1
|
Depreux FF, Czech L, Whitlon DS. Sex Genotyping of Archival Fixed and Immunolabeled Guinea Pig Cochleas. Sci Rep 2018; 8:5156. [PMID: 29581456 PMCID: PMC5980087 DOI: 10.1038/s41598-018-23491-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
For decades, outbred guinea pigs (GP) have been used as research models. Various past research studies using guinea pigs used measures that, unknown at the time, may be sex-dependent, but from which today, archival tissues may be all that remain. We aimed to provide a protocol for sex-typing archival guinea pig tissue, whereby past experiments could be re-evaluated for sex effects. No PCR sex-genotyping protocols existed for GP. We found that published sequence of the GP Sry gene differed from that in two separate GP stocks. We used sequences from other species to deduce PCR primers for Sry. After developing a genomic DNA extraction for archival, fixed, decalcified, immunolabeled, guinea pig cochlear half-turns, we used a multiplex assay (Y-specific Sry; X-specific Dystrophin) to assign sex to tissue as old as 3 years. This procedure should allow reevaluation of prior guinea pig studies in various research areas for the effects of sex on experimental outcomes.
Collapse
Affiliation(s)
- Frédéric F Depreux
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Lyubov Czech
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Donna S Whitlon
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University, Chicago, IL, 60611, USA. .,Interdepartmental Neurosciences Program, Northwestern University, Chicago, IL, 60611, USA. .,Knowles Hearing Center, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
2
|
Baetens D, Mendonça BB, Verdin H, Cools M, De Baere E. Non-coding variation in disorders of sex development. Clin Genet 2017; 91:163-172. [PMID: 27801941 DOI: 10.1111/cge.12911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/26/2023]
Abstract
Genetic studies in Disorders of Sex Development (DSD), representing a wide spectrum of developmental or functional conditions of the gonad, have mainly been oriented towards the coding genome. Application of genomic technologies, such as whole-exome sequencing, result in a molecular genetic diagnosis in ∼50% of cases with DSD. Many of the genes mutated in DSD encode transcription factors such as SRY, SOX9, NR5A1, and FOXL2, characterized by a strictly regulated spatiotemporal expression. Hence, it can be hypothesized that at least part of the missing genetic variation in DSD can be explained by non-coding mutations in regulatory elements that alter gene expression, either by reduced, mis- or overexpression of their target genes. In addition, structural variations such as translocations, deletions, duplications or inversions can affect the normal chromatin conformation by different mechanisms. Here, we review non-coding defects in human DSD phenotypes and in animal models. The wide variety of non-coding defects found in DSD emphasizes that the regulatory landscape of known and to be discovered DSD genes has to be taken into consideration when investigating the molecular pathogenesis of DSD.
Collapse
Affiliation(s)
- D Baetens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - B B Mendonça
- Laboratório de Hormônios e Genética Molecular, LIM/42, Unidade de Adrenal, Disc. de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - H Verdin
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - M Cools
- Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - E De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
3
|
Li Y, Wang L, Zhou J, Li F. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene. PeerJ 2016; 4:e2186. [PMID: 27478698 PMCID: PMC4950547 DOI: 10.7717/peerj.2186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/07/2016] [Indexed: 01/22/2023] Open
Abstract
Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Lei Wang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Jiawei Zhou
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
4
|
Larney C, Bailey TL, Koopman P. Conservation analysis of sequences flanking the testis-determining gene Sry in 17 mammalian species. BMC DEVELOPMENTAL BIOLOGY 2015; 15:34. [PMID: 26444262 PMCID: PMC4595323 DOI: 10.1186/s12861-015-0085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sex determination in mammals requires expression of the Y-linked gene Sry in the bipotential genital ridges of the XY embryo. Even minor delay of the onset of Sry expression can result in XY sex reversal, highlighting the need for accurate gene regulation during sex determination. However, the location of critical regulatory elements remains unknown. Here, we analysed Sry flanking sequences across many species, using newly available genome sequences and computational tools, to better understand Sry's genomic context and to identify conserved regions predictive of functional roles. METHODS Flanking sequences from 17 species were analysed using both global and local sequence alignment methods. Multiple motif searches were employed to characterise common motifs in otherwise unconserved sequence. RESULTS We identified position-specific conservation of binding motifs for multiple transcription factor families, including GATA binding factors and Oct/Sox dimers. In contrast with the landscape of extremely low sequence conservation around the Sry coding region, our analysis highlighted a strongly conserved interval of ~106 bp within the Sry promoter (which we term the Sry Proximal Conserved Interval, SPCI). We further report that inverted repeats flanking murine Sry are much larger than previously recognised. CONCLUSIONS The unusually fast pace of sequence drift on the Y chromosome sharpens the likely functional significance of both the SPCI and the identified binding motifs, providing a basis for future studies of the role(s) of these elements in Sry regulation.
Collapse
Affiliation(s)
- Christian Larney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
5
|
Structural and functional conservation of fungal MatA and human SRY sex-determining proteins. Nat Commun 2014; 5:5434. [PMID: 25399555 PMCID: PMC4235659 DOI: 10.1038/ncomms6434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/01/2014] [Indexed: 11/25/2022] Open
Abstract
Sex determination in animals and fungi is regulated by specific sex determining genes. The Aspergillus nidulans (A.nidulans) mating type gene matA and the human SRY (Sex Determining Region Y) encode proteins containing a single HMG (High Mobility Group) domain. Analysis of the amino acid sequence of MatA and SRY transcription factors revealed significant structural similarity. The human SRY protein is able to functionally replace MatA and drives the sexual cycle in the fungus A. nidulans. Functional studies indicate that SRY drives early fruiting body development, and hybrid MatA protein carrying the SRY HMG box is fully capable of driving both early and late stages of sexual development, including gametogenesis. Our data suggest that SRY and MatA are both structurally and functionally related and conserved in regulating sexual processes. The fundamental mechanisms driving evolution of the genetic pathways underlying sex determination, sex chromosomes and sexual reproduction in eukaryotes appear similar.
