1
|
Miettinen MS, Monticelli L, Nedumpully-Govindan P, Knecht V, Ignatova Z. Stable polyglutamine dimers can contain β-hairpins with interdigitated side chains-but not α-helices, β-nanotubes, β-pseudohelices, or steric zippers. Biophys J 2014; 106:1721-8. [PMID: 24739171 PMCID: PMC4008795 DOI: 10.1016/j.bpj.2014.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/03/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022] Open
Abstract
A common thread connecting nine fatal neurodegenerative protein aggregation diseases is an abnormally expanded polyglutamine tract found in the respective proteins. Although the structure of this tract in the large mature aggregates is increasingly well described, its structure in the small early aggregates remains largely unknown. As experimental evidence suggests that the most toxic species along the aggregation pathway are the small early ones, developing strategies to alleviate disease pathology calls for understanding the structure of polyglutamine peptides in the early stages of aggregation. Here, we present a criterion, grounded in available experimental data, that allows for using kinetic stability of dimers to assess whether a given polyglutamine conformer can be on the aggregation path. We then demonstrate that this criterion can be assessed using present-day molecular dynamics simulations. We find that although the α-helical conformer of polyglutamine is very stable, dimers of α-helices lack the kinetic stability necessary to support further oligomerization. Dimers of steric zipper, β-nanotube, and β-pseudohelix conformers are also too short-lived to initiate aggregation. The β-hairpin-containing conformers, instead, invariably form very stable dimers when their side chains are interdigitated. Combining these findings with the implications of recent solid-state NMR data on mature fibrils, we propose a possible pathway for the initial stages of polyglutamine aggregation, in which β-hairpin-containing conformers act as templates for fibril formation.
Collapse
Affiliation(s)
- Markus S Miettinen
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Luca Monticelli
- Institut National de la santé et de la recherche medicale, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut National de la Transfusion Sanguine, Paris, France
| | | | - Volker Knecht
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
2
|
Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012; 421:466-90. [PMID: 22306404 DOI: 10.1016/j.jmb.2012.01.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 01/08/2023]
Abstract
Polyglutamine (polyQ) sequences of unknown normal function are present in a significant number of proteins, and their repeat expansion is associated with a number of genetic neurodegenerative diseases. PolyQ solution structure and properties are important not only because of the normal and abnormal biology associated with these sequences but also because they represent an interesting case of a biologically relevant homopolymer. As the common thread in expanded polyQ repeat diseases, it is important to understand the structure and properties of simple polyQ sequences. At the same time, experience has shown that sequences attached to polyQ, whether in artificial constructs or in disease proteins, can influence structure and properties. The two major contenders for the molecular source of the neurotoxicity implicit in polyQ expansion within disease proteins are a populated toxic conformation in the monomer ensemble and a toxic aggregated species. This review summarizes experimental and computational studies on the solution structure and aggregation properties of both simple and complex polyQ sequences, and their repeat-length dependence. As a representative of complex polyQ proteins, the behavior of huntingtin N-terminal fragments, such as exon-1, receives special attention.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
3
|
Polling S, Hill AF, Hatters DM. Polyglutamine aggregation in Huntington and related diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:125-40. [PMID: 23560308 DOI: 10.1007/978-1-4614-5434-2_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.
Collapse
Affiliation(s)
- Saskia Polling
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
4
|
Jayaraman M, Thakur AK, Kar K, Kodali R, Wetzel R. Assays for studying nucleated aggregation of polyglutamine proteins. Methods 2011; 53:246-54. [PMID: 21232603 DOI: 10.1016/j.ymeth.2011.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/18/2023] Open
Abstract
The aggregation of polyglutamine containing protein sequences is implicated in a family of familial neurodegenerative diseases, the expanded CAG repeat diseases. While the cellular aggregation process undoubtedly depends on the flux and local environment of these proteins, their intrinsic physical properties and folding/aggregation propensities must also contribute to their cellular behavior. Here we describe a series of methods for determining mechanistic details of the spontaneous aggregation of polyQ-containing sequences, including the identification and structural examination of aggregation intermediates.
