. These special kinases contain a unique active site and are found in a wide range of eukaryotes. The model plant Arabidopsis has been reported to have 11 WNK members, of which WNK8 functions as a negative regulator of abscisic acid (ABA) signaling. Here, we found that the expression of WNK8 is post-transcriptionally regulated through an upstream open reading frame (uORF) found in its 5′ untranslated region (5′-UTR). This uORF has been predicted to encode a conserved peptide named CPuORF58 in both monocotyledons and dicotyledons. The analysis of the published ribosome footprinting studies and the study of the frameshift CPuORF58 peptide with altered repression capability suggested that this uORF causes ribosome stalling. Plants transformed with the native WNK8 promoter driving WNK8 expression were comparable with wild-type plants, whereas the plants transformed with a similar construct with mutated CPuORF58 start codon were less sensitive to ABA. In addition, WNK8 and its downstream target RACK1 were found to synergistically coordinate ABA signaling rather than antagonistically modulating glucose response and flowering in plants. Collectively, these results suggest that the WNK8 expression must be tightly regulated to fulfill the demands of ABA response in plants.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (Z.L.); (J.L.)
| | - Yajuan Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
| | - Jinyu Shen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (Z.L.); (J.L.)
| |
Collapse
|
2
|
The role of upstream open reading frames in translation regulation in the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Parasitology 2021; 148:1277-1287. [PMID: 34099078 PMCID: PMC8383288 DOI: 10.1017/s0031182021000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During their complex life cycles, the Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii employ several layers of regulation of their gene expression. One such layer is mediated at the level of translation through upstream open reading frames (uORFs). As uORFs are found in the upstream regions of a majority of transcripts in both the parasites, it is essential that their roles in translational regulation be appreciated to a greater extent. This review provides a comprehensive summary of studies that show uORF-mediated gene regulation in these parasites and highlights examples of clinically and physiologically relevant genes, including var2csa in P. falciparum, and ApiAT1 in T. gondii, that exhibit uORF-mediated regulation. In addition to these examples, several studies that use bioinformatics, transcriptomics, proteomics and ribosome profiling also indicate the possibility of widespread translational regulation by uORFs. Further analysis of these genome-wide datasets, taking into account uORFs associated with each gene, will reveal novel genes involved in key biological pathways such as cell-cycle progression, stress-response and pathogenicity. The cumulative evidence from studies presented in this review suggests that uORFs will play crucial roles in regulating gene expression during clinical disease caused by these important human pathogens.
Collapse
|
3
|
Cirotti C, Rizza S, Giglio P, Poerio N, Allega MF, Claps G, Pecorari C, Lee J, Benassi B, Barilà D, Robert C, Stamler JS, Cecconi F, Fraziano M, Paull TT, Filomeni G. Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO Rep 2021; 22:e50500. [PMID: 33245190 PMCID: PMC7788447 DOI: 10.15252/embr.202050500] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.