Collapse
|
6
|
Larney C, Bailey TL, Koopman P. Switching on sex: transcriptional regulation of the testis-determining gene Sry. Development 2014; 141:2195-205. [PMID: 24866114 DOI: 10.1242/dev.107052] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mammalian sex determination hinges on the development of ovaries or testes, with testis fate being triggered by the expression of the transcription factor sex-determining region Y (Sry). Reduced or delayed Sry expression impairs testis development, highlighting the importance of its accurate spatiotemporal regulation and implying a potential role for SRY dysregulation in human intersex disorders. Several epigenetic modifiers, transcription factors and kinases are implicated in regulating Sry transcription, but it remains unclear whether or how this farrago of factors acts co-ordinately. Here we review our current understanding of Sry regulation and provide a model that assembles all known regulators into three modules, each converging on a single transcription factor that binds to the Sry promoter. We also discuss potential future avenues for discovering the cis-elements and trans-factors required for Sry regulation.
Collapse
Affiliation(s)
- Christian Larney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
7
|
Fujimoto Y, Tanaka S, Yamaguchi Y, Kobayashi H, Kuroki S, Tachibana M, Shinomura M, Kanai Y, Morohashi KI, Kawakami K, Nishinakamura R. Homeoproteins Six1 and Six4 Regulate Male Sex Determination and Mouse Gonadal Development. Dev Cell 2013; 26:416-30. [DOI: 10.1016/j.devcel.2013.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 01/11/2023]
|
8
|
Sato Y, Shinka T, Sakamoto K, Ewis AA, Nakahori Y. The male-determining gene SRY is a hybrid of DGCR8 and SOX3, and is regulated by the transcription factor CP2. Mol Cell Biochem 2009; 337:267-75. [PMID: 19902333 DOI: 10.1007/s11010-009-0308-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 10/29/2009] [Indexed: 11/24/2022]
Abstract
In mammals, sex is determined by the presence or absence of the Y chromosome that bears a male-dominant sex-determining gene SRY, which switches the differentiation of gonads into male testes. The molecular signaling mechanism turning on the switch, however, has remained unclear for 18 years since the identification of the gene. Here, we describe how this gene emerged and started to work. From amino acid homology, we realized that SRY is a hybrid gene between a portion of the first exon of DiGeorge syndrome critical region gene 8 (DGCR8) and the high-mobility group (HMG) box of SRY box-3 (SOX3) gene. We identified the regulatory sequence in the SRY promotor region by searching for a common motif shared with DGCR8 mRNA. From the motif search between DGCR8 mRNA and the SRY upstream sequence, we found that the transcription factor CP2 (TFCP2) binding motif is present in both. TFCP2 overexpression did not show a significant increase of SRY mRNA expression, and TFCP2 suppression by RNA interference (RNAi) significantly reduced SRY mRNA expression. Furthermore, electrophoretic mobility shift assay (EMSA) demonstrated that TFCP2 acts as a regulator by directly binding to the SRY promoter. We conclude that SRY is a hybrid gene composed of two genes, DGCR8 and SOX3; and TFCP2 is an essential transcription factor for SRY expression regulation.
Collapse
Affiliation(s)
- Youichi Sato
- Department of Human Genetics and Public Health, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
9
|
Ross DGF, Bowles J, Koopman P, Lehnert S. New insights into SRY regulation through identification of 5' conserved sequences. BMC Mol Biol 2008; 9:85. [PMID: 18851760 PMCID: PMC2572636 DOI: 10.1186/1471-2199-9-85] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SRY is the pivotal gene initiating male sex determination in most mammals, but how its expression is regulated is still not understood. In this study we derived novel SRY 5' flanking genomic sequence data from bovine and caprine genomic BAC clones. RESULTS We identified four intervals of high homology upstream of SRY by comparison of human, bovine, pig, goat and mouse genomic sequences. These conserved regions contain putative binding sites for a large number of known transcription factor families, including several that have been implicated previously in sex determination and early gonadal development. CONCLUSION Our results reveal potentially important SRY regulatory elements, mutations in which might underlie cases of idiopathic human XY sex reversal.
Collapse
Affiliation(s)
- Diana G F Ross
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | | | | | | |
Collapse
|
10
|
A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol Biol 2008; 9:44. [PMID: 18445271 PMCID: PMC2387164 DOI: 10.1186/1471-2199-9-44] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background In mammals, sex determination is genetically controlled. The SRY gene, located on Y chromosome, functions as the dominant genetic switch for testis development. The SRY gene is specifically expressed in a subpopulation of somatic cells (pre-Sertoli cells) of the developing urogenital ridge for a brief period during gonadal differentiation. Despite this tight spatiotemporal expression pattern, the molecular mechanisms that regulate SRY transcription remain poorly understood. Sry expression has been shown to be markedly reduced in transgenic mice harboring a mutant GATA4 protein (a member of the GATA family of transcription factors) disrupted in its ability to interact with its transcriptional partner FOG2, suggesting that GATA4 is involved in SRY gene transcription. Results Although our results show that GATA4 directly targets the pig SRY promoter, we did not observe similar action on the mouse and human SRY promoters. In the mouse, Wilms' tumor 1 (WT1) is an important regulator of both Sry and Müllerian inhibiting substance (Amh/Mis) expression and in humans, WT1 mutations are associated with abnormalities of sex differentiation. GATA4 transcriptionally cooperated with WT1 on the mouse, pig, and human SRY promoters. Maximal GATA4/WT1 synergism was dependent on WT1 but not GATA4 binding to their consensus regulatory elements in the SRY promoter and required both the zinc finger and C-terminal regions of the GATA4 protein. Although both isoforms of WT1 synergized with GATA4, synergism was stronger with the +KTS rather than the -KTS isoform. WT1/GATA4 synergism was also observed on the AMH promoter. In contrast to SRY, WT1/GATA4 action on the mouse Amh promoter was specific for the -KTS isoform and required both WT1 and GATA4 binding. Conclusion Our data therefore provide new insights into the molecular mechanisms that contribute to the tissue-specific expression of the SRY and AMH genes in both normal development and certain syndromes of abnormal sex differentiation.