Collapse
Affiliation(s)
- Murali Jayaraman
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
5
|
Fecke W, Gianfriddo M, Gaviraghi G, Terstappen GC, Heitz F. Small molecule drug discovery for Huntington's Disease. Drug Discov Today 2009; 14:453-64. [DOI: 10.1016/j.drudis.2009.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
|
6
|
Hamuro L, Zhang G, Tucker TJ, Self C, Strittmatter WJ, Burke JR. Optimization of a Polyglutamine Aggregation Inhibitor Peptide (QBP1) Using a Thioflavin T Fluorescence Assay. Assay Drug Dev Technol 2007; 5:629-36. [DOI: 10.1089/adt.2007.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Lora Hamuro
- Provid Pharmaceuticals, Inc., North Brunswick, NJ
- Present address: Merck Research Labs, West Point, PA
| | | | - Timothy J. Tucker
- Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC
| | | | - Warren J. Strittmatter
- Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC
| | - James R. Burke
- Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC
| |
Collapse
|
7
|
Ellisdon AM, Pearce MC, Bottomley SP. Mechanisms of ataxin-3 misfolding and fibril formation: kinetic analysis of a disease-associated polyglutamine protein. J Mol Biol 2007; 368:595-605. [PMID: 17362987 DOI: 10.1016/j.jmb.2007.02.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
The polyglutamine diseases are a family of nine proteins where intracellular protein misfolding and amyloid-like fibril formation are intrinsically coupled to disease. Previously, we identified a complex two-step mechanism of fibril formation of pathologically expanded ataxin-3, the causative protein of spinocerebellar ataxia type-3 (Machado-Joseph disease). Strikingly, ataxin-3 lacking a polyglutamine tract also formed fibrils, although this occurred only via a single-step that was homologous to the first step of expanded ataxin-3 fibril formation. Here, we present the first kinetic analysis of a disease-associated polyglutamine repeat protein. We show that ataxin-3 forms amyloid-like fibrils by a nucleation-dependent polymerization mechanism. We kinetically model the nucleating event in ataxin-3 fibrillogenesis to the formation of a monomeric thermodynamic nucleus. Fibril elongation then proceeds by a mechanism of monomer addition. The presence of an expanded polyglutamine tract leads subsequently to rapid inter-fibril association and formation of large, highly stable amyloid-like fibrils. These results enhance our general understanding of polyglutamine fibrillogenesis and highlights the role of non-poly(Q) domains in modulating the kinetics of misfolding in this family.
Collapse
Affiliation(s)
- Andrew M Ellisdon
- Department of Biochemistry and Molecular Biology, PO Box 13D Monash University, 3800, Australia
| | | | | |
Collapse
|
8
|
O'Nuallain B, Thakur AK, Williams AD, Bhattacharyya AM, Chen S, Thiagarajan G, Wetzel R. Kinetics and Thermodynamics of Amyloid Assembly Using a High‐Performance Liquid Chromatography–Based Sedimentation Assay. Methods Enzymol 2006; 413:34-74. [PMID: 17046390 DOI: 10.1016/s0076-6879(06)13003-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonnative protein aggregation has been classically treated as an amorphous process occurring by colloidal coagulation kinetics and proceeding to an essentially irreversible endpoint often ascribed to a chaotic tangle of unfolded chains. However, some nonnative aggregates, particularly amyloid fibrils, exhibit ordered structures that appear to assemble according to ordered mechanisms. Some of these fibrils, as illustrated here with the Alzheimer's plaque peptide amyloid beta, assemble to an endpoint that is a dynamic equilibrium between monomers and fibrils exhibiting a characteristic equilibrium constant with an associated free energy of formation. Some fibrils, as illustrated here with the polyglutamine repeat sequences associated with Huntington's disease, assemble via highly regular mechanisms exhibiting nucleated growth polymerization kinetics. Here, we describe a series of linked methods for quantitative analysis of such aggregation kinetics and thermodynamics, focusing on a robust high-performance liquid chromatography (HPLC)-based sedimentation assay. An integrated group of protocols is provided for peptide disaggregation, setting up the HPLC sedimentation assay, the preparation of fibril seed stocks and determination of the average functional molecular weight of the fibrils, elongation and nucleation kinetics analysis, and the determination of the critical concentration describing the thermodynamic endpoint of fibril elongation.