Collapse
Affiliation(s)
- Claudia Cirotti
- Department of BiologyTor Vergata UniversityRomeItaly
- Laboratory of Cell SignalingIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa LuciaRomeItaly
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress GroupDanish Cancer Society Research CenterCopenhagenDenmark
| | - Paola Giglio
- Department of BiologyTor Vergata UniversityRomeItaly
| | - Noemi Poerio
- Department of BiologyTor Vergata UniversityRomeItaly
| | - Maria Francesca Allega
- Redox Signaling and Oxidative Stress GroupDanish Cancer Society Research CenterCopenhagenDenmark
- Present address:
Cancer Research UK Beatson InstituteGarscube EstateGlasgowUK
| | | | - Chiara Pecorari
- Redox Signaling and Oxidative Stress GroupDanish Cancer Society Research CenterCopenhagenDenmark
| | - Ji‐Hoon Lee
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTXUSA
| | - Barbara Benassi
- Division of Health Protection TechnologiesENEA‐CasacciaRomeItaly
| | - Daniela Barilà
- Department of BiologyTor Vergata UniversityRomeItaly
- Laboratory of Cell SignalingIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa LuciaRomeItaly
| | - Caroline Robert
- INSERM, U981VillejuifFrance
- Université Paris SudUniversité Paris‐SaclayKremlin‐BicêtreFrance
- Oncology DepartmentGustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Jonathan S Stamler
- Institute for Transformative Molecular MedicineCase Western Reserve University and Harrington Discovery InstituteUniversity Hospitals Case Medical CenterClevelandOHUSA
| | - Francesco Cecconi
- Department of BiologyTor Vergata UniversityRomeItaly
- Cell Stress and Survival UnitDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Hematology and OncologyIRCCS Bambino Gesù Children's HospitalRomeItaly
| | | | - Tanya T Paull
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTXUSA
| | - Giuseppe Filomeni
- Department of BiologyTor Vergata UniversityRomeItaly
- Redox Signaling and Oxidative Stress GroupDanish Cancer Society Research CenterCopenhagenDenmark
- Center for Healthy AgingCopenhagen UniversityCopenhagenDenmark
| |
Collapse
|
4
|
Rizza S, Filomeni G. Chronicles of a reductase: Biochemistry, genetics and physio-pathological role of GSNOR. Free Radic Biol Med 2017; 110:19-30. [PMID: 28533171 DOI: 10.1016/j.freeradbiomed.2017.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
S-nitrosylation is a major redox posttranslational modification involved in cell signaling. The steady state concentration of S-nitrosylated proteins depends on the balance between the relative ability to generate nitric oxide (NO) via NO synthase and to reduce nitrosothiols by denitrosylases. Numerous works have been published in last decades regarding the role of NO and S-nitrosylation in the regulation of protein structure and function, and in driving cellular activities in vertebrates. Notwithstanding an increasing number of observations indicates that impairment of denitrosylation equally affects cellular homeostasis, there is still no report providing comprehensive knowledge on the impact that denitrosylation has on maintaining correct physiological processes and organ activities. Among denitrosylases, S-nitrosoglutathione reductase (GSNOR) represents the prototype enzyme to disclose how denitrosylation plays a crucial role in tuning NO-bioactivity and how much it deeply impacts on cell homeostasis and human patho-physiology. In this review we attempt to illustrate the history of GSNOR discovery and provide the evidence so far reported in support of GSNOR implications in development and human disease.
Collapse
Affiliation(s)
- Salvatore Rizza
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
5
|
Separating the wheat from the chaff: systematic identification of functionally relevant noncoding variants in ADHD. Mol Psychiatry 2016; 21:1589-1598. [PMID: 27113999 DOI: 10.1038/mp.2016.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 12/16/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a highly heritable psychiatric condition with negative lifetime outcomes. Uncovering its genetic architecture should yield important insights into the neurobiology of ADHD and assist development of novel treatment strategies. Twenty years of candidate gene investigations and more recently genome-wide association studies have identified an array of potential association signals. In this context, separating the likely true from false associations ('the wheat' from 'the chaff') will be crucial for uncovering the functional biology of ADHD. Here, we defined a set of 2070 DNA variants that showed evidence of association with ADHD (or were in linkage disequilibrium). More than 97% of these variants were noncoding, and were prioritised for further exploration using two tools-genome-wide annotation of variants (GWAVA) and Combined Annotation-Dependent Depletion (CADD)-that were recently developed to rank variants based upon their likely pathogenicity. Capitalising on recent efforts such as the Encyclopaedia of DNA Elements and US National Institutes of Health Roadmap Epigenomics Projects to improve understanding of the noncoding genome, we subsequently identified 65 variants to which we assigned functional annotations, based upon their likely impact on alternative splicing, transcription factor binding and translational regulation. We propose that these 65 variants, which possess not only a high likelihood of pathogenicity but also readily testable functional hypotheses, represent a tractable shortlist for future experimental validation in ADHD. Taken together, this study brings into sharp focus the likely relevance of noncoding variants for the genetic risk associated with ADHD, and more broadly suggests a bioinformatics approach that should be relevant to other psychiatric disorders.