Collapse
|
11
|
Marchal JA, Acosta MJ, Bullejos M, de la Guardia RD, Sánchez A. Origin and spread of the SRY gene on the X and Y chromosomes of the rodent Microtus cabrerae: Role of L1 elements. Genomics 2008; 91:142-51. [DOI: 10.1016/j.ygeno.2007.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/15/2007] [Accepted: 10/19/2007] [Indexed: 11/30/2022]
|
12
|
Dirsch O, Ji Y, Bohr J, Shen K, Levison D, Dahmen U. Probe production for in situ hybridization by PCR and subsequent covalent labeling with fluorescent dyes. Appl Immunohistochem Mol Morphol 2007; 15:332-7. [PMID: 17721280 DOI: 10.1097/01.pai.0000213125.88967.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A simple procedure for fluorescent labeling of probes just before in situ hybridization is provided. Aminoallyl-dUTP is introduced during probe production by polymerase chain reaction (PCR). The aminoallyl-dUTP functions as a reactive site for subsequent labeling of the probe. Activated fluorescent dyes such as fluorescein are covalently attached to the probe through the formation of a stable amide bond. Labeled probes are purified by size-exclusion gel chromatography to remove unincorporated dye. Target genes used to demonstrate the efficacy of this technique with in situ hybridization are rat Y-chromosome and rat granulocyte colony-stimulating factor receptor. PCR amplicons containing aminoallyl-dUTP were produced in high yield. Probes obtained after labeling with activated fluorophores demonstrated high intrinsic activity within in situ hybridizations. The introduction of aminoallyl-dUTP into the PCR reaction enables the production of "unlabeled" probes by PCR having a shelf life, which is not limited by the storage and stability challenges of fluorophore-labeled probes. Subsequent labeling of the probes with activated fluorescent dyes just before use allows one step in situ hybridization with high activity and minimal background staining.
Collapse
Affiliation(s)
- Olaf Dirsch
- Institute of Pathology, University of Cologne, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Turner ME, Martin C, Martins AS, Dunmire J, Farkas J, Ely DL, Milsted A. Genomic and expression analysis of multiple Sry loci from a single Rattus norvegicus Y chromosome. BMC Genet 2007; 8:11. [PMID: 17408480 PMCID: PMC1852568 DOI: 10.1186/1471-2156-8-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 04/04/2007] [Indexed: 12/24/2022] Open
Abstract
Background Sry is a gene known to be essential for testis determination but is also transcribed in adult male tissues. The laboratory rat, Rattus norvegicus, has multiple Y chromosome copies of Sry while most mammals have only a single copy. DNA sequence comparisons with other rodents with multiple Sry copies are inconsistent in divergence patterns and functionality of the multiple copies. To address hypotheses of divergence, gene conversion and functional constraints, we sequenced Sry loci from a single R. norvegicus Y chromosome from the Spontaneously Hypertensive Rat strain (SHR) and analyzed DNA sequences for homology among copies. Next, to determine whether all copies of Sry are expressed, we developed a modification of the fluorescent marked capillary electrophoresis method to generate three different sized amplification products to identify Sry copies. We applied this fragment analysis method to both genomic DNA and cDNA prepared from mRNA from testis and adrenal gland of adult male rats. Results Y chromosome fragments were amplified and sequenced using primers that included the entire Sry coding region and flanking sequences. The analysis of these sequences identified six Sry loci on the Y chromosome. These are paralogous copies consistent with a single phylogeny and the divergence between any two copies is less than 2%. All copies have a conserved reading frame and amino acid sequence consistent with function. Fragment analysis of genomic DNA showed close approximations of experimental with predicted values, validating the use of this method to identify proportions of each copy. Using the fragment analysis procedure with cDNA samples showed the Sry copies expressed were significantly different from the genomic distribution (testis p < 0.001, adrenal gland p < 0.001), and the testis and adrenal copy distribution in the transcripts were also significantly different from each other (p < 0.001). Total Sry transcript expression, analyzed by real-time PCR, showed significantly higher levels of Sry in testis than adrenal gland (p, 0.001). Conclusion The SHR Y chromosome contains at least 6 full length copies of the Sry gene. These copies have a conserved coding region and conserved amino acid sequence. The pattern of divergence is not consistent with gene conversion as the mechanism for this conservation. Expression studies show multiple copies expressed in the adult male testis and adrenal glands, with tissue specific differences in expression patterns. Both the DNA sequence analysis and RNA transcript expression analysis are consistent with more than one copy having function and selection preventing divergence although we have no functional evidence.
Collapse
Affiliation(s)
- Monte E Turner
- Department of Biology, The University of Akron, Akron, OH 44325-3908 USA
| | - Carey Martin
- Department of Biology, The University of Akron, Akron, OH 44325-3908 USA
- Cuyahoga County Coroner's Office, Cleveland, OH 44106 USA
| | - Almir S Martins
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, ICB, Belo Horizonte, MG 31270-901 Brazil
| | - Jeffrey Dunmire
- Department of Biology, The University of Akron, Akron, OH 44325-3908 USA
| | - Joel Farkas
- Department of Biology, The University of Akron, Akron, OH 44325-3908 USA
| | - Daniel L Ely
- Department of Biology, The University of Akron, Akron, OH 44325-3908 USA
| | - Amy Milsted
- Department of Biology, The University of Akron, Akron, OH 44325-3908 USA
| |
Collapse
|
14
|
Waters PD, Wallis MC, Marshall Graves JA. Mammalian sex--Origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol 2007; 18:389-400. [PMID: 17400006 DOI: 10.1016/j.semcdb.2007.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/16/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Sex determination in vertebrates is accomplished through a highly conserved genetic pathway. But surprisingly, the downstream events may be activated by a variety of triggers, including sex determining genes and environmental cues. Amongst species with genetic sex determination, the sex determining gene is anything but conserved, and the chromosomes that bear this master switch subscribe to special rules of evolution and function. In mammals, with a few notable exceptions, female are homogametic (XX) and males have a single X and a small, heterochromatic and gene poor Y that bears a male dominant sex determining gene SRY. The bird sex chromosome system is the converse in that females are the heterogametic sex (ZW) and males the homogametic sex (ZZ). There is no SRY in birds, and the dosage-sensitive Z-borne DMRT1 gene is a credible candidate sex determining gene. Different sex determining switches seem therefore to have evolved independently in different lineages, although the complex sex chromosomes of the platypus offer us tantalizing clues that the mammal XY system may have evolved directly from an ancient reptile ZW system. In this review we will discuss the organization and evolution of the sex chromosomes across a broad range of mammals, and speculate on how the Y chromosome, and SRY, evolved.