Collapse
Affiliation(s)
- Brian O'Nuallain
- University of Tennessee Medical Center, Graduate School of Medicine, Knoxville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Berthelier V, Wetzel R. Screening for modulators of aggregation with a microplate elongation assay. Methods Enzymol 2006; 413:313-25. [PMID: 17046403 DOI: 10.1016/s0076-6879(06)13016-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many protein misfolding or conformational diseases, a number of which are neurodegenerative, are associated with the presence of proteinaceous deposits in the form of amyloid/amyloid-like fibrils/aggregates in tissues. Little is known about the exact mechanisms by which fibrillar aggregates are formed and can impair cellular functions leading to cell death. Small molecules that can modulate aggregate formation and/or structure can be powerful tools for studying the aggregate assembly mechanism and toxicity and may also prove to be therapeutic. We describe here a microplate-based high-throughput screening assay for identification of such molecules. The assay is based on the ability of microplate-coated aggregates to grow by incorporating additional monomers. Compounds that influence the elongation reaction are selected as hits and are tested in dose-response experiments. We also discuss some additional experiments that can be used to characterize the modes of action of these aggregation modulators further.
Collapse
Affiliation(s)
- Valerie Berthelier
- University of Tennessee Medical Center-Graduate School of Medicine, Knoxville, TN, USA
| | | |
Collapse
|
10
|
Abstract
The formation of polyglutamine aggregates occupies a central role in the pathophysiology of neurodegenerative diseases caused by expanded trinucleotide repeats encoding the amino acid glutamine. This chapter describes sensitive histological methods for detection of tissue sites that are capable of further recruitment of polyglutamine and for sites rich in polyglutamine defined immunohistochemically. These methods have been found to be applicable in a number of diseases and animal models of disease. Recruitment, which is a property of highly ordered, amyloid-like aggregates, is most commonly found in punctate sites, termed aggregation foci (AF), in the neuronal perikaryonal cytoplasm. As expected, these AF correspond to sites containing polyglutamine aggregates detected using the antibody 1C2. Interestingly, however, many of the latter sites, including most neuropil aggregates and neuronal intranuclear inclusions, exhibit a limited ability to support polyglutamine recruitment. Thus there is limited correlation between the distribution of polyglutamine aggregates and recruitment activity, suggesting functional heterogeneity among polyglutamine aggregates. These methods should prove useful in explaining the relationship between aggregation reactions, aggregate formation, and the development of symptomatic disease and should be adaptable to the study of other protein aggregation disorders.
Collapse
Affiliation(s)
- Alexander P Osmand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, 37920, USA
| | | | | |
Collapse
|
11
|
Bhattacharyya AM, Thakur AK, Wetzel R. polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci U S A 2005; 102:15400-5. [PMID: 16230628 PMCID: PMC1266079 DOI: 10.1073/pnas.0501651102] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 09/12/2005] [Indexed: 12/25/2022] Open
Abstract
Polyglutamine (polyGln) aggregation is implicated in the disease progression of Huntington's disease and other expanded CAG repeat diseases. PolyGln aggregation in vitro follows a simple nucleated growth polymerization pathway without apparent complications such as populated intermediates, alternative assembly pathways, or secondary nucleation phenomena. Previous analysis of the aggregation of simple polyGln peptides revealed that the critical nucleus (the number of monomeric units involved in the formation of an energetically unfavorable aggregation nucleus) is equal to one, suggesting that polyGln nucleation can be viewed as an unfavorable protein folding reaction. We provide here a method for experimentally determining the number of elongation growth sites per unit weight for any polyGln aggregate preparation, a key parameter required for completion of the nucleation kinetics analysis and determination of the thermodynamics of nucleation. We find that, for the polyGln peptide Q(47), the second-order rate constant for fibril elongation is 11,400 liters/mol per s, whereas K(n*)), the equilibrium constant for nucleation of aggregation, is remarkably small, equal to 2.6 x 10(-9). The latter value corresponds to a free energy of nucleus formation of +12.2 kcal/mol, a value consistent with a highly unfavorable folding reaction. The methods introduced here should allow further analysis of the energetics of polyGln nucleus formation and accurate comparisons of the seeding capabilities of different fibril preparations, a task of increasing importance in the amyloid field.