Collapse
|
6
|
Hu Q, Merchante C, Stepanova AN, Alonso JM, Heber S. Genome-Wide Search for Translated Upstream Open Reading Frames in Arabidopsis Thaliana. IEEE Trans Nanobioscience 2016; 15:148-57. [PMID: 26886998 DOI: 10.1109/tnb.2016.2516950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Upstream open reading frames (uORFs) are open reading frames that occur within the 5' UTR of an mRNA. uORFs have been found in many organisms. They play an important role in gene regulation, cell development, and in various metabolic processes. It is believed that translated uORFs reduce the translational efficiency of the main coding region. However, only few uORFs are experimentally characterized. In this paper, we use ribosome footprinting together with a semi-supervised approach based on stacking classification models to identify translated uORFs in Arabidopsis thaliana. Our approach identified 5360 potentially translated uORFs in 2051 genes. GO terms enriched in genes with translated uORFs include catalytic activity, binding, transferase activity, phosphotransferase activity, kinase activity, and transcription regulator activity. The reported uORFs occur with a higher frequency in multi-isoform genes, and some uORFs are affected by alternative transcript start sites or alternative splicing events. Association rule mining revealed sequence features associated with the translation status of the uORFs. We hypothesize that uORF translation is a complex process that might be regulated by multiple factors. The identified uORFs are available online at:https://www.dropbox.com/sh/zdutupedxafhly8/AABFsdNR5zDfiozB7B4igFcja?dl=0. This paper is the extended version of our research presented at ISBRA 2015.
Collapse
|
7
|
Fritsch C, Herrmann A, Nothnagel M, Szafranski K, Huse K, Schumann F, Schreiber S, Platzer M, Krawczak M, Hampe J, Brosch M. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res 2012; 22:2208-18. [PMID: 22879431 PMCID: PMC3483550 DOI: 10.1101/gr.139568.112] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
So far, the annotation of translation initiation sites (TISs) has been based mostly upon bioinformatics rather than experimental evidence. We adapted ribosomal footprinting to puromycin-treated cells to generate a transcriptome-wide map of TISs in a human monocytic cell line. A neural network was trained on the ribosomal footprints observed at previously annotated AUG translation initiation codons (TICs), and used for the ab initio prediction of TISs in 5062 transcripts with sufficient sequence coverage. Functional interpretation suggested 2994 novel upstream open reading frames (uORFs) in the 5′ UTR, 1406 uORFs overlapping with the coding sequence, and 546 N-terminal protein extensions. The TIS detection method was validated on the basis of previously published alternative TISs and uORFs. Among primates, TICs in newly annotated TISs were significantly more conserved than control codons, both for AUGs and near-cognate codons. The transcriptome-wide map of novel candidate TISs derived as part of the study will shed further light on the way in which human proteome diversity is influenced by alternative translation initiation and regulation.
Collapse
Affiliation(s)
- Claudia Fritsch
- Department of Internal Medicine I, University Hospital Schleswig Holstein, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Just W, Zeller J, Riegert C, Speit G. Genetic polymorphisms in the formaldehyde dehydrogenase gene and their biological significance. Toxicol Lett 2011; 207:121-7. [PMID: 21920416 DOI: 10.1016/j.toxlet.2011.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/25/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
The GSH-dependent formaldehyde dehydrogenase (FDH) is the most important enzyme for the metabolic inactivation of formaldehyde. We studied three polymorphisms of this gene with the intention to elucidate their relevance for inter-individual differences in the protection against the (geno-)toxicity of FA. The first polymorphism (rs11568816) was investigated using real-time PCR and restriction fragment analysis in 150 subjects. However, we did not find the polymorphic sequence in any of the subjects. We studied a second polymorphism (rs17028487), representing a base exchange (c.*114A>G) in exon 9 of the FDH gene. We analyzed 70 subjects with the SNaPshot Primer Extension method and subsequent analysis in a ABI PRISM 3100, but no variant allele was identified. A third polymorphism, rs13832 in exon 9 (c.*493G>T), was studied in a group of 105 subjects by the SNaPshot Primer Extension method. 43 of the subjects were heterozygous for the polymorphism (G/T), 46 homozygous for the T allele, and 16 were homozygous for the G-allele. Real-time RT-PCR measurements of FDH mRNA did not indicate a significant difference in transcript levels between the heterozygous and the homozygous groups. The in vitro comet assay after FA exposure of blood samples obtained from 5 homozygous GG and 3 homozygous TT subjects did not lead to a significant difference between these two groups. Altogether, our study did not identify biologically relevant polymorphisms in transcribed regions of the FDH gene, which may lead to inter-individual differences in the metabolic inactivation of FA.