Collapse
Affiliation(s)
- Paul D Waters
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, ACT 2601, Canberra, Australia.
| | | | | |
Collapse
|
15
|
Hahn MW. Detecting natural selection on cis-regulatory DNA. Genetica 2006; 129:7-18. [PMID: 16955334 DOI: 10.1007/s10709-006-0029-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 06/25/2005] [Indexed: 10/24/2022]
Abstract
Changes in transcriptional regulation play an important role in the genetic basis for evolutionary change. Here I review a growing body of literature that seeks to determine the forces governing the non-coding regulatory sequences underlying these changes. I address the challenges present in studying natural selection without the familiar structure and regularity of protein-coding sequences, but show that most tests of neutrality that have been used for coding regions are applicable to non-coding regions, albeit with some caveats. While some experimental investment is necessary to identify heritable regulatory variation, the most basic inferences about selection require very little functional information. A growing body of research on cis-regulatory variation has uncovered all the forms of selection common to coding regions, in addition to novel forms of selection. An emerging pattern seems to be the ubiquity of local adaptation and balancing selection, possibly due to the greater freedom organisms have to fine-tune gene expression without changing protein function. It is clear from multiple single locus and whole genome studies of non-coding regulatory DNA that the effects of natural selection reach far beyond the start and stop codons.
Collapse
Affiliation(s)
- Matthew W Hahn
- Department of Biology and School of Informatics, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
16
|
Boyer A, Pilon N, Raiwet DL, Lussier JG, Silversides DW. Human and pigSRY 5′ flanking sequences can direct reporter transgene expression to the genital ridge and to migrating neural crest cells. Dev Dyn 2006; 235:623-32. [PMID: 16411204 DOI: 10.1002/dvdy.20670] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms for sex determination vary greatly between animal groups, and include chromosome dosage and haploid-diploid mechanisms as seen in insects, temperature and environmental cues as seen in fish and reptiles, and gene-based mechanisms as seen in birds and mammals. In eutherian mammals, sex determination is genetic, and SRY is the Y chromosome located gene representing the dominant testes determining factor. How SRY took over this function from ancestral mechanisms is not known, nor is it known what those ancestral mechanisms were. What is known is that SRY is haploid and thus poorly protected from mutations, and consequently is poorly conserved between mammalian species. To functionally compare SRY promoter sequences, we have generated transgenic mice with fluorescent reporter genes under the control of various lengths of human and pig SRY 5' flanking sequences. Human SRY 5' flanking sequences (5 Kb) supported reporter transgene expression within the genital ridge of male embryos at the time of sex determination and also supported expression within migrating truncal neural crest cells of both male and female embryos. The 4.6 Kb of pig SRY 5' flanking sequences supported reporter transgene expression within the male genital ridge but not within the neural crest; however, 2.6 Kb and 1.6 Kb of pig SRY 5' flanking sequences retained male genital ridge expression and now supported extensive expression within cells of the neural crest in embryos of both sexes. When 2 Kb of mouse SRY 5' flanking sequences (-3 to -1 Kb) were placed in front of the 1.6 Kb of pig SRY 5' flanking sequences and this transgene was introduced into mice, reporter transgene expression within the male genital ridge was retained but neural crest expression was lost. These observations suggest that SRY 5' flanking sequences from at least two mammalian species contain elements that can support transgene expression within cells of the migrating neural crest and that additional SRY 5' flanking sequences can extinguish this expression.
Collapse
Affiliation(s)
- Alexandre Boyer
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | | | | | | | | |
Collapse
|
17
|
Ito M, Yokouchi K, Naito K, Endo H, Hakamata Y, Miyazaki JI, Tojo H. Detection of elements responsible for stage- and tissue-specific expression of mouse Sry using an in vitro Cre/loxP system. Biochem Biophys Res Commun 2005; 337:264-70. [PMID: 16182245 DOI: 10.1016/j.bbrc.2005.09.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
We have successfully specified essential sequences of the 5' upstream region for the stage- and tissue-specific expression of mouse Sry by using an in vitro Cre/loxP system. Sry/Cre plasmids carrying Sry 5' sequences of various sizes were transfected into the primary cultured cells from different tissues of CAG/loxP/CAT/loxP/LacZ transgenic fetuses on 11.5-day post coitus (dpc) or 13.5-dpc. Stage- and tissue-specific regulation of Sry expression was disrupted by the deletion of positions 7549-7660 (from -0.4 to -0.5 kb region). In vitro transcription assay also suggested that the region contains element(s) responsible for stage- and tissue-specific expression of mouse Sry. SRY promoter of Shiba goat (Capra hircus var Shiba), a native Japanese miniature goat, showed the tissue-specific activity in the cells from urogenital ridges of the male mouse, but not in the cells from female mice, indicating a possibly different mechanism among species in the regulation of Sry expression.