Collapse
Affiliation(s)
- Anusri M Bhattacharyya
- Graduate School of Medicine, University of Tennessee, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| | | | | |
Collapse
|
12
|
Parekh-Olmedo H, Wang J, Gusella JF, Kmiec EB. Modified single-stranded oligonucleotides inhibit aggregate formation and toxicity induced by expanded polyglutamine. J Mol Neurosci 2005; 24:257-67. [PMID: 15456939 DOI: 10.1385/jmn:24:2:257] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2004] [Accepted: 02/19/2004] [Indexed: 11/11/2022]
Abstract
Huntington's disease (HD) is caused by an increase in the length of the poly(Q) tract in the huntingtin (Htt) protein, which changes its solubility and induces aggregation. Aggregation occurs in two general phases, nucleation and elongation, and agents designed to block either phase are being considered as potential therapeutics. We demonstrate that inclusion formation can be retarded by introducing modified, single-stranded oligonucleotides into a model neuronal cell line. This cell-based assay is used in conjunction with a standardized biochemical assay to identify molecules that can disrupt the process of aggregate formation. Active oligonucleotides include a 6-mer containing a single phosphorothioate linkage on each terminus, a 53-mer and a 9-mer containing three phosphorothioate linkages at each end, and a 25-mer consisting of all modified RNA residues. The disruption process directed by the active oligonucleotides appears to be independent of sequence specificity and complementarity. In contrast, the activity is more dependent on the type of chemical modifications contained within the oligonucleotide. Some oligonucleotides that demonstrated inhibition activity were also found to extend the life span of PC12 cells after the toxic Htt aggregation process was induced. Our data provide the first evidence that short synthetic oligonucleotides inhibit a fundamental pathological pathway of HD and may provide the basis for a novel therapeutic approach.
Collapse
Affiliation(s)
- Hetal Parekh-Olmedo
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
13
|
Williams AD, Sega M, Chen M, Kheterpal I, Geva M, Berthelier V, Kaleta DT, Cook KD, Wetzel R. Structural properties of Abeta protofibrils stabilized by a small molecule. Proc Natl Acad Sci U S A 2005; 102:7115-20. [PMID: 15883377 PMCID: PMC1091746 DOI: 10.1073/pnas.0408582102] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Indexed: 11/18/2022] Open
Abstract
Metastable oligomeric and protofibrillar forms of amyloidogenic proteins have been implicated as on-pathway assembly intermediates in amyloid formation and as the major toxic species in a number of amyloid diseases including Alzheimer's disease. We describe here a chemical biology approach to structural analysis of Abeta protofibrils. Library screening yielded several molecules that stimulate Abeta aggregation. One of these compounds, calmidazolium chloride (CLC), rapidly and efficiently converts Abeta(1-40) monomers into clusters of protofibrils. As monitored by electron microscopy, these protofibrils persist for days when incubated in PBS at 37 degrees C, with a slow transition to fibrillar structures apparent only after several weeks. Like normal protofibrils, the CLC-Abeta aggregates exhibit a low thioflavin T response. Like Abeta fibrils, the clustered protofibrils bind the anti-amyloid Ab WO1. The CLC-Abeta aggregates exhibit the same protection from hydrogen-deuterium exchange as do protofibrils isolated from a spontaneous Abeta fibril formation reaction: approximately 12 of the 39 Abeta(1-40) backbone amide protons are protected from exchange in the protofibril, compared with approximately twice that number in amyloid fibrils. Scanning proline mutagenesis analysis shows that the Abeta molecule in these protofibrillar assemblies exhibits the same flexible N and C termini as do mature amyloid fibrils. The major difference in Abeta conformation between fibrils and protofibrils is added structural definition in the 22-29 segment in the fibril. Besides aiding structural analysis, compounds capable of facilitating oligomer and protofibril formation might have therapeutic potential, if they act to sequester Abeta in a form and/or location that cannot engage the toxic pathway.
Collapse
Affiliation(s)
- Angela D Williams
- Graduate School of Medicine, University of Tennessee, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Maxson L, Wong C, Herrmann LM, Caughey B, Baron GS. A solid-phase assay for identification of modulators of prion protein interactions. Anal Biochem 2004; 323:54-64. [PMID: 14622959 DOI: 10.1016/j.ab.2003.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The progression of the transmissible spongiform encephalopathies (TSEs) is characterized in part by accumulation of a proteinase K-resistant form of the prion protein, which has been converted from the endogenous, proteinase K-sensitive form. This conversion reaction provides a target for possible anti-TSE strategies. We have adapted a cell-free conversion reaction to a high-throughput, solid-phase format that can be used to screen possible therapeutic compounds for inhibitory activity or to illuminate inhibition and conversion mechanisms. The solid-phase assay was compatible with reactions performed under a variety of conditions. Using this assay, we report that phthalocyanine tetrasulfonate, a known modulator of conversion, inhibited conversion by interfering with binding between the protease-sensitive and the protease-resistant forms of the prion protein. A biotinylated form of the protease-sensitive prion protein was successfully converted to the protease-resistant isoform in the solid-phase assay, indicating that biotinylation provides a nonisotopic labeling strategy for large-scale screens.