Collapse
Affiliation(s)
- Walter Just
- Universität Ulm, Institut für Humangenetik, Ulm, Germany
| | | | | | | |
Collapse
|
9
|
Ajay SS, Athey BD, Lee I. Unified translation repression mechanism for microRNAs and upstream AUGs. BMC Genomics 2010; 11:155. [PMID: 20205738 PMCID: PMC2842251 DOI: 10.1186/1471-2164-11-155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous small RNAs that modulate gene expression at the post-transcriptional level by binding complementary sites in the 3'-UTR. In a recent genome-wide study reporting a new miRNA target class (miBridge), we identified and validated interactions between 5'-UTRs and miRNAs. Separately, upstream AUGs (uAUGs) in 5'-UTRs are known to regulate genes translationally without affecting mRNA levels, one of the mechanisms for miRNA-mediated repression. Results Using sequence data from whole-genome cDNA alignments we identified 1418 uAUG sequences on the 5'-UTR that specifically interact with 3'-ends of conserved miRNAs. We computationally identified miRNAs that can target six genes through their uAUGs that were previously reported to suppress translation. We extended this meta-analysis by confirming expression of these miRNAs in cell-lines used in the uAUG studies. Similarly, seven members of the KLF family of genes containing uAUGs were computationally identified as interacting with several miRNAs. Using KLF9 as an example (whose protein expression is limited to brain tissue despite the mRNA being expressed ubiquitously), we show computationally that miRNAs expressed only in HeLa cells and not in neuroblastoma (N2A) cells can bind the uAUGs responsible for translation inhibition. Our computed results demonstrate that tissue- or cell-line specific repression of protein translation by uAUGs can be explained by the presence or absence of miRNAs that target these uAUG sequences. We propose that these uAUGs represent a subset of miRNA interaction sites on 5'-UTRs in miBridge, whereby a miRNA binding a uAUG hinders the progression of ribosome scanning the mRNA before it reaches the open reading frame (ORF). Conclusions While both miRNAs and uAUGs are separately known to down-regulate protein expression, we show that they may be functionally related by identifying potential interactions through a sequence-specific binding mechanism. Using prior experimental evidence that shows uAUG effects on translation repression together with miRNA expression data specific to cell lines, we demonstrate through computational analysis that cell-specific down-regulation of protein expression (while maintaining mRNA levels) correlates well with the simultaneous presence of miRNA and target uAUG sequences in one cell type and not others, suggesting tissue-specific translation repression by miRNAs through uAUGs.