Collapse
Affiliation(s)
- Masanori Ito
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Assumpção JG, Ferraz LFC, Benedetti CE, Maciel-Guerra AT, Guerra G, Marques-de-Faria AP, Baptista MTM, de Mello MP. A naturally occurring deletion in the SRY promoter region affecting the Sp1 binding site is associated with sex reversal. J Endocrinol Invest 2005; 28:651-6. [PMID: 16218050 DOI: 10.1007/bf03347266] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Male to female sex reversal results from failure of testis development. Mutations in the SRY gene or in other genes involved in the sexual differentiation pathway are considered to cause XY gonadal dysgenesis. The majority of the mutations in the SRY described so far are located within the SRY coding region, mainly in the HMG-box conserved domain. Comparison of 5' flanking SRY gene sequences among different species indicated the presence of several putative conserved consensus sequences for different transcription regulators. In this study, we investigated a 360 bp sequence encompassing the SRY putative core promoter, in 17 patients with variable degrees of 46,XY sex reversal, which have been previously shown not to bear mutations in the SRYcoding region. Sequencing analysis of the SRYpromoter in one patient with complete XY gonadal dysgenesis revealed a three base pair deletion in one of the Sp1 binding sites. The deletion abolished Sp1 binding in vitro. This is the first report on a naturally occurring mutation affecting the Sp1 regulatory element in the SRY promoter region, which is associated with sex reversal. Additionally, upon familial investigation the father, who had 18 genital surgeries due to severe hypospadia without cryptorchidism, was found to bear the same deletion and several relatives were referred to have sexual ambiguity.
Collapse
Affiliation(s)
- J G Assumpção
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, São Paulo, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Molecular Sexing Using SRY and ZF Genes in Pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2005. [DOI: 10.5187/jast.2005.47.3.317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Nishino K, Hattori N, Tanaka S, Shiota K. DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J Biol Chem 2004; 279:22306-13. [PMID: 14978045 DOI: 10.1074/jbc.m309513200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA methylation at CpG sequences is involved in tissue-specific and developmentally regulated gene expression. The Sry (sex-determining region on the Y chromosome) gene encodes a master protein for initiating testis differentiation in mammals, and its expression is restricted to gonadal somatic cells at 10.5-12.5 days post-coitum (dpc) in the mouse. We found that in vitro methylation of the 5'-flanking region of the Sry gene caused suppression of reporter activity, implying that Sry gene expression could be regulated by DNA methylation-mediated gene silencing. Bisulfite restriction mapping and sodium bisulfite sequencing revealed that the 5'-flanking region of the Sry gene was hypermethylated in the 8.5-dpc embryos in which the Sry gene was not expressed. Importantly, this region was specifically hypomethylated in the gonad at 11.5 dpc, while the hypermethylated status was maintained in tissues that do not express the Sry gene. We concluded that expression of the Sry gene is under the control of an epigenetic mechanism mediated by DNA methylation.
Collapse
Affiliation(s)
- Koichiro Nishino
- Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Yayoi 1-1-1, Bukyo-ku, Tokyo 113-8657
| | | | | | | |
Collapse
|
21
|
Knower KC, Kelly S, Harley VR. Turning on the male – SRY, SOX9 and sex determination in mammals. Cytogenet Genome Res 2003; 101:185-98. [PMID: 14684982 DOI: 10.1159/000074336] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 07/02/2003] [Indexed: 11/19/2022] Open
Abstract
The decision of the bi-potential gonad to develop into either a testis or ovary is determined by the presence or absence of the Sex-determining Region gene on the Y chromosome (SRY). Since its discovery, almost 13 years ago, the molecular role that SRY plays in initiating the male sexual development cascade has proven difficult to ascertain. While biochemical studies of clinical mutants and mouse genetic models have helped in our understanding of SRY function, no direct downstream targets of SRY have yet been identified. There are, however, a number of other genes of equal importance in determining sexual phenotype, expressed before and after expression of SRY. Of these, one has proven of central importance to mammals and vertebrates, SOX9. This review describes our current knowledge of SRY and SOX9 structure and function in the light of recent key developments.
Collapse
Affiliation(s)
- K C Knower
- Human Molecular Genetics Laboratory, Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | |
Collapse
|
22
|
Harley VR, Clarkson MJ, Argentaro A. The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocr Rev 2003; 24:466-87. [PMID: 12920151 DOI: 10.1210/er.2002-0025] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite 12 yr since the discovery of SRY, little is known at the molecular level about how SRY and the SRY-related protein, SOX9 [SRY-related high-mobility group (HMG) box 9], initiate the program of gene expression required to commit the bipotential embryonic gonad to develop into a testis rather than an ovary. Analysis of SRY and SOX9 clinical mutant proteins and XX mice transgenic for testis-determining genes have provided some insight into their normal functions. SRY and SOX9 contain an HMG domain, a DNA-binding motif. The HMG domain plays a central role, being highly conserved between species and the site of nearly all missense mutations causing XY gonadal dysgenesis. SRY and SOX9 are architectural transcription factors; their HMG domain is capable of directing nuclear import and DNA bending. Whether SRY and SOX9 activate testis-forming genes, repress ovary-forming genes, or both remains speculative until downstream DNA target genes are identified. However, factors that control SRY and SOX9 gene expression have been identified, as have a dozen sex-determining genes, allowing some of the pieces in this molecular genetic puzzle to be connected. Many genes, however, remain unidentified, because in the majority of cases of XY females and in all cases of XX males lacking SRY, the mutated gene is unknown.
Collapse
Affiliation(s)
- Vincent R Harley
- Prince Henry's Institute of Medical Research, Clayton 3168, Victoria, Australia.