Collapse
Affiliation(s)
- Laura Maxson
- Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
15
|
Thakur AK, Yang W, Wetzel R. Inhibition of polyglutamine aggregate cytotoxicity by a structure‐based elongation inhibitor. FASEB J 2004; 18:923-5. [PMID: 15001566 DOI: 10.1096/fj.03-1238fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Huntington's disease and other expanded CAG repeat diseases are associated with the expression of proteins containing polyglutamine (polyGln) tracts expanded beyond a pathological repeat length threshold of approximately 38. Aggregation of these expanded polyGln proteins may trigger disease by recruiting and sequestering other polyGln-containing proteins in the cell, depriving the cellular environment of critical protein activities. We describe here proline-containing polyGln peptide sequences that are effective inhibitors of the ability of polyGln aggregates to be elongated by recruiting additional polyGln monomers. These peptides are also effective inhibitors of polyGln aggregate toxicity in a cell culture model based on delivery of preassembled polyGln aggregates into the cell nucleus. These results are not only consistent with a role for polyGln aggregates in the disease mechanisms of expanded CAG repeat disorders, but also directly implicate the elongation phase of aggregate growth in the toxicity mechanism, supporting the recruitment-sequestration model for polyGln toxicity. These results may be related to the ability of the glutamine/proline-rich protein PQE-1 to protect C. elegans against polyglutamine toxicity. Inhibition of aggregate elongation is a therapeutic strategy that, based on our results, may be effective even in neurons already compromised by polyGln aggregates.
Collapse
Affiliation(s)
- Ashwani K Thakur
- University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, USA
| | | | | |
Collapse
|
16
|
O'Nuallain B, Williams AD, Westermark P, Wetzel R. Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 2004; 279:17490-9. [PMID: 14752113 DOI: 10.1074/jbc.m311300200] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over residues 15-36, which comprise the H-bonded core of the amyloid fibrils it forms, the Alzheimer's disease plaque peptide amyloid beta (Abeta) possesses a very similar sequence to that of another short, amyloidogenic peptide, islet amyloid polypeptide (IAPP). Using elongation rates to quantify seeding efficiency, we inquired into the relationship between primary sequence similarity and seeding efficiency between Abeta-(1-40) and amyloid fibrils produced from IAPP as well as other proteins. In both a solution phase and a microtiter plate elongation assay, IAPP fibrils are poor seeds for Abeta-(1-40) elongation, exhibiting weight-normalized efficiencies of only 1-2% compared with Abeta-(1-40) fibrils. Amyloid fibrils of peptides with sequences completely unrelated to Abeta also exhibit poor to negligible seeding ability for Abeta elongation. Fibrils from a number of point mutants of Abeta-(1-40) exhibit intermediate seeding abilities for wild-type Abeta elongation, with differing efficiencies depending on whether or not the mutation is in the amyloid core region. The results suggest that amyloid fibrils from different proteins exhibit structural differences that control seeding efficiencies. Preliminary results also suggest that identical sequences can grow into different conformations of amyloid fibrils as detected by seeding efficiencies. The results have a number of implications for amyloid structure and biology.
Collapse
Affiliation(s)
- Brian O'Nuallain
- Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee 37920, USA
| | | | | | | |
Collapse
|
17
|
Pollitt SK, Pallos J, Shao J, Desai UA, Ma AAK, Thompson LM, Marsh JL, Diamond MI. A Rapid Cellular FRET Assay of Polyglutamine Aggregation Identifies a Novel Inhibitor. Neuron 2003; 40:685-94. [PMID: 14622574 DOI: 10.1016/s0896-6273(03)00697-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many neurodegenerative diseases, including tauopathies, Parkinson's disease, amyotrophic lateral sclerosis, and the polyglutamine diseases, are characterized by intracellular aggregation of pathogenic proteins. It is difficult to study modifiers of this process in intact cells in a high-throughput and quantitative manner, although this could facilitate molecular insights into disease pathogenesis. Here we introduce a high-throughput assay to measure intracellular polyglutamine protein aggregation using fluorescence resonance energy transfer (FRET). We screened over 2800 biologically active small molecules for inhibitory activity and have characterized one lead compound in detail. Y-27632, an inhibitor of the Rho-associated kinase p160ROCK, diminished polyglutamine protein aggregation (EC(50) congruent with 5 microM) and reduced neurodegeneration in a Drosophila model of polyglutamine disease. This establishes a novel high-throughput approach to study protein misfolding and aggregation associated with neurodegenerative diseases and implicates a signaling pathway of previously unrecognized importance in polyglutamine protein processing.