Collapse
Affiliation(s)
- Subramanian S Ajay
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
10
|
Zhang Y, Zhao T, Li W, Vore M. The 5'-untranslated region of multidrug resistance associated protein 2 (MRP2; ABCC2) regulates downstream open reading frame expression through translational regulation. Mol Pharmacol 2010; 77:237-46. [PMID: 19890061 PMCID: PMC2812073 DOI: 10.1124/mol.109.058982] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/04/2009] [Indexed: 12/13/2022] Open
Abstract
MRP2 (ABCC2), a member of the ATP binding cassette superfamily of efflux transporters that mediates the apical efflux of organic anions from hepatocytes, enterocytes, and renal epithelial cells, is postulated to undergo post-transcriptional regulation. The MRP2 5'-untranslated region (5'UTR) contains seven upstream start codons and six upstream open reading frames (uORFs). Ribonuclease protection assays in human liver, placenta, kidney, small intestine, and HepG2 cells identified multiple MRP2 transcription initiation sites. We investigated MRP2 5'UTRs [-247 (-247 to -1), -204 (-204 to -1), or -99 (-99 to -1)] for their effects on regulation of gene expression with the use of transient gene expression in HepG2 cells and in vitro translation assays. In HepG2 cells transfected with SV40-MRP2-5'UTR-Luciferase cassettes, luciferase activities of constructs -247 and -204 were significantly lower than that of -99. Disruption of the uORFs at -105 and -74 nucleotides by mutation of ATGs to AAG enhanced luciferase activity significantly without affecting luciferase mRNA expression. The translation efficiencies of T7-5'UTR-Luciferase cassettes determined in vitro were consistent with transfected HepG2 cells and showed that inhibition of translation by the -105 uORF occurred only in the cis configuration and not in the trans configuration and that inhibition of translation by the -105 uORF was independent of the encoded peptide sequence. Characterization of an MRP2 polymorphism, -24C>T, in the MRP2 5'UTR, demonstrated no effect on mRNA expression or downstream ORF translation. These data indicate for the first time that the 5'UTR of MRP2 mRNA transcripts and the uORF at -105 markedly influence MRP2 translation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
11
|
Selpi, Bryant CH, Kemp GJL, Sarv J, Kristiansson E, Sunnerhagen P. Predicting functional upstream open reading frames in Saccharomyces cerevisiae. BMC Bioinformatics 2009; 10:451. [PMID: 20042076 PMCID: PMC2813248 DOI: 10.1186/1471-2105-10-451] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some upstream open reading frames (uORFs) regulate gene expression (i.e., they are functional) and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in gene regulation, it is expected that a large number of experimentally verified functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional are expensive. RESULTS In this paper, a new computational approach to predicting functional uORFs in the yeast Saccharomyces cerevisiae is presented. Our approach is based on inductive logic programming and makes use of a novel combination of knowledge about biological conservation, Gene Ontology annotations and genes' responses to different conditions. Our method results in a set of simple and informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further genes to have 398 novel functional uORFs. Three (RPC11, TPK1, and FOL1) of these 301 genes have been hypothesised, following wet-experiments, by a related study to have functional uORFs. A comparison with another related study suggests that eleven of the predicted functional uORFs from genes LDB17, HEM3, CIN8, BCK2, PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are strong candidates for wet-lab experimental studies. CONCLUSIONS Learning based prediction of functional uORFs can be done with a high sensitivity. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help to elucidate the regulatory roles of uORFs.
Collapse
Affiliation(s)
- Selpi
- Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Thompson CM, Sonawane B, Grafström RC. The ontogeny, distribution, and regulation of alcohol dehydrogenase 3: implications for pulmonary physiology. Drug Metab Dispos 2009; 37:1565-71. [PMID: 19460944 DOI: 10.1124/dmd.109.027904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Class III alcohol dehydrogenase (ADH3), also termed formaldehyde dehydrogenase or S-nitrosoglutathione reductase, plays a critical role in the enzymatic oxidation of formaldehyde and reduction of nitrosothiols that regulate bronchial tone. Considering reported associations between formaldehyde vapor exposure and childhood asthma risk, and thus potential involvement of ADH3, we reviewed the ontogeny, distribution, and regulation of mammalian ADH3. Recent studies indicate that multiple biological and chemical stimuli influence expression and activity of ADH3, including the feedback regulation of nitrosothiol metabolism. The levels of ADH3 correlate with, and potentially influence, bronchial tone; however, data gaps remain with respect to the expression of ADH3 during postnatal and early childhood development. Consideration of ADH3 function relative to the respiratory effects of formaldehyde, as well as to other chemical and biological exposures that might act in an additive or synergistic manner with formaldehyde, might be critical to gain better insight into the association between formaldehyde exposure and childhood asthma.