| | | | | |
Collapse
|
23
|
Pilon N, Daneau I, Paradis V, Hamel F, Lussier JG, Viger RS, Silversides DW. Porcine SRY promoter is a target for steroidogenic factor 1. Biol Reprod 2003; 68:1098-106. [PMID: 12606467 DOI: 10.1095/biolreprod.102.010884] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To study the process of mammalian sex determination and in particular to further understand the mechanisms of transcriptional regulation of the SRY gene, we have isolated a 4.5-kilobase (kb) pig SRY 5' flanking sequence. To facilitate the in vitro analysis of these sequences, we have generated a porcine genital ridge (PGR) cell line (9E11) that expresses SRY as well as SOX9, steroidogenic factor-1 (SF-1), and DAX1. Via primer extension analysis on RNA from this cell line, a transcription start site for porcine SRY was identified at -661 base pairs (bps) 5' from the translation initiation site. Deletion studies of the SRY 5' flanking sequences in PGR 9E11 cells demonstrated that -1.4 kb of 5' flanking sequences retained full transcriptional activity compared with the -4.5 kb fragment, but that transcriptional activity fell when further deletions were made. Sequences downstream of the transcriptional start site are important for promoter activity, because deleting transcribed but not translated sequences eliminated promoter activity. Sequence analysis of the -1.4 kb fragment identified two potential binding sites for SF-1, at -1369 and at -290 from the ATG. To address the role of SF-1 transactivation in SRY promoter activity, mutagenesis studies of the potential SF-1 binding sites were performed and revealed that these sites were indeed important for SRY promoter activity. Cotransfection studies in a heterologous cell system (mouse CV-1 cells) demonstrated that pig SF-1 was able to transactivate the pig SRY promoter. Gel shift assays confirmed that the upstream site was recognized by mouse SF-1 protein. We conclude that two sites for SF-1 transactivation exist within the pig SRY promoter, at -1369 bp and at -290 bp, and that the site at -1369 bp is quantitatively the most important.
Collapse
Affiliation(s)
- Nicolas Pilon
- Centre de recherche en reproduction animale, Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | | | | | |
Collapse
|
24
|
Yokouchi K, Ito M, Nishino K, Yamanouchi K, Naito K, Suzawa M, Kato S, Hakamata Y, Endo H, Tojo H. Stage-specific regulatory element of mouse Sry gene. Mol Reprod Dev 2003; 64:389-96. [PMID: 12589650 DOI: 10.1002/mrd.10278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sry expression is essential for initiating male sex differentiation, and the expression occurs only during a restricted period in the developing gonad. It is thought that Sry is part of a pathway of genes that regulate sex determination. Although the interactions of several genes with Sry expression have been suggested, the exact cascade of gene expression regulating Sry transcription is entirely obscure because there is no available cell line expressing Sry and reflecting an in vivo condition. The present study was carried out to investigate the cis-acting element of the mouse Sry that responds stage specifically to its expression, in part, using transgenic mice expressing GFP on the Y chromosome. Ten DNA fragments were generated by digesting the 5' upstream region (positions 5491-8039; 2,549 bp) of mouse Sry with appropriate restriction enzymes. In an electrophoretic mobility assay with these fragments, the region from position 5491 to position 5799 (309 bp) was identified as forming specific protein-DNA complexes with nuclear extracts from 11.5 days post coitus (dpc) gonads, but not from 12.5 and 13.5-dpc gonads. This region also formed specific protein-DNA complexes with the nuclear extracts from adult testicular germ cells that generate only a circular form from Sry. This stage-specific responsive region was narrowed down to positions 5559-5616 by DNase I footprinting analysis. The assay of DNase I hypersensitive (HS) using the nuclear lysates from the 11.5-dpc urogenital ridges demonstrated that the novel HS site was located in the proximity of position 5600. This region DNase I HS was also detected at the same position when the lysates from adult testicular germ cells were applied. The results indicate that the present HS site may be involved in the transcriptional regulation of the linear and/or circular molecule transcripts from mouse Sry gene.
Collapse
Affiliation(s)
- Kou Yokouchi
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Science, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan 113-8657
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nishida S, Pastene LA, Goto M, Koike H. SRY gene structure and phylogeny in the cetacean species. MAMMAL STUDY 2003. [DOI: 10.3106/mammalstudy.28.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Daneau I, Pilon N, Boyer A, Behdjani R, Overbeek PA, Viger R, Lussier J, Silversides DW. The porcine SRY promoter is transactivated within a male genital ridge environment. Genesis 2002; 33:170-80. [PMID: 12203914 DOI: 10.1002/gene.10106] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In mammals the SRY gene functions as a dominant genetic switch for testis determination (Gubbay et al.: Nature 346:1128-1135, 1990; Koopman et al.: Nature 351:117-121, 1991; Sinclair et al.: Nature 346:240-244, 1990). To study SRY transcriptional regulation within an evolutionary context, we have generated transgenic mice that express green fluorescent protein (GFP) under the control of 4.5 kb of pig SRY 5' flanking sequences (pSRYp-GFP). Autofluorescence was observed in the genital ridges of e11.5 male embryos (18-21 tail somites), and by e12.5 (27 tail somites) autofluorescence was observed within the testes cords. The expression of the transgene did not display the abrupt termination characteristic of endogenous mouse SRY, but rather showed a gradual reduction in expression characteristic of human, pig and sheep SRY. Surprisingly, no autofluorescence was observed in normal XX genital ridges, although more sensitive RT-PCR analysis detected transgene transcription. When the transgene was bred into a constitutively male line of mice (Odsex; Bishop et al.: Nat Genet 26:490-494, 2000), autofluorescence was visible in genital ridges of XX animals, in the genetic absence of Sry protein. Via RT-PCR analysis, purified autofluorescent cells from e12.5 gonadal ridges expressed mouse SRY but not Oct4 transcripts, whereas autofluorescent cells from e14.5 gonadal ridges expressed MIS but not Oct4 transcripts, in each case consistent with a pre-Sertoli cell phenotype. In vitro expression studies performed in CV-1 cells demonstrated that pig SOX9 cDNA transactivated the pig SRY promoter but that pig SRY cDNA did not. When a SOX9 potential binding site identified at -205 of the pig SRY 5' flanking sequences was mutated, the SOX9 transactivation effect was reduced by 70%. This site is conserved in the 5' flanking sequences of bovine and human SRY genes but not in the mouse gene. Gel retardation assays using this binding site showed specific binding to SOX9-enriched nuclear extracts that was competed by excess unlabelled binding site but not by mutated binding site. We suggest that pig SRY gene is responsive to a testicular environment and propose a model of feedback amplification of pig SRY transcription by SOX9.