Collapse
|
18
|
Apostol BL, Kazantsev A, Raffioni S, Illes K, Pallos J, Bodai L, Slepko N, Bear JE, Gertler FB, Hersch S, Housman DE, Marsh JL, Thompson LM. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc Natl Acad Sci U S A 2003; 100:5950-5. [PMID: 12730384 PMCID: PMC156307 DOI: 10.1073/pnas.2628045100] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.
Collapse
Affiliation(s)
- Barbara L Apostol
- Department of Psychiatry and Human Behavior, Gillespie 2121, University of California, Irvine, CA 92697-4260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Steffan JS, Thompson LM. Targeting aggregation in the development of therapeutics for the treatment of Huntington's disease and other polyglutamine repeat diseases. Expert Opin Ther Targets 2003; 7:201-13. [PMID: 12667098 DOI: 10.1517/14728222.7.2.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease (HD) is one of a number of familial polyglutamine (polyQ) repeat diseases. These neurodegenerative disorders are caused by expression of otherwise unrelated proteins that contain an expansion of a polyQ tract, rendering them toxic to specific subsets of vulnerable neurons. These expanded repeats have an inherent propensity to aggregate; insoluble neuronal nuclear and cytoplasmic polyQ aggregates or inclusions are hallmarks of the disorders [1,2]. In HD, inclusions in diseased brains often precede onset of symptoms, and have been proposed to be involved in pathogenicity [3-5]. Various strategies to block the process of aggregation have been developed in an effort to create drugs that decrease neurotoxicity. A discussion of the effect of antibodies, caspase inhibitors, chemical inhibitors, heat-shock proteins, suppressor peptides and transglutaminase inhibitors upon aggregation and disease is presented.
Collapse
Affiliation(s)
- Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4260, USA.
| | | |
Collapse
|
20
|
Chen S, Ferrone FA, Wetzel R. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci U S A 2002; 99:11884-9. [PMID: 12186976 PMCID: PMC129363 DOI: 10.1073/pnas.182276099] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Huntington's Disease and related expanded CAG repeat diseases, a polyglutamine [poly(Gln)] sequence containing 36 repeats in the corresponding disease protein is benign, whereas a sequence with only 2-3 additional glutamines is associated with disease risk. Above this threshold range, longer repeat lengths are associated with earlier ages-of-onset. To investigate the biophysical basis of these effects, we studied the in vitro aggregation kinetics of a series of poly(Gln) peptides. We find that poly(Gln) peptides in solution at 37 degrees C undergo a random coil to beta-sheet transition with kinetics superimposable on their aggregation kinetics, suggesting the absence of soluble, beta-sheet-rich intermediates in the aggregation process. Details of the time course of aggregate growth confirm that poly(Gln) aggregation occurs by nucleated growth polymerization. Surprisingly, however, and in contrast to conventional models of nucleated growth polymerization of proteins, we find that the aggregation nucleus is a monomer. That is, nucleation of poly(Gln) aggregation corresponds to an unfavorable protein folding reaction. Using parameters derived from the kinetic analysis, we estimate the difference in the free energy of nucleus formation between benign and pathological length poly(Gln)s to be less than 1 kcal/mol. We also use the kinetic parameters to calculate predicted aggregation curves for very low concentrations of poly(Gln) that might obtain in the cell. The repeat-length-dependent differences in predicted aggregation lag times are in the same range as the length-dependent age-of-onset differences in Huntington's disease, suggesting that the biophysics of poly(Gln) aggregation nucleation may play a major role in determining disease onset.
Collapse
Affiliation(s)
- Songming Chen
- Graduate School of Medicine, University of Tennessee Medical Center, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| | | | | |
Collapse
|