Collapse
Affiliation(s)
- Chad M Thompson
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | | | | |
Collapse
|
13
|
Kochetov AV, Palyanov A, Titov II, Grigorovich D, Sarai A, Kolchanov NA. AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site. BMC Bioinformatics 2007; 8:318. [PMID: 17760957 PMCID: PMC2001202 DOI: 10.1186/1471-2105-8-318] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 08/30/2007] [Indexed: 12/17/2022] Open
Abstract
Background The translation start site plays an important role in the control of translation efficiency of eukaryotic mRNAs. The recognition of the start AUG codon by eukaryotic ribosomes is considered to depend on its nucleotide context. However, the fraction of eukaryotic mRNAs with the start codon in a suboptimal context is relatively large. It may be expected that mRNA should possess some features providing efficient translation, including the proper recognition of a translation start site. It has been experimentally shown that a downstream hairpin located in certain positions with respect to start codon can compensate in part for the suboptimal AUG context and also increases translation from non-AUG initiation codons. Prediction of such a compensatory hairpin may be useful in the evaluation of eukaryotic mRNA translation properties. Results We evaluated interdependency between the start codon context and mRNA secondary structure at the CDS beginning: it was found that a suboptimal start codon context significantly correlated with higher base pairing probabilities at positions 13 – 17 of CDS of human and mouse mRNAs. It is likely that the downstream hairpins are used to enhance translation of some mammalian mRNAs in vivo. Thus, we have developed a tool, AUG_hairpin, to predict local stem-loop structures located within the defined region at the beginning of mRNA coding part. The implemented algorithm is based on the available published experimental data on the CDS-located stem-loop structures influencing the recognition of upstream start codons. Conclusion An occurrence of a potential secondary structure downstream of start AUG codon in a suboptimal context (or downstream of a potential non-AUG start codon) may provide researchers with a testable assumption on the presence of additional regulatory signal influencing mRNA translation initiation rate and the start codon choice. AUG_hairpin, which has a convenient Web-interface with adjustable parameters, will make such an evaluation easy and efficient.
Collapse
Affiliation(s)
- Alex V Kochetov
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey Palyanov
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Igor I Titov
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Dmitry Grigorovich
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Akinori Sarai
- Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Lavrentieva 10, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Kochetov AV. Alternative translation start sites and their significance for eukaryotic proteomes. Mol Biol 2006. [DOI: 10.1134/s0026893306050049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Crowe ML, Wang XQ, Rothnagel JA. Evidence for conservation and selection of upstream open reading frames suggests probable encoding of bioactive peptides. BMC Genomics 2006; 7:16. [PMID: 16438715 PMCID: PMC1402274 DOI: 10.1186/1471-2164-7-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 01/26/2006] [Indexed: 01/17/2023] Open
Abstract
Background Approximately 40% of mammalian mRNA sequences contain AUG trinucleotides upstream of the main coding sequence, with a quarter of these AUGs demarcating open reading frames of 20 or more codons. In order to investigate whether these open reading frames may encode functional peptides, we have carried out a comparative genomic analysis of human and mouse mRNA 'untranslated regions' using sequences from the RefSeq mRNA sequence database. Results We have identified over 200 upstream open reading frames which are strongly conserved between the human and mouse genomes. Consensus sequences associated with efficient initiation of translation are overrepresented at the AUG trinucleotides of these upstream open reading frames, while comparative analysis of their DNA and putative peptide sequences shows evidence of purifying selection. Conclusion The occurrence of a large number of conserved upstream open reading frames, in association with features consistent with protein translation, strongly suggests evolutionary maintenance of the coding sequence and indicates probable functional expression of the peptides encoded within these upstream open reading frames.