Collapse
Affiliation(s)
- Isabelle Daneau
- Faculty of Veterinary Medicine, University of Montreal, Saint Hyacinthe, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Carter AJR, Wagner GP. Evolution of functionally conserved enhancers can be accelerated in large populations: a population-genetic model. Proc Biol Sci 2002; 269:953-60. [PMID: 12028779 PMCID: PMC1690979 DOI: 10.1098/rspb.2002.1968] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of cis-regulatory elements (or enhancers) appears to proceed at dramatically different rates in different taxa. Vertebrate enhancers are often very highly conserved in their sequences, and relative positions, across distantly related taxa. In contrast, functionally equivalent enhancers in closely related Drosophila species can differ greatly in their sequences and spatial organization. We present a population-genetic model to explain this difference. The model examines the dynamics of fixation of pairs of individually deleterious, but compensating, mutations. As expected, small populations are predicted to have a high rate of evolution, and the rate decreases with increasing population size. In contrast to previous models, however, this model predicts that the rate of evolution by pairs of compensatory mutations increases dramatically for population sizes above several thousand individuals, to the point of greatly exceeding the neutral rate. Application of this model predicts that species with moderate population sizes will have relatively conserved enhancers, whereas species with larger populations will be expected to evolve their enhancers at much higher rates. We propose that the different degree of conservation seen in vertebrate and Drosophila enhancers may be explained solely by differences in their population sizes and generation times.
Collapse
Affiliation(s)
- Ashley J R Carter
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA
| | | |
Collapse
|
29
|
Xian M, Zhang J, Lau YF. Sry promoters from domesticus (Tirano) and C57BL/6 mice function similarly in embryos and adult animals. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:632-41. [PMID: 11748612 DOI: 10.1002/jez.1114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Introduction of the Y chromosome from a Mus musculus domesticus (Tirano) subspecies into the Mus musculus musculus C57BL/6 (B6) inbred strain background results in sex reversal in XY offspring. It has been hypothesized that the domesticus testis-determining Y (Tdy) locus is misregulated in B6 genome, thereby impairing sex determination in B6.Y(Dom) animals. The identification of a gene in the sex-determining region on the Y chromosome (Sry) as the Tdy has provided a means to experimentally examine this hypothesis. We have generated several lines of B6 transgenic mice harboring a green fluorescent protein gene directed by a Sry promoter from the domesticus (Tirano) Y chromosome. Detailed analysis of the transgene expression was conducted in both fetal and adult tissues of the transgenic mice. The domesticus Sry promoter was capable of directing the expression of the green fluorescent protein gene in a pattern similar, if not identical, to that of the endogenous B6 Sry gene. These observations suggest that the domesticus Sry promoter is not involved in the postulated misregulation of the domesticus (Tirano) Sry gene in the B6 genomic background. These results are discussed with reference to a second hypothesis invoking incompatible protein interaction(s) as a mechanism of aberrant sex determination in B6.Y(Dom) animals.
Collapse
Affiliation(s)
- M Xian
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, UCSF, San Francisco, California 94121, USA
| | | | | |
Collapse
|
30
|
Abstract
Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.
Collapse
Affiliation(s)
- J R Stone
- Department of Ecology and Evolution, State University of New York at Stony Brook, USA
| | | |
Collapse
|
31
|
Abstract
The genome sequence of an organism is an information resource unlike any that biologists have previously had access to. But the value of the genome is only as good as its annotation. It is the annotation that bridges the gap from the sequence to the biology of the organism. The aim of high-quality annotation is to identify the key features of the genome - in particular, the genes and their products. The tools and resources for annotation are developing rapidly, and the scientific community is becoming increasingly reliant on this information for all aspects of biological research.
Collapse
Affiliation(s)
- L Stein
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
32
|
Abstract
Sry is the Y-chromosomal gene that acts as a trigger for male development in mammalian embryos. This gene encodes a high mobility group (HMG) box transcription factor that is known to bind to specific target sequences in DNA and to cause a bend in the chromatin. DNA bending appears to be part of the mechanism by which Sry influences transcription of genes downstream in a cascade of gene regulation leading to maleness, but the factors that cooperate with, and the direct targets of, Sry remain to be identified. One gene known to be downstream from Sry in this cascade in Sox9, which encodes a transcription factor related to Sry by the HMG box. Like Sry, mutations in Sox9 disrupt male development, but unlike Sry, the role of Sox9 is not limited to mammals. This review focuses on what is known about the two genes and their likely modes of action, and draws together recent data relating to how they might interconnect with the network of gene activity implicated in testis determination in mammals.
Collapse
Affiliation(s)
- P Koopman
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
Garcia-Meunier P, Pastout L, Chevalier G, Guinet C. [Rapid determination of sex in Myocastor coypus embryos in the first stage of gestation]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:321-5. [PMID: 11386079 DOI: 10.1016/s0764-4469(00)01305-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The early knowledge of the sex may be crucial for the understanding of many features of ecological and evolutive biology, including offspring sex-ratio adjustment and evolution of breeding systems. In coypu (Myocastor coypus), significant variation in birth sex-ratios can be observed and selective abortion of entire litters is one of the cited mechanisms. In order to determine the sex of coypu embryos in the earlier stages of gestation (second week), we developed a molecular technique based on PCR amplification of a region of the Sry gene. These method used the combination of two sets of primers: one specific of the Y-chromosome; the other one, autosomal, is a positive control for amplification. Because of the direct amplification of embryo lysate without DNA extraction, the present sexing technique is rapid, relatively simple and inexpensive, and presents numerous advantages for the study at population scale.