Collapse
Affiliation(s)
- Mark L Crowe
- The Australian Research Council Special Research Centre for Functional and Applied Genomics, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xue-Qing Wang
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joseph A Rothnagel
- The Australian Research Council Special Research Centre for Functional and Applied Genomics, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
16
|
Iacono M, Mignone F, Pesole G. uAUG and uORFs in human and rodent 5′untranslated mRNAs. Gene 2005; 349:97-105. [PMID: 15777708 DOI: 10.1016/j.gene.2004.11.041] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/28/2004] [Accepted: 11/24/2004] [Indexed: 11/21/2022]
Abstract
The control of translation is a fundamental mechanism in the regulation of gene expression. Among the cis-acting elements that play a role in translation regulation are upstream open reading frames (uORFs) and upstream AUG (uAUGs) located in the 5'UTR of mRNAs. We present here a genome-wide analysis of uAUGs and uORFs in a curated set of human and rodent mRNAs. Our study shows that the occurrence of uAUGs is suppressed more strongly than that of uORFs and that in-frame uAUGs are more strongly suppressed than out-of-frame uAUGs. A very similar pattern of uAUG/uORF frequency was also observed in mouse mRNAs. The analysis of orthologous 5'UTR sequences revealed a remarkable degree of evolutionary conservation only of those uORFs which acquired some functional activity. Our data suggest that besides leaky scanning and reinitiation, which likely occur with variable and gene-specific efficiency, the ribosome-shunt mechanism, eventually coupled to reinitiation after uORF translation, may be a widespread mode of translation regulation in eukaryotes.
Collapse
Affiliation(s)
- Michele Iacono
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria, 26, 20133 Milano, Italy
| | | | | |
Collapse
|
17
|
Li B, Dedman JR, Kaetzel MA. Intron disruption of the annexin IV gene reveals novel transcripts. J Biol Chem 2003; 278:43276-83. [PMID: 12912993 DOI: 10.1074/jbc.m306361200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin IV (AIV), a Ca2+-dependent membrane-binding protein, is expressed in many epithelia. Annexin IV modifies membrane bilayers by increasing rigidity, reducing water and H+ permeability, promoting vesicle aggregation, and regulating ion conductances, all in a Ca2+-dependent manner. We have characterized a mouse in which a gene trap has been inserted into the first intron of annexin IV. Processing of the primary transcript is disrupted. Northern blot and immunoblot data indicated that annexin IV expression was eliminated in many but not all tissues. Immunohistochemical analysis, however, demonstrated that annexin IV expression was eliminated in some cell types, but was unaltered in others. 5'-Rapid amplification of cDNA ends analysis of intestinal and kidney RNA revealed three transcripts, AIVa, AIVb, and AIVc. AIVa is widely distributed. AIVb is expressed only in the digestive tract. AIVc expression is very restricted. A selected number of epithelial cells of unique morphology demonstrate high concentrations. All three transcripts produce an identical annexin IV protein. The different tissue and cell-specific expression profiles of the three transcripts suggest that regulation of both the annexin IV gene expression and the cellular role of the protein are complex. The AIVa-/- mouse may become a valuable model to further study transcription and the physiological role of annexin IV.
Collapse
Affiliation(s)
- Bailing Li
- Departments of Genome Science and Molecular and Cellular Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45237-0505, USA
| | | | | |
Collapse
|
18
|
Larsen LK, Amri EZ, Mandrup S, Pacot C, Kristiansen K. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene: alternative promoter usage and splicing yield transcripts exhibiting differential translational efficiency. Biochem J 2002; 366:767-75. [PMID: 12059785 PMCID: PMC1222822 DOI: 10.1042/bj20011821] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2001] [Revised: 05/07/2002] [Accepted: 06/12/2002] [Indexed: 11/17/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) beta/delta is ubiquitously expressed, but the level of expression differs markedly between different cell types. In order to determine the molecular mechanisms governing PPARbeta/delta gene expression, we have isolated and characterized the mouse gene encoding PPARbeta/delta. The gene spans approx. 41 kb and comprises 11 exons of which the six exons located in the 3'-end of the gene are included in all transcripts. Primer-extension and 5'-rapid amplification of cDNA ends experiments revealed the presence of multiple transcription start points and splice variants, originating from the use of at least four different promoters. One of these transcription start points was found to be used predominantly in all tissues examined. Initiation from this major transcription start point gives rise to a transcript with a 548 nt 5'-untranslated leader containing eight upstream AUG codons. We show that the presence of the 548 nt leader resulted in a low translational efficiency of the corresponding PPARbeta/delta mRNA and propose, based on structural features of the 5'-untranslated region, that translational initiation may be mediated via an internal ribosome entry site-dependent mechanism.