Collapse
Affiliation(s)
- P Garcia-Meunier
- Laboratoire de biologie et environnement marins, institut de la mer et du littoral, avenue Lazaret, port des Minimes, 17000 La Rochelle, France.
| | | | | | | |
Collapse
|
34
|
de Santa Barbara P, Méjean C, Moniot B, Malclès MH, Berta P, Boizet-Bonhoure B. Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod 2001; 64:775-83. [PMID: 11207191 DOI: 10.1095/biolreprod64.3.775] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In mammals, male sex determination is initiated by SRY (sex-determining region of the Y chromosome) gene expression and followed by testicular development. This study describes specific down-regulation of the human SRY gene transcription by cAMP stimulation using reverse transcription-polymerase chain reaction experiments. Using transfection experiments, conserved nuclear hormone receptor (NHR1) and Sp1 consensus binding sites were identified as essential for this cAMP transcriptional response. Steroidogenic factor-1 (SF-1), a component of the sex-determination cascade, binds specifically to the NHR1 site and activates the SRY promoter. Activation of SF-1 was abolished by cAMP pretreatment of the cells, suggesting a possible effect of cAMP on the SF-1 protein itself. Indeed, human SF-1 protein contains at least two in vitro cAMP-dependent protein kinase (PKA) phosphorylation sites, leading after phosphorylation to a modification of both DNA-binding activity and interaction with general transcription factors such as Sp1. Taken together, these data suggest that cAMP responsiveness of human SRY promoter involves both SF-1 and Sp1 sites and could act via PKA phosphorylation of the SF-1 protein itself.
Collapse
Affiliation(s)
- P de Santa Barbara
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR1142, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
35
|
Chuzhanova NA, Krawczak M, Nemytikova LA, Gusev VD, Cooper DN. Promoter shuffling has occurred during the evolution of the vertebrate growth hormone gene. Gene 2000; 254:9-18. [PMID: 10974531 DOI: 10.1016/s0378-1119(00)00308-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Comparative studies of vertebrate gene promoter regions seldom detect gross rearrangements ('promoter shuffling') since such analyses usually employ relatively similar DNA sequences. Conversely, attempts to compare evolutionarily more divergent promoter sequences have been largely unsuccessful owing to the inability of conventional alignment procedures to deal with gross rearrangements. These limitations have been circumvented in the present study by using the novel technique of complexity analysis to identify modular components ('blocks') in the growth hormone (GH) gene promoter sequences of some 22 vertebrate species, from salmon to human. Significant rearrangement of blocks was found to have occurred, indicating that they have evolved as independent units. Some blocks appear to be ubiquitous, whereas others are restricted to a specific taxon. Considerable variation between orthologous GH gene promoters was apparent in terms of block length, copy number and relative location. It may be inferred that a wide variety of different mutational mechanisms have operated upon the GH gene promoter over evolutionary time. These include gross changes such as deletion, duplication, amplification, elongation, contraction, transposition, inversion and fusion, as well as the slow, steady accumulation of single base-pair substitutions. Thus the patchwork structure of the modular GH promoter region, and those of its paralogous GH2 and prolactin (PRL) counterparts, have continually been shuffled into new combinations through the rearrangement of pre-existing blocks. Although some of these changes may have had no influence on promoter function, others could have served to alter either the level of gene expression or the responsiveness of the promoter to external stimuli.
Collapse
Affiliation(s)
- N A Chuzhanova
- Department of Computer Science, University of Wales, CF24 3XF, Cardiff, UK
| | | | | | | | | |
Collapse
|
36
|
Abstract
Availability of complete bacterial genomes opens the way to the comparative approach to the recognition of transcription regulatory sites. Assumption of regulon conservation in conjunction with profile analysis provides two lines of independent evidence making it possible to make highly specific predictions. Recently this approach was used to analyze several regulons in eubacteria and archaebacteria. The present review covers recent advances in the comparative analysis of transcriptional regulation in prokaryotes and phylogenetic fingerprinting techniques in eukaryotes, and describes the emerging patterns of the evolution of regulatory systems.
Collapse
Affiliation(s)
- M S Gelfand
- State Scientific Center for Biotechnology 'NIIGenetika', Moscow, Russia.
| |
Collapse
|
37
|
Roberts LM, Shen J, Ingraham HA. New solutions to an ancient riddle: defining the differences between Adam and Eve. Am J Hum Genet 1999; 65:933-42. [PMID: 10486311 PMCID: PMC1288263 DOI: 10.1086/302601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Lori M. Roberts
- Graduate Program in Biomedical Sciences and Department of Physiology, University of California, San Francisco
| | - Jennifer Shen
- Graduate Program in Biomedical Sciences and Department of Physiology, University of California, San Francisco
| | - Holly A. Ingraham
- Graduate Program in Biomedical Sciences and Department of Physiology, University of California, San Francisco
| |
Collapse
|
38
|
Krawczak M, Chuzhanova NA, Cooper DN. Evolution of the proximal promoter region of the mammalian growth hormone gene. Gene 1999; 237:143-51. [PMID: 10524245 DOI: 10.1016/s0378-1119(99)00313-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The evolutionary relationship between the proximal growth hormone (GH) gene promoter sequences of 12 mammalian species was explored by comparison of their trinucleotide composition and by multiple sequence alignment. Both approaches yielded results that were consistent with the known fossil record-based phylogeny of the analysed sequences, suggesting that the two methods of tree reconstruction might be equally efficient and reliable. The pattern of evolution inferred for the mammalian GH gene promoters was found to vary both temporally and spatially. Thus, two distinct regions devoid of any evolutionary changes exist in primates, but only one of these 'gaps' is also observed in rodents, and neither is seen in ruminants. Furthermore, different evolutionary rates must have prevailed during different periods of evolutionary time and in different lineages, with a dramatic increase in evolutionary rate apparent in primates. Since a similar pattern of discontinuity has been previously noted for the evolution of the GH-coding regions, it may reflect the action of positive selection operating upon the GH gene as a single cohesive unit. Strong evidence for the action of gene conversion between primate GH gene promoters is provided by the fact that the human GH1 and GH2 sequences, which are thought to have diverged before the divergence of Old World monkeys from great apes, are more similar to one another than either is to the rhesus monkey GH2 promoter. Finally, it was noted that a number of nucleotide positions in the GH1 gene promoter that are polymorphic in humans appear to be highly conserved in mammals. This apparent conundrum, which could represent a caveat for the interpretation of phylogenetic footprinting studies, is potentially explicable in terms either of reduced genetic diversity in highly inbred animal species or insufficient population data from non-human species.
Collapse
Affiliation(s)
- M Krawczak
- Institute of Medical Genetics, University of Wales College of Medicine, Heath Park Cardiff CF4 4XN, UK.
| | | | | |
Collapse
|