Collapse
MESH Headings
- 3T3 Cells
- 5' Untranslated Regions
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- Codon
- DNA, Complementary/metabolism
- Exons
- Mice
- Models, Genetic
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Leif K Larsen
- Rheoscience A/S, Glerupvej 2, DK-2610 Rødovre, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Lee DK, Suh D, Edenberg HJ, Hur MW. POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1. J Biol Chem 2002; 277:26761-8. [PMID: 12004059 DOI: 10.1074/jbc.m202078200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The POZ domain is a protein-protein interaction motif that is found in many transcription factors, which are important for development, oncogenesis, apoptosis, and transcription repression. We cloned the POZ domain transcription factor, FBI-1, that recognizes the cis-element (bp -38 to -22) located just upstream of the core Sp1 binding sites (bp -22 to +22) of the ADH5/FDH minimal promoter (bp -38 to +61) in vitro and in vivo, as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ADH5/FDH minimal promoter is potently repressed by the FBI-1. Glutathione S-transferase fusion protein pull-down showed that the POZ domains of FBI-1, Plzf, and Bcl-6 directly interact with the zinc finger DNA binding domain of Sp1. DNase I footprinting assays showed that the interaction prevents binding of Sp1 to the GC boxes of the ADH5/FDH promoter. Gal4-POZ domain fusions targeted proximal to the GC boxes repress transcription of the Gal4 upstream activator sequence-Sp1-adenovirus major late promoter. Our data suggest that POZ domain represses transcription by interacting with Sp1 zinc fingers and by interfering with the DNA binding activity of Sp1.
Collapse
Affiliation(s)
- Dong-Kee Lee
- Department of Biochemistry and Molecular Biology, BK21 Project for Medical Sciences, Institute of Genetic Sciences, Yonsei University School of Medicine, 134 ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | | | | | | |
Collapse
|
20
|
Gereben B, Kollár A, Harney JW, Larsen PR. The mRNA structure has potent regulatory effects on type 2 iodothyronine deiodinase expression. Mol Endocrinol 2002; 16:1667-79. [PMID: 12089359 DOI: 10.1210/mend.16.7.0879] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Type 2 deiodinase (D2) is a selenoenzyme catalyzing the activation of T(4) to T(3). D2 activity/mRNA ratios are often low, suggesting that there is significant posttranscriptional regulation. The D2 mRNA in higher vertebrates is more than 6 kb, containing long 5' and 3' untranslated regions (UTRs). The D2 5'UTRs are greater than 600 nucleotides and contain 3-5 short open reading frames. These full-length 5'UTRs reduce the D2 translation efficiency approximately 5-fold. The inhibition by human D2 5'UTR is localized to a region containing the first short open reading frame encoding a tripeptide-MKG. This inhibition was abolished by mutating the AUG start codon and weakened by modification of the essential purine of the Kozak consensus. Deletion of the 3.7-kb 3'UTR of the chicken D2 mRNA increased D2 activity approximately 3.8-fold due to an increase in D2 mRNA half-life. In addition, alternatively spliced D2 mRNA transcripts similar in size to the major 6- to 7-kb D2 mRNAs but not encoding an active enzyme are present in both human and chicken tissues. Our results indicate that a number of factors reduce the D2 protein levels. These mechanisms, together with the short half-life of the protein, ensure limited expression of this key regulator of T(4) activation.
Collapse
Affiliation(s)
- Balázs Gereben
- Institute of Experimental Medicine, Department of Neurobiology, Budapest H-1083, Hungary
| | | | | | | |
Collapse
|